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Abstract

Reliable automated image analysis has become crucial for biomedical
research. Analysis of organoid images helps understand biochemical
processes in human bodies and test inĆuence of individual chemicals
to human body tissues. To that end, the algorithms operating on the in-
put image data must be reliable and robust to the high heterogeneity
of the specimens and the input image data.

This thesis presents a family of deep-learning-based algorithms
developed speciĄcally for segmentation and tracking of an organoid
of interest in 2D+t brightĄeldmicroscopy image data. The quantitative
evaluation of these algorithms on two real image datasets shows that
the best-performing algorithms are robust across different phenotypes
of mammary epithelial organoids and thus can be used by the re-
searchers to automate the image analysis process.
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Introduction

Automated image analysis has become an essential component in bio-
medical research. With advances in microscopy and its increasing af-
fordability, automated processing is necessary to facilitate the analysis
of massive amounts of image data and to fully use the information
in the raw image data [1].

Computerised analysis of organoid images plays an important role
in a number of biomedical research applications, including develop-
mental biology, disease biology, and drug toxicity and efficacy testing
[2, 3]. Organoids are in-vitro cultures of real tissues with very similar
function and cell organisation to the source tissue [2, 4]. They allow
scientists to study tissue dynamics in a controlled environment [2]:
organoids are grown freely in a medium, often supplied by a particu-
lar medication of interest, and imaged regularly to capture changes
in their growth, morphology, or texture. Automated processing is thus
crucial for fast and reliable analysis of organoid image data [2, 5].
The aim of the automated processing is to characterise organoids
based on quantitative measurements of relevant biological properties
[5, 4, 6].

In this thesis, I deal with automatic analysis of mammary epithelial
organoids in brightĄeld microscopy image data (Table 1). The aim
of this thesis is to detect and accurately segment organoids in tem-
poral image sequences so that accurate quantitative measurements
can subsequently be obtained and used to study organoid dynamics
under the inĆuence of particular growth-affecting proteins.

Table 1: Examples of the input image data analysed in this thesis. Con-
trast of the images was enhanced for visualisation purposes. The white
bars correspond to 100 µm.
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Introduction

This task entails several challenges. In particular, organoids studied
in this work exhibit high variability in morphology and texture Ű even
a single organoid undergoes a considerable change in its characteris-
tics throughout its lifetime. Organoids’ location also changes due to
their motion or manual intervention to imaging settings, which causes
difficulties in organoid tracking. Organoid heterogeneity is further
ampliĄed by the imaging modality; due to imaging in a single fo-
cal plane, organoids can become partially or completely defocused
and substantially change their texture characteristics. Finally, a num-
ber of organoids are present in each observed sample, which poses
challenges such as identiĄcation of the organoid of interest and correct
detection and segmentation of colliding organoids.

Recent works with a similar focus exist [2, 6, 7, 8], but they mostly
do not concentrate on accurate organoid segmentation and high-
resolution brightĄeld microscopy image data. Bian et al. [2] proposed
a deep-learning-based framework for organoid detection and tracking
in brightĄeld images without aiming at accurate segmentation. Lee
et al. [7] provided a simple routine for segmentation and quantiĄca-
tion of relatively homogeneous scenes in brightĄeld images. Hasain
et al. [6] presented a framework for quantitative analysis of organoids
based on their boundary coordinates, but the framework provides
only a very simple routine for image segmentation. Bulin et al. [8] pro-
posed an image analysis workĆow that requires both brightĄeld and
Ćuorescence image data and is designed for analysis of organoids with
a considerably more homogeneous structure than organoids studied
in this thesis.

This thesis is closely related to a manuscript [9] that I am the Ąrst
author of and is currently under review for possible publication in a top-
tier journal. In addition to the content of thatmanuscript, a comparison
of several related approaches for reliable detection and accurate seg-
mentation of the organoid of interest is presented, methodologies of
different approaches are described, and a detailed overview of biomed-
ical image analysis methods is provided. The method described in [9]
is compared with other methods proposed in this thesis. A quantita-
tive evaluation and discussion of the results is provided.

The thesis is organised as follows. In Chapter 1, a range of image
analysis methods are described with highlighted differences between
biomedical applications and general computer vision tasks. The review
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Introduction

of image segmentationmethods is extended in Chapter 2 by describing
the use of neural networks for biomedical image analysis; the strengths
and weaknesses of neural networks in biomedical applications are
discussed and several neural network architectures for image segmen-
tation are presented. In Chapter 3, the input image data for this thesis
are described in detail. A detailed description of methodology for
both deep-learning-free and deep-learning-based approaches is pro-
vided in Chapter 4. Particular experiments as well as evaluation of the
proposed algorithms can be found in Chapter 5. Finally, the achieved
results and alternative approaches are discussed in Chapter 6.

An application with the implementations of the proposed algo-
rithms was developed and is available as the supplementary material
in the MUNI Thesis Archive1.

1. https://is.muni.cz/th/hpuxk/
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1 Biomedical Image Analysis

Biomedical image analysis is a special Ąeld of computer vision. Al-
thoughmost image processingmethods are shared across tasks in real-
world applications, biomedical applications exhibit several distinct
characteristics that both constrain possible ways of processing and
introduce assumptions improving speciĄcity and sensitivity of algo-
rithms [10, 11].

One of the distinctions of biomedical applications is the observed
targets. Their characteristics impose a number of limitations on image
acquisition and processing. These particularly include:

• distortions and blurs caused by living tissue deformability and
motion during the acquisition process [12, 13, 11, 14],

• object occlusion and tissue overlay [12, 13],
• lack of certain information or bad-quality images caused by imag-

ing technology characteristics [1, 15, 16, 17, 18], e.g. during live
object scanning or scanning of inner layers of tissues.

Imaging instrumentation and image acquisition process can also in-
troduce differences compared to general image processing. Each type
of acquisition instrument, and thus each imaging modality, introduces
speciĄc kinds of noise, artefacts, or pitfalls [12, 19, 11]. Optical mi-
croscopy imaging serves as an example; since image intensities depend
on exposure time and light source brightness [11, 16], a single mi-
croscope can produce considerably different image data of the same
specimen.

Furthermore, multi-modal acquisition of a single scene is also com-
mon, as each modality captures speciĄc kind of information [11, 20].
In such cases, speciĄc processing techniques including image registra-
tion [21] and use of classiĄers [10] might be necessary for automated
analysis.

Another characteristic of biomedical image processing is the quan-
tity of image data [15, 5]. Enormous numbers of biomedical images
are recorded every day, often in high resolution [22, 12] or 3D [1, 4],
including 2D and 3D temporal sequences [2, 23, 12, 20, 6]. The quantity
and complexity of biomedical image data thus call for efficient and
reliable algorithms.

5



1. Biomedical Image Analysis

At the same time, some biomedical image data are private due to
their sensitive character or legal constraints [24, 25]. Moreover, only a
small portion of the images is equipped with reference annotations
suitable for development and evaluation of algorithms [26, 5]. There-
fore, a number of publicly available datasets exist [27, 28, 29] that also
provide reference annotations, benchmarks and comparison of the
state-of-the-art algorithms. Federated learning for neural networks
[24] also emerges as an approach to overcome the privacy of biomedi-
cal data as well as small amount of training data available in a single
institution.

Biomedical image data, however, also entail certain rules or princi-
ples which can be viewed as an a priori knowledge and used to build
reliable algorithms [11]. The more speciĄc the task is, the more infor-
mation can be assumed. Consequently, a higher amount of relevant
a priori knowledge leads to better performing algorithms [10].

Generally, biomedical applications share a couple of requirements
on the automated analysis and processing. These include:

• instance segmentation [17, 15] Ű identiĄcation of all object in-
stances and their proper separation;

• accurate boundary delineation [15, 26, 5] Ű subpixel accuracy
can be achieved e.g. using deformable models [30] or fuzzy
segmentation methods [10];

• correct tracking results [13, 15] in temporal sequences;
• and efficient methods suitable for real-time applications [26, 5].
The following sections provide a brief categorisation and overview

of basic image analysis and processing methods. SpeciĄcs regarding
biomedical image data are highlighted when necessary.

1.1 Image Enhancement

Image enhancement [11] is a common preprocessing step employed
prior to image analysis. It covers a range of techniques for instance for
remapping of image intensities, noise reduction, or edge sharpening.
When the goal is to revert a known image degradation, such as motion
blur, the process is called image restoration [11]. Apart from enhancing
the image for subsequent automatic processing [14], these techniques
can be used to improve the image for a human observer. The goal
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1. Biomedical Image Analysis

of image enhancement affects the choice of suitable Ąlters [11]; for in-
stance, while noise can substantially decrease performance of auto-
mated processing, it does not prevent humans from correct perception
of the image contents in most cases.

In the biomedical domain, image enhancement is often crucial
for performance of subsequent automated analysis [11, 14]. Images
are often degraded due to the acquisition process, instrumentation
setting, and physical limitations of acquisition, resulting in blur and
artefacts in Ćuorescence microscopy imaging [31] or uneven back-
ground illumination in optical microscopy imaging [11]. In some
cases, automated segmentation fails completely without proper pre-
processing [32, 30]. In addition to general enhancement Ąlters, there
are also Ąlters designed to suppress artefacts or noise speciĄc to a par-
ticular modality [11].

1.2 Image Registration

Image registration [21, 11] is a process of determining correspon-
dence between two images Ű which are seen as two different views
of the same scene Ű using appropriate geometric transformations.
The type of transformation sufficient to capture the relationship be-
tween the views depends hugely on the nature of the imaged objects
[21]. Generally, non-rigid transformations must be employed for reg-
istration of images of deformable objects such as soft tissues [21, 33].
Image registration is crucial for certain applications as it allows one to
combine information from images of the same object acquired using
different modalities or acquired in different time [21].

Image registration methods can be divided into three categories
based on the way they search for the transformation [21, 11]. Point-
based and surface-based methods Ąrst Ąnd pairs of corresponding
extreme points and corresponding surfaces, respectively, which are
present in both views; other points and object interior, respectively,
are then mapped using interpolation. Intensity-based methods use
image intensities solely; the transformation is found by optimising
a certain similarity measure such as correlation coefficient or entropy
[21].

7



1. Biomedical Image Analysis

1.3 Feature Extraction

Feature extraction aims at extracting relevant information from the im-
age. The obtained information can be viewed as a compressed repre-
sentation of the image contents or can serve as a description of the
input image, regions, or objects. The extracted features can be input
to a classiĄer or constrain the subsequent processing steps [32, 34, 10].

Features can be extracted at several levels, from individual image
elements to the whole image. They can be categorised as intensity-
related and geometric [32, 35]. Intensity-related features include his-
tograms and regional statistics such as entropy, moments, and texture
measures. Geometric features are usually deĄned for regions and are
based on their size (e.g. length, area), shape (e.g. curvature, circu-
larity), location (e.g. bounding boxes, center of mass), and topology.
As for the last category, connectivity can be measured on the image
element level.

In practise, it may be necessary to performnoise reduction or image
segmentation prior to feature extraction [32, 11]. This allows one to
extract the same information irrespective of noise and artefacts.

It is often convenient to transform the image into a different space
where certain characteristics can be found more easily. To name a
few, Fourier transform [36, 11] is used for frequency analysis and to
design image Ąlters. Similarly, wavelets [11] allow one to study fre-
quency spectrum, but also add localisation; they are typically used for
multiscale analysis and to compress images. In comparison, Hough
transform [11, 10] is a powerful tool for detecting parametrically rep-
resented shapes; the method works well even in noisy images.

Geometric information is usually extracted using mathematical
morphology [37, 34]. Mathematical morphology provides a wide
range of operators for binary aswell as grey-scale images; the operators
are speciĄed by a shape probe that corresponds to desired shape and
size constraints. A number of operators, such as openings or hit-or-
miss transform, can be used to reduce noise or Ąlter out unwanted
objects based on their shape and size both before and after processing
[20, 11]. Granulometry [34, 37, 38] measures properties of objects and
texture via pattern spectrum. Skeletonisation helps classify shapes
[11]. Finally, operators such as morphological reconstruction and top-
hat transform are used to extract objects and image features [34, 38].
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1. Biomedical Image Analysis

Althoughmorphological operators are employed inmany applications,
most algorithms rely on the simplest ones, namely erosions, dilations,
openings, and closings [34].

