
FACULTY OF INFORMATICS

Vehicle routing with transfers

Master’s Thesis

VÁCLAV SOBOTKA

Brno, Spring 2022

FACULTY OF INFORMATICS

Vehicle routing with transfers

Master’s Thesis

VÁCLAV SOBOTKA

Advisor: doc. Mgr. Hana Rudová PhD.

Brno, Spring 2022

Declaration

Hereby I declare that this paper is my original authorial work, which
I have worked out on my own. All sources, references, and literature
used or excerpted during elaboration of this work are properly cited
and listed in complete reference to the due source.

Václav Sobotka

Advisor: doc. Mgr. Hana Rudová PhD.

iii

Acknowledgements

I would like to thank to my partner Lucie Tesařová for patience and
kind calming words when needed the most. All her support and care
made me eventually Ąnish this work.
I owe many thanks to my advisor doc. Hana Rudová PhD. for guiding
my efforts into the right directions. Her well-aimed comments, advice
and restrictions on the number of pages per chapter pushed the thesis
further than I originally expected.
Computational resourceswere supplied by the project "e-Infrastruktura
CZ" (e-INFRA CZ LM2018140) supported by the Ministry of Educa-
tion, Youth and Sports of the Czech Republic.

iv

Abstract

The thesis addresses a variant of vehicle routing problem allowing
for transfers. The introduction of transfers makes it possible for ve-
hicles to exchange request loads at designated transfer points. This
option provides more Ćexible means of transportation which can be
exploited in order to reduce the traveled distances and costs. A novel
approach capable of utilizing the possibility of transfers on very large
instances is proposed, implemented and experimentally evaluated.
The experiments were conducted on both real and synthetic instances.
A real-world dataset targeting an application of large-scale freight
transportation was provided by the companyWereldo. Instance gener-
ator built upon OpenStreetMaps geographical data was implemented
and used to generate the synthetic instances. The obtained experi-
mental results demonstrate that the implemented solver is capable of
Ąnding substantial savings by introducing transfers, especially in case
of the real-world instances.

Keywords

Vehicle routing problem, artiĄcial intelligence, optimization, trans-
portation, logistics, Wereldo.com, transfers

v

Contents

1 Introduction 1

2 Problem overview 3
2.1 Vehicle routing problems 3
2.2 Pickup and delivery problem with transfers 4
2.3 Real-world problem . 5

3 Formal model 7
3.1 Underlying graph . 7

3.1.1 Graph nodes . 8
3.1.2 Graph edges . 9

3.2 Model constraints and objective 10
3.2.1 Vehicle routes . 11
3.2.2 Request load Ćows 14
3.2.3 Additional constraints 16
3.2.4 Objective . 17

4 State of the art 18
4.1 Exact methods . 18
4.2 Multi-phase heuristics 20
4.3 Methods based on large neighbourhood search 23
4.4 Population-based methods 26
4.5 Discussion . 28

5 PDPT solver 31
5.1 PDPT search schema . 31
5.2 PDP solver component 34
5.3 Instance front generator component 35

5.3.1 Split schemes . 35
5.3.2 Clustering and instance generation 37

5.4 Prior solver designs . 42

6 OpenStreetMaps instance generator 44
6.1 Location extraction . 44
6.2 Transfer point placement 45
6.3 Weighted facility location problem model 46

vi

6.4 Instance generation process 47

7 Experiments 48
7.1 Data . 48
7.2 Parameter settings . 51
7.3 Solver run insights . 55
7.4 Evaluation . 59

8 Conclusion 66
8.1 Contributions . 66
8.2 Future works . 67

Bibliography 69

A Appendix 72

B Appendix 73

vii

1 Introduction

With todayŠs scale, freight transportation presents a broad Ąeld of
study for research in operations. The vehicle routing problem and its
numerous variants can be used to formalize real-world transportation
problems. Thanks to decades-long research in the area, effective al-
gorithms for solving such problems exist, being it exact methods or
heuristic approaches.

The grave importance of employing algorithms in vehicle routing
lies in the fact that computed solutions of the problem are considerably
better than results obtained by humans. Good quality solutions poten-
tially eliminate unnecessary traffic and reduce the overall transporta-
tion costs. Since costs associated with transportation are signiĄcant,
savings even in the order of units of percents are important.

The problem approached in this thesis was provided by the com-
pany Wereldo, a member of the Association of Industrial Partners
of the Faculty of Informatics. It builds upon a solver for the pickup
and delivery problem with time windows from the master thesis
of Vojtěch Sassmann [1] developed for the same company. The aim
of this work is to explore a generalized version of the pickup and
delivery problem allowing for request transfers between vehicles at
designated locations. The goal is to exploit this generalization so that
better solutions can be found. The setup with large scale instances
is of crucial interest, since the targeted application requires vehicle
routing of a Ćeet counting few hundreds of vehicles with more than
1,000 transportation requests to be served.

The core of the problem at hand appears in the literaturemostly un-
der the name pickup and delivery problem with transfers. Papers pre-
senting algorithms for solving the pickup and delivery problem with
transfers exist for both exact and heuristicmethods, none of them, how-
ever, targets the problem in such a large scale. SpeciĄcally, the usual
instance size present in the literature is below 100 requests with sev-
eral works running experiments on instances with up to 300 requests.
The only notable exception is the work of Petersen and Ropke [2],
where the target instances consisted of around 1,000 requests. The ob-
served limitation is clearly tied with the newly added dimension of

1

1. Introduction

transfers. Consequently, the traditional search methods suffer from
quick expansion of the search space.

Inspite the fact that the possibility of transfers opens a new space
for improvements in solution quality, this potential seems to be uti-
lized almost exclusively in the context of relatively small problems.
The goal of this work is to design an approach capable of exploiting the
possibility of transfers while allowing for solving very large instances.
The proposed method is assessed on a real problem and a set of gen-
erated instances. The real problem was provided by the company
Wereldo. In order to get the latter set of instances, custom instance gen-
erator based on real-world geographies sourced fromOpenStreetMaps
was implemented.

The rest of the thesis is organized as follows. Chapter 2 provides
the necessary background regarding the vehicle routing problem and
its variants and introduces the pickup and delivery problem with
transfers. Chapter 3 covers the proper formalization of the application
problem provided by Wereldo. Chapter 4 summarizes the state-of-the-
art present in the literature. Chapter 5 introduces the implemented
approach and comments on other considered solver designs. Chapter 6
presents the instance generator based on the OpenStreetMaps. Chap-
ter 7 describes the instances used in the experiments, discusses the
parameter tuning, provides further insights into the behavior of the
algorithm and reports results on the proposed experiments. Chapter 8
concludes the work, summarizes its contributions and gives directions
for further research.

2

2 Problem overview

The pickup and delivery problem with transfers (PDPT) is a member
of the vehicle routing problem (VRP) family of problems. The VRP
was Ąrst deĄned in 1959 by Dantzig and Ramser [3]. Since then, VRP
and its numerous variants have been a subject to active research. Even
nowadays new variants of VRP emerge as novel challenges in logistics
need to be tackled.

The original VRP can be seen as a direct generalization of the
traveling salesman problem (TSP). In TSP, the task is to Ąnd a route
through a deĄned set of vertices on a fully connected graph so that the
route ends in its origin and the overall traveled distance is minimized.
In VRP, the goal is the same, but more than one route is generally
constructed (more salesmen understood as vehicles can be used to
serve the requests). Since TSP is NP-complete and any TSP can be
viewed as a VRP, VRP is an NP-complete problem (as well as any of
its more general variants).

Next, a brief overview of the VRP family is provided and the con-
cept of transfers in PDPT is properly described. Finally, the speciĄc
real-world problem provided by Wereldo and its main characteristics
are presented.

2.1 Vehicle routing problems

Two principal branches can be tracked in the VRP family Ű static and
dynamic problems. In the static problems, all of the requested visits
and conditions are known upfront and do not change over the course
of optimization. In the case of dynamic problems, this information
is revealed over time Ű new requests may appear, existing requests
may get canceled and various conditions may be updated (e.g. request
load size, travel times. . .). In this section, only the static branch of VRP
is considered so that the researched problem can be characterized
properly. Interested reader may consider reading [4] for a systematic
classiĄcation of VRP variants in general and [5] for a survey concen-
trating on the dynamic VRP variants.

Naturally, a rich pallet of additional characteristics is often consid-
ered. Examples of such characteristics are limits on vehicle capacities,

3

2. Problem overview

introduction of time windows in which locations must be visited or
assumption of more than one vehicle depot in the problem. In fact,
such constraints and features are a must in case of real-world appli-
cations simply because solutions ignoring these properties would be
of no practical use. A VRP variant of special interest for this work
is the pickup and delivery problem (PDP), since our application is
a generalized variant of PDP.

In PDP, the notion of transportation request is understood in amore
generic1 way than in plain VRP. Whereas VRP speciĄes the transporta-
tion requests as single locations to be visited, a request in PDP is
represented by a pair of locations denoted as pickup and delivery. In
order to service a request, a vehicle must Ąrst visit the pickup where
the cargo is loaded. Secondly, the same vehicle must eventually visit
the delivery of the request where the cargo is unloaded.

2.2 Pickup and delivery problem with transfers

PDPT is a direct generalization of PDP. The key difference of PDPT is
that it allows for multiple vehicles to cooperate on servicing a single
request. This cooperation takes the form of request load exchanges
referred to as transfers. Throughout the journey of a request load be-
tween its pickup and delivery, zero or potentially multiple2 transfers
may take place.

Shall a request be serviced bymore than one vehicle, the respective
load must be transferred between vehicles somewhere. Generally, this
transfer must take place in one of the designated transfer points. The
set of transfer points is typically very limited.

Naturally, transfers have inherent operational aspects. The transfer
itself requires synchronization of some kind between the two coop-
erating vehicles. The exact form of the synchronization is dependent

1. The pickup and delivery modelling approach directly generalizes the plain VRP.
In case of plain VRP, either all pickup or all delivery request locations are implicitly
assumed to be in the depot.
2. The reviewed literature usually limits to at most one transfer. The reasons are
purely practical since the search space expansion would be even faster in case of
more transfers. In this work, the possibility to transfer a request twice was allowed
in a limited manner.

4

2. Problem overview

on particular application context, however two main synchronization
requirements are dominant.

The Ąrst and more common synchronization scenario allows for
temporary storage of the load at the transfer point. Consequently, it
is only required that the Ąrst vehicle completely delivers the load to
the transfer point before the second vehicle starts picking it up3. This
transfer mode is suitable for applications such as freight or parcel
transportation assuming that warehousing or depot facilities with
proper capacities and equipment are available.

The second transfer mode requires a complete synchronization of
the cooperating vehicles. More precisely, it is expected that the vehicles
meet at the transfer point and the handover of the load is performed
from one vehicle to the other with no option of intermediate storage.
This scenario is more common in applications targeting passenger
transportation.

In conclusion, transfers in PDPT are performed with the aid of
transfer points through which two cooperating vehicles exchange
the load relevant to the request being transferred. Depending on the
application, this exchange may beneĄt from temporary storage at the
transfer point or may require full synchronization of the vehicles.

2.3 Real-world problem

The core of the real-world problem provided by the companyWereldo
matches the PDPT as introduced in the previous section. The targeted
application is freight transportation roughly covering territory of a sin-
gle mid-sized European country with a vehicle Ćeet counting slightly
more than 300 vehicles. A dataset of requests from one week period
was provided.

The Ąrst group of characteristics is related to time aspects. Firstly,
both the pickup and delivery in each request are required to be visited
within the given time windows with hard boundaries. Secondly, both
the pickup and delivery actions are expected to take some time. This
time requirement is referred to as service time. Lastly, the routes in

3. It is worth mentioning that these two vehicles may be actually one and the
same vehicle. This matches the scenario in which a vehicle visits the transfer point,
temporarily unloads some request load and returns later to pick it up.

5

2. Problem overview

the solution are subject to a constraint limiting the total duration of
the route.

Secondly, limited vehicle capacities are assumed. The vehicles are
limited in the maximum weight and number of pallets they can trans-
port at once. Conversely, the transportation requests must specify the
weight and number of pallets in the load.

Another important feature of the dataset is the heterogeneous
nature of the vehicle Ćeet. The types of the vehicles range from vans
to large trucks. Regarding particular properties, the vehicles differ in
their capacity limits, locations of their depots and costs per covered
distance unit. The last property directly affects the objective function
as the optimization minimizes the distances covered by the vehicles
weighted by their respective prices per distance unit.

Apart from the mentioned route duration limit, vehicle routes are
also limited in the number of stops. Importantly, multiple actions at
one physical location count as a single stop towards the limit.Moreover,
the service times are treated in a similar manner. SpeciĄcally, the
service time is counted solely for the last action during a stop as
the service time is meant to account for the complete loading and
unloading of a vehicle at a location.

Regarding the transfer points, the dataset contains four logistical
facilities at strategic locations. Based on the discussions with Wereldo,
the transfer points allow for intermediate storage, are assumed to
operate non-stop, no additional costs must be incurred for realized
transfers and both the cooperating vehicles (separately) should be sub-
ject to standard service time during the transfer. Notably, the transfer
points physically coincide with depots of the vehicle Ćeet.

Lastly, it is important to mention the number of requests as one of
the most prominent properties of the problem. A typical mid-week
day in the dataset counts roughly 1,200 transportation requests. This
number is high even in the context of PDP without transfers. In case of
PDPT, this present an order of magnitude larger instances than those
considered large in the literature. Consequently, the problem size is
of special importance for this work as it gravely impacts the solution
approaches which may be taken into consideration.

6

3 Formal model

The modelling approach in this work is based on [6]. First, the un-
derlying graph is explained. Then, the constraints of the model are
discussed. The notation is summarized in Tables 3.1 and 3.3.

3.1 Underlying graph

The goal of the optimization is to construct routes servicing all given
requests while minimizing the objective without violating any con-
straints. Naturally, the graph network on which the routes are situated
is necessary. First, the graph nodes and their logic are discussed. Sec-
ond, the set of all reasonable edges is presented.

Table 3.1: Graph-related notation.

Fundamental sets

R Set of transportation requests
K Set of vehicles
T Set of transfer points

Individual nodes

r+ Pickup node of request r ∈ R

r− Delivery node of request r ∈ R

k+ Origin depot node of vehicle k ∈ K

k− Destination depot node of vehicle k ∈ K

s(m) Start node of transfer m ∈ T

f (m) Finish node of transfer m ∈ T

Node types

N+ { r+ | r ∈ R }, i.e., set of pickup nodes
N− { r− | r ∈ R }, i.e., set of delivery nodes
K+ { k+ | k ∈ K }, i.e., set of origin depot nodes
K− { k− | k ∈ K }, i.e., set of destination depot nodes
s(T) { s(m) | m ∈ T }, i.e., set of transfer point start nodes
f (T) { f (m) | m ∈ T }, i.e., set of transfer point Ąnish nodes
N N+ ∪ N−, i.e., set of all request nodes

7

3. Formal model

3.1.1 Graph nodes

The Ąrst important property of the graph nodes is their relationship
with physical locations. One physical location may play multiple roles
in the problem. For example, a large logistical facility may serve as
pickup location for many requests. On the level of the graph, however,
each request gets its ownpickup node. In general, one physical location
is mapped to potentially many graph nodes, one node for each distinct
role. Moreover, there is a zero distance among such nodes.

The second important aspect is the heterogeneous character of the
node set. It consists of several disjoint subsets playing different roles
in the modelling. SpeciĄcally, there are six different types of nodes in
the graph.

The Ąrst two types are related to requests. The set N+ are the
pickup nodes, one per each request. Symmetrically, N− is the set of
delivery nodes. The set created by their union N = N+ ∪ N− is referred
to as request nodes.

The next two node types are vehicle depots. The set K+ contains
a node modelling the origin depot for each present vehicle. In analogy,
the set K− consists of nodes for destination depots.

Finally, the last two node types implement the transfer points in the
model. Each transfer point is represented by two nodes in the graph.
These nodes are referred to as start node and finish node of the transfer
point. In case of request nodes, it is always clear whether the node
is associated with loading or unloading action. In contrast, transfer
points must necessarily support both types of actions. The transfer
point abstraction logically separates unloading actions at the start
node from the loading actions at the Ąnish node. Despite a transfer
point is represented as two distinct nodes, further constraints of the
model tie the nodes together into one logical unit. On the level of
the graph, visit to a transfer point is implemented as a visit to the
respective start node and immediate traversal of the edge to the Ąnish
node. It is never possible to visit the start or Ąnish node separately
without visiting its counterpart.

In summary, the set of nodes in the network graph G is deĄned as
in the following equation.

