
Injection of
the patterns

Recommendation of language patterns during language design

Motivation and Goals

Language pattern is a mapping
between abstract and concrete
syntax in a formal language that
ensures readability and
unambiguity of the langauge [1].

 In the abstract-syntax-first
approach to the language design,
where the metamodel is the resort
of the design, language patterns
define typical forms of notation,
such as keywords, separators, or
infix operators.

 Our goal is to provide support
of the patterns by automated
generation of pattern suggestions,
thus supporting clear and
readbale syntax design. We aim to
analyse a language metamodel
based on predefined heuristics in
order to identify possible pattern
utilizations.

YAJCo

YAJCo is a framework for the
abstract-syntax-first language
definition. It allows to define a
language concepts as Java classes
and concrete syntax using Java
annotations [2]. We used YAJCo as
an implementation of the language
metamodel definition.

Proposed solution

Language metamodel

Concrete syntaxAbstract syntax Language
patternsConcepts and properties Annotations

Analysis of model Finding opportunities
for pattterns

Language design process starts with the definition of the language model — its
concepts and their properties. Usually, the process would continue with the
definition of the concrete syntax — the designer would select and apply suitable
language patterns.

 We propose a way in which a language model is analysed based on defined
heuristics. These heuristics come from the patterns definitions. The analysis is
automated. However, it is not expected to be fully independent and might need
some input from the language designer. After model analysis, the relevant
patterns are proposed to the author. When a pattern suggestion is accepted, it is
injected into the model by adding annotations to the concept definition.

Pattern tool

Evaluation and results

Conclusion

Ing. Katarína Šipošová | Supervisor: Ing. Sergej Chodarev PhD. | Faculty of Electrical Engineering and Informatics, Technical University of Košice

YAJCo

The realisation of the proposed solution is the Pattern tool. It is a command line
tool that, given a language model, analyses the language and suggests language
patterns to be used in the language. The model the Pattern analyses is serialized
YAJCo language model. Pattern can be launched in the interactive mode that
allows the language designer to aid the analysis with additional information, to
provide more precise pattern suggestions, especially in the cases when the
analysis cannot decide on its own. Pattern can in addition manipulate the Java
classes defining language model and thus implement the patterns to the
langauge by adding YAJCo annotations.

The evaluation was performed on the selected
YAJCo laguage models with removed patterns
representing concrete syntax. Pattern tool was
used to perform analysis of such models. The
produced pattern suggestions were compared
with the original pattern definitions and the
relevance of the suggestions was evaluated. The
values of the precision (P) and recall (R) of the
analysis were calculated based on the true
positive (FP), false positive (FP) and false
negative (FN) findings.

Language
JSON

MathExpression

simpleRobot

StateMachine

DeskNielsen

TP FP

3
10

2

6

R

7

FN P

3

3

0

2

1

3

4
4

0

2

0.70

0.67
0.75
1.00

0.50

0.70
0.60

0.43
1.00

0.50

We showed that it is possible to suggest a
language patterns based on the language model
analysis. However, as it was anticipated, the
analysis is not fully independent and needs some
additional input from the designer. This was
considered in our Pattern tool implementation,
that supports interaction. The automated pattern
recommendation can support language designer
in the concrete syntax design decisions and
therefore provide more readable syntax.

References

[1] S. Chodarev, J. Porubän, J. Juhár, M. Sulír, M. Bačíková, “Language Syntax Design Patterns” — article in progress

[2] J. Porubän, M. Forgáč, and M. Sabo, “Annotation based parser generator,” in 2009 International Multiconference on Computer Science and Information Technology.

 IEEE, 2009, pp. 707-714.