While morphological operators often analyse shapes during im-
age processing, there is a number of measures that only quantify
shapes after the computation has Ąnished [11]. These include com-
pactness measures (e.g. circularity), boundary regularity measures
(e.g. boundary moments), aspect ratios and convex hull measures,
Fourier descriptors, and connectivity measures (e.g. Euler number
and skeleton properties).

Texture analysis also plays an important role [11]. Measures of
texture coarseness, orientation, periodicity, and randomness can help
with segmentation, classiĄcation, and interpretation of the image infor-
mation. Many texture measures exist, for instance histogram statistics,
analysis of frequency spectrum, and methods based on co-occurence
matrices such as Haralick features.

Finally, color analysis can also be applied in some biomedical appli-
cations [11]. Depending on the imaging modality, image intensities in
both color images and grey-scale images can bear particular biological
signiĄcance [21, 33], or the color can be only a means of visualising
several grey-scale images in overlay [18].

1.4 Image Segmentation

Image segmentation is a process of partitioning the image domain
into a set of semantically consistent regions [10]. In biomedical ap-
plications, the desired regions represent real-world objects and thus
recognition of the object class is also usually required [10, 11, 35].
In addition to semantic segmentation, the instance segmentation Ű
identiĄcation and separation of individual class instances Ű is often re-
quired [17]. Image segmentation is usually followed by quantiĄcation
of individual regions [38].

Most biomedical applications are speciĄc enough to imply task-
dependent a priori knowledge [10], such as speciĄcation of object
location, texture, or shape as well as knowledge about the imaging
process [1]. Generally, the a priori knowledge is used to increase the
performance of algorithms [11]. It may also be used to build heuristics
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in the algorithm [35] and can be embedded so subtly in the algorithm
that it is hard to recognise it without deeper understanding of the task
[10, 32, 35].

Algorithm performance, namely in biomedical applications, can
also be improved by combining information from various modalities.
In this case, segmentation is often performed using a classiĄer that
considers features extracted from the co-registered images rather than
raw image data [10].

In fact, it is sometimes inevitable to employ either a priori knowl-
edge or a multi-modal algorithm to achieve reasonable results using
automated processing [10, 35]. Biomedical images exhibit a high vari-
ability of image quality [39, 18, 30] and the observed objects [35, 30,
20] Ű variability of objects of the same kind as well as occurrence of un-
known objects. Although most unsupervised segmentation methods
rely hugely on a priori knowledge [10], they still require a speciĄc task
domain to produce reasonable results due to this variability [11]; and
thus supervised machine-learning methods have become crucial in
image segmentation, the leader being convolutional neural networks
[17, 40, 11, 3].

There is a range of methods that are used to build segmentation
algorithms [10]; a combination of several methods is used in most
cases [29, 41, 11]. State-of-the-art algorithms aremostly based on deep-
learning approaches, but still tend to combine them with traditional
methods [42]; among the traditional methods, the basic ones are still
the most frequently used [20].

The simplest method is thresholding [10, 11]; pixel or voxel classes
are determined by comparing their intensities to one or more thresh-
old values. Although a suitable threshold value might be known in
advance in some cases, it is usually estimated by histogram analysis.

The second category are edge-based methods [10]. Edge detection,
however, yields only candidates for region boundaries; these have to
be Ąltered, thinned, and interconnected to obtain closed boundaries of
individual regions. Expected gradient magnitude or orientation can
be used to constrain the result if they are known a priori [35].

Thirdly, there are region-based methods [10, 11] that construct
connected regions iteratively based on a set of homogeneity rules.
This category includes region growing (iterative region growing from
an input set of region seeds), region splitting (iterative splitting of
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heterogeneous regions starting from a single region), and the split-
and-merge method (region splitting with possible merging of similar
adjacent regions).

Mathematical morphology can also be used for image segmen-
tation [34, 38]. Individual morphological operators can be part of a
segmentation pipeline to reduce noise, extract edges, or Ąlter out com-
ponents by shape [38]. In addition, skeleton by inĆuence zones and
watershed segmentation can be used directly for image segmentation.
The latter is often considered a region-based method [20].

The next category are energy-minimisation methods [42, 14]. Seg-
mentation result depends on the energy function deĄnition and com-
putation initialisation. This category includes deformable models [30,
14] that are based on evolution of a contour representing object bound-
ary. Evolution is driven by minimising energy function consisting of
internal and external terms; while the internal forces enforce contour
smoothness, external forces drive the contour towards object bound-
aries. It is possible to embed shape priors to the internal force term to
constrain global shape properties of the contour [30, 42, 14].

Graph cuts [43, 42] are another example of energy-minimisation
methods.A graph representation allows one to encode regional, bound-
ary and shape constraints in the graph edges. Optimal segmentation
is found using a maximum Ćow algorithm. Graph cuts are capable
of multiclass segmentation [42, 14] as well as segmentation of multi-
modal images [42].

Finally, one can employ classiĄcation methods [10] that assign
class labels to the whole image or individual image elements based on
features extracted from the image. The features form a feature vector
that represents the image or individual image elements; classiĄcation
methods then search for clusters in a feature space as each cluster rep-
resents a single class. Unsupervised methods rely solely on analysis
of the feature space to identify clusters and their boundaries. In com-
parison, supervised methods learn to identify clusters in a training
phase according to a labeled input.

In addition, fuzzy classiĄers [10, 44] account for variability in
biomedical images [35]. They assign a relative strength of each class to
image elements [11]. This allows for subpixel classiĄcation and copes
with image classiĄcation uncertainty [35]. Fuzzy methods can also be
enhanced by incorporating domain knowledge constraints [35].
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Some classiĄers, such as neural networks, are capable of implicit
feature extraction and can thus work on raw image data [40, 45]. How-
ever, most classiĄers require already extracted feature vectors as an
input, so proper feature selection is vital [32]. It is most often based on
the measurement of feature discriminatory power; the calculation is
either constrained by the former choice of classiĄer, or is data-driven
and can be used to choose the suitable classiĄer as well. These mea-
surements result in a ranking of features, which may determine a
subset of features to use, or provide a guidance to relative importance
of features for a human expert.

None of the above-mentioned methods is limited to the processing
of raw images. Not only is it often beneĄcial to preprocess the input
image to obtain a better segmentation result, it may be also necessary
to compute a certain image transformation prior to the processing [10,
11, 20]. These include edge detection or watershed transform driven
by the gradient magnitude image as well as thresholding of texture
measure image.

1.5 Object Tracking

Object tracking is a process of following an object in a temporal im-
age sequence [17]. As a result, object motion velocity or trajectory
can be inferred [29]. In biomedical image analysis, tracking is often
accompanied by the construction of lineage trees [29] that capture
correspondences between instances in consecutive frames as well as
other important events in objects’ lifetime, such as cell division. The
algorithms have to cope with events such as object occlusion and
clustering as well as objects entering and leaving the scene [15].

There are two categories of trackingmethods: tracking by detection
and tracking by model evolution. Tracking by detection methods [29,
1] need a pre-computed segmentation or detection of each frame to
establish association between corresponding instances in consecutive
frames. Although the previous frames are not directly involved in
the computation, they contribute to the result in a recursive manner
[13]. On the contrary, tracking by model evolution methods [29, 13,
1] carry out image segmentation and object tracking simultaneously.
This tracking paradigm is typically based on the evolution of active
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contours. Since an active contour in frame t is initialised by the con-
tour in frame t − 1, these methods require strong spatio-temporal
consistency between frames [29].
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2 Image Segmentation via Neural Networks

Neural networks are representation-learning methods for image clas-
siĄcation [40, 11, 46]. When presented a set of learning samples, they
are able to extract relevant features from the data and thus learn to
provide expected output for the samples. Their strength lies in im-
plicit data representation [40] and their ability to generalise beyond
the properties of the learning samples [5]. ClassiĄcation can happen at
different levels Ű from individual image elements to the whole image
[39].

There is a number of different network architectures; deep neural
networks with a number of hidden layers are usually used nowadays
[11]. Individual layers allow the network to learn very complex func-
tions by representing relevant features at multiple abstraction levels
[40, 17].

Neural networks can learn either in an unsupervised [47, 46],
a semi-supervised [48], or a fully-supervised manner. When using
the fully-supervised approach, the learnt representations rely hugely
on the training data. It is crucial to create a balanced dataset with a
sufficient number of representative images for each class [17, 26, 5]
and precise class labels [5]. Including images of different quality [5]
as well as suitable data augmentation [5, 41] can also improve the
network performance.

A suitable training dataset may, however, be a bottleneck, namely
in biomedical applications [26]. Annotating images manually is very
time-consuming [2, 5] and often yields imprecise or biased results [5,
49]. Several approaches may be chosen to tackle this limitation: the
augmentation of the available training dataset [50, 51]; employing and
unsupervised or a semisupervised model [46]; or creating a synthetic
dataset that mimics the real image data [50, 22].

The following sections present several deep neural network archi-
tectures used for biomedical image segmentation.

2.1 Convolutional Neural Networks

Convolutional neural networks (CNNs) [52, 40, 53] are a natural
choice for image classiĄcation and segmentation. A CNN processes its
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input using convolution layers and gradually downsamples the image
using pooling layers. Convolution layers learn distinctive features
from the data while downsampling allows the network to learn these
features at multiple levels of detail [17]. Thanks to pooling layers and
the terminal fully-connected layer, the image can be reduced to a single
vector representing class probabilities.

Biomedical applications, however, present speciĄc challenges for
the networks. Firstly, there is usually a considerable amount of image
data available, but very few images are equipped with accurate refer-
ence annotations necessary for the training [26, 11, 5]. Secondly, many
biomedical applications require classiĄcation at the image element
level instead of classiĄcation of the whole image [17]. And thirdly,
instance segmentation is a frequent requirement [17, 15], and thus
objects of the same class must be carefully and accurately separated.

The following subsections present three state-of-the-art CNN ar-
chitectures that output pixel-level classiĄcation of input images. These
architectures were selected to show different approaches to the same
task. All of them were successfully used in biomedical applications.

2.1.1 U-Net

U-Net [51, 54] is a fully-convolutional network of the encoder-decoder
type designed for the instance segmentation of biomedical images.
Its architecture (Figure 2.1) consists of two main parts: a contracting
and an extensive path. The contracting path consists of several blocks
with two convolution layers with non-linear normalisation and a max-
pooling layer. On the other hand, the extensive path contains several
blocks consisting of an up-sampling layer and two convolution layers
with non-linear normalisation.

During up-sampling, a corresponding feature map from the con-
tracting path is also retrieved, which contributes to accurate localisa-
tion of features [51]. Max-pooling and up-sampling layers gradually
change the level of detail of the image representation, thus enabling
the network to learn features at different scales [23].

U-Net also provides a mechanism to compensate for a small num-
ber of annotated training samples, typical for biomedical applications.
Training dataset undergoes extensive data augmentation that creates
images resembling the real image data [51, 54]. Such data augmenta-
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tion helps to train a reasonably-performing network from scratch with
only a few training samples [51, 55]; even fewer samples are necessary
if a previously trained model is later Ąne-tuned with a new dataset
[54]. Implicit data augmentation is also achieved via drop-out layers
in the contracting path [51, 40].

U-Net has been adopted by many researchers to solve biomedi-
cal image segmentation tasks. Recent works deal with diverse tasks
such as segmentation of vesicles in transmission electron microscopy
(TEM) images [56], segmentation of cells in microscopy images [26],
or nucleus segmentation in histology images [57]. Most of the works
also propose modiĄcations to the original U-Net architecture: [56]
added residual layers to all levels on both paths; [58] proposed adding
skip connections from a contracting block to all lower-level extensive
blocks; [59] placed transformer modules between the contracting and
extensive paths to exploit dependencies between consecutive frames
in a 3D sequence; [60] replaced skip connections and up-convolution
with up-sampling driven by indices remembered from the concate-

Figure 2.1: U-Net architecture. Taken from [51].
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nation path; and [26] equipped the skip connections with additional
convolution layers and residual connections and introduced a Classi-
Ąer and Localizer module that operates alongside the extensive path
to suppress false positive and false negative outputs. A U-Net archi-
tecture for processing volumetric image data has also been created
[61] by extending all operations to three dimensions.

2.1.2 DeepCell

DeepCell [41] is a framework for cell segmentation. Unlike U-Net,
DeepCell architecture contains only the contracting path. Pixel-wise
classiĄcation is achieved by interpreting the network output as a class
prediction for the central pixel only [5]. The input image is thus pro-
cessed by small overlapping patches. This leads to lower memory
requirements than with U-Net, but requires a careful choice of the
patch size [41].