V = N+ ∪ N− ∪ K+ ∪ K− ∪ s(T) ∪ f (T)

8

3. Formal model

3.1.2 Graph edges

It makes sense to restrict the set of edges to a reasonable subset of
V × V only. First, some edges may never appear in a feasible solution.
Second, excluding some edges may address problems in the model
without the need of additional constraints.

As discussed, six different types of nodes are distinguished. Nat-
urally, ordered pairs of node types can be seen as types of oriented
edges. Since many edge types are redundant or bypass the intended
traversal rules in the network, edges of such properties should be
eliminated1. The inclusion or exclusion of particular edge types is
summarized in Table 3.2.

Table 3.2: Overview of valid edge types.

Rows correspond to type of the source node, column to target node of the edge.

N+ N− K+ K− s(T) f (T)
N+ X X × × X ×
N− X X × X X ×
K+ X × × X X ×
K− × × × × × ×

s(T) × × × × × X

f (T) X X × X X ×

Apart from edge types, there are more criteria based on which
edges can be removed. First, reĆexive edges should be dismissed com-
pletely since they play no valuable role in the network. Second, the
number of edges between node types s(T) and f (T) can be substan-
tially reduced. In fact, the internal logic of transfer points dictates
that the visit of start node must be directly followed by a visit to the
corresponding Ąnish node. Consequently, there is no need to assume
edges between start and Ąnish node of two different transfer points.
In the opposite way, edges from Ąnish node to their respective start
node are completely redundant. Lastly, edges starting in i ∈ K+ and
ending in j ∈ K− should be limited to the set {(k+, k−)|k ∈ K}.

1. For example, any edge connecting origin depot node with request delivery node
is of no use. This is due to the fact that the vehicle must visit the respective pickup
node before visiting the delivery node.

9

3. Formal model

In conclusion, the reasonable set of edges E ⊂ V ×V of the network
graph G is formally deĄned by the following equation.

E = E′ \ EX

Where E′ is the set of edges summarized in Table 3.2 and EX is the
set of edges to be eliminated deĄned as follows.

EX = {(i, i) | i ∈ V} ∪

{(s(m), f (n)) | m, n ∈ T s.t. m 6= n} ∪

{(f (m), s(m)) | m ∈ T} ∪

{(k+, l−) | k, l ∈ K s.t. k 6= l}

3.2 Model constraints and objective

The decision variables in themodel are centered around three concepts.
First, the variables xk

ij are binary indicators of whether the vehicle

k ∈ K traversed the edge (i, j) ∈ E. Secondly, the variables zkr
j similarly

indicate whether the load of the request r ∈ R was loaded in the
vehicle k ∈ K in the node j ∈ V. Lastly, it is necessary to track time
in order to ensure proper precedence between actions. This is done
by the variables ak

i holding the arrival time of the vehicle k ∈ K to the
node i ∈ V.

Table 3.3: Constraints notation.

Network graph

G (V, E), i.e., the network graph as deĄned in Section 3.1
V−(i) { j | (j, i) ∈ E }, i.e., predecessors of the node i ∈ V

V+(i) { j | (i, j) ∈ E }, i.e., successors of the node i ∈ V

ET E \ {(s(m), f (m))|m ∈ T}

tij Time necessary to traverse (i, j) ∈ E

dij Physical distance between the nodes i, j ∈ V

10

3. Formal model

Vehicle properties

Wk Weight limit of the vehicle k ∈ K

Pk Pallets count limit of the vehicle k ∈ K

Ck Price per distance unit of the vehicle k ∈ K

Dk Maximum duration of the route of the vehicle k ∈ K

Sk Maximum number of physical stops in the route associated
with the vehicle k ∈ K

Request properties

wr Weight of the load of the request r ∈ R

pr Number of pallets of the request r ∈ R

Graph node properties

li Lower bound of the time window of the node i ∈ N

ui Upper bound of the time window of the node i ∈ N

oi Service time of the node i ∈ N ∪ s(T) ∪ f (T) ∪ K+

Decision variables

xk
ij Binary variable signaling whether the vehicle k ∈ K uses

the edge (i, j) ∈ E

zkr
i Binary variable signaling whether the vehicle k ∈ K carries

the request r ∈ R while in the node i ∈ V

ak
i Arrival time of the vehicle k ∈ K at node i ∈ V

3.2.1 Vehicle routes

Route of the vehicle k ∈ K is a simple path between k+ and k− in G2.
The Ąrst high-level requirement on a valid solution is that the sub-
graph induced by xk

ij = 1 for each individual vehicle k ∈ K is a route.
Together, the Constraints 3.1 to 3.6 secure that the assignment of vari-
ables xk

ij is consistent with this requirement.
The combination of Constraints 3.1 with 3.2 establishes that the

node k+ is necessarily the start of route of the vehicle k ∈ K and that

2. The depot nodes k+ and k− are assumed to be one physical location as in the
literature [6]. Without this assumption, the model would need to prevent counting
costs for unused vehicles.

11

3. Formal model

the route contains at least one edge. Constraint 3.2 allows each vehicle
to start from at most one origin depot node, not more. Constraint 3.1
ensures that the chosen depot is actually the origin depot associated
with the vehicle k ∈ K.

∑
j∈V+(k+)

xk
k+ j = 1 ∀k ∈ K (3.1)

∑
i∈K+

∑
j∈V+(i)

xk
ij ≤ 1 ∀k ∈ K (3.2)

Constraint 3.3 ensures Ćow conservation in the request, start and
Ąnish nodes. For each edge taken by a vehicle into a pickup or delivery
node, the vehiclemust also traverse an edge leaving the node. In case of
transfer points, the construction of E guarantees, that there is only one
outgoing edge from each start node and, analogically, single incoming
edge into each Ąnish node. This is the edge connecting the start and
Ąnish nodes of a particular transfer point. Thus, the start and Ąnish
node of a transfer point are visited in an immediate sequence or not
at all.

∑
j∈V+(i)

xk
ij − ∑

j∈V−(i)

xk
ji = 0 ∀k ∈ K, ∀i ∈ N ∪ s(T) ∪ f (T) (3.3)

Another important consequence is that a route can end solely
in a node i ∈ K−. Since Constraint 3.3 prevents entering any node
i ∈ N ∪ s(T)∪ f (T)without leaving it and there are no edges incoming
into the nodes i ∈ K+, the only remaining possibility is to end the
route in a node i ∈ K−.

The role of Constraint 3.4 is to force the vehicle k ∈ K to end
its route in its designated destination depot k− ∈ K− rather than in
an arbitrary node i ∈ K−. After this constraint is added, the sub-graph
induced by each vehicle must contain edges forming a valid route.

∑
i∈V−(k−)

xk
ik− = 1 ∀k ∈ K (3.4)

12

3. Formal model

Constraint 3.5 establishes the pickups and deliveries of loads at
the request nodes. First, it secures that each request node is entered by
a unique vehicle. Due to Constraint 3.3, the unique entering vehicle
must also leave the node. Moreover, there is no other vehicle leaving
the node since it would need to enter it Ąrst.

∑
k∈K

∑
j∈V+(i)

xk
ij = 1 ∀i ∈ N (3.5)

At this point, all request nodes are visited by some vehicle and the
sub-graph induced by each vehicle contains a valid route. The sub-
graph may, however, include additional cycles detached from the
depot-to-depot simple path. Fortunately, this issue is solved3 once
node arrival times are tracked within routes. Constraint 3.6 expresses
the general requirement on arrival times of two subsequent nodes in
a route.

xk
ij = 1 =⇒ ak

i + tij + oi · sgn(dij) ≤ ak
j

∀k ∈ K, ∀(i, j) ∈ E (3.6)

A route imposes natural ordering on the arrival times of the nodes
visited by the vehicle. Moreover, the edge traversal potentially takes
some time and the vehicle may need additional time during node
visits for loading and unloading. The travel time is accounted for by
the addition of the tij term. The service time for the origin node is
counted solely in the case that a non-zero distance was traversed. This
conditional behavior is achieved by multiplying the service time by
the signum function applied on the traveled distance.

It should be noted that the implementation of route-related time
precedence in the form of single Constraint 3.6 was chosen for its

3. To be completely precise, the natural time precedence constraints within routes
eliminate only cycles of positive duration. Cycles with zero duration may be still
present. In order to solve the problem with cycles completely, it is possible to force
the value of tij to be at least some small positive ε. This technicality is intentionally
left from the model presentation.

13

3. Formal model

succinctness. Despite it is very suitable for presentation of the idea,
it introduces redundant decision variables4 and requires some addi-
tional technicalities5, 6.

3.2.2 Request load flows

So far, the only guarantee regarding request servicing is that all the
pickup and delivery nodes have a unique vehicle which visits them.
There is, however, no implicit nor explicit association between request
loads and vehicles. In order to ensure that the request loads eventually
reach their delivery nodes in some sensiblemanner, tracking of request-
load Ćows is needed.

Constraint 3.7 establishes that vehicles must not have any request
load on board while in their origin or destination depot nodes.

zkr
k+ = zkr

k− = 0 ∀k ∈ K, ∀r ∈ R (3.7)

Constraints 3.8 and 3.9 state that pickup and delivery nodes serve
as source and sink of request-load Ćow of their respective request.

xk
r+ j = 1 =⇒ zkr

j = 1 ∀k ∈ K, ∀r ∈ R, ∀j ∈ V+(r+) (3.8)

xk
r− j = 1 =⇒ zkr

j = 0 ∀k ∈ K, ∀r ∈ R, ∀j ∈ V+(r−) (3.9)

4. For a node i ∈ V, the variables ak
i must be set for all vehicles, regardless of

whether they visit the node or not. From the correctness point of view, there is no
problem, since the non-visiting vehicles can simply choose arbitrary value inside
the nodeŠs time window. From the practical point of view, however, there is a large
number of redundant decision variables. It is alternatively possible to track only
single variable ai for i ∈ N at the expense of having to express the same precedence
constraint for many different types of edges.
5. It is necessary to assume zero service time for origin depot nodes so that the
constraint works properly for edges starting from origin depots.
6. In case the last node in route physically coincides with the destination depot,
the last service time is not counted towards ak

k−
. This may lead to violation of the

maximum duration constraint. The problem can be solved by a separate constraint
or by manipulating the distance of edges into K− by adding some very small ε.

14

3. Formal model

The role of Constraint 3.10 is to ensure request-load Ćow conser-
vation where needed. For a request r ∈ R and a vehicle k ∈ K, if the
request load enters a node in the vehicle, it must also leave it in the
same vehicle. This must hold with two exceptions. First, the nodes r+

and r− are excluded as they serve as source and sink of the request-
load Ćow. Secondly, the Ćow conservation is not required between
the start and Ąnish nodes of a transfer point. The rules for Ćow inside
transfer points will be established by Constraint 3.12.

xk
ij = 1 =⇒ zkr

i = zkr
j

∀k ∈ K, ∀r ∈ R, ∀(i, j) ∈ ET s.t. i 6∈ {r+, r−}
(3.10)

Constraint 3.11 prevents the existence of the Ćowwhere notwanted.
It forbids vehicles to carry any request at nodes which were not visited
by the vehicle. Depots of the vehicle are omitted since there is no edge
to k+ ∈ K+ and exactly one edge into k− ∈ K− is required.

∑
i∈V−(j)

xk
ij = 0 =⇒ ∑

r∈R

zkr
j ≤ 0

∀k ∈ K, ∀j ∈ V \ {k+, k−}

(3.11)

Next, it is necessary to specify the Ćow behavior in the transfer
point start and Ąnish nodes. Constraint 3.12 establishes that it is not
possible for a request load to end its journey in the transfer point. If
request-load Ćow enters the start node in any vehicle, it must eventu-
ally leave through the Ąnish node, possibly in a different vehicle. In
a sense, 3.12 is transfer-aware Ćow conservation constraint comple-
menting Constraint 3.10.

∑
k∈K

zkr
s(m) − ∑

k∈K

zkr
f (m) = 0 ∀m ∈ T, ∀r ∈ R (3.12)

Since each pickup and delivery node must be visited, the request-
load Ćow is necessarily created. The vehicle visiting the pickup node

15

3. Formal model

of a request starts hosting the request-load Ćow with only two possi-
bilities to dismiss it. The Ąrst option is to visit the delivery node of the
request. The second is to visit the start node of some transfer point.
Due to Constraint 3.12, this is essentially equivalent to moving the
pickup of the request to the Ąnish node of the transfer point. Since
Constraint 3.7 requires vehicles to arrive empty at the destination de-
pot, the only true sink of the request-load Ćow is the delivery node of
the request.

The constraints thus already ensure that there are subsequent route
segments (of potentially different vehicles) connecting the pickup and
delivery node of every request. The last bit that remains is expressed
in Constraint 3.13. It ties together the time tracking for any pair of
distinct vehicles transferring load from one to another. Naturally, it is
required that the second vehicle cannot arrive for loading before the
Ąrst vehicle arrived and successfully unloaded the request load.

zkr
s(m) + zvr

f (m) = 2 =⇒ ak
s(m) + os(m) ≤ av

f (m)

∀k, v ∈ K s.t. k 6= v, ∀m ∈ T, ∀r ∈ R
(3.13)

3.2.3 Additional constraints

Constraints 3.14 and 3.15 secure that vehicles cannot exceed their limits
on maximum weight and number of pallets on board.

∑
r∈R

wrzkr
i ≤ Wk ∀k ∈ K, ∀i ∈ V (3.14)

∑
r∈R

przkr
i ≤ Pk ∀k ∈ K, ∀i ∈ V (3.15)

Next, Constraint 3.16 requires that arrival times to all request nodes
must belong into the time window associated with the given node7.

li ≤ ak
i ≤ ui ∀k ∈ K, ∀i ∈ N (3.16)

7. The need to quantify this constraint for all vehicles is a consequence of the
succinct time precedence modelling from Constraint 3.6.

16

3. Formal model

Lastly, Constraints 3.17 and 3.18 implement the limits on route
duration and maximum number of stops within a route. The imple-
mentation of 3.18 uses the signum function conditioning previously
used for the service times.

ak
k− − ak

k+ ≤ Dk ∀k ∈ K (3.17)

∑
(i,j)∈E

xk
ij · sgn(dij) ≤ Sk ∀k ∈ K (3.18)

3.2.4 Objective

The minimized objective is a weighted sum of the vehicle route dis-
tances where weights are the prices per distance unit of the respective
vehicles.

∑
k∈K

Ck ∑
(i,j)∈E

dij · xk
ij (3.19)

17

4 State of the art

This chapter summarizes the state-of-the-art of the works on PDPT
present in the literature. Sections 4.1 to 4.4 systematically review en-
countered solution approaches. Important observations from the re-
view are discussed in Section 4.5. Additionally, features of particular
reviewed works are summarized in Table 4.1.

Among the reviewed works, four general streams of approaches
can be identiĄed. The Ąrst stream is formed by exact methods [6, 7].
The second direction is represented by local search based multi-phase
heuristics [8, 9, 10]. The third and largest group of methods revolves
around the large neighbourhood search [2, 11] or its adaptive variant
[12, 13, 14]. Lastly, population-based methods appear as well [15, 11].

Note, that these four categories are not completely disjoint as some
of theworks assessmore than one approach. Thus, few of the reviewed
works are discussed in more places in this chapter.

4.1 Exact methods

One of the most prominent exact approaches for hard combinatorial
optimization is the integer linear programming (ILP) [16]. In ILP frame-
work, the target problem is expressed in the form of a model which
consists of integer1 variables and a set of linear constraints. Sophisti-
cated implementations of solvers such as Gurobi or CPLEX allow for
solving complex problems solely by providing a model to the solver.
Apart from serving as an input for solvers, model formulations are
useful as a mean of formal description of problems as in Chapter 3.

The paper of Cortes et. al. [6] is the pioneeringwork on purely exact
methods. The main contribution of this work is the Ąrst formalization
of PDPT in the literature. The problem is formalized in the form of
ILP model. The authors propose a custom solution based on branch-
and-cut method utilizing the BenderŠs decomposition technique. The
custom solution is then compared to generic branch&bound approach

1. In case only some variables are integers, the termmixed integer linear programming
(MILP) is used. Solving general ILP and MILP tasks is an NP-complete problem.

18

https://www.gurobi.com/
https://www.ibm.com/analytics/cplex-optimizer

4
.
S
ta
te

o
f
th

e
a
r
t

Table 4.1: Overview of PDPT properties in the reviewed literature.