Similarly to U-Net, it is possible to train the network with a rela-
tively small number of annotated images with suitable data augmen-
tation [41, 5]. Segmentation accuracy can be increased by training
several models and averaging their results [41, 5]. The authors of [41]
also suggest that postprocessing of network’s predictions is necessary
to improve the results, and recommend to employ active contours for
that purpose.

DeepCell was successfully used for segmentation of cell cytoplasm
and cell nuclei in phase and Ćuorescence microscopy images [41, 5].

2.1.3 Mask R-CNN

Mask R-CNN [62] is a region-based convolutional network designed
for segmentation and classiĄcation of general images. Its distinction
lies in two-stage processing. Firstly, a set of proposed object bounding
boxes is established using a fully-convolutional network. Each bound-
ing box determines a cropped image that is fed to a CNN to output
pixel-wise segmentation. ClassiĄcation of the object is performed in a
separate pipeline.

Mask R-CNN’s performance was demonstrated on general images
in the COCO challenge [63]; later, it was successfully used e.g. for
nucleus segmentation in Ćuorescence and histology images [64]. It
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was observed that R-CNN provides less accurate segmentation than
U-Net, but performs much better in separation of clustered object
instances [64].

2.2 Recurrent Neural Networks

Although CNNs are able to identify and learn many features, they
cannot fully exploit long-range dependencies neither in a single image,
nor in an image sequence [59]. However, such information might be
of great importance for accurate segmentation [59]. Although there
are three-dimensional CNNs for volumetric data [61, 65], they suffer
from high resource requirements and their possibilities are therefore
limited. This naturally leads to the use of recurrent neural networks
(RNNs) [40] that are well suited for detection of spatial as well as
temporal patterns in sequential image data.

Given an image sequence, an RNN processes it by individual
frames [40]. The network maintains a hidden state that accumulates
information from the previously seen images. Previous frames thus
contribute to classiĄcation of the current frame. The hidden state is
being updated with every frame.

One of the most important RNN architectures is the long short-
term memory (LSTM) [66, 40]. Its hidden state is implemented as a
memory cell. The memory and the cell’s previous output as well as
new input are processed by non-linear gating units that control the
Ćow of data through the network, and non-linear activation functions.
This architecture has been designed speciĄcally to tackle the vanishing
and exploding gradient problem that had prevented simple RNNs
from being useful in practice [67].

Several concepts have been proposed to combine the U-Net archi-
tecture and the RNNscheme [23, 68]. Generally, theU-Net architecture
is modiĄed to contain convolutional LSTM (C-LSTM) blocks. While
Arbelle and Raviv [23] propose to substitute convolution layerswith C-
LSTM layers either in the contracting path, the extensive path, or both,
Payer et al. [68] suggest to insert C-LSTM blocks to skip connections
between the two paths.

In biomedical applications, RNNs have successfully been used for
example to segment and track cells in microscopy images [68, 23].
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2.3 Adversarial Neural Networks

A neural network architecture inspired by the generative adversarial
networks (GANs) for the instance segmentation of biomedical im-
ages has also been proposed [69]. Similarly to GANs, two competing
networks are trained simultaneously: an estimator learns to output
accurate segmentation of the input images whereas a discriminator
learns to differentiate between human annotations and the estimator’s
output given the image and its segmentation. The authors claim that
even a small number of annotated training samples is sufficient to train
a well-performing model. Adversarial networks have been used e.g.
to segment cells in Ćuorescence microscopy images [69] and nuclei in
histopathology images [70].

2.4 Cellular Neural Networks

Cellular neural networks (CeNNs) [71] combine concepts of neural
networks and cellular automata, resulting in a regularly-spaced grid
of cells where each cell is connected only to a small number of neigh-
bouring cells and represents the same non-linear dynamic system.
Despite local connections, global dependencies can be learnt via infor-
mation propagation [71, 72]. Cellular networks are capable of parallel
processing [71, 73], real-time processing [73, 74, 75], and processing
of noisy data [73, 75].

Cellular networks have been used to solve a wide range of image
processing and pattern recognition tasks, such as pixel and image
classiĄcation [72], image enhancement [72, 76], feature extraction [72,
73], edge detection [75, 76] and colour image processing [75]. In fact,
CeNNs perform well at many image analysis tasks whereas convolu-
tional neural networks are suited mostly for image classiĄcation and
segmentation [74, 41]. An exmaple of use of CeNNs in the biomedical
world is a fuzzy cellular neural network used for white blood cell
detection [77].
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An overview of the input image data is provided in this chapter. Four
datasets Ű two real datasets and two synthetic datasets Ű are described
and their differences are highlighted.

3.1 Real Image Data

Input image data [9] capture the development of mammary epithelial
organoids. The organoids were cultivated in controlled environments
with varying levels of growth-affecting substances. Individual types
of environments impact organoid characteristics and thus determine
organoid phenotypes: cysts (CY), normally branching (NB) organoids,
massively branching (MB) organoids, hollowly branching (HB) orga-
noids, and long branching (LB) organoids (Table 3.1).

The CY phenotype is the only phenotype not induced with the
growth-affecting factor. Shape, size, and texture of CY organoids thus
change slowly; the organoids maintain approximately circular shape
during the whole experiment and do not form any branches. Other
organoid phenotypes have very similar appearance in the beginning of
an experiment, but start to form branches over the course of imaging.
The NB andMB organoids form a huge amount of short thin and thick
branches, respectively. The LB organoids evolve in a similar manner
but form substantially longer and thinner branches. The HB organoids
start to grow branches sooner than the other phenotypes and the
branches have different texture that is less distinct from the back-
ground. The LB and HB organoids generally form less branches than
the NB and MB organoids. The MB organoids retain roundish shape
during the whole experiment due to the thickness of their branches,
while the NB, HB, and LB organoids have much higher perimeter-to-
area ratio in the end of the experiment.

The specimens were imaged every hour for several days using an
Olympus IX81microscopewith a dry 10×/0.40 objective lens, forming
a sequence of two-dimensional brightĄeld microscopy images. Each
sequence contains a single organoid of interest, yet there may be other
organoids and structures present in its surrounding. Imaging settings
were adjusted regularly during the experiment so that the organoid of
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interest is mostly focused and approximately centered in the Ąeld of
view over the course of imaging. As a result, abrupt changes in focus

Table 3.1: Real image data. Top to bottom: the CY, NB, MB, HB, and LB
organoid. Left to right: the Ąrst frame, approximately themiddle frame,
and the last frame of individual sequences. Contrast of the images
was enhanced for visualisation purposes. The white bars correspond
to 100 µm.

t = 0 t = 80 t = 160 or t = 161

CY

NB

MB

HB

LB

22



3. Image Data

and location of objects in the Ąeld of view might be present in the
image data.

Five sequences were recorded for each phenotype. Each image
sequence contains from 153 to 162 frames of 1344 × 1024, 1336 × 1024,
or 1344 × 1014 pixels in size with pixel size of 0.647 × 0.647 µm.

Additionally, ten images from each sequence were randomly se-
lected and annotated by three experts. These manual annotations
were combined by majority voting to provide reference annotations
for segmentation of the selected images. Annotators concentrated on
segmentation of the organoid of interest only, classifying the pixels
into two classes: background and organoid. In addition, one annotator
created a detection marker for each frame in all real sequences (Table
3.2).

The CY, NB, andMB sequences form a target dataset (TD) and were
used to optimise algorithm parameters as well as to evaluate algorithm
performance. The HB and LB sequences form a robustness validation

Table 3.2: Comparison of three manual annotations for segmentation,
the reference annotation and the detection marker on a single frame
from a LB sequence (t = 154). The annotations and the detection
marker are outlined in yellow. Contrast of the input image was en-
hanced for visualisation purposes. The white bar corresponds to 100
µm.

Input image Detection marker Reference annotation

Annotator 1 Annotator 2 Annotator 3
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Table 3.3:Examples of challenging situations: a) two focused organoids
in collision; b) organoid with focused body and defocused branch
in collision with a defocused organoid; c) epithelial structures at-
tached to the organoid’s surface; d) a HB organoid with different
texture and out of the focal plane; e+f) two consecutive frames that
capture the organoid of interest before and after manual intervention
to imaging settings. Yellow outline denotes the reference annotation.
All images are cropped to show the necessary context. Contrast of the
input images was enhanced for visualisation purposes. The white bars
correspond to 100 µm.

a) b) c)

d) e) f)

dataset (RVD) to measure algorithm ability to generalise on unknown
organoid phenotypes.

Common challenges (Table 3.3) include colliding organoids, ep-
ithelial structures attached to organoid surface, abrupt changes in
focus and location of objects due to the manual interventions, pres-
ence of several focused organoids in a single frame, and high variability
in organoid texture and shape among different phenotypes.

3.2 Synthetic Image Data

Synthetic 2D+t sequences plausibly mimicking real image data were
generated [9] using a conditional generative adversarial network
(GAN) and provided to me to facilitate the development of a deep-
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learning-based algorithm described in Section 4.2. This section de-
scribes two synthetic datasets that were created in this manner.

The G1 dataset (Table 3.4) was generated by a GAN with pix2pix
architecture [78]. The GAN was trained with images from the target
dataset; semantic masks for the training were obtained using a deep-
learning-free algorithm described in Section 4.1. Five sequences with
the CY organoids and Ąve sequences with the NB organoids were gen-
erated, each with 153 to 162 frames of 1024 × 512 pixels in size. The
sequences were generated using the semantic masks from the training
dataset. Individual frames were generated separately. Whereas mor-
phological and positional inter-frame dependencies were imposed by
the semantic masks, temporal texture consistency was not enforced.

TheG2 dataset (Table 3.5)was generated by aGANwith pix2pixHD
architecture [79]. The network was also trained with images from the
target dataset, but the semantic masks were extended to contain two
additional classes: dark blurred structures (DBS) and bright blurred struc-

Table 3.4: Example of the G1 dataset Ű three consecutive frames from
two synthetic sequences. Top to bottom: the CY and NB organoids
with their reference two-class annotations.

t = 86 t = 87 t = 88

CY

t = 119 t = 120 t = 121

NB

25



3. Image Data

Table 3.5: Example of the G2 dataset Ű three consecutive frames from
three synthetic sequences. Top to bottom: the CY, NB, and MB
organoids with their reference four-class annotations.

t = 78 t = 79 t = 80

CY

t = 93 t = 94 t = 95

NB

t = 123 t = 124 t = 125

MB

26



3. Image Data

tures (BBS). These were inferred by median-intensity-driven thresh-
olding of the input images [9]. The training dataset thus classiĄes
pixels into four classes. The DBS and BBS classes helped diminish the
difference between texture evolution in synthetic sequences and in
the real image data. Visual comparison of the G1 dataset and the G2
dataset can be done using Tables 3.4 and 3.5. Quantitative evaluation
of the G2 dataset can be found in [9]. Five CY, Ąve NB, and Ąve MB
sequences were generated in this manner, each with 153 to 162 frames
of 1344 × 1024 pixels in size.

The semanticmasks used to generate images also serve as reference
annotations. The reference annotations are therefore fully deĄned
for all synthetic images and classify pixels into two and four classes,
respectively.
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4 Methodology

Methodology for analysis of the input image data is described in this
chapter. The aim of this thesis is to develop an algorithm for reliable
segmentation of the organoid of interest in each input sequence. The
algorithms were thus developed speciĄcally for the input image data
described in Section 3.1 using their characteristics to improve the
algorithm performance. A single binary mask is computed for each
input frame to classify image pixels as organoid or background.

A deep-learning-free (DL-free) baseline algorithm thatwas used to
generate organoid mask for training of the conditional GANs for syn-
thetic data generation (Section 3.2) and to set a baseline performance
for evaluation of deep-learning-based algorithms (Section 4.2) is de-
scribed in Section 4.1. A deep-learning-based (DL-based) approach is
described in Section 4.2. The implementations of both approaches are
available in the MUNI Thesis Archive.

4.1 Deep-Learning-Free Segmentation

The deep-learning-free algorithm can be divided into several parts
(Figure 4.1). Firstly, a coarse segmentation of the organoid of interest
is computed and used to establish a region of interest for subsequent
segmentation reĄnement. In the reĄnement step, segmentation is per-
formed according to certain texture characteristics of the organoid of
interest. Outputs of both steps are combined and Ąltered to obtain a
binary segmentation mask.

The baseline algorithm relies hugely on the a priori knowledge
about the input image data. The most important assumptions that
allow this algorithm to be useful in practise are:

• tracking of a single organoid in each sequence,
• organoid being a single object without holes,
• organoid having a Ąne-grained structure with highly varying

pixel intensities,
• organoid being centered in the image plane,
• and slow motion of the organoid.
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Figure 4.1: Deep-learning-free pipeline for 2D+t sequence segmenta-
tion.

On the contrary, some temporal dependencies between consecutive
frames, such as smooth shape evolution, are not exploited in this
algorithm.

4.1.1 Coarse Segmentation

Firstly, a coarse segmentation is computed (Table 4.1) to deĄne an
axis-aligned bounding box of the focused organoid. The bounding
box deĄnes an area where the subsequent steps (Sections 4.1.2 and
4.1.3) are performed to accelerate the subsequent computation.

The input image data present a clear pattern: the background is rel-
atively smooth while the intensity of organoid pixels varies consider-
ably. Therefore, each input frame undergoes two coarse-segmentation
pipelines.

Firstly, black top-hat transform of the input frame is computed
with closing with a circular structuring element (CSE) with diameter
dTH; this image is thresholded with the triangle method and morpho-
logically Ąltered to reĄne the component shape.

In the second pipeline, gradient magnitude of the input frame
is computed, thresholded with the triangle method, and morpho-
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logically Ąltered. This image is then dilated with a CSE of diameter
dD1 and intersected with the image from the top-hat pipeline to con-
strain segmentation to pixels lying close to regions with a considerable
change in image intensities.

The resulting binary image is Ąltered morphologically, by compo-
nent size, and by component location so that at most one connected
component is present in the frame Ű a coarse segmentation Sc of the
organoid of interest. Namely, components smaller than TAC % of the
largest component’s size are removed and the component that min-
imises the following criterion is selected:

∥

∥

∥
IDC − Cit

t

∥

∥

∥

1
+

∥

∥

∥
Ct−1 − Cit

t

∥

∥

∥

1
(4.1)

where IDC is the geometric center of the image domain, Cit
t is the ge-

ometric center of i-th component in frame t, and Ct−1 is the geometric

Table 4.1: Coarse segmentation: a) input image; b) binarised top-hat
transform; c) binarised and dilated gradient magnitude; d) candidate
components for the coarse segmentation; e) coarse segmentation SC;
and f) cropped input image. Yellow regions in b), c), and d) denote
foreground pixels in binary images. Yellow outline in e) is used to
overlay the binary segmentation over the input image. The white bars
correspond to 100 µm.

a) b) c)

d) e) f)
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center of the Ąnal component in frame t − 1. For the Ąrst frame with
t = 0, Ct−1 = IDC. The Ąrst term penalises components lying near the
image domain borders while the second term penalises components
whose location differs substantially from organoid’s location in the
previous frame. In case there are multiple components that minimise
the criterion, the minimising component with the smallest label is
chosen.

The bounding box of the chosen component is extended by EBB%
of the component’s maximumdiameter in all directions, which deĄnes
the subset of image domainwhere the subsequent steps are performed.

4.1.2 Focused Organoid Segmentation

As mentioned in the previous section, the organoid of interest usually
exhibits much Ąner structure and higher variance of pixel intensities
than its surrounding. The main body of the organoid is therefore
determined by a measure of variance Ű or, more precisely, by standard
deviation (Table 4.2).

Standard deviation is computed in a n × n neighbourhood of each
pixel in the bounding box. The result is thresholded by Otsu method
with threshold T1 and then Ąltered with morphological operators and
by component size. The output is a binary image SHV capturing all
high-variance areas.

4.1.3 Segmentation of Dark Regions

Although the organoid of interest exhibits a distinct structure in most
cases, it can become blurred due to motion or extending branches
outside of the focal plane. Out-of-focus branches and organoids have
smoother texture and are delineated by a dark blurred boundary
region. These dark blurred regions are segmented in this step.

The cropped input image is smoothed with a Gaussian function,
thresholdedwith the Otsumethod, and inverted. At the same time, the
image of standard deviation is thresholded with threshold T2 = r · T1,
Ąltered morphologically and by component size, and dilated with a
CSE of diameter dD2. The two binary images Ű segmentation of dark
regions and dilated high-variance regions Ű are intersected. The result
(SDB) captures dark regions lying close to a focused region, which
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Table 4.2: Segmentation reĄnement: a) standard deviation in the
cropped input image; b) binarised and Ąltered standard deviation
(SHV); c) dark regions (SDB); d) Ąne segmentation after morphologi-
cal Ąltering; e) intersection of the coarse and Ąne segmentation; and
f) Ąnal segmentation. Yellow regions in b), c), d), and e) denote fore-
ground pixels in binary images. Yellow outline in f) is used to overlay
the binary segmentation over the input image.

a) b) c)

d) e) f)

corresponds to segmentation of out-of-focus branches of the organoid
of interest.

4.1.4 Integration of Local Segmentation

Finally, the images of high-variance areas (SHV) and defocused parts
of organoid (SDB) are fused by union and morphologically Ąltered
(Table 4.2). Then, the largest component is selected and intersected
with the coarse segmentation Sc. Finally, an opening with a CSE of
diameter dO is computed to remove thin protrusions and to smooth
the organoid boundary, and all components except for the largest one
are removed.
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4.2 Deep-Learning-Based Segmentation

The proposed DL-based pipeline for segmentation of 2D+t sequences
of organoid images consists of the following steps (Figure 4.2):

• preprocessing of the input sequence;
• neural network prediction of pixel-level class labels;
• and postprocessing of the class prediction for binary output.

The individual steps are described in detail in the following sections
and are illustrated in Table 4.3.

4.2.1 Preprocessing

Preprocessing of the input image data involves pixel value remapping
to the interval 〈0, 1〉 as suggested in [51] to enhance the image data for

Figure 4.2: Deep-learning-based pipeline for 2D+t sequence segmen-
tation.
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processing by a neural network. Pixel value normalisation is generally
crucial for robustness and performance of neural networks [41, 80].

4.2.2 Neural Network

The preprocessed image data are provided as an input to a deep
convolutional neural network with the U-Net architecture (Section
2.1.1). The network processes a single frame at a time and outputs a
multi-channel imagewhere each channel holds a pixel-wise prediction
score for a single object class. Number of classes learnt depends on
the training dataset. Training of the network is described in Section
5.2.2.

Since the network processes individual frames separately, the tem-
poral dependencies between consecutive images in the sequence are
ignored, which may result in inaccurate segmentation in some cases

Table 4.3: Segmentation using deep learning: a) input image; b) U-Net
prediction displayed with a LUT and with scale in the top left corner;
c) binarised prediction; d) Ąnal segmentation after the component
Ąltering step; e) prediction binarised with threshold Torg + ∆Torg; f)
Ąnal segmentation after the segmentation correction step. Contrast of
the input image was enhanced for visualisation purposes. The white
bar corresponds to 100 µm.

a) b) c)

d) e) f)
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(Chapter 6). To compensate for that, the postprocessing steps make
use of the inter-frame dependencies.

The design of postprocessing is exceptionally important; it has been
observed that although the convolutional networks generally perform
well in classiĄcation tasks, raw outputs still need reĄnement to be
useful in practical tasks [41, 11]. While the neural network learns the
distinctive features on its own, the postprocessing step allows one to
embed the a priori knowledge explicitly in the algorithm. Namely, the
presence of a single object of interest in thewhole sequence, organoid’s
minimum diameter and area, organoid’s expected location, and dif-
ferences between consecutive frames are considered in the following
steps.

4.2.3 Prediction Binarisation

Firstly, the network predictions are resampled to match the resolution
of the input image data. Although U-Net is designed to produce per-
pixel scores, its output is smaller than the input image by a few pixels
due to unpadded convolutions [51].

I have proposed several ways of prediction binarisation:
• Simple: Only predictions for organoid class are used in the subse-

quent processing. The organoid score map is thresholded with a
Ąxed threshold Torg that represents a decision threshold of the
particular model.

• Multi: Predictions for multiple classes are processed and com-
bined to obtain a single binary image; binarisation may happen
either before or after the combination of individual images. One
of the possibilities is to compute argmax over all output channels
[54] and extract pixels classiĄed as organoid.

• Hybrid: Prediction for organoid class is enhanced by explicit fea-
ture score extracted from the original image. This approach thus
consists of two independent pipelines operating on the input
image sequence: one is based on U-Net, the other resembles
the baseline algorithm (Section 4.1). Both pipelines output a
real-valued score map that is normalised, combined (e.g. by a
weighted sum), and binarised.

• Prev: U-Net prediction can be also enhanced by the prediction
score or binary result of the previous frame since the change

36



4. Methodology

between consecutive frames is usually very small. This approach
results in worse performance on organoid boundary, but may
prevent serious under- or over-segmentation in case of network
uncertainty in a complicated case.

4.2.4 Component Filtering

The binarised image is processed with a sequence of morphological,
size-based, and location-based Ąlters to reĄne component shape and
select component representing the organoid of interest.

• O-filtering: Firstly, the image is processed with a morphological
closing with a CSE of diameter dC, the hole-Ąlling operator, and
a morphological opening with a CSE of diameter dO. Secondly,
area opening is performed to remove components smaller than
TA pixels. Finally, location-based Ąltering is used to select a single
component that minimises the criterion in Equation (4.1).

• DE-filtering: The morphological opening in the O-filtering ap-
proach is replaced with erosion with a CSE of diameter dDE.
After the area- and location-based Ąltering, morphological dila-
tion with a CSE of diameter dDE is applied. This approach tends
to cut off protrusions thinner than dDE pixels more effectively
than the O-filtering approach (Section 6.2).

4.2.5 Segmentation Correction

The binarisation threshold Torg is chosen to reĆect the network decision
threshold. Although this approach generally works well (Section 5.2),
under- and over-segmentation can occur in some cases. To compensate
for the network uncertainty in classiĄcation, the following correction
procedure can optionally be applied.

After establishing the result for frame t > 0, a similarity measure
S(·) is computed for the results of frames t and t − 1. If the change
in the value of S(·) is greater than TS · 100%, segmentation for frame
t is recomputed with Torg ± ∆Torg. Note that only steps described in
Sections 4.2.3 and 4.2.4 are repeated. The number of iterations of this
correction procedure can be constrained to be at most Rmax to control
time efficiency.
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This approach accounts for under- as well as over-segmentation.
Alternatively, the correctionmechanismmay be applied in one of these
cases only.
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5 Experimental Results

An evaluation of the proposed algorithms is presented in this chapter.
Evaluation measures are deĄned in Section 5.1. Training of neural
networks for the DL-based algorithm and parameter optimisation for
both DL-free and DL-based algorithms are described in Section 5.2.
Finally, quantitative evaluation of selected algorithms is presented in
Section 5.3.

5.1 Evaluation Measures

All algorithms are evaluated using the real image datasets described
in Section 3.1. For algorithms with a neural network trained with
the real image data, the evaluation on the target dataset is done using
Ąve-fold cross-validation [49]. Five different networks were trained
with a different subset of annotated images from the target dataset and
evaluated using the rest of annotated images (one sequence for each
phenotype from the target dataset and all sequences from the robustness
validation dataset). All Ąve networks share the same postprocessing
algorithm and hyper-parameter values. The overall performance of
such an approach is deĄned as the average performance of these Ąve
networks.

Let N = 0, 1, ..., n − 1 be a set of indices of all frames in a single
sequence and let j ∈ J ⊆ N be a set of indices of frames with the
reference segmentation annotation. Let A = A0, A1, ..., An−1 be a se-
quence of automatically computed binary masks. Let Rj be a reference
binary segmentation mask corresponding to Aj, j ∈ J. Let Di, i ∈ N be
a binary detection marker corresponding to Ai. Let R be a sequence
of all Rj, j ∈ J and let D be a sequence of all Di, i ∈ N . Each reference
annotation Rj and each detection marker Di always contains one con-
nected component. The terms "connected component" and "object"
are used interchangeably in this section.