Work C
ap
ac
it
ie
s

T
im

e
w
in
do
w
s

H
et
er
og
en
.fl

ee
t

M
ax

n
o.
of
T
P
s

T
P
st
or
ag
e
li
m
it

M
u
lt
i-
tr
an

sf
er
s

M
ax
.r
eq
u
es
ts

Solution method Objective

Cortes et. al., 2010 [6] X X × 1 × × 6 Exact (ILP), custom impl. Total time
Rais et. al., 2014 [7] X X X Ű × Xa 7 Exact (ILP), Gurobi Distance
Laporte and Minic, 2006 [8] × X × 5 × × 100 Multi-phase iter. heurisitic Distance
Godart et. al., 2019 [9] X Xb X 6 Xc × 150 Multi-phase iter. heurisitic Distance+tardinessd

Fu and Chow, 2021 [10] X × × Ű Xe × 300 Multi-phase iter. heurisitic Weighted sumf

Petersen and Ropke, 2011 [2] X X × 1 ×g × 982 Apriori transfers + LNS Weighted sumh

Qu and Bard, 2012 [13] X X × 1 × × 25 GRASP+ALNS No. vehicles+distancei

Masson et. al., 2013 [14] X X × 33 × × 193 ALNS Distance
Sampaio et. al., 2020 [12] × X × 5 × × 100 ALNS Distance
Danloup et. al., 2018 [11] X X × 5 × × 100 LNS, GA Distance
Peng et. al., 2019 [15] X X × 2 × × 50j Hybrid particle swarm ProĄt+distancek

a. This is the only work in which multiple transfers of one request were reportedly evaluated. In all other works, either only one transfer
points is used, it is explicitly stated that only single transfer is possible or the described procedure cannot produce multiple transfers.
b. The time windows have soft upper bounds. Violations of the upper bounds are accounted for in the objective function.
c. Storage possible, but explicitly limited.
d. Pareto optimization of two objectives.
e. Storage not possible, full vehicle synchronization is required.
f. The sum consists of distance, vehicle transfer time, customer waiting time and total travel time components.
g. Transfers are subject to additional costs accounted for in the objective function.
h. The sum consists of distance, initial and up-time costs for vehicles, costs for applied transfers and road toll components.
i. Objectives are optimized lexicographically, number of vehicles is primary.
j. The largest clearly reported instance counted 26 requests.
k. Objectives are optimized lexicographically, proĄt is primary.19

4. State of the art

with favourable results. This comparison alongside with model vali-
dation is done on a set of generated instances.

Interestingly, the evaluated instances were very small and the
speed of growth in the required time is striking. The largest eval-
uated instance counted only 6 requests, 2 vehicles and 1 transfer point.
Solving this instance required 1,800 seconds for the branch&bound
method and 120 seconds for the custom solution. In comparison with
the instance containing one request less, both the discussed times were
roughly 6 times larger. Clearly, the results indicate that introducing
the transfers leads to a severe expansion of the search space even with
one transfer point only.

In the work of Rais et. al. [7] an alternative ILP model for PDPT
is provided. Their aim is to provide as concise core of the model as
possible and discuss VRP variants covered by the model with only
minor adjustments needed. The model is evaluated on instances de-
rived from the Li and Lim benchmark [17] using the Gurobi solver.
The number of requests in the evaluated instances was at most 7, yet
a variable number of vehicles was allowed and any node in the graph
could serve as a transfer node resulting in more complex instances
than in [6]. Notably, this is the only reviewed work arguably taking
the possibility of multi-transfers2 into account. The authors optimize
the distance weighted by the vehicle cost and report savings of less
than 7 %, instances are solved to optimality. Regarding the runtimes,
the maximum reported time exceeded 18,000 seconds for one of the
largest instances. Interestingly, the minimum time for a same sized
instance was only 18 seconds indicating strong dependence of instance
properties and complexity.

It is worth mentioning that several other works [10, 15] concen-
trating on heuristics provide ILP formulations and validate their ILP
models by solving several very simple tasks by the means of ILP solver.

4.2 Multi-phase heuristics

The heuristic approaches in this section are characteristic with their
clear division into multiple phases. In such methods, the initial phase
typically creates one or potentially many solutions, often by some

2. On its way from pickup to delivery, a request may be transferred more than once.

20

4. State of the art

form of greedy construction. In the later phases, the outcomes of the
Ąrst phase are iterativelly improved including the opportunity for
transfers.

Laporte and Minic [8] were the Ąrst to address PDPT. Their pro-
posed algorithm employs a two-phase heuristic. In the Ąrst phase,
several different permutations on requests are assumed and for each
permutation, a solution is constructed by successively inserting re-
quests in the given order. The cheapest insertion including the pos-
sibility of transfers is always taken. The second phase takes the best
solution obtained in the initial phase and attempts to improve it in
multiple iterations. One improvement iteration successively unassigns
each request in the solution and then attempts to reinsert it back in
the cheapest way possible (with the possibility of transfers).

The evaluation part of the work targets the conditions upon which
the transfers are favorable. The authors conducted a set of experiments
on randomly generated instances of 100 requests with various prop-
erties and provide quite a broad overview of interactions of various
instance properties with transfers. Their conclusions are that depend-
ing on the instance properties, improvements in traveled distance3

based on the possibility of transfers can range from almost none up to
40 % in extreme cases.

Among the key factors identiĄed as important for transfer use-
fulness were the service times upon transfer, geographical clustering
and relative positions of the pickup and delivery locations, transfer
point placement and time window lengths. BeneĄts obtained for no
or small service times are reduced signiĄcantly if the service times are
increased. The geographical clustering of locations is reported to play
a vital role for the usefulness of transfers. Instances without location
clusters were identiĄed to beneĄt from transfers only marginally and
more smaller clusters seemed to be more beneĄcial than a smaller
number of larger clusters. The most favourable transfer point and
cluster conĄguration relied on a transfer point in the center of the
service area and location clusters nearby the centers of the area bor-

3. The generated instances use Manhattan distance.

21

4. State of the art

ders4. Lastly, rather longer than shorter time windows were found
favourable for transfers.

The work of Godart et. al. [9] concentrates on Pareto optimization
of two objectives. In comparison to other works, the properties of the
addressed problem are quite speciĄc. Transfer points allow for a lim-
ited storage only, the authors are interested in a heterogeneous vehicle
Ćeet, and the time windows have a soft upper bound. Because of the
soft upper bounds of the time windows, one of the optimized criteria
is minimization of the overall tardiness (soft boundary violations)
with the second criterion being the overall traveled distance.

They address the problem hierarchically with a three-phase heuris-
tic. In the Ąrst phase, requests are assigned to vehicles based on three
different heuristics providing a wide Pareto-front of solutions. The
second phase takes the vehicle-requests assignments in each solution
and solves the routing problem for the given assignment. The pro-
posed heuristic employs the idea that nearest neighbours are likely
to be served after each other in good solutions. The third phase aims
to incorporate transfers into the solutions. The proposed heuristic
identiĄes regions covered by each vehicle route in the solution. If
these regions of two vehicles intersect and the intersection contains
a transfer point, transfers between the vehicles are considered and
applied greedily. This procedure is applied iterativelly until no further
improvement is possible.

The reported effects of transfers are a reduction in the total traveled
distance by up to 30 % as well as beneĄts in reduced tardiness criterion.
Not surprisingly, the best improvements in the total distance were
obtained at the expense of notably larger tardiness and vice versa.
Regarding the runtimes, the total time is clearly dominated by the
third phase addressing transfers. The largest assessed instance counted
150 requests, 12 vehicles and 4 transfer points and the time needed for
the third phase exceeded 2,300 seconds.

Fu and Chow [10] propose a two-phase heuristic. The Ąrst phase
of the heuristic sequentially and greedily inserts requests into the so-
lution without the possibility of transfers. The second phase improves

4. Since the Manhattan distance is assumed, this conĄguration allows for transfers
with marginal or even zero detours. SpeciĄcally, a request with pickup and delivery
locations anywhere on the horizontal and vertical mid-axes of the service area can
be transferred via the central point of the area with no additional detour.

22

4. State of the art

the obtained solution by considering transfers in a way very similar
to the third heuristic phase in [9]. Each transfer point keeps track of
all vehicles passing within a parameterized search distance. Any pair
of vehicles passing in proximity of the same transfer point is consid-
ered for a transfer. Then transfers from these candidates are chosen
greedily.

The enroute microtransit5 problem targeted in their work has several
distinct characteristics. The Ąrst are the absence of explicit time win-
dow constraints and the orientation towards passenger transportation.
The time aspect is accounted for in the form of passenger comfort
component of the objective function. Next consequence of the pas-
senger transportation application is the requirement of full vehicle
synchronization during transfers. The last notable features are the
assumed grid network graph infrastructure and the possibility to
perform a transfer at any node of this grid.

The work also provides the most detailed scaling tests among
the reviewed works. The authors test three different sizes of the grid
and scale the number of requests and vehicles up to 300 and 100, re-
spectively. The largest evaluated instance consisted of the maximum
number of vehicles and requests and only used the medium-sized
network with total computation time exceeding 7,000 seconds. The
runtime growth was steeper on the largest network and the last re-
ported instance counted 210 request and 70 vehicles with computation
time exceeding 6,500 seconds.

4.3 Methods based on large neighbourhood search

The large neighbourhood search (LNS) [18] and its adaptive variant
(ALNS) [19] are iterative metaheuristics working with a single solu-
tion. In each iteration, a relatively large portion of the current solution
is destroyed so that it can be repaired into a new solution. Depending
on the quality of the acquired solution, it is either accepted or rejected
in the search6. LNS based implementations typically provide multiple

5. Microtransit transportation is a conceptual compromise between public and
taxi-like transportation of passengers.
6. This decision rule is referred to as acceptance criterion. The acceptance criterion is
typically dependent mainly on the quality of the assessed solution, but other factors

23

4. State of the art

problem-dependent strategies for destroying and repairing the solu-
tion referred to as operators. The additional feature of ALNS is that it
keeps track of performance of the individual operators and projects
this information into the probabilities of choosing the particular oper-
ators.

Masson et. al. [14] target an application of regular transporta-
tion service for people with disabilities within a city. Notably, they
evaluated real-world instances which are quite large both in the num-
ber of requests and transfer points when compared to other works.
The largest evaluated instance counted 193 requests and 5 transfer
points. Results on this instance yielded the best beneĄts of transfers
of almost 10 % in the total covered distance. Unfortunately, the re-
ported runtime exceeds 10 hours (as opposed to 750 seconds without
transfers). Generally, the reported runtimes after transfer inclusion
are roughly one order of magnitude larger than without transfers.

The solution method generalizes ALNS for PDP. Two new removal
operators and three insertion operators targeting transfers are adapted
based on the existingALNS operators and previously proposed heuris-
tics. The Ąrst removal operator removes more requests transferred via
the same transfer point in order to enable the whole group to be navi-
gated through a different transfer point. The second transfer-oriented
removal operator removes requests clustered geographically. The idea
is that requests with clustered deliveries or clustered pickups could
be all transferred via the same transfer point while being picked up or
delivered by one vehicle.

The Ąrst insertion operator best insertion with transfer is in principle
based on the insertion scheme proposed by Laporte and Minic [8].
The next transfer first operator can be seen as a group variant of the
previous one. Instead of assuming the requests to be inserted sequen-
tially, the group is inserted at oncewith transfers enforced (if possible).
Then, some of the transfers are possibly cancelled if this leads to im-
provement of the solution quality. The last insertion operator called
regret insertion with transfer uses transfers for requests which would be
more expensive to deliver directly without the transfer.

may be included as well. As an example, the simulated annealing criterion takes
randomness and the progress of the search into account as well. Interested reader
may refer to [20] for a survey of acceptance criteria for ALNS.

24

4. State of the art

Conceptually identical approach was taken by Sampaio et. al. [12].
The authors build on the work of Masson et. al. [14] and extend it
by novel operators. First, the removal operator transfer-based request
removal randomly removes requests based on their history of trans-
fers while preferring requests which were transferred only few times
over requests transferred frequently. Secondly, the idea of redundant
transfer point visits is introduced in the form of an insertion operator.
The point of the operator is to provide opportunity for simpler future
transfers. Such unnecessary transfer point visits are kept in the solu-
tion for a given number of iterations and are removed afterwards, if
no transfer takes advantage of this opportunity.

Notable feature of the work is the targeted application. The au-
thors concentrate on the area of crowd-shipping transportation and
Ąnd the transfers very favourable in the context of typical instance
characteristics. In the crowd-shipping environment, the majority of
the vehicle Ćeet consists of individually contracted drivers usually
capable of providing their services for relatively short periods of time
only. The evaluation concentrates on randomly generated instances
with different lengths of driver shifts and different distances between
the pickup and delivery locations in a request. The reported beneĄts
of transfers range from no beneĄts up to 50 % in the total traveled
distance. The results suggest that short driver shifts with long distance
requests beneĄt from transfers the most.

Qu and Bard [13] propose a method based on the GRASP meta-
heuristic and utilize ALNS in order to improve the generated solu-
tions. First, a pool of solutions is generated by sequentially inserting
requests into routes with the possibility of transfers. The insertions
are performed randomly with probabilities proportional to their costs.
A subset of the generated pool is passed to the second phase and
the solutions are improved by ALNS. The operators present in the
ALNS allow for transfers and are conceptually comparable to already
mentioned operators.

Notably, the authors propose a way to expand very small instances
with known global best solution value so that the global best solution
value is known even for the expanded instance. The GRASP solver is
evaluated on a set of instances with 25 requests and 1 transfer point
obtained in this way with results very close to the optimal values.

25

4. State of the art

Danloup et. al. [11] aim to compare large neighbourhood search
and genetic algorithm approaches. Their LNS implementation uses
a relatively simple set of standard operators adjusted to account for
transfers. The LNS implementation is, however, reported to be out-
performed by the genetic algorithm approach. Despite the LNS in
this work seems to serve as a referential point for the newly assessed
genetic algorithm mainly, the authors propose a more efficient imple-
mentation of one of the insertion operators from [13].

Among the reviewed works, Petersen and Ropke [2] are the only
who address some variant of problem with transfers in scale com-
parable to our problem. The instances are based on an industrial ap-
plication for Alex Andersen Ølund, a major Danish transporter of
Ćowers. Typical instances cover daily transportation performed by
a Ćeet of 170 trucks serving between 500 to 1,000 requests with one
transfer point available. Interestingly, the transfers seem to be treated
only marginally by the authors and the evaluation of their beneĄts is
missing.

The distinct feature of the work is the completely different ap-
proach to transfers when compared to other works. The decision
whether a request will be delivered directly or will be transferred
is done apriori based on a fairly simple heuristic. Generally, requests
with a large time interval between the latest pickup and earliest de-
livery are favored to be transferred as well as requests with very long
distances between pickup and delivery (if not causing too large de-
tour when transferred). Requests identiĄed suitable for transfer are
split into two requests. Then, a parallelized implementation of LNS
unaware of any transfers is started. Clearly, this approach completely
bypasses the steep growth in required computation time observed in
other methods. On the other hand, the proposed heuristic rule is a
severe simpliĄcation of the transfer dimension of the problem.

4.4 Population-based methods

Population-based metaheuristics [21] operate over a population of
solutions rather than working with a single solution only. Importantly,
the mechanisms responsible for exploring new and potentially better
solutions often rely on multiple existing solutions or even on the

26

4. State of the art

whole population. The Ąrst prominent branch of these metaheuristics
is inspired by evolutionary processes. Representative method from
this group are the genetic algorithms (GA). In GA, new solutions are
obtained by the means of combination of two solutions referred to
as reproduction and by local changes of a single solution denoted
as mutations. The second branch is inspired by swarm intelligence
observed in insect colonies, Ćocks of birds etc. The solutions in the
swarm move in the search space based on relatively simple rules
dependent on interactions with other members of the swarm.

Peng et. al. [15] address the selective variant of PDPTwith a hybrid
variant of the Particle Swarm Optimization (PSO) metaheuristic. In
the selective variant of PDPT, delivering a request is not mandatory.
Instead, requests are associated with proĄts for servicing them. The
authors lexicographically optimize the total achieved proĄt and the
total traveled distance (in this respective order).

PSO relies on a population of solutions referred to as particles
encoded as vectors of numbers. During the optimization, the move-
ment of the particles in the vector space is guided by the global best
position among all particles and the best position found by the given
particle. The authors hybridize the idea of the plain PSOmetaheuristic
by applying local search during particle decoding phase.

The work seems to primarily assess the potential of hybrid PSO
with accent on the multi-objective character of the problem. Unfortu-
nately, the largest clearly reported result is on a randomly generated
instance with only 28 requests, 10 vehicles and 1 transfer point. In
summary, the choice of hybrid PSO does not seem to bring substantial
beneĄts in the context of transfers when compared to other reviewed
methods.

Danloup et. al. [11] are the Ąrst to address PDPT by the means
of GA metaheuristic. The aim of their work is to implement a solver
for PDPT based on GA and compare the results with LNS based
approach. They assess both implementations on data from [8] and
report improvements over the results found in the earlier literature.
Moreover, the GA implementation qualitatively outperforms the LNS.