The following measures are used to quantify the performance and
accuracy of the proposed algorithms:

• Segmentation Accuracy (SEG) [29, 81, 82, 83] quantiĄes the
overlap between reference annotation Rj and automatic segmen-
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tation Aj using the Jaccard similarity index for pairs of matching
objects Uk ∈ Rj and Vl ∈ Aj:

JC(Uk, Vl) =
|Uk ∩ Vl|
|Uk ∪ Vl|

. (5.1)

Objects Uk ∈ Rj and Vl ∈ Aj are considered matching if and only
if

|Uk ∩ Vl| > 0.5 · |Uk|. (5.2)

Thus, there can be at most one object Vk ∈ Aj matching each
object Ul ∈ Rj. False positive objects are not penalised.

Since the reference annotations for the input image data always
contain exactly one object U ∈ Rj, JC is measured for at most
one object V ∈ Aj for each annotated frame Aj:

SEG(Rj, Aj) = JC(U, V) (5.3)

where U, V is the pair of matching objects for frame j. If no object
V matching U can be found, SEG(Rj, Aj) is set to zero.

The SEG score of an image sequence is computed by averaging
the SEG scores for all frames j ∈ J:

SEG(R, A) =
1

|J| ∑
j∈J

SEG(Rj, Aj). (5.4)

The result is a real number in the interval 〈0, 1〉, with a higher
number meaning better segmentation accuracy.

• Detection Accuracy (DET) [81, 82] penalises differences be-
tween the detection markers D and the automatic segmentation
A in a graph-based representation:

DET(D, A) = 1− min(AOGM-D(GD, GA),AOGM-D(GD, GE))

AOGM-D(GD, GE)
(5.5)

where AOGM-D(F, G) is the Acyclic Oriented Graph Measure
for detection [84] computed for graphs F and G, GD is the graph
constructed from D, GA is the graph constructed from A, and
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GE is an empty graph. The default penalty conĄguration of (10.0,
5.0, 1.0) was used to penalise missing, nonsplit, and spurious
objects.

The result is a real number in the interval 〈0, 1〉, with a higher
number meaning better detection performance. Unlike the SEG
measure, the value of DET decreases with an increasing number
of false positive objects.

• Hausdorff distance (HD) [85, 83, 86] measures shape dissimi-
larity of two sets S1, S2 as the maximum distance between each
point pair of S1, S2:

HD(S1, S2) = max{h(S1, S2), h(S2, S1)} (5.6)

h(X, Y) = max
x∈X

min
y∈Y

d(x, y) (5.7)

where d(x, y) is the distance between the points x and y.

The result is a non-negative number. The lower the value of
HD(S1, S2), the more similar are the sets S1 and S2.

There are many variants of the Hausdorff distance. This work
uses the percentile Hausdorff distance (HDk) [86, 87, 83] that is
less sensitive to outliers than HD:

HDk(S1, S2) = max{hk(S1, S2), hk(S2, S1)} (5.8)

hk(X, Y) = PK
x∈X min

y∈Y
d(x, y) (5.9)

where Pk
x∈X denotes the k-th percentile of X.

In this thesis, I use k = 0.95 and Euclidean distance d. All fore-
ground pixels in a frame are considered to be a single set of pixels.
Thus, false positive objects are hugely penalised.

Instead of the whole organoid masks Rj and Aj, only mask boun-
daries RB

j , AB
j are compared [88]. Boundary of a mask is deĄned

as a set of mask pixels where each pixel has at least one back-
ground pixel in its 8-neighbourhood.

If Aj is an empty image (contains only background pixels), I set
HDk(RB

j , AB
j ) = 0. To compensate for that, a number of empty
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frames in set Aj, j ∈ J output by each algorithm is computed
and presented separately. False negative objects thus are not
penalised directly by this measure.

The percentile Hausdorff distance of two image sequences is
computed as

HDk(R, A) = max
j∈J

HDk(RB
j , AB

j ). (5.10)

These three evaluation measures were chosen to reĆect different
quality requirements for the automatic segmentation results. Firstly,
correct detection of organoid in each frame is measured by DET. Sec-
ondly, segmentation accuracy in terms of area overlap is measured by
SEG. And Ąnally, shape similarity and accurate boundary delineation
is measured by HD95.

In addition, the computation timewasmeasured. All computations
were done on a single workstation with AMDOpteron 6348, 120 GB of
RAM, Ubuntu 20.4 LTS, and equipped with a single NVIDIA Quadro
P6000 graphics card with 24 GB of RAM.

5.2 Experiments

Experiments conducted for optimisation of algorithm performance are
described in this section. Namely, the parameter optimisation for the
baseline algorithm, the training of neural networks, and the parameter
optimisation for the postprocessing routines are described.

5.2.1 Baseline Algorithm

In this subsection, the process of determining values of individual
parameters of the baseline algorithm (Section 4.1) is summarised.

Several parameters, such as SE diameters for morphological oper-
ators and minimum component size for size-based Ąltering, were set
according to their biological signiĄcance (Chapter 6).

Other parameter values were also decided by their meaning. The
parameter σ of the Gaussian blur operator in the dark region segmenta-
tion was designed to slightly reĄne the raw image data. Computation
of threshold T2 = r · T1 in the same part of the algorithm allows one to
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Table 5.1: Parameter values selected for the baseline algorithm based
on a parameter study.

Parameter dTH dD1 TAC EBB n σ r dD2 dO

Value 40 30 75 10 3 2 0.75 40 35

include a different amount of pixels into the segmentation of the high-
variance regions and the high-variance constraint for blurred organoid
regions. Pixel neighbourhood size n was set to balance computation
speed and segmentation accuracy. Bounding box extension ratio EBB

accounts for inaccurate coarse segmentation near the organoid bound-
ary.

The parameters dTH, dD1, dD2, and TAC were optimised in a grid-
search manner. The parameter study was evaluated with respect to
the SEG measure on the target dataset and its evaluation can be found
in the MUNI Thesis Archive.

The Ąnal parameter values are summarised in Table 5.1, not listing
the diameters of morphological operators. These are available in code
in the MUNI Thesis Archive.

5.2.2 Training of Neural Networks

The training process of U-Net models for the DL-based algorithms
(Section 4.2) is described in this subsection, including the training pro-
tocol followed, hyper-parameter values chosen, and training datasets
used.

U-Net is trained using the stochastic gradient descent [51]. The loss
function E is a weighted cross-entropy loss computed over pixel-wise
soft-max of the output image:

E = ∑
x∈Ω

w(x) log
exp(al(x)(x))

∑
K
k=1 exp(ak(x))

(5.11)

where Ω ⊂ Z×Z is the image domain, w(x) is a weight of pixel x, l(x)
is the expected label of pixel x, ak(x) is the activation of the k-th channel
at x, and K is the number of classes. The weights w(x) are computed in
advance for each reference segmentation; they compensate for the pixel
class imbalance in the training dataset and amplify the importance of
certain image regions.
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The training hyper-parameters and training datasets of the indi-
vidual models are summarised in Table 5.2. All models were trained
using the ImageJ plugin by Falk et al. [54] running on GPU. Training
of the Synth-5 model required approximately 30 minutes and 10 GB
of memory. Training of a single Real model took approximately 15
minutes and consumed approximately 4 GB of memory.

The models were trained to classify pixels into two or four classes.
For datasets with two-class reference annotations, only the Ąrst case
applies. The G2 dataset was used to train networks for two as well
as four classes. In the two-class case, the organoid class served as a
foreground, while the background, DBS, and BBS classes were merged
into the background.

The images in all training datasets were sampled regularly from the
available sequences to balance training dataset size, data variability,
phenotype representation, and time required for training. All training
images were augmented to create even more diverse dataset [51, 54,

Table 5.2: Training parameters for individual U-Net models: number
and type of training images; number of validation images; number
of classes; training mode Ű transfer learning (TL) or training from
scratch (TFS); tiling (in pixels); and number of epochs.

Model Training images
Valid.

images
Classes Mode Tiling Epochs

Real
120 real (TD):
40 CY, 40 NB,
40 MB

3 2 TL
508 ×
508

1200

Synth-1
479 synthetic
(G1): 257 CY,
222 NB

10 2 TL
508 ×
508

300

Synth-2
335 synthetic
(G1): 335 NB

5 2 TL
508 ×
508

300

Synth-3
335 synthetic
(G1): 335 NB

5 2 TFS
1036×
524

1200

Synth-4
370 synthetic
(G2): 134 CY,
121 NB, 115 MB

8 2 TL
700 ×
1036

300

Synth-5
399 synthetic
(G2): 135 CY,
133 NB, 131 MB

8 4 TL
700 ×
1036

300
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89]. In general, diversity of the training data as well as balanced class
representation are crucial for good performance of the network [17, 54,
5]. Although it is claimed [51, 54] that very few images are necessary
for successful transfer learning with U-Net, it has been observed that
network performance still tends to improve with more training data
[5].

The validation images were used to estimate network performance
during the training. In order to create validation datasets for individual
networks, approximately 2% of training images were randomly chosen
and left out from the training dataset (Table 5.2).

The Real model was trained and evaluated in a Ąve-fold cross-
validation manner. Five Real-X models were trained with the same
hyper-parameters, differing only in the training data: for each model,
images from one sequence per phenotype were excluded from the
training data to form an evaluation dataset. All other models were
trained with synthetic image data, and thus evaluated using all anno-
tated real images.

The models were trained in two manners: from scratch or by trans-
fer learning. When training from scratch, model weights were ini-
tialised randomly from a Gaussian distribution with the standard
deviation of

√
2/N where N is a number of nodes incoming to one

neuron [51]. The base network for transfer learning was a model
trained with 11 datasets of microscopy cell images by Ronneberger et
al. [90], including brightĄeld image data.

Tiling of the input images was used to balance resource require-
ments and computation time during the training phase. The tiles
overlapped in a few pixels and each tile was padded with mirroring if
necessary. The tiles were processed separately by the network.

Allmodels used the learning rate of 0.0001. Other hyper-parameters
not included in Table 5.2 were Ąxed at their default values provided
by the software [54].

5.2.3 Postprocessing Routines

Five postprocessing routines proposed for the DL-based approach are
presented in this subsection.While their general outline is described in
Chapter 4, particular methods used in the individual postprocessing
routines are summarised in Table 5.3.
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The parameter values in the postprocessing routines were opti-
mised in combination with the network models described in Section
5.2.2. Similarly to Section 5.2.1, the parameter studies were evaluated
with respect to the SEG measure on the target dataset.

Namely, the threshold Torg for prediction binarisation and the pa-
rameters TS and ∆Torg for the segmentation correction were optimised.

Firstly, SE diameters dC, dO, and dDE for morphological operators
and area-based Ąltering threshold TA were set to reĆect the biological
properties of the input image data (Chapter 6).

Table 5.3: Implementation of individual postprocessing routine. If the
segmentation correction is applied, the detected segmentation errors
are indicated (under-segmentation US, over-segmentation OS).

Postprocessing

routine
Binarisation Filtering

Segmentation

correction

PP-1 Simple DE-filtering No
PP-2 Simple O-filtering Yes (US)
PP-3 Simple DE-filtering Yes (US & OS)
PP-4 Simple + Hybrid + Prev DE-filtering No
PP-5 Multi DE-filtering No

Table 5.4:Values of the decision threshold Torg optimised for individual
network models.

U-Net model Real Synth-1 Synth-2 Synth-3 Synth-4 Synth-5

Threshold 0 -0.5 0 0 1.7 2.4

Table 5.5: Parameter values chosen for the individual postprocessing
routines based on parameter studies. Missing parameters are denoted
by a hyphen (-).

Postprocessing

algorithm
dC dO dDE TA S(·) TS ∆Torg Rmax

PP-1 4 - 25 300 - - - -
PP-2 4 35 - 300 area 0.1 0.15 2
PP-3 (A) 4 - 25 300 area 0.1 0.1 2
PP-3 (F) 4 - 25 300 Feret 0.1 0.2 2
PP-4 4 - 25 300 - - - -
PP-5 4 - 25 300 - - - -
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The decision threshold Torg was then optimised for each U-Net
model combined with the PP-1 routine with dC = 4 and dDE = 25.
Consequently, parameter studies for dC and dDE were conducted to
measure the impact of these parameters to algorithmperformance. The
experiments showed that changing the value of dC does not result in a
considerable increase in the SEG score whereas increase in the value

Figure 5.1: Evaluation of the impact of dC, dDE, and dO in the Synth-5
+ PP-1 algorithm.
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of dDE or dO slightly increases the SEG score (Figure 5.1). However,
I have decided not to alter the dDE and dO values due to reasons
explained in detail in Chapter 6.

Finally, the parameters TS and ∆Torg for the PP-3 routine were op-
timised in combination with three different U-Net models using a
grid-search strategy, with Rmax Ąxed at 2 to balance algorithm per-
formance and computation speed. Two shape descriptors S(·) Ű area
and Feret diameters Ű were considered and each was assigned its own
optimal parameter values. The number of frames that would require
more than Rmax = 2 iterations is relatively low Ű less than 2% of all
frames for the established parameter values.

Optimisations of the PP-2 routine were performedwith the Synth-4
model and are described in more detail in [9].

The PP-4 routine is a combination of a DL-based approach and the
baseline algorithm and thus shares parameters with both approaches.
The parameter values for PP-4 were not optimised; instead, the op-
timal values established for its individual pipelines were used and
the optimisation concentrated solely on the weights of the individual
pipelines of PP-4. The optimal values of weights for the PP-4 routine
as well as its modiĄcations by omitting a certain pipeline can be found
in Table 5.6 and in the supplementary material in the MUNI Thesis
Archive.

Finally, the PP-5 routine implements binarisation with the argmax
operation. No parameter optimisation was done for this postprocess-
ing routine; parameters dC, dDE, and TA were assigned the values
estimated for PP-1.

Table 5.6: Values of the weights w1, w2, and w3 for the individual
pipelines of the PP-4 routine (network prediction, baseline segmen-
tation, and previous frame segmentation) and the fused score map
threshold w4 optimised in a parameter study. Omitted pipelines are
denoted by a hyphen (-).

Algorithm w1 w2 w3 w4

Simple + Hybrid + Prev 1 0.25 0.25 1.5
Simple + Hybrid 1 0.25 - 1.25
Simple + Prev 1 - 0.25 1.25
Hybrid + Prev - 1 0.5 0.75
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The established parameter values for individual postprocessing
routines are shown in Tables 5.4 and 5.5. Evaluation of the performed
parameter studies can be found in Figure 5.1 for chosen parameters
and in the MUNI Thesis Archive for all considered parameter values.

5.3 Results

The quantitative evaluation of both DL-based and DL-free algorithms
proposed in this thesis is summarised in this section.

The algorithms were run with the parameter values as chosen in
Section 5.2. While evaluation of the experiments was done using the

Table 5.7: Quantitative evaluation of chosen algorithms and annotator
performance on the target dataset (mean or maximum ± standard
deviation for each measure). Best score achieved by an automatic
method is highlighted in bold for each measure. Label (x) in the HD95

column denotes the number x of empty evaluation frames output by
the algorithm (Chapter 5.1).

Algorithm DET SEG HD95

Human annotators 1.000 ± 0.000 0.970 ± 0.023 88.65 ± 16.30

Baseline 0.972 ± 0.071 0.932 ± 0.042 213.18 ± 61.69

Real + PP-1 0.991 ± 0.32 0.879 ± 0.072 516.13 ± 135.10

Synth-1 + PP-1 0.968 ± 0.111 0.910 ± 0.062 429.96 ± 118.72(1)

Synth-2 + PP-1 1.000 ± 0.000 0.925 ± 0.048 282.14 ± 71.16
Synth-3 + PP-1 0.979 ± 0.076 0.880 ± 0.083 518.05 ± 124.46

Synth-4 + PP-1 0.979 ± 0.074 0.904 ± 0.061 147.10 ± 41.88(1)

Synth-5 + PP-1 1.000 ± 0.000 0.941 ± 0.028 140.00 ± 40.84

Synth-4 + PP-2 1.000 ± 0.000 0.910 ± 0.059 147.34 ± 41.69

Synth-2 + PP-3 (A) 1.000 ± 0.000 0.928 ± 0.043 139.03 ± 39.81
Synth-4 + PP-3 (A) 0.997 ± 0.010 0.907 ± 0.059 147.10 ± 40.88
Synth-5 + PP-3 (A) 1.000 ± 0.000 0.940 ± 0.031 139.45 ± 40.76
Synth-2 + PP-3 (F) 1.000 ± 0.000 0.930 ± 0.038 139.06 ± 39.02
Synth-4 + PP-3 (F) 0.997 ± 0.010 0.908 ± 0.059 147.10 ± 40.82
Synth-5 + PP-3 (F) 1.000 ± 0.000 0.940 ± 0.032 138.16 ± 40.51

Synth-5 + PP-4 0.998 ± 0.007 0.935 ± 0.064 139.06 ± 41.29

Synth-5 + PP-5 0.948 ± 0.147 0.833 ± 0.099 458.46 ± 110.90

Synth-5 + PP-0 0.922 ± 0.187 0.709 ± 0.171 951.76 ± 215.65
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SEG measure on images from the target dataset only, evaluation with
two additional measures Ű the DET measure and the 95-percentile
Hausdorff distance HD95 Ű and evaluation over the robustness validation
dataset are presented in this section. The comparison also includes a
Synth-5 + PP-0 algorithm, where the network multi-channel score is

Table 5.8: Quantitative evaluation of chosen algorithms and annotator
performance on the robustness validation dataset (mean or maximum
± standard deviation for each measure). Best score achieved by an
automatic method is highlighted in bold for each measure. Label (x) in
the HD95 column denotes the number x of empty evaluation frames
output by the algorithm (Chapter 5.1).

Algorithm DET SEG HD95

Human annotators 1.000 ± 0.000 0.968 ± 0.014 98.27 ± 19.69

Baseline 1.000 ± 0.000 0.936 ± 0.028 306.31 ± 91.56

Real + PP-1 0.988 ± 0.036 0.889 ± 0.029 324.47 ± 74.08
Synth-1 + PP-1 0.996 ± 0.010 0.917 ± 0.045 189.40 ± 68.25
Synth-2 + PP-1 0.973 ± 0.082 0.925 ± 0.034 259.49 ± 78.75
Synth-3 + PP-1 0.980 ± 0.061 0.892 ± 0.063 332.23 ± 90.17
Synth-4 + PP-1 1.000 ± 0.000 0.913 ± 0.028 293.69 ± 87.45
Synth-5 + PP-1 0.968 ± 0.083 0.816 ± 0.158 267.66 ± 83.14

Synth-4 + PP-2 1.000 ± 0.000 0.915 ± 0.023 180.56 ± 60.82

Synth-2 + PP-3 (A) 0.971 ± 0.088 0.935 ± 0.016 74.30 ± 20.68

Synth-4 + PP-3 (A) 1.000 ± 0.000 0.917 ± 0.020 175.92 ± 59.85
Synth-5 + PP-3 (A) 0.972 ± 0.080 0.826 ± 0.144 263.36 ± 79.62
Synth-2 + PP-3 (F) 0.974 ± 0.078 0.929 ± 0.028 303.13 ± 82.59
Synth-4 + PP-3 (F) 0.999 ± 0.002 0.910 ± 0.021 175.92 ± 59.85
Synth-5 + PP-3 (F) 0.964 ± 0.087 0.832 ± 0.148 262.36 ± 78.96

Synth-5 + PP-4 0.998 ± 0.006 0.913 ± 0.034 294.63 ± 86.11

Synth-5 + PP-5 0.969 ± 0.081 0.861 ± 0.119 561.08 ± 162.15

Synth-5 + PP-0 0.997 ± 0.006 0.636 ± 0.159 762.64 ± 189.53

Table 5.9: Average computation time of individual algorithms or their
parts per frame in seconds.

Algo-

rithm

Base-
line

Preproc.
& U-Net

PP-1 PP-2
PP-3
(F)

PP-4 PP-5 PP-0

Time 2.35 1.10 1.76 1.85 1.94 2.79 1.86 1.68
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Table 5.10: Qualitative comparison of the analysed algorithms in a
cropped region around a NB organoid in frame t = 151. Yellow mask
outline is overlaid over the input frame. Contrast of the input image
was enhanced for visualisation purposes. The white bar corresponds
to 100 µm.

Reference annotation Baseline Real-4 + PP-1

Synth-1 + PP-1 Synth-2 + PP-1 Synth-3 + PP-1

Synth-4 + PP-1 Synth-5 + PP-1 Synth-4 + PP-2

Synth-2 + PP-3 (A) Synth-4 + PP-3 (A) Synth-5 + PP-3 (A)

Synth-2 + PP-3 (F) Synth-4 + PP-3 (F) Synth-5 + PP-3 (F)

Synth-5 + PP-4 Synth-5 + PP-5 Synth-5 + PP-0
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Table 5.11: Qualitative comparison of the analysed algorithms in a
cropped region around a HB organoid in frame t = 121. Yellow mask
outline is overlaid over the input frame. Contrast of the input image
was enhanced for visualisation purposes. The white bar corresponds
to 100 µm.

Reference annotation Baseline Real-1 + PP-1

Synth-1 + PP-1 Synth-2 + PP-1 Synth-3 + PP-1

Synth-4 + PP-1 Synth-5 + PP-1 Synth-4 + PP-2

Synth-2 + PP-3 (A) Synth-4 + PP-3 (A) Synth-5 + PP-3 (A)

Synth-2 + PP-3 (F) Synth-4 + PP-3 (F) Synth-5 + PP-3 (F)

Synth-5 + PP-4 Synth-5 + PP-5 Synth-5 + PP-0
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processed with the argmax operation without any further reĄnement.
This algorithm is included to demonstrate the necessity of a suitable
postprocessing routine (Section 6.3).

The evaluation also includes a measurement of a human perfor-
mance that accounts for the inter-annotator variability [49]. The hu-
man performance was computed by considering individual human
annotations as an input to the evaluation measures together with the
reference annotations. Quantitative results are summarised in Tables
5.7 and 5.8.

Additionally, the computation timewasmeasured on the robustness
validation dataset. For the DL-based algorithms, the time of processing
using U-Net and the time of the DL-free postprocessing routine were
measured separately. All sequences were segmented with the same
U-Net segmentation hyper-parameters: no input image tiling, no av-
eraging, in the GPU mode. Segmentation of a single sequence of 161
frames consumed approximately 3.9 GB of memory. The measured
values are listed in Table 5.9.

As mentioned in Section 5.2.2, the Real model is in fact a common
name for Ąve different models that were trained with the same hyper-
parameters and different training data. Eachmodelwas evaluatedwith
a subset of the target dataset thatwas excluded from the training process
and the results for all Ąve models were averaged. The evaluation
dataset thus contains one CY sequence, one NB sequence, one MB

Table 5.12: Evolution of organoid size in pixels. Mean and standard
deviation manually estimated from the real image data in time t = 0,
t = 55, t = 110, and in the last frame of a sequence are presented.

Time CY NB MB HB LB

0
4750 ±
2528

3520 ±
1775

3940 ±
1801

5200 ±
816

3320 ±
893

55
8000 ±
2632

15460±
7291

22540±
12130

11780±
4544

9660 ±
3054

110
13080±
15787

33480±
10630

53280±
23745

12400±
2998

24180±
5130

Last
12680±
15536

33740±
10838

70160±
26942

12340±
2478

41140±
14085

53



5. Experimental Results

sequence, and all HB and LB sequences for each Real-X model; only
the HB and LB sequences are shared among the Ąve models.

For the evaluation of the PP-2 and PP-3 routines, the number of
frames that require more than two iterations of the segmentation cor-
rection procedure is relatively low for the established parameter value
conĄgurations for both considered shape descriptors: from 0.08% to
2.52% for the target dataset and from 0.06% to 6.19% for the robust-
ness validation dataset. All measurements for both considered shape
descriptors can be found in the MUNI Thesis Archive.

The HD95 measure can be interpreted as a 95-percentile maximum
distance between two mask contours measured in pixels. To provide
a better understanding of the measured HD95 values, approximate
organoid sizes in four time points in the sequence are presented in
Table 5.12.

In addition to the quantitative evaluation, examples of the segmen-
tation results achieved using different algorithms are presented in
Tables 5.10 and 5.11. For the Real model, an output of a single model
from the Real family is included; while each sequence from the target
dataset was segmented by only one Real-X model, sequences in the
robustness validation dataset were segmented with all Ąve Real-X mod-
els. Therefore, output of a single randomly chosen Real-X model is
presented in Table 5.11.