The key part of the work is the concept of coding of solutions in
the population. The choice of the authors is a highly indirect coding of
the solutions resulting in a pair of number vectors. One vector holds a
number between 0 and 1 per request representing the priority of the

27

4. State of the art

request insertion during solution reconstruction. The second vector
holds a bit indicator for each request deĄning the mode of insertion
during solution reconstruction. The Ąrst option is to choose the best
insertion with enforced transfer while the second insertion variant
takes the best insertion regardless of whether transfer is applied. On
one hand, this coding allows for a straightforward and efficient im-
plementation of traditional crossover and mutation operators. On the
other hand, evaluation of solutions requires a costly reconstruction
process from the indirect coding. Means of caching common patterns
in solutions are implemented in order to reduce the time needed for
the evaluations.

New solutions are produced by the means of standard one-point
and two-point crossovers and several mutation operators. The stan-
dard mutations include random value replacement for the priorities,
bit Ćipping for the insertionmodes and exchange of twopriority values.
Also, two interesting mutations speciĄc to the problem are introduced.
The Ąrst is said to be inspired by LNS as it chooses a larger number
of priority values and replaces them randomly. The second novel op-
erator aims to reduce the number of used vehicles. It increases the
priority of the least prioritized requests as these are likely to require
additional vehicle to be served.

Regarding the populationmanagement, a population of a Ąxed size
(20 solutions) was used. After new solutions are created, duplicated
solutions are eliminated and the new generation is chosen based on
the elitism criterion. Solutions with better quality are more likely to
be chosen for reproduction. In one iteration, two new children are
produced by the means of either one or two point crossovers and
randomly chosen mutation is applied to some solution in the new
population.

4.5 Discussion

Three pointswith great importance to our problemare to bemade from
the literature review. The Ąrst regards the potential beneĄts arising
from transfers and their relationship to the properties of the targeted
problem. Secondly, the literature suggests that transfers add substan-

28

4. State of the art

tially to the problem complexity. Lastly, the benchmark datasets for
PDPT should be mentioned.

Regarding the Ąrst point, variability of results across the reviewed
works and the detailed insights provided by Laporte and Minic [8]
show strong relationship between the beneĄts obtainable by themeans
of transfers and the properties of the target problem. Based on the
factors identiĄed in the literature, our problem seems to demonstrate
properties quite favourable for transfers7.

With the introduction of transfers, practical complexity of the prob-
lem is increased drastically. This fact is clearly indicated by the re-
ported computation times of exact method and the sizes of the largest
instances solved to optimality. This phenomenon, however, appears
even in the case of heuristic approaches. While exact methods are
limited to less than 10 requests, the breaking point for heuristic search
algorithms comes with lower hundreds of requests. The time require-
ments clearly evince faster than linear growth with respect to the
number of requests. Consequently, even very careful implementations
of the reviewed methods cannot be expected to yield any reasonable
results on our instances with more than 1,000 requests.

The general approach fromPetersen andRopke [2] seems to present
a viable direction under these circumstances. Clearly, its main weak-
ness is its excessive simplicity. On the other hand, it bypasses the main
issue of our application. As discussed, the properties of the target
problem are quite favourable for transfers and preliminary experi-
ments indicated that splitting requests apriori may result in beneĄts.
Thus, generalizing this approach to more transfer points, characteris-
tics and elaborating more on the transfer decision making seems to be
an interesting research direction.

On the last point, datasets potentially usable as benchmarks were
identiĄed.Upon contacting the authors,wemanaged to obtain datasets
from the works of Laporte andMinic [8] and Qu and Bard [13]. Unfor-
tunately, the character of these instances is very far from the problem
at hand, mainly due to low number of requests and unrealistic ge-
ographical distributions of locations and transfer points. Since the

7. Generally, the distances between pickups and deliveries tend to be relatively
long. Secondly, the transfer points are real logistical facilities placed at strategic
locations. Lastly, the constructed routes are limited in their maximum duration (yet
the limit is not particularly strict).

29

4. State of the art

number of instances derived from the data provided by Wereldo is
very limited, the decision was to implement a generator capable of
producing instances of reasonably similar character as in the original
data.

30

5 PDPT solver

Conceptually, it is possible to address the transfers in three ways.
First and dominantly used approach is to search the transfer options
together with the route construction [14, 6, 7, 11, 12, 13, 15]. Secondly,
it is possible to solve the problem without transfers and then improve
the routes by adding transfers afterwards [9, 10]. Lastly, the requests
to be transferred may be decided apriori. The transferred requests get
divided into two or potentially more requests with non-overlapping
time windows and the resulting PDP instance may be solved with
a solver unaware of transfers [2].

As outlined in Section 4.5, the proposed method follows the third
direction. Instead of deciding the transfers in a single shot, however,
the idea is to rather evaluate larger number of instances with different
transfer setups. These evaluations start at relatively short runs of the
PDP solver and get prolonged as weak-performing instances get Ąl-
tered out with gradual strictness. In a sense, the described procedure
can be seen as a coarse search over the space of instances. The short
PDP solver runs then serve as estimates of instance quality used for
comparison of the assessed instances.

The outlined implementation of the PDPT solver will be intro-
duced in three parts. First, the overall schema of the PDPT search
will be described in detail in Section 5.1. Then, the key components
of the system will be covered. Section 5.2 targets the PDP solver com-
ponent adapted from [1]. The procedure responsible for generating
the initial front of instances with transfers is introduced in Section 5.3.
Lastly, Section 5.4 provides a discussion of ideas and concepts which
ultimately led to the presented form of the PDPT search procedure.

Since the thesis was prepared in cooperation with the company
Wereldo, the source codes are not publicly available as a part of this
thesis.

5.1 PDPT search schema

Starting with the input instance, the PDPT solver Ąrst generates a front
of derived instances with a variable portion of requests transferred.
Then, the initial instance front is being evaluated and Ąltered in two

31

5. PDPT solver

subsequent phases. Finally, deeper search is performed on few of the
best performing instances. A diagram of the proposed PDPT search
procedure is shown in Figure 5.1.

Figure 5.1: High-level schema of the PDPT search procedure.

32

5. PDPT solver

The high-level shape of the search can be divided into three im-
portant phases. The initial phase takes the instances provided by the
instance front generator component and evaluates the instances with
short PDP solver runs. Themiddle phase prolongs the search on promis-
ing instances which survived the Ąltering after the initial phase. Lastly,
a very limited number of instances surviving the Ąltering after the
middle phase advances into the final phase which eventually returns
a set of high-quality solutions after longer search. In case of all three
phases, the evaluation of each instance may be duplicated into mul-
tiple PDP solver runs. This measure improves the stability of results
and is subject to parameterization of the PDPT solver.

The goal of the initial phase is to rule out large portion of the weak-
performing instances without spending unnecessary computational
resources on their evaluation. For the purpose of this pruning, instance
quality estimates based on several hundreds of PDP solver iterations
were found sufficient in the target application. In order to minimize
the risk of eliminating instances which are still improving rapidly, the
subsequent Ąltering is relatively benevolent.

During the middle phase, the instances considered promising
enough get additional iterations of the PDP search. The best runs
of all instances surviving the Ąrst Ąltering are restarted from their best
solutions and undergo longer PDP search than in the initial phase.
The role of the middle phase is to provide enough iterations for the
PDP search to reach a stable best solution. Based on the experience
with solution quality evolution in the PDP search, improvements start
to appear scarcely after few thousands of iterations and the solutions
acquired at this point are very close to qualities reached after full
long runs of the solver. Thus, the quality estimates at the end of the
middle phase are signiĄcantly more precise than the initial estimates
and allow for reliable selection of the best performing instances into
the Ąnal phase.

The Ąnal phase of the solver solely improves the few surviving
instances by restarting the PDP search from their best acquired so-
lution. Since the phase considers a very small amount of instances
worth spending resources on, the PDP search should be prolonged
by several thousands of iterations. After the Ąnal phase Ąnishes, the
transfer setups present in the best PDP instances with their best found
solutions form the output of the PDPT solver.

33

5. PDPT solver

Important advantage of the proposed scheme is its embarrassingly
parallel nature. All the PDP solver runs within one phase are com-
pletely independent of each other. The PDPT solver is designed to
utilize 8 CPU cores in the default setup, but the execution time and
stability of the results can be easily improved by providing additional
resources. The only point to keep in mind are the values of parameters
responsible for instance front size, Ąltering and duplication. The choice
of these parameters should reĆect the number of available CPUs. In
ideal case, all the available CPUs may be utilized almost completely
during the whole course of the search.

5.2 PDP solver component

In principle, the PDP solver serves two purposes simultaneously. First,
it is used to acquire short evaluations resulting in upper bound esti-
mates of the instance solution quality. These estimates are then used to
compare instances during Ąltration steps. Second, the sequence of PDP
solver runs on an instance surviving both Ąltering steps principally
forms one longer PDP optimization of the given instance.

One of the notable features of the PDPT solver design is its inde-
pendence on the implementation of the PDP solver component. The
PDP solver is generally treated as a black-box component with a sim-
ple well-deĄned interface. As an input, the PDP solver component
must be able to take the input instance, optionally an initial solution
and the number of iterations of the requested search. The output of
the component is the best solution encountered during the requested
search.

In order to obtain the PDP component for the PDPT solver, the
solver from [1] underwent refactoring and was extended to provide
the described functional interface. The interface implementation was
decided to communicate via Ąles, partly in order to keep the record of
the whole PDPT search procedure progress. Apart from the ability to
start the search from a given initial solution, the implemented adjust-
ments required minor implementation efforts. It is worth noting that
any reasonable PDP solver implementation can be adapted to provide
the described interface with minimum insights into the internal logic
of the PDP search.

34

5. PDPT solver

5.3 Instance front generator component

The proposed PDPT search scheme is capable of sorting out the best
transfer setups from the given instance front and provide high-quality
solutions to the selected instances. The role of the front generator
component is to reasonably cover the space of transfer-aware instances
for the search. Clearly, the cost to obtain a quality estimate for an
instance allows to consider a very limited number of transfer setups
only.

The key idea used for the initial front generation is to consider
transferring requests on the level of groups rather than individually.
First, the effects of transferring a single request cannot be usually
distinguished since the results of the PDP solver are subject to non-
trivial variance1. Second, the consolidation of request loads in the
transfer points forms an important part of the transfer beneĄts. Dis-
covering the possibilities to serve multiple requests transferred via
the same transfer point in one vehicle is easier when new transfers
are introduced in larger groups. Lastly, considering request transfers
per individual requests is not tractable. Even the number of poten-
tially transferable requests exceeds the number of instances that can
be realistically evaluated during the initial phase of the search.

Second important idea is that similar transfers should be applied
all together, or not at all. Thus, the goal is to aim for groups of transfers
homogeneous in their properties. Natural way to obtain such groups is
to employ a clustering algorithm. Pseudo-code of the procedure used
to obtain the initial instance front discussed throughout this section is
shown in Figure 5.2.

5.3.1 Split schemes

The outlined clustering is performed on the level of split schemes rather
than requests. Split scheme is a pair of request and transfer point2

1. Moreover, the variance of results is signiĄcantly higher for shorter runs used to
obtain the quality estimates in the proposed scheme.
2. The text gives a description for split schemes with single transfer point only. The
implementation, however, allows for double transfers for requests with both pickup
and delivery not coinciding with any transfer point. All the described concepts and
measures can be extended to multi-transfers in a straightforward manner.

35

5. PDPT solver

representing a possible way to transfer the given request. The broadest
possible set of split schemes is obtained as a Cartesian product of the
set of requests and the set of transfer points. Not all such split schemes
are, however, feasible or even remotely sensible. This includes split
schemes which cannot be applied due to time constraints, reĆexive
split schemes transferring the request via its own pickup or delivery
location or split schemes inducing detour clearly not worth further
consideration. The Ąrst preparation step before the clustering is to
Ąlter the broadest set of split schemes and keep only potentially useful
split schemes. The Ąltration is done based on predeĄned thresholds
set to very benevolent values3.

1: procedure InstanceFront(R, T)
2: S := R × T
3: remove clearly irrelevant schemes from S
4: C := Clustering(S)
5: Cscores := Score(C)
6: eliminate same-request schemes within clusters (keep best)
7: sort clusters in C by Cscores (ascending)
8: I := ∅

8: for i in 0 . . .C.length − 1
9: I := I ∪ ClustersToRequests(R, C[0,..,i])
10: return I

Figure 5.2: Pseudo-code of the instance front generator procedure.

In order to cluster the split schemes, it is necessary to identify their
properties relevant to the desirability of their application. From our
experience and obtained insights outlined in the next paragraph, total
number of 7 split scheme properties was selected. First 3 factors are
weight, volume and pickup-to-delivery distance. These factors are inde-
pendent of the transfer point used by the split scheme. The remaining
4 factors are absolute and relative detour, slack and uniformity of the split
scheme.

3. These threshold values are not subject to tuning as they only serve to eliminate
split schemes which are clearly out of question.

36

5. PDPT solver

Regarding weight and volume, transferring smaller requests is
generally more beneĄcial as it allows to consolidate larger number
of requests at the transfer point into one vehicle. On the other hand,
consolidation of larger requests may become problematic due to ca-
pacity constraints. Next, the beneĄts of transfers were observed to
increase with the growing pickup-to-delivery distances. The detour
factors present direct quantiĄcation of potential cost penalties induced
by applying the split scheme. Formulas for absolute and relative de-
tour are shown in Equations 5.1 and 5.2, respectively. The slack of
the split scheme is the time available between earliest pickup and
latest delivery reduced by the travel times and service times neces-
sary at the pickup, transfer point and delivery. Lastly, the uniformity
factor reĆects then fairness of pickup-transfer-point-delivery distance
distribution between the created requests. Fairness of the distance
distribution was identiĄed to positively affect the usefulness of split
schemes. The formula for uniformity measure is in Equation 5.3. P-TP
is the distance between pickup and transfer point of the split scheme.
TP-D is the distance between transfer point of the split scheme and
delivery. P-D represents the distance between pickup and delivery of
request in the split scheme. Lastly, F is the fair half of the tour from
pickup to delivery via the split scheme transfer point.

absolute detour = P-TP+ TP-D− P-D (5.1)

relative detour =
P-TP+ TP-D

P-D
(5.2)

F =
P-TP+ TP-D

2

uniformity =
|P-TP− F|+ |TP-D− F|

P-TP+ TP-D
(5.3)

5.3.2 Clustering and instance generation

Based on the properties discussed in previous subsection, it is nowpos-
sible to cluster all the reasonable split schemes. Before the clustering
takes place, all the 7 dimensions are standardized. Second, each di-

37

5. PDPT solver

mension is stretched or shrunk by its associated weight. Then, the split
schemes are clustered with Euclidean distance serving as the metric.
The dimension weights W and the number of clusters C# produced
at this point are parameters of the PDPT solver. Pseudo-code of the
clustering procedure is in Figure 5.3.

1: procedure Clustering(S)
2: standardize clustering properties in schemes from S
3: transform properties in S by dimension weightsW
4: // Standard clustering algorithm, e.g. k-means or
5: // hierarchical agglomerative clustering
6: return ClusterSchemes(S, C#) // Euclidean metric

Figure 5.3: Pseudo-code of the clustering procedure.

Next step is to score the created clusters. The cluster scores will
serve to measure how desirable is the application of a typical split
scheme from the given cluster. First, a centroid is calculated as a repre-
sentative of each cluster. Then, the cluster centroids are assigned ranks
in each of the 7 clustering dimensions. The Ąnal score of each cluster
is given as a weighted sum of the 7 centroid ranks weighted by the
dimension weights used during clustering. The procedure computing
the cluster scores is in Figure 5.4.

1: procedure Score(C)
2: rank cluster centroids from C in each property separately
3: return sum of ranks weighted byW (per centroid)

Figure 5.4: Pseudo-code of the cluster scoring procedure.

So far, a split scheme cluster may contain multiple schemes of one
request. In case the cluster is to be applied, it is necessary to resolve
such duplicates. In order to address this situation, schemes sharing
same cluster and request are scored identically as the cluster centroids

38

5. PDPT solver

in the previous step. Then, only the best scheme per cluster and request
is kept and the remaining schemes are discarded. As a result, the
clusters may be applied separately without any ambiguity.

In order to generate the instance front, the clusters are sorted in
the order of their desirability based on the calculated scores. Then,
instances are generated by selecting the best N clusters as active for N
from one up to the number of clusters. Thus, the number of instances
in the front matches the parameter setting the number of clusters.