Remarks on algorithm performance and comparison of the pro-
posed approaches can be found in Chapter 6.
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6 Discussion

In this chapter, I discuss the methodology, experiments, and evalua-
tion results presented in Chapters 4 and 5. I also propose alternative
approaches to analysing the input image data. Assumptions used to
build the deep-learning-free routines are discussed in Section 6.1. The
parameters of the deep-learning-free routines are analysed in Section
6.2. Algorithm comparison and a discussion of the achieved results
can be found in Section 6.3. Finally, the alternative approaches are
discussed in Section 6.4.

6.1 Assumptions

A few comments on the assumptions about the input image data are
presented in this section. The assumptions were used to construct
both the baseline algorithm and the postprocessing routines and were
listed in Sections 4.1 and 4.2.2.

The assumption of tracking a single organoid of interest is one of
the properties of the input sequences (Section 3.1). The presence of
other organoids and epithelial structures introduces challenges for
correct detection and tracking, but does not change the aim of the
analysis.

The assumption of the organoid being a single object without holes
might seem trivial, but need not hold in the image data. Although the
organoid does not have any holes, its branches can appear to touch or

Table 6.1: Organoid with a hole. Segmentation mask is outlined in
yellow. All images are cropped to show the necessary context. Contrast
of the input images was enhanced for visualisation purposes. The
white bars correspond to 100 µm.

t = 88 t = 104 t = 118
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overlap in the images and thus create a hole in the expected segmenta-
tion mask (Table 6.1). Nevertheless, this assumption is embedded in
the algorithms because such situations are rare and its usage improves
the quality of segmentation.

The expected organoid location involves both the assumption of
organoid centered in the Ąeld of viewand the assumption of organoid’s
slow motion. Both are encoded in location-based Ąltering in Equation
(4.1): the Ąrst term penalises components that are not centered in
the view, and the second term penalises abrupt changes in organoid
location. Note that both assumptions about organoid location can be
broken; the Ąrst by organoid motion over the course of time, the other
due to microscope settings adjustment. Nevertheless, the experiments
did not show any decrease in algorithm performance in these cases.
An example of a correct detection of organoid of interest lying farther
from the center of the image domain than another organoid can be
seen in image i) in Table 6.7.

The minimum diameter and minimum area of organoid is another
knowledge prior embedded in both the baseline algorithm and the
postprocessing routines. Both minimum diameter and minimum area
have different values for individual organoid phenotypes. Moreover,
the expected organoid area changes considerably in the course of the
experiment. Both knowledge priors are further discussed in Section
6.2.

The texture characteristics of the organoid of interest, other struc-
tures in the Ąeld of view, and the background are used in the baseline
algorithm and the hybrid postprocessing routine (PP-4). They are em-
bedded in all of their steps: the coarse top-hat segmentation (Section
4.1.1), both reĄnement pipelines (Sections 4.1.2 and 4.1.3), and the
high-variance constraints for coarse segmentation and dark regions
(Sections 4.1.1 and 4.1.3).

6.2 Parameters

The parameters dO and dDE are related to the expected minimum
diameter of organoids and their branches. They should be chosen as
high as possible to effectively exclude small or thin structures from
further processing, but should not be higher than the expected branch
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diameter. At the same time, these parameters also control boundary
smoothness Ű the higher the values of these parameters, the higher
the SEG score (Figure 5.1). The values of dO and dDE should therefore
be chosen to preserve organoid branches and whole organoids in the
output segmentation and at the same time to be as high as possible
under this constraint. In my experiments, I have manually estimated
the minimum branch or organoid diameter from the input image data;
the values vary considerably for different phenotypes (Table 6.2).

One can notice that I have decided to use the value of dO = 35 for
the CY, NB, and MB organoids in my experiments although this value
is higher than the minimum branch diameter estimate for the NB
organoids. The NB organoids tend to form relatively short branches
that grow close to each other and often overlap. As a result, the indi-
vidual branches are not separated by background pixels and form a
mass considerably thicker than their minimum diameter. The branch
shape and the behaviour of the opening operator also contributed to
this decision; even if a branch is separated from other branches, its

Table 6.2: Minimum branch or organoid diameter (in pixels) estimated
from the real image data and values of dDE and dO used in algorithms.

Phenotype CY NB MB HB LB

Min. branch diameter estimate 35 25 35 6 10
Value of dDE used 25 25 25 5 5
Value of dO used 35 35 35 5 5

Table 6.3: InĆuence of the choice and value of parameter dDE and dO

on the segmentation. Output of the same algorithm for a single input
frame for dDE = 35, dDE = 45, and dO = 45. Segmentation mask
is outlined in yellow. Contrast of the input image was enhanced for
visualisation purposes. All images are cropped to show the necessary
context. The white bars correspond to 100 µm.

dDE = 35 dDE = 45 dO = 45
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thinnest part is too short to be discontinued by opening with a CSE of
diameter dO = 35 (Table 6.3).

The parameter dC controls the effect of morphological closing Ű
a preprocessing step for the hole-Ąlling operator. I have chosen the
values of this parameter to reĆect the need of each morphological
Ąltering step: the values are relatively low in most cases, but the value
of dC = 10 is used for Ąltering the coarse segmentation after top-hat
transform in the baseline algorithm, being suitable for this kind of
image data. Evaluation of several values of dC for the Synth-5 + PP-
1 algorithm shows that a slight change in the value of dC does not
substantially affect the overall algorithm performance (Figure 5.1).
In fact, the chosen value of dC = 4 has a slightly lower overall SEG
score than dC = 0 (no closing applied), but exhibits better behaviour
in qualitative comparison (Table 6.4).

The size-based Ąltering parameterswere also not optimised inmost
cases because they deĄne the expected minimum size of organoids.
The size threshold TA in the postprocessing routines is an example

Table 6.4: InĆuence of the value of parameter dC on the segmentation.
Output of the same algorithm for two different input frames for dC = 0,
dC = 4, and dC = 8. Segmentation mask is outlined in yellow. Images
in the Ąrst row are cropped to show the necessary context. Contrast of
the input images was enhanced for visualisation purposes. The white
bars correspond to 100 µm.

dC = 0 dC = 4 dC = 8

dC = 0 dC = 4 dC = 8
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of such a case; together with dO and dDE, these three parameters
constrain the expected organoid shape in the DL-based algorithms:
TA by minimum area, dO and dDE by minimum diameter. This Ąlters
out small objects as well as elongated epithelial structures. Similar
intuition holds for the size-based Ąltering constraints in the baseline
algorithm. Their values were chosen with enough room for possible
mistake in the estimate and variations in the image data, yet they still
form an effective component size Ąlter. The only size-based constraint
that was optimised in parameter studies was the TCA parameter in
the baseline algorithm; the evaluation included in the MUNI Thesis
Archive showed that the considered values had minor effect on the
SEG score. In case that DE-filtering (Section 4.2.4) is used, the value
of the size-based Ąltering parameter TA must be chosen with respect
to the value of dDE since the size Ąltering is applied to the eroded
candidate instance masks.

The parameters dD1 and dD2 of the baseline algorithm were opti-
mised, but they have their intrinsic meaning as well. Both are used to
constrain pixels classiĄed as organoid by their distance to certain image
features. The parameters dD1 and dD2 serve as a threshold distance
from a high-variance region to a low-variance organoid pixel.

Finally, it is important to note that the network decision threshold
Torg in the postprocessing routines has one important distinction from
the other parameters: it is associated with a particular U-Net model,
whereas all other parameters are associated with the image data or
the postprocessing routine.

6.3 Algorithm Comparison

In this section, I present comments on algorithm performance and the
quantitative evaluation. Since there is no absolute ranking of the algo-
rithms, I provide further comparison and analysis of the experimental
results.

Although the target dataset was used to optimise parameter values
in the baseline algorithm and the deep-learning-free postprocessing
routines, the optimisation was done with respect to the SEG measure
only, so the other two measures still provide a useful comparison of
the individual algorithms on the target dataset.
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One also has to keep in mind that the evaluation was done only
on a small subset of the real image data because creating manual
annotations is a relatively time-consuming process. Since the frames
for annotation were selected randomly, the dataset is not biased by
human perception of a representative dataset, but a representative
ratio of all kinds of situations cannot not guaranteed. It is thus possible
that some characteristics of the algorithms are not captured in the
quantitative evaluation.

The baseline algorithm achieves high SEG and DET scores for both
real image datasets. However, the HD95 score is relatively high for the
target dataset and exceeds most results for deep-learning-based algo-
rithms on the robustness validation dataset. The baseline algorithm can
thus generalise reasonably well in terms of the properties measured
by SEG and DET, but its performance in terms of shape similarity
(HD95) decreases rapidly for new organoid phenotypes.

The purely deep-learning-based algorithm Synth-5 + PP-0 yields
considerably worse results than other any presented algorithm. The
PP-0 routine was designed according to [54] and was included in the
evaluation to verify the observation of [41] that a postprocessing step
improves the segmentation accuracy and other desired properties of
the result. The evaluation shows that even very simple postprocessing
(PP-1, PP-5) is better than none. Suitable methodology and parameter
values can improve the results considerably. In fact, all U-Net models
trained for this thesis output a number of components classiĄed as
organoid including orphaned pixels and do not enforce shape con-
straints which hold in the input image data. This may be caused by
an inappropriate training dataset, wrong conĄguration of training
hyper-parameters, or may be a characteristic of U-Net.

The PP-0 routine performs relatively well in detection because
the DET score does not penalise false positive objects, but exhibits
bad scores of both SEG and HD95. In fact, with frame size at most
1344 × 1024 pixels and organoid of interest approximately centered in
the frame, the values HD95 = 951.76 and HD95 = 762.64 for the target
dataset and robustness validation dataset, respectively, are very close to
the expected maximum score which can be achieved in this measure.

The Synth-1 routine was used to compare the individual U-Net
models. It was chosen because it is simple, but at the same time con-
tains some parameters that can be tuned and thus used to get the best
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performance out of each network model. The U-Net models with the
best scores were then paired with other postprocessing routines.

The Realmodel has generally the worst score out of the six evalu-
ated networks. The reason may lie in the lack of training data (approx-
imately three times less than for other models) or the fact that Ąve
different models were used with the same postprocessing parameter
values and then averaged. The evaluation on the robustness validation
dataset indicates that the latter might be the reason; the quantitative
results for individual Real-X models are fairly different. An example
of output of Ąve Real-X + PP-1 algorithms for the same input frame
can be seen in Table 6.5 and the quantitative evaluation is available in
the MUNI Thesis Archive.

Training the U-Net with multi-class semantic masks helped the
network (Synth-5) to learn more relevant features for the target dataset.
However, algorithms employing this model exhibit a considerable
performance drop in all measures for the robustness validation dataset.
It could be an indication of network overĄtting or unsuitable value of
the decision threshold Torg.

The algorithm with the PP-5 routine, in fact a reĄnement of the
output of the PP-0 routine, also shows worse performance than most
of the other algorithms with respect to all three measures. Compared

Table 6.5: Comparison of outputs of Ąve Real-X + PP-1 algorithms
on a single frame from a HB sequence (t = 132). The annotations
are outlined in yellow. All images are cropped to show the necessary
context. The white bar corresponds to 100 µm.

Input image Real-1 Real-2

Real-3 Real-4 Real-5
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to other postprocessing routines, these two routines lack parameters
associated with the network that could be tuned. The number of pix-
els considered in the postprocessing thus cannot be controlled and
depends only on the network.

On the other hand, the segmentation correction procedure (the
PP-2 and PP-3 routines) has proved to be an improvement to the PP-1
routine; on average, the scores of all three measures improved for
both real image datasets. The PP-2 routine accounts only for under-
segmentation, so it cannot solve situations such as the one in Table 5.10.
On the contrary, the PP-3 routine accounts for both under- and over-
segmentation. Nevertheless, the routine does not always solve such
cases (Table 5.10) Ű one of the reasons might be the maximum number
of iterations of the correction procedure. The algorithm also rarely
outputs a mask which exhibits both under- and over-segmentation at
the same time (Table 6.6, image d)).

The PP-2 routine produces reliable results under the constraint of
maximum two iterations of the segmentation correction procedure,
with less than 0.1% frames requiring more than Rmax = 2 iterations in
both datasets. By contrast, the PP-3 routine exhibits much less stable
behaviour in this aspect, with 0.56 − 6.19% frames requiring more
iterations.