One particular instance in the front is created based on a set of
active clusters and their scores. The produced instance contains each
of the original requests either as a direct copy or in the form of two
requests created by an applied transfer. The Ąrst case appears if the
request in question does not have any scheme in any of the active
clusters. In the opposite case, one or potentially more clusters contain-
ing a scheme of the request exist. If there are multiple such clusters,
scheme from the best scored cluster is preferred. The original request
is then divided into two requests based on the preferred scheme. The
time windows at the transfer point location are set so that the available
slack is distributed fairly between the two requests. The construction
of a new instance from a set of active clusters is illustrated in Figure 5.5.

At this point, it is also necessary to track the mapping between
the original requests and requests in the created instance. In case this
information is not tracked, a solution of the created PDP instance
could not be transformed into a transfer-aware transportation plan.

1: procedure ClustersToRequests(R, Cactive)
2: R’ := ∅

3: for r in R
4: if r not in any scheme in any cluster in Cactive

5: R’ := R’ ∪ {r}
6: continue
7: Ąnd best scored cluster c containing scheme s of r
8: r1, r2 := s.GetSplitRequests()
9: R’ := R’ ∪ { r1, r2 }
10 : return R’

Figure 5.5: Pseudo-code of the instance creation procedure.

39

5. PDPT solver

Overall, the selected approach aims at two targets. First, the clus-
tering produces a set of transfer features based on relevant properties
rather than on Ąxed sized groups. This allows to generate the instances
with the structure of the available transfer options in mind. Second,
the scale of transfer application percentage is effectively covered by the
cluster accumulation strategy used to produce the instances. Notably,
the scale is covered unevenly due to the different-sized clusters. This,
however, present an advantage rather than a drawback as the coverage
density is concentrated in important areas of the scale. Ultimately, the
mechanism generating the instance front is completely deterministic.
Attempts to form instances by including the clusters more or less ran-
domly were made, but they always produced lower-quality and less
stable results. The whole generative process starting from the original
requests and ending with a front of instances is illustrated graphically
in Figure 5.6.

40

5. PDPT solver

Figure 5.6: Instance front generator schema.
Split schemes are eliminated on three levels. First, schemes with clearly undesirable
properties are Ąltered out (very large detour, negative or very small slack, reĆexive

schemes). Second, schemes may be eliminated within a cluster. If one cluster
contains multiple schemes of one requests, only the best scheme is kept and others
are discarded. Lastly, schemes may be eliminated during instance construction. If
multiple schemes of one request from different clusters shall be applied, scheme
from the best scored cluster is selected. Note the example of request R3 which

cannot be transferred in any way. During instance generation, it is treated the same
as requests with no split schemes in the selected clusters.

41

5. PDPT solver

5.4 Prior solver designs

The presented PDPT solver framework is not the only concept tested
during the course of this work. Four alternative approaches that ulti-
mately led to the chosen design are presented as they provide valuable
insights into the limits of methods deciding the transfers apriori.

The Ąrst implemented approach attempted to identify requests
suitable for transfers in one shot. The implementation relied on rule-
based decisions driven by a set of thresholds. The request properties
used in favor of transfers were mainly the pickup-to-delivery distance
together with load volume. Moreover, information about clusters of
pickup and delivery locations were used in attempt to take the relative
positions of request locations into account. Thresholds on detour and
slack, on the other hand, were used to disallow potential transfers.
Interestingly, the attempts to exploit the location clusters in order
to force request consolidation proved to play marginal effect on the
performance. Arguably, the biggest disadvantage of this approach are
the strict orthogonal threshold-based decision boundaries.

Second attempted method concentrated on the tradeoff between
additional Ćexibility and drawbacks introduced with added transfers.
The idea was to introduce an easy to calculate measure correlated
with the best achievable instance quality. Then, instances with vari-
ous transfer setups could be compared quickly and the costly PDP
search would be executed only on a handful of instances with the best
scores. Unfortunately, it proved to be unrealistic to design reasonable
measures with the required properties.

Next method aimed to analyse the typical traffic patterns occurring
in solutions of the target instance. The instance was solved several
times without transfers for a lower number of iterations. Then, a traf-
Ąc heatmap was assembled based on these solutions. The heatmaps
captured the intensity of traffic between relatively small regions in
a grid-based system. The idea was to transfer requests so that they
may copy the patterns of typically created traffic Ćows. Despite the
method attempts to base the transfer decisions on more than just static
information about the requests, this relatively sophisticated approach
did not prove to be much useful.

The last of the four attempts is relatively close to the Ąnal approach.
During the design of the heatmaps, it turned out that the obtained ben-

42

5. PDPT solver

eĄts are far more dependent on the overall percentage of transferred
requests rather than on a careful choice of the requests to be trans-
ferred. In order to exploit this observation, one best split scheme was
decided for each request greedily based on the relative detour criterion.
Before this step, the full set of split schemes was Ąltered similarly as
described in Section 5.3.1. Then, the requests were sorted based on the
relative detour of their chosen split scheme and instances with trans-
fers were derived by cumulatively adding Ąxed sized groups of split
schemes in the given order. Around 10 instances were produced in
this way. The instances were then solved in parallel for 1,000 iterations
in 8 duplicates each. The high duplication factor often allowed for Ąnd-
ing high-quality solutions even on the short 1,000 iteration runs. This
method sometimes managed to Ąnd solutions of comparable quality
to the Ąnal implementation, it, however, suffered two problems. First,
the method wasted unnecessary computation resources on instances
not worth consideration, mainly due to the high duplication factors.
Second, the coverage of the transfer percentage scale was rather sparse
which often led to missing important points due to the insufficient
coverage.

Across all of the attempted approaches, several ideas proved to be
very useful. First, the overall percentage of transfers in the instance is
far more important than very careful selection of requests to be trans-
ferred. Second, the best way to assess quality of transfer decision is to
simply run PDP solver on the instance. It is, however, crucial to invest
the computational resources carefully. Lastly, thresholding is useful
for elimination of unreasonable split schemes, but critical decisions
based on thresholds are too rigid and do not allow for interactions
between the thresholded properties.

43

6 OpenStreetMaps instance generator

The goal of the generator is to respect reasonable assumptions on
geographic distribution of locations and transfer points and allow for
complete control over distributions from which request properties are
generated. Based on these requirements, it was a natural choice to
build the generator upon real geographical datasets. One of the widely
recognized and open collections of geographical data is the project
OpenStreetMaps (OSM)1. The generator implementation is available
as a part of the thesis in the IS MU.

The process of instance generation has two major phases. First,
the downloaded OSM package for a region (typically one country) is
preprocessed into an intermediate JSON Ąle. Second, the generator
uses the preprocessed JSON and provided conĄguration to produce
PDPT instances. The path from the OSM package to the generated
PDPT instances is presented step-by-stepwith emphasis on the transfer
point placement as the most interesting part of the process.

6.1 Location extraction

The main purpose of using the OSM datasets is to obtain realistic
locations for pickups, deliveries and transfer points with similar prop-
erties to our real-world problem. The goal of the preprocessing is to
extract and clean candidate locations for these purposes. The Ąrst step
is to download OSM package for the required region in the .shp.zip
format. OSM packages for particular countries are regularly exported
and maintained by the company Geofabrik based in Germany. These
packages are available for download online.

In the original problem, the request pickups are very often located
in large logistical facilities which serve as the transfer points. The rest
of the pickup locations is rather scattered across the region. Based
on this observation, industrial zones were extracted from the OSM
package as the image of the scattered locations. Together with the

1. © OpenStreetMap contributors. The OSM datasets are available under the Open
Data Commons Open Database License [22].

44

https://download.geofabrik.de/

6. OpenStreetMaps instance generator

transfer points, these locations serve as the candidates for pickups in
the generated instances.

The vast majority of delivery locations in our problem is situated to
larger towns or cities. In order to mimic this characteristics, locations
of supermarkets were extracted from the OSM package. Similarly to
pickups, these locations together with transfer points form the set of
candidates for delivery locations in the generated instances.

Next, the extracted locations are Ąltered based on the local outlier
factor [23] technique for outlier detection. The main purpose of this
step is to prevent unwanted artifacts arising from inclusion of detached
territories such as distant islands. Consequently, the pickup-delivery
location pairs taken from the Ąltered candidate sets should be enclosed
in a reasonably compact area.

6.2 Transfer point placement

In contrast to pickup and delivery locations, there is very few transfer
points and their placement within the region is far from arbitrary.
In fact, the choice of location for a large logistical facility serving
as a transfer point is an important strategical decision. Clearly, the
optimal placement is dependent on distribution of serviced locations
within the region and on the placement of other similar facilities.

The outlined problem is a well-known NP-hard optimization prob-
lem of operational research called facility location problem (FLP) [24].
The goal in FLP is to Ąnd optimal placement for a given number of
facilities so that the set of given customer locations is covered in the
best possible way. In order to allocate the transfer points at sensible
locations, the preprocessing phase of the generator solves a variant
of FLP. The time demanded for this step is the main reason for the
separation of preprocessing and instance generation.

Calculating FLP for all the extracted locations would be intractable.
Since approximate solution is sufficient for the given purpose, the
locations are Ąrst clustered to a Ąxed number of clusters. The clusters
are replaced by centroids and weighted by the number of members.
Then, a weighted variant of FLP (WFLP) is solved with the centroids
serving as both set of customer and facility candidate nodes. WFLP
is solved repeatedly resulting in precalculated positions of transfer
points for several setups with different number of transfer points.

45

6. OpenStreetMaps instance generator

6.3 Weighted facility location problem model

TheWFLP in the generator preprocessing phase was formalized using
ILP and solved by the SCIP solver [25].

A solution to the problem places exactly k facilities at some of the
candidate locations and pairs each customer location with one of
these facilities. The facility placement and customer-facility assign-
ment should minimize the sum of distances of customers to their
assigned facility weighted by the importance of particular customers.

As expressed in Constraint 6.2, each customer is associated with
exactly one facility. This is the facility candidate node from which the
customer shall be serviced. From the customerŠs perspective, such
facility should be as close as possible. Constraint 6.3 ensures that
a customer may be assigned to a facility candidate node solely if the
candidate node was selected to host a facility. Lastly, Constraint 6.4
secures that exactly k facility candidates will be selected.

minimize ∑
i∈C

∑
j∈F

dij · xij · wi (6.1)

subject to ∑
j∈F

xij = 1 ∀i ∈ C (6.2)

xij ≤ yj ∀i ∈ C, ∀j ∈ F (6.3)

∑
j∈F

yj = k (6.4)

Table 6.1: FLP model notation.

C Set of the customer nodes
F Set of the facility candidate nodes
dij Distance between the nodes i, j ∈ C ∪ F
wi Weight of the customer location i ∈ C
xij Decision binary variable expressing that the customer

node i ∈ C is served from the facility in the node j ∈ F
yj Decision binary variable expressing that a facility is placed

in the node j ∈ F

46

6. OpenStreetMaps instance generator

6.4 Instance generation process

The instance generation takes the extracted locations and selects one of
the precalculated transfer point conĄgurations based on the required
number of transfer points. Together with the provided conĄgurable
distributions2, requests, vehicle Ćeet and time and distance matrices
are generated.

Regarding the vehicles, a heterogeneous Ćeet is generated. There
are four vehicle types in the Ćeet ranging from vans to large trucks.
Their properties (capacity limits, price per kilometer) reĆect the expe-
rience provided to us by Wereldo. These four vehicle prototypes are
duplicated ample number of times into each vehicle depot physically
coinciding with the transfer points.

The request generation Ąrst splits the total required number of
requests into four groups based on a provided distribution. These
groups reĆect the logistical context of a request, i.e., whether the lo-
cations of its pickup and delivery coincide with some transfer point
(serving as a depot). The requests from these groups are generated
separately in the appropriate numbers.

Properties of requests such as time windows3, number of pallets
or weight4 are drawn from conĄgurable distributions. Service time
is subject to global setting shared among all requests and locations
including transfer points. The generative process includes a check so
that only deliverable requests may be generated.

Finally, a Haversine5 distance matrix is calculated based on the
longitude-latitude coordinates of the locations. The timematrix is then
derived based on a constant conĄgurable vehicle travel speed. The
Ąnal output of the generator are two JSON Ąles. The Ąrst is the PDPT
instance while the second describes longitude-latitude coordinates of
the particular locations used in the instance.

2. The full set of conĄgurable parameters with examples is documented in the
project README Ąle. Multiple convenience conĄgurations are prepared as well.
3. Time windows are generated only for locations not coinciding with transfer
points, transfer points are assumed to operate non-stop. Options and distributions
are assumed separately for pickup and delivery locations.
4. Request weight is obtained by generating the number of pallets in the request
Ąrst and then generating weights of the individual pallets from a distribution.
5. Shortest distance between two points accounting for the curvature of Earth.

47

7 Experiments

The purpose of this chapter is to assess the proposed method. In Sec-
tion 7.1, properties of the instances used for experiments are presented.
In Section 7.2, the choice of parameter setup is justiĄed. In Section 7.3,
insights into the behavior of the algorithm are discussed. Lastly, Sec-
tion 7.4 reports numerical results of the conducted experiments.

7.1 Data

The proposed implementation was experimentally assessed on two
sets of instances. First, the data provided by Wereldo were prepro-
cessed and separated into 5 single-day instances with around 1,200
requests each. Second, the instance generator introduced in Chapter 6
was used to create 12 new instances based on the characteristics ex-
tracted from the real-world dataset. Different numbers of requests
and transfer points were used on two separate geographies as listed
in Table 7.1. Since the thesis was prepared in cooperation with the
company Wereldo, only the generated instances are available as a part
of the thesis in the IS MU.

Table 7.1: Summary of generated instances.

Instance name Geography No. TPs No. requests

bulgaria_500_1 Bulgaria 3 500
bulgaria_500_2 Bulgaria 4 500
bulgaria_500_3 Bulgaria 5 500
bulgaria_1000_1 Bulgaria 3 1,000
bulgaria_1000_2 Bulgaria 4 1,000
bulgaria_1000_3 Bulgaria 5 1,000
czechia_500_1 Czechia 2 500
czechia_500_2 Czechia 3 500
czechia_500_3 Czechia 4 500
czechia_1000_1 Czechia 2 1,000
czechia_1000_2 Czechia 3 1,000
czechia_1000_3 Czechia 4 1,000

48

7. Experiments

The global numerical characteristics of the real-world dataset are
summarized in Table 7.2. Note that despite the formal model allows
for different service times and route limits per location and vehicle,
these features have always one value with no exceptions.

Table 7.2: Global characteristics of the dataset.

Feature Value

Total no. requests 6,539
No. requests single day cca 1,200
Service time 15 minutes
Maximum route duration 11 hours
Maximum no. stops in route 15
Average vehicle speed 19 m/s
No. transfer points 4
No. vehicles 323

The key characteristic of the dataset is the distribution of requests
among different logistical contexts. Slightly less than 85 % of the re-
quests are delivery-only1 and around 10 % of requests do not pick up
from nor deliver to the transfer point locations at all (pure pickup-
delivery context). The remaining portion of requests is represented
by pickup-only requests (delivery to transfer point), transportation
between two transfer points appears rather marginally.

Next distinct feature of the data is the number of pallets and its re-
lationship to the logistical contexts. The distribution of pallet counts in
the dominant delivery-only context is shown in Figure 7.1. In the pure
pickup-delivery context, the relative trends are the same, but around
30 % of these requests are full-truck loads. Pickup-only requests are,
on the other hand, clearly dominated by full-truck loads.

1. Delivery-only requests have their pickup in one of the transfer points (depots).

49

7. Experiments

Figure 7.1: Distribution of no. of pallets in delivery-only context.

Regarding the time windows, strong regularities were observed.
The transfer point locations operate non-stop for both pickups and
deliveries. Pickup time windows outside transfer points start regularly
at one day-hour and last for 13 hours. Delivery time windows outside
transfer points dominantly start at two different day-hours 6 hours
apart, but also delivery windows starting at different times appear.
The most variable time-related aspect is the length of the delivery time
windows ranging from less than an hour up to 12 and even 24 hour
windows.

Lastly, the vehicle Ćeet is heterogeneous both in capacities as well
as in operational costs. Regarding capacities, a signiĄcant portion of
the Ćeet are large trucks capable of accommodating 66 or 72 pallets
(when double-stacked) and up to 24 tons of load. Operational costs
mainly vary with the vehicle type.

50

7. Experiments

7.2 Parameter settings

Two major groups of parameters can be identiĄed in the implemented
method. Parameters in the Ąrst group generally affect the extent of
the search procedure. This includes the initial front size given by the
number of clusters, number of iterations in different search phases,
run replication factors in different phases and strictness of Ąltering in
between subsequent phases. The second parameter group is formed by
the dimension weights used during the clustering and cluster scoring.
Part of the parameters was set based on empirical experience with the
rest being set by an automated tuning procedure.

The replication factors and numbers of iterations were set empiri-
cally. The choices reĆect the experience with the tradeoff between the
time consumed by the PDP solver runs and variances in the instance
cost estimates. Generally, running the PDP solver for more iterations
and in more duplicates is always beneĄcial for the quality and stability
of the instance cost estimate. Unfortunately, the price for the better
estimate is a signiĄcant amount of additional computation time in
both cases. Consequently, it is advisable not to invest computation
time if there is no need for further estimate precision or stability.

The choice of 500 iterations for the initial phase proved to be
enough to distinguish signiĄcant cost differences between instances2.
In order to support the stability in the initial phase, the 500 iteration
PDP solver runs are executed in 2 duplicates. During the intermediate
phase of the search, the goal is to prolong the search on the promising
instances. Experience with full 25,000 iteration runs on various in-
stances showed that solutions after 2,000 iterations are relatively close
to the the value obtained after the full run2. Thus, the intermediate
phase adds 1,500 more iterations on solutions obtained from the initial
500 iteration runs. Lastly, the Ąnal search prolongs few best solutions
by 5,000 more iterations in 2 duplicates. As veriĄed experimentally,
prolonging the Ąnal search phase would not lead to any signiĄcant im-
provements2. The duplication, on the other hand, proved to be useful
in longer runs.

2. Further discussion and visualizations are presented in Section 7.3. SpeciĄcally,
the qualities of results at the phase borders are illustrated in Figures 7.3 and 7.4. The
effects of Ąnal phase prolongation is shown in Figure 7.4.

51

7. Experiments

The last part of parameters chosen empirically are the Ąlters in
between the search phases. Reduction of the initial front of instances
to 16 best only aims to eliminate a large portion of instances from
consideration while being benevolent enough to compensate for low-
quality estimates on good instances. Based on the experiments from
Section 7.4, the Ąltration at this point could be potentially slightlymore
strict without signiĄcant impacts on the quality of the Ąnal solution.
Second, the choice to keep 4 best instances into the Ąnal search phase
aims at two targets. First, it is to diversify the Ąnal search and poten-
tially obtain multiple high-quality solutions with different transfer
setups3. Secondly, the choice of 4 instances in 2 duplicates serves to
keep the expected number of 8 processors busy. Alternatively, 2 in-
stances in 4 duplicates could be considered to provide more stable
results at the expense of the solution diversity. Values of the parame-
ters affecting the search extent are summarized in Table 7.3.

Table 7.3: Solver parameters Ű search extent.

Parameter Value

Number of clusters 40
Init. phase iterations 500
Init. phase replication 2
Filter init. 16
Mid. phase iterations 1,500
Mid. phase replication 1
Filter mid. 4
Final phase iterations 5,000
Final phase replication 2

Second major part of the parameter setting revolves around the
choice of appropriate combination of the number of clusters and di-
mension weighting. The maximum number of clusters directly affects
the size and granularity of the generated instance front. The dimen-
sion weights are used to Ąrst transform the split scheme space before

3. In practice, the solution with the best objective is not necessarily the best from the
user perspective. Thus, producing multiple high-quality solutions with reasonable
diversity is deĄnitely advisable.

52

7. Experiments

clustering and then for scoring of the created clusters. The weighted
dimensions are the 7 split scheme properties identiĄed to be relevant
for split scheme applicability as discussed in Section 5.3.1. The dimen-
sion weights were tuned separately for values 20, 30, 40 and 50 of the
parameter conĄguring the number of clusters. For each of the four
cluster counts, Bayesian optimization [26] was employed in order to
identify the best dimension weights.

For the purpose of automated tuning, two additional instances
were generated. The tuning instances are available as a part of the
thesis in the IS MU. Both instances were based on the Czechia geog-
raphy and included 3 transfer points. A shorter run of the Bayesian
optimization was applied on the smaller instance with 200 requests in
order to provide reasonable starting points for the main tuning. Then,
the same optimization procedure was initialized with the obtained
starting points and executed on the larger instance of 500 requests
for 35 iterations. This step was done separately for all the four cluster
counts. The distributions of costs encountered during the course of
tuning are reported separately for each of the four cluster count values
in Figure 7.2. A complete overview of the parameter conĄgurations
evaluated during the automated tuning and the respective acquired
costs are available in tabular form in Appendix B.

The best two dimension weightings were obtained with 40 clusters
and shared the same pattern. First, the tuning resulted in elimination
of the slack, detour relative and weight dimensions. In case of slack, the
amount of available spare time seems to play minor to no role given
the minimum slack of around one hour is guaranteed as in the imple-
mentation. In case of detour relative and weight, these dimensions seem
to be rendered unimportant due to their strong correlation with their
more favored counterpart dimensions detour absolute and volume. Sec-
ond, the tuning reveals that the primary dimensions for the splitting
decision are detour absolute and pickup-delivery distance. The measure of
uniformity and volume then play rather secondary role in the clustering
and scoring. The best acquired dimension weights used in the Ąnal
experiments are summarized in Table 7.4.

53

7. Experiments

Table 7.4: Solver parameters Ű dimension weighting.
The available range of values was set from 0.2 to 2.0. Notably, the obtained

conĄguration often prefers the border values of this range.

Parameter Value

Detour absolute 2.0
Detour relative 0.2
Pickup-delivery distance 2.0
Slack 0.2
Uniformity 1.28
Volume 0.91
Weight 0.2

Figure 7.2: Distributions of costs achieved during tuning.

Histogram bins size is 5,000 cost units. Y-axis shows the number of runs belonging
to the given bin. The best cost 792,243 was achieved with 40 clusters.

54

7. Experiments

7.3 Solver run insights

In order to demonstrate reasonable convergence of the PDPT solver
and give insights into the search progress, plots of runs on a represen-
tative instance are presented. The instance czechia_1000_2was chosen
as representative as it achieved average transfer beneĄts. As a demon-
stration of typical behavior of the PDPT solver, an average run of the
selected instance is plotted in Figure 7.34.

Figure 7.3: Search progress on average run of czechia_1000_2.

The X-axis represents the number of iterations in the PDP search, the Y-axis is the
best achieved cost so far. Vertical lines at 500, 2,000 and 7,000 iterations are the
borders of search phases. Points at the 500 iteration border represent results of
runs from the initial phase. Red points are runs accepted to the next phase. Red

and lime dashed lines represent best achieved baseline and PDPT solution
achieved over the 10 runs on the given instance.

4. Note that the group of red points at the end of the initial phase also contains few
blue points. This is due to the fact that each instance is executed in two duplicates,
but a Ąxed number of instances rather than runs is accepted into the next phase.

55

7. Experiments

As discussed in Section 7.2, the choice of 5,000 iterations for the
Ąnal phase of the search is sufficient. In order to support this claim
experimentally, the best runs were taken for each instance. Then, the
Ąnal phase of the search was restarted with 23,000 iterations instead
of the usual 5,000 iterations. Neither of the prolonged runs achieved
improvement over the best result on the given instance. Consequently,
terminating the PDP search after 7,000 iterations is not to be seen as
premature. An example of the best run prolongation on the represen-
tative instance is shown in Figure 7.4.

Figure 7.4: Search progress on a prolonged best run of czechia_1000_2.

56

7. Experiments

As it can be seen in Figures 7.3 and 7.4, improvements are still very
common in the phase between 500 an 2,000 iterations. Especially for
instances with higher percentage of transfers, it often takes more than
the initial 500 iterations to settle on a relatively stable best solution. The
middle phase provides enough additional iterations to compensate
for this fact. With quite stable instance quality estimates at the end of
the middle phase, the Ąnal Ąltering may compare the instances with
reasonable reliability.

In contrast to the dynamic middle phase, improvements occur
scarcely during the Ąnal search. Generally, the usefulness of the Ąnal
phase and its potential prolongation was observed to be higher on
runs with lower quality results as it allows to Ąnd important patterns
missed in the earlier stages of the search.

The overall convergence of the search scheme towards high-quality
results relies on two factors. First, it is the instance front reasonably
covering the transfer options that is provided to the scheme. Since
the search scheme itself does not interact with the transfers at all, any
transfer-related patterns to be assessed must be provided as a part
of the front. Second, the search scheme in principle solely evaluates
all of the provided instances and selects the best encountered solutions.
It, however, prunes evaluations of instances which are unlikely to
achieve high-quality results.

In case it is necessary to further improve the stability in the re-
sult quality, higher replication factors and prolongation of the Ąrst
two search phases are recommended rather than a very long Ąnal
search. First, opting for a very long Ąnal phase results in a consider-
able increase of the execution time of the PDPT solver. Second, the
best acquired solutions were observed to be Ąndable within lower
thousands of iterations5. Consequently, more short runs of the PDP
solver usually present a cheaper way to hit the key pattern in the
search space rather than one run traversing the space long enough to
eventually return to what it missed during the early iterations.

The relationship of the costs and percentage of transfers in the as-
sessed instances presents an alternative point of view on the behavior

5. Especially instances with more transferred requests were observed to behave
in this way. The baseline runs with no transfers, however, tend to Ąnd important
improvements in the late stages of the search regularly.

57

7. Experiments

of the PDPT solver. In order to demonstrate this dependence, 10 full
runs of the PDPT solver were taken and all solutions across all the
3 solver phases were plotted together in Figure 7.5.

Figure 7.5: Costs and transfer percentage on instance czechia_500_3.

The X-axis describes the total number of requests in instance. The Y-axis is the cost
obtained in the given run. The blue, green and red points represent instance runs
from initial, middle and Ąnal phase, respectively. The lime dashed line is the cost of

the best baseline run without transfers.

First notable pattern is that the best solutions are concentrated
around similar percentage of transfers. Moreover, this transfer per-
centage serves as a breaking point of the transfer usefulness. While
adding more transfers generally improves costs up to the given trans-
fer percentage, additional transfers beyond the breaking point are
harmful. The width of the breaking region differs across instances.

58

7. Experiments

Second important observation relates to the coverage of transfer
percentage scale. The evaluated instances range from almost zero trans-
fers up to the maximum possible transfer percentage. The coverage of
the interval is, however, clearly not uniform. The gaps in the direction
of the X-axis are a direct consequence of the clustering procedure gen-
erating the initial population of instances. The larger gaps correspond
to larger split scheme clusters being included into the next instance.
The uneven coverage grows in importance with the instance size as it
allows to address large bulks of very similar transfers together while
more diverse groups of transfers may be inspected in more detail.

7.4 Evaluation

The purpose of the proposed method is to obtain cost beneĄts in com-
parison with solutions not allowing for transfers. In order to evaluate
these beneĄts, a set of experimentswas conducted on the instances pre-
sented in Section 7.1. As a baseline, each instance was solved 10 times
without the possibility of transfers. These runs were set to last 25,000 it-
erations eachwhile respecting the original parameter settings from [1].
Next, the implemented PDPT solver was used to solve the same in-
stances, again 10 times each. The PDPT solver parameters were set as
described in Section 7.2. The experiments were run on virtualized in-
frastructure6 under CentOS 8 and the PDPT solver was implemented
in Python 3.97.

The main focus is on the comparison of costs obtained with and
without transfers on particular instances as costs present the optimized
objective. Additionally, similar comparisons of overall traveled dis-
tance and number of utilized vehicles are reported in order to provide
more detailed insight into the results. The comparisons are shown in
Figures 7.6, 7.7 and 7.8. Lastly, overviews of the runtimes and transfer
percentages are presented in Table 7.5.

6. It is important to interpret the reported runtimes with this fact in mind as the
real performance of the infrastructure varies over time.
7. Python was chosen as it allows for convenient rapid prototyping. Since the
performance-critical PDP search is offloaded to a dedicated external component,
the implementation language of the PDPT framework plays negligible role in the
overall performance.

59

7. Experiments

Figure 7.6: Costs, distances and vehicles on 500 request instances.

Y-axis in the three subplots represent costs, distances and number of used vehicles.

60

7. Experiments

Figure 7.7: Costs, distances and vehicles on 1,000 request instances.

61

7. Experiments

Figure 7.8: Costs, distances and vehicles on Wereldo instances.

62

7. Experiments

Across all the 17 instances, introduction of transfers resulted in
measurable beneĄts in costs. The obtained proĄts range from 7.5 %
up to 24.5 % with average savings of around 15 %8, 9. Clearly, the
strongest factor inĆuencing the transfer beneĄts is the geography of
the instances.

The weakest results were obtained on the Bulgaria geography. In-
stances bulgaria_500_1 and bulgaria_500_2were the only one to yield
transfer proĄts lower than 10 %. BeneĄts for the remaining instances
were around 11 % with the exception of bulgaria_1000_3 with more
than 14 % in savings. The instances generated with the Czechia geog-
raphy evince beneĄts around the overall average ranging from 11.5 %
up to 17 %. Lastly, the most prominent beneĄts were obtained on the
real-world instances from Wereldo. With the exception of the instance
wereldo_day_5 with only 14 % savings, proĄts of around 20 % were
achieved. The overall best proĄt of 24.4 %was obtained on the instance
wereldo_day_4.

Further factors observed to play role in the transfer beneĄts are the
instance size and number of transfers. Among the generated instances
sharing the same geography, instances with more transfer points and
larger number of requests tend to beneĄt more from the transfers. In
case of the transfer points, the key point seems to be the right level of
saturation of the serviced area by the transfer point facilities. Regard-
ing the instance size, the larger instances seem to Ąt the coarse nature of
the proposed search method better than the smaller instances. As the
instance size grows, the importance of transferring one particular re-
quest diminishes while the importance of the general percentage of
the applied transfers becomes more prominent.

Speaking of the variability in the baseline and PDPT results, both
are comparably stable on the generated instances. In case of the real-

8. The proĄts are calculated in two variants. The best-to-best proĄts compare the
best baseline run with the best PDPT run while average-to-average proĄts compare
the average of all baseline runs with the average of all PDPT runs. Reported values
are the best-to-best comparisons, but the average-to-average values do not differ
much.
9. The percentages are calculated as 100 · (1 − pdpt

baseline)where pdpt is the representa-
tive cost for PDPT solver runs and baseline is the representative cost of the baseline
runs.

63

7. Experiments

world instances, however, the baseline results vary signiĄcantly more
than the their PDPT counterparts.

Similarly to costs, the introduction of transfers reduced the total
covered distances signiĄcantly for all 17 instances. The reduction in
distance ranges from 11 % up to slightly less than 22 %. When com-
pared to costs, the percentual beneĄts are larger for distances on the
generated instances, real instances have higher cost beneĄts than dis-
tance beneĄts. The difference between distance and cost beneĄts seems
to be relatively stable for the generated instances, but varies more on
the real data. Regarding the variability in baseline and PDPT results,
both are comparably stable. In case of the real instances, however, the
results vary more than in the generated data for both baseline and
PDPT.

In case of the number of vehicles used in the solutions, the situation
is different than with costs or distances. First, the number of used vehi-
cles varies signiĄcantly more in the PDPT runs when compared to the
baselines. Within one instance, the difference was observed to be up to
plus minus 10 vehicles from the average. Second, the PDPT solutions
often require more vehicles than the baselines. There are, however,
instances on which the situation is the opposite or the number of
vehicles are comparable between PDPT and baselines. Notably, the
real instances are exception to the two observations. The numbers of
vehicles used in the PDPT solutions are comparably stable to the base-
lines. More importantly, the PDPT solutions on real instances always
resulted in substantial reduction in the number of used vehicles.

A summary of the runtimes and percentages of transferred re-
quests is in Table 7.5. The values are averages over all baseline and
PDPT runs on the given instance, respectively. Runtimes for PDPT
runswere obtained as a sum of the computation times for all PDP tasks
performed during the search (across all CPUs) as the instance front
generation consumes negligible amount of time.

Speaking of the runtimes, the PDPT solver requires between 4 to 5.5
times more computational capacity than a single 25,000 iteration run
of the PDP solver. The PDPT solver is, however, intended to run on
multiple CPUs and allows for their full utilization for the vast majority
of the search. Consequently, the PDPT solver in the default conĄgura-
tion with 8 CPUs Ąnishes up to 2 times faster than a single full run of
the PDP solver.

64

7. Experiments

Table 7.5: Avg. runtimes and percentages of transferred requests.

Instance name Baseline t(s) Transfers t(s) Transfer %

bulgaria_1000_1 2,608 12,460 21.6
bulgaria_1000_2 2,748 14,788 29.9
bulgaria_1000_3 2,925 15,646 27.8
bulgaria_500_1 1,368 5,751 18.6
bulgaria_500_2 1,492 7,209 33.4
bulgaria_500_3 1,542 7,650 28.6
czechia_1000_1 2,379 10,488 9.6
czechia_1000_2 2,659 13,214 23.9
czechia_1000_3 2,788 14,396 28.0
czechia_500_1 1,175 4,788 10.8
czechia_500_2 1,395 6,165 29.9
czechia_500_3 1,436 7,081 33.5
wereldo_day_1 3,259 14,827 19.3
wereldo_day_2 2,828 15,535 21.3
wereldo_day_3 3,201 16,723 13.2
wereldo_day_4 3,501 14,337 7.6
wereldo_day_5 3,270 14,527 13.3

In case of the transferred request percentages, neither a notable
pattern nor a relationship with the obtained proĄts was observed. The
percentage in which transfers are applied in the best transfer-aware
solutions strongly varies across the assessed instances. The proportion
of transferred requests ranges from 7.5 % up to 33.5 % with no clear
association with the transfer beneĄts.