On average, there are only small differences in the qualitative eval-
uation of the PP-2 and PP-3 routines, with the exception of the Synth-2
+ PP-3 (A) algorithm. This algorithm achieved the same HD95 score
as human annotators on the robustness validation dataset, but the related
Synth-2 + PP-3 (F) algorithm performs relatively poorly with respect
to the HD95 measure.

The hybrid approach (the Synth-5 + PP-4 algorithm) has slightly
worse score than its individual pipelines for all considered measures
on the target datasetwhere it was optimised. However, the combination
of a neural network and deep-learning-free processing exhibits inter-
esting behaviour on the robustness validation dataset, where it managed
to improve the SEG score of the DL-based pipeline (Synth-5) and
the HD95 score of the DL-free pipeline, with similar performance as
the individual pipelines with respect to other measures. The hybrid
algorithm even performs better than the algorithms with the same
U-Net model and the segmentation correction according to DET and
SEG with only a slight decrease of performance according to HD95.
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As mentioned in Section 5.2.3, the deep-learning-free part of the
PP-4 routine is based on the baseline algorithm. However, the DL-free
pipeline of PP-4 should produce a real-valued score map whereas
baseline outputs a Ąnal binary segmentation. The baseline algorithm
was thus adjusted in the simplest manner: the Ąnal segmentation
mask is smoothed using a Gaussian Ąlter with σ = 21. Additionally,

Table 6.6: Examples of failure of the automated approaches: a) Ep-
ithelial structures attached to the organoid of interest; b) defocused
organoid of interest lying close to another defocused organoid; c)
branch not segmented properly (a HB organoid); d) collision of a
defocused organoid-of-interest branch with a defocused organoid and
branch not segmented; e) collision of the organoid of interest with
defocused organoids; f) collision of the organoid of interest with a
focused organoid; g) a HB organoid with less distinct texture partially
overlapping with a defocused organoid; h) a MB organoid with less
distinct texture partially overlapping with a defocused organoid; and
i) wrong detection. All images are cropped to show the necessary
context. Contrast of the input images was enhanced for visualisation
purposes. The white bars correspond to 100 µm.

a) b) c)

d) e) f)

g) h) i)
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the Ąrst size Ąltering operation described in Section 4.1.4 is modiĄed
to include all components larger than threshold TA, and the second
size Ąltering in this step is omitted completely. This yields a better

Table 6.7: Challenging situation with high-quality results: a) Epithelial
structures attached to the organoid of interest; b) defocused organoid
of interest lying close to another defocused organoid; c) defocused
organoid of interest lying close to a focused organoid; d) collision of
a defocused organoid-of-interest branch with a defocused organoid;
e) collision of the organoid of interest with defocused organoids; f)
collision of the organoid of interest with a focused organoid; g) a HB
organoid with less distinct texture partially overlapping with a defo-
cused organoid; h) a MB organoid with less distinct texture partially
overlapping with a defocused organoid; and i) organoid of interest
moving away from the center of the Ąeld of view. All images except
for the last one are cropped to show the necessary context. Contrast of
the input images was enhanced for visualisation purposes. The white
bars correspond to 100 µm.

a) b) c)

d) e) f)

g) h) i)
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approximation of a feature map and allows better segmentation in
case of under-segmentation.

The quantitative comparison of performance of the PP-4 routine
and its partial variants (where one of the three pipelines is omitted) in
combination with the same U-Net model (Synth-5) is available in the
MUNI Thesis Archive. For the robustness vaidation dataset, omitting the
Prev pipeline improved the results slightly according to all measures.
On the other hand, omitting the baseline pipeline slightly decreases
both SEG and HD95 scores and omitting the DL-based pipeline gen-
erally results in worse performance.

In general, quantitative results for the robustness validation dataset
are slightly worse than for the target dataset. There are less algorithms
with perfect DET score and the HD95 score is in average higher than
for the target dataset. Namely the algorithms with the Synth-5 model
achieved much worse performance on the robustness validation dataset
with respect to all three measures.

However, some algorithms perform better on the robustness valida-
tion dataset than on the target dataset: for instance Synth-4 + PP-2 with
respect to the SEG score; Synth-1 + PP-1 with respect to the HD95

score; and Synth-2 + PP-3 (A) with respect to all measures. As it was
already mentioned, the Synth-2 + PP-3 (A) algorithm even achieved
human performance according the HD95 measure. Other algorithms
do not achieve such a low score of the HD95 measure, but there are
some whose performance on certain frames or sequences is very close
to the human performance in both DET and SEG measures. Quanti-
tative evaluation of all algorithms on both dataset using all measures
can be found in the MUNI Thesis Archive.

Examples of failures aswell as strengths of the automated approach
can be inspected in Tables 6.6 and 6.7, respectively.

6.4 Alternative Approaches

In this section, proposals of alternative image analysis methods that
could improve the reported algorithm performance are described.
Their advantages and disadvantages compared to the approaches
described in Chapter 4 are discussed.

65



6. Discussion

As it was already mentioned, there are strong temporal dependen-
cies in the input image data, although they do not hold in a few frames
due to manual adjustment of microscope settings. A natural choice
would thus be a recurrent neural network. It could solve the cases of
focused objects colliding with the organoid of interest if trained with
appropriate training data. The training data could, however, become
a bottleneck in this application. Firstly, the collision of several focused
organoids is quite rare in both real datasets. Secondly, there are neither
manual nor synthetic segmentation annotations for such situations.
And thirdly, there are no manual segmentation annotations for se-
quential data. Therefore, training of an RNN model would require
extending the manually annotated dataset substantially or training
a GAN with appropriate image data Ű with more than one organoid
instance allowed in each frame Ű to create a training dataset for the
RNN. However, the algorithm performance evaluation should still be
done on the real image data [49].

Extensions of the training data could also improve performance
of the U-Net models. This would not solve the situations of several
focused organoids in collision, but could improve the segmentation of
the organoid of interest colliding with defocused objects and segmen-
tation of the organoid of interest with a focused body and defocused
branches. With consistent annotations for all objects in the scene, the
U-Net could learn to separate them better [51].

Finally, one could make use of more advanced deep-learning-free
image processing methods. For example, active contours could be
employed to enforce shape coherence between frames and increase
the speed of computation [11]. This is possible thanks to the assump-
tions of a smooth shape evolution and slow motion of the organoid.
However, the speed function for contour evolution would have to
be designed very carefully with respect to the texture characteristics
of organoids and their surrounding. The algorithm would also have
to deal with the asynchronous adjustments of microscope view for
efficient contour initialisation in a particular frame.
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Conclusion

Several algorithms for automatic segmentation and tracking of orga-
noids in brightĄeld microscopy image data were presented in this
thesis. The input image data present a number of challenges that have
to be tackled by the algorithms, including colliding and occluding
object, out-of-focus structures, and high heterogeneity in shape and
texture across organoid phenotypes.

Following the review of the state-of-the-art methods for biomedical
image analysis, a deep-learning-free algorithm and a family of deep-
learning-based algorithms were developed. Parameter values in the
deep-learning-free routines were optimised for a single real image
dataset. Selected methods were subsequently evaluated on two real
image datasets using three different quantitative measures to quantify
algorithm performance and ability to generalise on new organoid
phenotypes. A simple application was developed to demonstrate the
approaches described in this thesis.

Six U-Net models and Ąve deep-learning-free postprocessing rou-
tines were created and evaluated to compare the inĆuence of different
training hyper-parameters and postprocessing options on the algo-
rithm output. While some of the algorithms perform relatively poorly,
several have proven to be robust with respect to variations in both
known and new organoid phenotypes. These include namely a group
of seven deep-learning-based algorithms with postprocessing driven
by the input data characteristics and a segmentation correction routine.

I recommend to choose one of the algorithms called Synth-2 +
PP-3 (A), Synth-4 + PP-3 (A), Synth-4 + PP-3 (F), and Synth-4 + PP-2
for practical use. Their output is robust and of high quality with re-
spect to all three evaluation measures. I advise the users to process a
representative subset of their image data with these four algorithms
and subsequently choose one of them based on their desired output
quality measurement. The measures used in this thesis quantify sev-
eral desired properties of the algorithm output but might still omit a
certain characteristic that is crucial for other users.

The recommended Synth-4 + PP-2 algorithm is the method de-
scribed in our manuscript [9]. Although it performs slightly worse
with respect to the SEG measure compared to the other recommended
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algorithms, its output is of high quality on average and it is robust
across different phenotypes of organoids.

Alternative approaches to organoid detection and segmentation
were discussed in Chapter 6. To name a few, recurrent neural networks
can be considered to increase segmentation accuracy in cases when
a focused organoid collides with the organoid of interest, and seg-
mentation based on the active contours was proposed to increase the
speed of computation and to enforce shape coherence of segmentation
masks in consecutive frames.
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A Appendix 1: Application Documentation

A simple console application that provides the implementation of
algorithms evaluated and presented in Section 5.3 can be downloaded
from the MUNI Thesis Archive.

The application requires a UNIX-based operating system, a MAT-
LAB licence (MATLAB Version R2020a and DIPimage toolbox Version
3.0.b9) and Fiji software with the U-Net segmentation plug-in by Falk
et al. [54]. Deep-learning segmentation is run in Fiji with the U-Net
plug-in and uses GPU if any is detected. All deep-learning-free codes
are written in MATLAB and run on CPU. The application was tested
on the same workstation that was used for algorithm evaluation: a
workstation with AMD Opteron 6348, 120 GB of RAM, Ubuntu 20.4
LTS, and equipped with a single NVIDIA Quadro P6000 graphics card
with 24 GB of RAM.

The application accepts a directory with the input image data, per-
forms segmentation of all image sequences in the input directory, and
saves U-Net scores, argmax output, and the Ąnal binary segmentation
of the organoid of interest in a given output directory (Table A.1). The
user can choose from a number of U-Net models and postprocessing
scripts presented in this thesis, use the baseline algorithm presented in
this thesis, or use their own U-Net model if its deĄnition is in suitable
format. In the latter case, the decision threshold Torg of the network
must be also input to the software. The user is also asked to input two
parameters irrespective of the chosen algorithm: the minimum branch

Table A.1: Examples of output images of the application demonstra-
tion: a) an input frame; b) U-Net prediction for the organoid channel
displayed with a LUT and with scale in the top left corner; c) argmax
of the U-Net prediction; and d) the Ąnal binary mask of the organoid
of interest. The white bar corresponds to 100 µm.

a) b) c) d)
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diameter dDE or dO and the minimum organoid size TA. Parameter TA

must be chosen with respect to the value of dDE since the size Ąltering
is applied to the eroded binary masks.

An example use case of this application can be found in the sup-
plementary material in the MUNI Thesis Archive. Example input
dataset contains one real image sequence per organoid phenotype (di-
rectory input_data/). Each sequence was processed with a different
algorithm proposed in this thesis using the following commands:

• the CY sequence using the Synth-4 + PP-2 algorithm with values
of dDE = 35, TA = 300
./unet_codes_for_thesis/automatic/segmentation.sh -i

/home/xuser/input_data/CY/ -o /home/xuser/results/ -a

4 -p 2 -d 35 -s 300

• the NB sequence using the Synth-2 + PP-3 (A) algorithm with
values of dDE = 25, TA = 300
./unet_codes_for_thesis/automatic/segmentation.sh -i

/home/xuser/input_data/NB/ -o /home/xuser/results/ -a

2 -p 31 -d 25 -s 300

• the MB sequence using the Synth-5 + PP-4 algorithmwith values
of dDE = 35, TA = 300
./unet_codes_for_thesis/automatic/segmentation.sh -i

/home/xuser/input_data/MB/ -o /home/xuser/results/ -a

5 -p 4 -d 35 -s 300

• the HB sequence using the baseline algorithm with values of
dO = 5, TA = 300
./unet_codes_for_thesis/automatic/segmentation.sh -i

/home/xuser/input_data/HB/ -o /home/xuser/results/ -a

0 -d 5 -s 300

• the LB sequence using the Real-5 + PP-1 algorithm with values
of dDE = 5, TA = 300
./unet_codes_for_thesis/automatic/segmentation.sh -i

/home/xuser/input_data/LB/ -o /home/xuser/results/ -a

r5 -p 1 -d 5 -s 300

The results are saved in the results/ directory: U-Net scores in the
results/score/ directory, argmax output in the results/argmax/

directory, and the Ąnal binary segmentation of the organoid of interest
in the results/bin/ directory. Examples of the output images are
presented in Table A.1.
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