A detailed version of the results presented in this chapter is avail-
able in a tabular form as a part of Appendix B. Secondly, complete
tabular results from the experiment runs are available as a part of the
thesis in the IS MU.

65

8 Conclusion

The thesis targets the pickup and delivery problem with transfers
in context of very large freight transportation problems. A formal
integer programming model of the speciĄc application was formu-
lated. The state-of-the-art approaches for PDPT were systematically
explored and summarized. A method inspired by the work of Pe-
tersen and Ropke [2] addressing the application at handwas proposed
and implemented. Due to the lack of realistic benchmark instances
relevant to the target application, an instance generator building upon
real geographical data from OpenStreetMaps was implemented. The
implemented solver was experimentally evaluated on the set of real-
world instances provided byWereldo togetherwith synthetic instances
generated by the implemented generator. The conducted experiments
conĄrmed that the proposed approach is capable of Ąnding signiĄcant
cost beneĄts arising from the introduction of transfers. The achieved
cost beneĄts ranged from 7.5 % up to 24 % with average savings
around 15 %. Importantly, the strongest results were achieved on the
real-world and very large instances.

8.1 Contributions

Apart from Petersen and Ropke [2], no literature assessing the po-
tential of apriori decided transfers is available. In contrast to their
work, the possibility of shifting the approach from one-shot decision
towards a search in the space of instances is explored. The thesis pro-
vides a comparison of costs with and without enabled transfers. To
the best of our knowledge, this comparison is missing in the aforemen-
tioned paper making this work the only one quantifying the beneĄts
acquired by deciding the transfers apriori.

Second, the implemented method allowed for Ąnding substan-
tial savings on instances of sizes far beyond the scope of traditional
approaches found in the literature. Together with the favorable ex-
perimental results especially on the real-world instances, the chosen
direction is clearly a good Ąt for the target application.

Apart from performing well, the proposed method is easy to im-
plement provided that a reasonable PDP solver implementation is

66

8. Conclusion

available. With a PDP solver at hand, it is arguably more convenient
to use it as a component in modular system rather than reimplement
it in order to support transfers. Moreover, the design is highly parallel
in its nature and allows for improvements in execution times and re-
sult stability by providing additional CPUs. Altogether, the method is
very practical from all implementation, maintenance and operational
points of view.

Lastly, the implemented instance generator together with the gen-
erated instances is a part of the thesis attachments for further use. The
core idea to build the synthetic instances on real geographical datamay
be useful for more realistic benchmarking in general. Moreover, the
implementation demonstrates that extracting valuable geographical
information from publicly available data is trivial.

8.2 Future works

First direction of research would be elaborating more on the limits of
the proposed method. Despite it clearly performs well on the target
application, the typical instances are quite speciĄc in their characteris-
tics. Especially the distribution of requests among different logistical
contexts and the strictness of time constraints could play major role.
Also, the experiments revealed that the method obtained higher sav-
ings on larger instances. Exploring the relationship between instance
sizes and transfer beneĄts could provide valuable point of view on
the weaknesses and strengths of the method.

Second research direction is related to the possible extension of
the instance space search based on genetic algorithms. The proposed
approach uses clusters of split schemes as transfer features which are
either applied or not. Such clusters may be directly used as binary
genes and standard cross-over andmutation operators may be applied.
In order to provide more diverse pool of genes, clusterings based on
different dimension weightings could be used.

Lastly, a fusion of traditional methods with the proposed approach
may be considered. SpeciĄcally, applying iterative heuristics similar to
Godart et. al. [9] or Fu and Chow [10] on solutions obtained after the
full execution of the PDPT solver could lead to further improvements.
Since the solutions obtained from the PDPT solver already contain

67

8. Conclusion

very good setups of transfers, the iterative heuristic would not need
to discover a vast majority of the transfer-related improvements. Its
role would then be to solely identify straightforward savings missed
by the relatively coarse PDPT solver search.

68

Bibliography

1. SASSMANN, Vojtěch. Vehicle Routing with Metaheuristics. 2020.
Master thesis. Faculty of Informatics, Masaryk University, Brno.

2. PETERSEN, Hanne L.; ROPKE, Stefan. The Pickup and Deliv-
ery Problem with Cross-Docking Opportunity. In: Computational
Logistics. 2011, pp. 101Ű113.

3. DANTZIG, G. B.; RAMSER, J. H. The Truck Dispatching Problem.
Management Science. 1959, vol. 6, no. 1, pp. 80Ű91.

4. VAN NIEUWENHUYSE, Inneke; BRAEKERS, Kris; RAMAEK-
ERS, Katrien. The vehicle routing problem: State of the art clas-
siĄcation and review. Computers & Industrial Engineering. 2016,
vol. 99, pp. 300Ű313.

5. OJEDA RIOS, Brenner Humberto; AMORIM, Pedro; XAVIER, Ed-
uardo C.; MIYAZAWA, Flávio K.; CURCIO, Eduardo; SANTOS,
Maria João. Recent dynamic vehicle routing problems: A survey.
Computers & Industrial Engineering. 2021, vol. 160.

6. CORTÉS, Cristián E.; MATAMALA, Martín; CONTARDO, Clau-
dio. The pickup and delivery problem with transfers: Formula-
tion and a branch-and-cut solution method. European Journal of
Operational Research. 2010, vol. 200, no. 3, pp. 711Ű724.

7. RAIS, A.; ALVELOS, F.; CARVALHO, M. S. New mixed integer-
programming model for the pickup-and-delivery problem with
transshipment. European Journal of Operational Research. 2014,
vol. 235, pp. 530Ű539.

8. MITROVIC-MINIC, Snezana; LAPORTE, Gilbert. The pickup
and delivery problem with time windows and transshipment.
Information Systems and Operational Research. 2006, vol. 44, no. 3,
pp. 217Ű227.

9. MANIER,Herve; GODART,Alexis; BLOCH,Christelle;MANIER,
Marie-Ange. A greedy based algorithm for a bi-objective Pickup
and Delivery Problem with Transfers. In: Conference on Systems,
Man and Cybernetics (SMC). 2019, pp. 3229Ű3234.

69

BIBLIOGRAPHY

10. FU, Zhexi; CHOW, Joseph Y. J. The pickup and delivery problem
with synchronized en-route transfers for microtransit planning. 2021.
Available from arXiv: 2107.08218 [math.OC].

11. DANLOUP, N.; ALLAOUI, H.; GONCALVES, G. A comparison
of two meta-heuristics for the pickup and delivery problem with
transshipment. Computers and Operations Research. 2018, vol. 100,
pp. 155Ű171.

12. SAMPAIO, Afonso; SAVELSBERGH, Martin; VEELENTURF, Lu-
cas P.; VAN WOENSEL, Tom. Delivery systems with crowd-
sourced drivers: A pickup and delivery problem with transfers.
Networks. 2021, vol. 76, no. 2, pp. 232Ű255.

13. QU, Yuan; BARD, Jonathan F. A GRASP with adaptive large
neighborhood search for pickup and delivery problems with
transshipment. Computers and Operations Research. 2012, vol. 39,
pp. 2439Ű2456.

14. MASSON,Renaud; LEHUÉDÉ, Fabien; PÉTON,Olivier. AnAdap-
tive Large Neighborhood Search for the Pickup and Delivery
Problem with Transfers. Transportation Science. 2013, vol. 47, no.
3, pp. 344Ű355.

15. PENG, Zhihao; AL CHAMI, Zaher; MANIER, Hervé; MANIER,
Marie-Ange. A hybrid particle swarm optimization for the se-
lective pickup and delivery problem with transfers. Engineering
Applications of Artificial Intelligence. 2019, vol. 85, pp. 99Ű111.

16. NEMHAUSER, George; WOLSEY, Laurence. Integer and Combi-
natorial Optimization. John Wiley & Sons, 1988.

17. LI; LIM. [N.d.]. https://www.sintef.no/projectweb/top/

pdptw/li-lim-benchmark/, last accessed on 22/05/04.

18. AHUJA, Ravindra K.; ERGUN, Özlem; ORLIN, James B.; PUN-
NEN, Abraham P. A survey of very large-scale neighborhood
search techniques.Discrete Applied Mathematics. 2002, vol. 123, no.
1, pp. 75Ű102.

19. ROPKE, Stefan; PISINGER, David. An Adaptive Large Neigh-
borhood Search Heuristic for the Pickup and Delivery Problem
with Time Windows. Transportation science. 2006, vol. 40, no. 4,
pp. 455Ű472.

70

https://arxiv.org/abs/2107.08218
https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/
https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/

BIBLIOGRAPHY

20. SANTINI, Alberto; ROPKE, Stefan; HVATTUM, Lars Magnus. A
comparison of acceptance criteria for the adaptive large neigh-
bourhood search metaheuristic. Journal of Heuristics. 2018, vol. 24,
pp. 783Ű815.

21. TALBI, El-Ghazali.Metaheuristics: from design to implementation.
John Wiley & Sons, 2009.

22. Open Data Commons Open Database License (ODbL). [N.d.]. https:

/ / opendatacommons . org / licenses / odbl/, last accessed on
22/05/04.

23. BREUNIG, Markus M.; KRIEGEL, Hans-Peter; NG, Raymond T.;
SANDER, Jörg. LOF: Identifying Density-Based Local Outliers.
In: International Conference on Management of Data. 2000.

24. DREZNER, Zvi; HAMACHER, Horst W. (eds.). Facility location.
Applications and theory. Berlin: Springer, 2002.

25. GAMRATH, Gerald; ANDERSON, Daniel; BESTUZHEVA, Kse-
nia; CHEN, Wei-Kun; EIFLER, Leon; GASSE, Maxime; GEMAN-
DER, Patrick; GLEIXNER, Ambros; GOTTWALD, Leona; HAL-
BIG, Katrin; HENDEL, Gregor; HOJNY, Christopher; KOCH,
Thorsten; LE BODIC, Pierre; MAHER, Stephen J.; MATTER, Fred-
eric; MILTENBERGER, Matthias; MÜHMER, Erik; MÜLLER,
Benjamin; PFETSCH, Marc E.; SCHLÖSSER, Franziska; SER-
RANO, Felipe; SHINANO, Yuji; TAWFIK, Christine; VIGERSKE,
Stefan; WEGSCHEIDER, Fabian; WENINGER, Dieter; WITZIG,
Jakob. The SCIP Optimization Suite 7.0. 2020-03. Technical Report.
Optimization Online. http://www.optimization-online.org/

DB_HTML/2020/03/7705.html, last accessed on 22/05/04.

26. NOGUEIRA, Fernando. Bayesian Optimization: Open source con-
strained global optimization tool for Python. 2014Ű. https://github.

com/fmfn/BayesianOptimization, last accessed on 22/05/04.

71

https://opendatacommons.org/licenses/odbl/
https://opendatacommons.org/licenses/odbl/
http://www.optimization-online.org/DB_HTML/2020/03/7705.html
http://www.optimization-online.org/DB_HTML/2020/03/7705.html
https://github.com/fmfn/BayesianOptimization
https://github.com/fmfn/BayesianOptimization

A Appendix

Files submitted into the master thesis archive in the Information Sys-
tem of Masaryk University:

• thesis.pdf: Text of the thesis in PDF format

• osm_generator.zip: Source codes of the OpenStreetMaps in-
stance generator

• osm_instances.zip: Synthetic instances used for experiments
and parameter tuning

• experiments_tabular_results.zip: Full results of the experi-
ments from Chapter 7

• illustrations.zip: Important illustrations from the text and
additional plots

72

B Appendix

This appendix contains a detailed overview of the results presented
in Chapter 7 in tabular form. Additionally, an overview of the au-
tomated parameter tuning is reported here. The tuning summaries
list attempted dimension weight conĄgurations with their respective
acquired costs in chronological order of appearance.

• Table B.1: major numerical characteristics and cost proĄts

• Table B.2: distance proĄts

• Table B.3: comparison of number of utilized vehicles

• Table B.4: tuning results (20 clusters)

• Table B.5: tuning results (30 clusters)

• Table B.6: tuning results (40 clusters)

• Table B.7: tuning results (50 clusters)

73

B
.
A
ppen

d
ix

Table B.1: Results of experiments from Chapter 7 (costs).
Best and average costs over the 10 runs are reported for both baseline and PDPT solutions. Best-to-best and average-to-average proĄts are presented. Percents of
transferred requests in best runs and average runs are provided. Finally, the absolute difference between the best and worst solution over the 10 runs is reported.

Instance B
as
el
in
e
be
st

Tr
an

sf
er
s
be
st

B
es
t-
to
-b
es
t

pr
ofi
ts
%

B
as
el
in
e
av
g.

Tr
an

sf
er
s
av
g.

A
vg
.-
to
-a
vg
.

pr
ofi
ts
%

S
pl
it
re
qu

es
ts

be
st
%

S
pl
it
re
qu

es
ts

av
g.

%

W
or
st
-b
es
t
di
ff
.

ba
se
li
n
e

W
or
st
-b
es
t
di
ff
.

tr
an

sf
er
s

bulgaria_1000_1 1,722,632.2 1,517,092.3 11.9 1,739,676.3 1,545,115.4 11.2 26.6 21.6 34,844.6 43,379.1
bulgaria_1000_2 1,891,845.0 1,686,236.9 10.9 1,909,013.1 1,703,741.8 10.8 35.7 29.9 27,846.0 27,723.1
bulgaria_1000_3 1,932,437.6 1,658,031.3 14.2 1,947,614.2 1,673,729.1 14.1 28.4 27.8 41,106.0 26,215.7
bulgaria_500_1 857,977.1 785,093.4 8.5 862,954.1 791,230.2 8.3 16.8 18.6 8,820.8 16,119.7
bulgaria_500_2 934,884.1 865,261.1 7.4 945,366.1 873,214.8 7.6 36.8 33.4 20,417.8 13,252.2
bulgaria_500_3 1,014,903.0 901,379.4 11.2 1,027,199.6 914,158.1 11.0 18.6 28.6 19,464.2 19,166.2
czechia_1000_1 1,927,777.2 1,663,020.3 13.7 1,937,206.5 1,673,853.1 13.6 9.9 9.6 19,826.5 24,727.5
czechia_1000_2 1,758,858.5 1,482,080.2 15.7 1,767,642.3 1,502,647.6 15.0 25.4 23.9 17,163.1 29,534.1
czechia_1000_3 1,935,350.0 1,605,761.9 17.0 1,946,155.8 1,618,709.6 16.8 27.0 28.0 23,404.7 34,211.9
czechia_500_1 942,164.0 832,740.0 11.6 953,820.2 840,690.1 11.9 8.6 10.8 17,809.0 15,290.3
czechia_500_2 909,585.6 757,431.5 16.7 916,941.7 768,057.7 16.2 31.4 29.9 20,614.0 16,758.1
czechia_500_3 966,542.3 827,813.3 14.4 976,442.6 838,694.1 14.1 33.0 33.5 15,466.9 17,365.5
wereldo_day_1 1,274,091.9 995,539.1 21.9 1,306,293.4 1,013,648.6 22.4 17.6 19.3 65,105.2 33,227.8
wereldo_day_2 1,146,082.9 922,947.0 19.5 1,193,459.0 932,435.8 21.9 32.4 21.3 96,642.4 18,070.0
wereldo_day_3 1,096,989.1 859,586.5 21.6 1,132,561.6 879,019.1 22.4 16.3 13.2 63,705.5 37,583.6
wereldo_day_4 1,226,417.7 927,051.4 24.4 1,284,818.9 955,694.8 25.6 9.4 7.6 103,017.5 40,357.8
wereldo_day_5 1,005,203.5 860,797.0 14.4 1,048,671.9 876,585.0 16.4 20.3 13.3 71,469.6 23,911.3
Min 857,977.1 757,431.5 7.4 862,954.1 768,057.7 7.6 8.6 7.6 8,820.8 13,252.2
Avg 1,300,095.5 1,105,849.7 14.6 1,319,932.9 1,120,515.7 14.8 22.4 21.0 37,530.3 25,008.1
Max 1,935,350.0 1,686,236.9 24.4 1,947,614.2 1,703,741.8 25.6 36.8 33.5 103,017.5 43,379.1

74

B
.
A
ppen

d
ix

Table B.2: Results of experiments from Chapter 7 (distances).
Best and average total distances over the 10 runs are reported for both baseline and PDPT solutions. Best-to-best and average-to-average proĄts are presented (best

and average based on costs). The absolute difference of the worst and best achieved distance is reported.

Instance B
as
el
in
e
be
st

Tr
an

sf
er
s
be
st

B
es
t-
to
-b
es
t

pr
ofi
ts
%

B
as
el
in
e
av
g.

Tr
an

sf
er
s
av
g.

A
vg
.-
to
-a
vg
.

pr
ofi
ts
%

W
or
st
-b
es
t
di
ff
.

ba
se
li
n
e

W
or
st
-b
es
t
di
ff
.

tr
an

sf
er
s

bulgaria_1000_1 93,198.6 77,542.5 16.8 93,049.8 79,099.3 15.0 3,637.8 3,435.5
bulgaria_1000_2 103,725.1 87,301.6 15.8 104,671.6 88,673.4 15.3 2,246.4 2,535.0
bulgaria_1000_3 106,866.9 85,623.7 19.9 108,210.2 86,403.2 20.2 2,797.2 1,906.0
bulgaria_500_1 46,912.8 41,706.9 11.1 48,087.1 42,388.3 11.9 2,198.9 1,200.7
bulgaria_500_2 51,675.9 45,518.1 11.9 52,007.9 46,114.8 11.3 2,028.6 1,847.8
bulgaria_500_3 55,922.6 47,194.3 15.6 56,432.2 48,116.2 14.7 1,615.1 1,767.6
czechia_1000_1 109,020.7 89,152.3 18.2 108,626.8 89,373.1 17.7 2,247.9 2,578.9
czechia_1000_2 98,494.4 77,988.3 20.8 98,181.7 78,991.1 19.5 2,094.0 3,034.7
czechia_1000_3 108,039.7 84,381.4 21.9 108,449.4 85,010.2 21.6 2,496.2 2,306.2
czechia_500_1 55,552.3 45,690.7 17.8 55,376.8 46,495.6 16.0 1,906.8 2,384.5
czechia_500_2 51,185.3 40,291.6 21.3 52,078.1 40,771.1 21.7 1,741.9 994.0
czechia_500_3 55,018.9 44,994.6 18.2 55,789.7 45,541.3 18.4 1,965.8 1,465.4
wereldo_day_1 103,326.3 88,643.7 14.2 105,088.3 91,493.8 12.9 4,492.3 7,009.1
wereldo_day_2 99,156.7 86,535.1 12.7 100,423.7 86,801.3 13.6 7,600.7 3,561.7
wereldo_day_3 99,274.8 81,787.8 17.6 99,782.1 82,322.2 17.5 4,273.3 4,931.0
wereldo_day_4 103,416.5 86,268.4 16.6 104,079.6 88,558.8 14.9 3,976.4 4,685.0
wereldo_day_5 94,132.8 81,195.4 13.7 95,250.6 82,542.7 13.3 3,617.2 3,202.1
Min 46,912.8 40,291.6 11.1 48,087.1 40,771.1 11.3 1,615.1 994.0
Avg 82,324.1 68,450.4 16.4 82,981.8 69,414.9 15.9 2,919.5 2,768.8
Max 109,020.7 89,152.3 21.9 108,626.8 91,493.8 21.7 7,600.7 7,009.1

75

B. Appendix

Table B.3: Results of experiments from Chapter 7 (vehicles).
Best and average number of utilized vehicles over the 10 runs are reported for both
baseline and PDPT solutions. Best-to-best and average-to-average comparisons are
presented as the difference of baseline and PDPT solutions (best and average based
on costs). The absolute difference of the highest and lowest number of vehicles in

instance is reported.

Instance B
as
el
in
e
be
st

Tr
an

sf
er
s
be
st

B
es
t-
to
-b
es
t

di
ff
.

B
as
el
in
e
av
g.

Tr
an

sf
er
s
av
g.

A
vg
.-
to
-a
vg
.

di
ff
.

W
or
st
-b
es
t
di
ff
.

ba
se
li
n
e

W
or
st
-b
es
t
di
ff
.

tr
an

sf
er
s

bulgaria_1000_1 188 192 -4 187 190 -3 8 6
bulgaria_1000_2 198 206 -8 198 205 -8 9 23
bulgaria_1000_3 200 195 5 202 194 8 12 7
bulgaria_500_1 96 100 -4 96 103 -8 6 12
bulgaria_500_2 98 113 -15 100 112 -11 6 10
bulgaria_500_3 104 100 4 104 108 -4 6 21
czechia_1000_1 209 193 16 211 198 13 9 10
czechia_1000_2 193 193 0 193 191 2 4 21
czechia_1000_3 205 203 2 205 204 1 9 11
czechia_500_1 107 100 7 107 107 0 5 13
czechia_500_2 101 108 -7 101 108 -7 6 9
czechia_500_3 105 111 -6 106 116 -10 4 14
wereldo_day_1 241 232 9 248 230 18 14 11
wereldo_day_2 239 231 8 244 225 19 13 14
wereldo_day_3 240 215 25 238 215 22 11 7
wereldo_day_4 252 224 28 252 224 28 13 11
wereldo_day_5 232 209 23 228 209 18 9 9
Min 96 100 -15 96 103 -11 4 6
Avg 172 168 4 173 169 4 8 12
Max 252 232 28 252 230 28 14 23

76

B. Appendix

Table B.4: Tuning with cluster limit 20.

Cost D
et
ou
r
ab
s.

D
et
ou
r
re
l.

P
D

di
st
an
ce

S
la
ck

U
n
if
or
m
it
y

V
ol
u
m
e

W
ei
gh
t

818,330.0 1.500 1.400 0.400 0.400 1.400 1.700 0.600
830,513.2 0.500 2.000 0.750 1.400 0.500 1.500 0.400
812,182.9 0.951 1.497 0.200 0.744 0.464 0.366 0.535
812,656.3 0.822 0.914 1.170 0.955 1.433 0.568 1.781
813,597.0 0.603 1.940 1.162 1.547 1.698 0.754 1.198
798,586.8 0.913 1.235 0.254 0.826 0.342 0.239 0.624
823,647.5 1.937 0.319 0.294 1.301 1.242 1.749 0.925
828,328.5 0.898 0.978 1.216 0.913 1.172 0.734 1.713
813,903.6 0.995 1.116 1.251 1.711 0.205 1.672 0.400
821,481.0 1.490 1.373 0.388 0.357 1.379 1.697 0.563
821,279.7 1.865 1.709 0.214 1.810 0.210 1.116 1.000
825,413.8 0.840 1.351 0.300 0.843 0.305 0.634 0.749
818,119.7 0.945 1.294 0.224 0.794 0.394 0.200 0.561
809,114.1 1.038 0.624 0.546 0.374 1.870 0.972 1.273
836,894.1 0.570 1.880 1.168 1.590 1.741 0.626 1.094
818,984.2 1.690 1.265 1.305 1.189 1.276 1.349 0.822
830,334.5 0.447 1.988 0.741 1.418 0.428 1.499 0.342
830,694.5 0.952 1.299 1.209 1.755 0.415 1.686 0.493
812,806.4 0.234 1.753 0.969 0.552 1.426 0.945 0.884
845,236.9 0.627 1.057 0.708 1.906 1.823 1.759 1.666
830,348.3 1.017 1.768 1.005 0.353 0.323 1.511 1.476
811,180.7 0.747 1.554 0.253 0.721 0.366 0.312 0.538
831,169.2 0.793 0.889 1.151 0.970 1.536 0.502 1.807
840,719.9 1.936 0.366 1.404 1.680 1.404 1.173 1.762
819,985.8 1.753 1.282 1.388 0.934 1.435 1.376 0.752
837,917.3 0.250 1.019 1.440 0.544 1.409 0.814 1.677
835,160.2 0.711 0.994 0.631 1.527 1.085 1.525 0.952
829,633.6 1.388 1.558 1.035 0.649 1.561 0.702 1.117
821,751.0 0.678 1.546 0.222 0.904 0.274 0.568 0.528
850,907.4 0.446 0.336 0.680 1.890 1.195 1.114 1.437
829,026.7 0.748 1.048 0.323 0.713 0.284 0.287 0.441
815,190.9 0.566 1.609 0.417 0.590 0.414 0.258 0.446
821,277.7 1.570 1.392 0.517 1.678 1.351 0.468 1.905
804,541.3 1.337 1.693 1.565 1.726 0.872 1.147 0.503
824,608.2 1.012 1.014 1.273 1.680 0.200 1.663 0.347
827,589.8 1.714 1.258 1.366 1.081 1.375 1.373 0.809
823,714.8 0.242 1.619 0.918 0.657 1.515 1.166 0.832
822,810.8 0.564 1.665 0.492 1.128 0.478 1.143 0.672
824,278.2 0.255 0.970 1.770 1.397 1.144 0.416 0.367

77

B. Appendix

Table B.5: Tuning with cluster limit 30.

Cost D
et
ou
r
ab
s.

D
et
ou
r
re
l.

P
D

di
st
an
ce

S
la
ck

U
n
if
or
m
it
y

V
ol
u
m
e

W
ei
gh
t

815,715.0 1.500 1.400 0.400 0.400 1.400 1.700 0.600
816,656.3 0.500 2.000 0.750 1.400 0.500 1.500 0.400
815,860.0 0.951 1.497 0.200 0.744 0.464 0.366 0.535
825,869.6 0.822 0.914 1.170 0.955 1.433 0.568 1.781
825,161.6 1.150 1.560 0.326 0.669 0.861 1.164 0.476
831,706.8 1.577 0.397 1.140 1.583 1.437 0.439 0.563
822,137.7 1.937 0.319 0.294 1.301 1.242 1.749 0.925
816,909.5 0.782 1.483 1.064 0.248 1.429 1.603 1.953
824,250.8 0.995 1.116 1.251 1.711 0.205 1.672 0.400
823,294.0 1.490 1.373 0.388 0.357 1.379 1.697 0.563
814,957.3 1.865 1.709 0.214 1.810 0.210 1.116 1.000
811,831.1 1.967 0.557 1.873 0.948 0.928 0.229 1.605
811,086.1 1.332 1.692 1.321 0.794 0.729 0.364 0.225
832,396.5 1.038 0.624 0.546 0.374 1.870 0.972 1.273
798,600.1 1.687 1.599 1.491 1.552 1.746 0.212 1.473
810,195.0 1.690 1.265 1.305 1.189 1.276 1.349 0.822
816,919.9 0.447 1.988 0.741 1.418 0.428 1.499 0.342
819,338.1 1.280 0.665 1.731 1.158 0.807 1.768 1.293
813,161.5 0.234 1.753 0.969 0.552 1.426 0.945 0.884
837,230.6 0.627 1.057 0.708 1.906 1.823 1.759 1.666
816,435.0 1.017 1.768 1.005 0.353 0.323 1.511 1.476
823,453.9 0.672 0.955 0.793 0.469 1.898 0.351 1.153
806,203.7 1.220 1.245 1.112 1.326 0.224 0.669 1.317
841,812.6 1.936 0.366 1.404 1.680 1.404 1.173 1.762
811,472.6 1.242 1.232 1.108 1.267 0.326 0.678 1.367
837,113.0 0.250 1.019 1.440 0.544 1.409 0.814 1.677
840,458.6 0.711 0.994 0.631 1.527 1.085 1.525 0.952
807,097.6 1.388 1.558 1.035 0.649 1.561 0.702 1.117
807,359.8 1.450 1.506 1.088 0.756 1.506 0.822 1.060
806,608.2 1.651 1.592 1.429 1.427 1.713 0.297 1.413
815,878.7 1.483 1.579 1.150 0.870 1.589 0.617 1.169
814,210.6 1.429 1.639 0.934 0.598 1.561 0.928 1.025
812,554.4 1.570 1.392 0.517 1.678 1.351 0.468 1.905
809,448.0 1.337 1.693 1.565 1.726 0.872 1.147 0.503
835,341.4 0.274 0.341 1.662 1.114 1.528 0.485 0.714
827,346.0 1.104 1.336 1.978 1.506 1.336 1.736 1.929
808,095.0 1.769 1.529 0.566 0.920 0.579 0.661 0.950
813,944.2 0.564 1.665 0.492 1.128 0.478 1.143 0.672
806,004.3 1.548 1.522 0.456 0.596 1.496 1.717 0.768

78

B. Appendix

Table B.6: Tuning with cluster limit 40.

Cost D
et
ou
r
ab
s.

D
et
ou
r
re
l.

P
D

di
st
an
ce

S
la
ck

U
n
if
or
m
it
y

V
ol
u
m
e

W
ei
gh
t

810,737.6 1.500 1.400 0.400 0.400 1.400 1.700 0.600
824,431.6 0.500 2.000 0.750 1.400 0.500 1.500 0.400
824,982.9 0.951 1.497 0.200 0.744 0.464 0.366 0.535
824,615.8 0.822 0.914 1.170 0.955 1.433 0.568 1.781
811,882.4 1.516 1.483 0.427 0.524 1.506 1.604 0.554
808,860.0 2.000 0.693 0.200 0.200 1.820 2.000 0.298
817,876.5 2.000 1.719 0.200 0.200 2.000 2.000 1.917
812,495.4 2.000 0.551 1.564 0.200 1.232 2.000 0.200
835,489.4 0.557 0.200 0.200 0.200 2.000 2.000 0.200
822,469.3 2.000 1.046 0.343 0.200 0.832 2.000 0.200
817,129.9 1.951 1.014 0.703 0.237 1.855 1.869 0.637
812,080.6 1.705 1.140 0.200 0.472 1.794 2.000 0.200
809,008.5 2.000 0.572 0.200 0.576 1.825 1.498 0.200
813,736.2 2.000 0.373 0.200 0.906 1.796 2.000 0.521
808,278.2 2.000 0.200 0.717 0.200 1.642 1.408 0.200
802,207.2 2.000 0.200 0.200 0.200 1.945 0.760 0.200
813,471.8 2.000 0.200 0.783 0.200 2.000 0.291 0.200
810,522.9 1.844 0.280 0.242 0.780 1.844 0.429 0.302
801,871.0 2.000 0.200 2.000 0.200 0.693 0.990 0.200
820,094.1 2.000 0.200 2.000 0.776 0.200 1.124 0.200
792,243.1 2.000 0.200 2.000 0.200 1.281 0.911 0.200
805,212.3 2.000 0.200 2.000 0.200 1.246 0.358 0.200
801,988.9 2.000 0.200 2.000 0.200 1.738 1.208 0.200
805,186.5 1.510 0.200 2.000 0.200 1.227 1.022 0.200
806,858.8 1.918 0.621 1.803 0.235 1.661 0.980 0.394
815,941.3 1.823 0.202 1.623 0.225 1.340 1.163 0.615
812,488.7 1.990 1.833 1.967 0.285 1.449 0.452 0.212
813,869.7 1.890 0.243 1.853 0.540 1.958 0.448 0.252
816,737.5 2.000 0.200 2.000 2.000 2.000 2.000 0.200
811,872.0 1.775 1.152 0.244 0.260 1.661 0.595 0.242
822,183.3 2.000 2.000 2.000 2.000 0.200 2.000 2.000
812,928.3 1.961 0.388 1.805 0.307 1.069 0.784 0.318
814,558.1 1.570 1.392 0.517 1.678 1.351 0.468 1.905
820,975.9 1.337 1.693 1.565 1.726 0.872 1.147 0.503
811,910.9 1.436 1.506 0.320 0.524 1.338 1.381 0.681
810,516.4 1.660 1.336 0.530 0.423 1.345 1.772 0.430
814,775.3 1.484 1.700 0.402 0.463 1.417 1.292 0.530
809,045.2 0.564 1.665 0.492 1.128 0.478 1.143 0.672
797,928.8 2.000 0.200 2.000 0.200 1.525 0.825 0.200

79

B. Appendix

Table B.7: Tuning with cluster limit 50.

Cost D
et
ou
r
ab
s.

D
et
ou
r
re
l.

P
D

di
st
an
ce

S
la
ck

U
n
if
or
m
it
y

V
ol
u
m
e

W
ei
gh
t

810,608.6 1.500 1.400 0.400 0.400 1.400 1.700 0.600
816,980.8 0.500 2.000 0.750 1.400 0.500 1.500 0.400
820,746.9 0.951 1.497 0.200 0.744 0.464 0.366 0.535
812,193.0 0.822 0.914 1.170 0.955 1.433 0.568 1.781
807,749.6 1.544 1.229 0.510 0.274 1.471 1.873 0.759
815,894.2 1.699 0.824 0.862 0.200 1.970 2.000 1.289
817,876.4 1.937 0.319 0.294 1.301 1.242 1.749 0.925
807,749.9 1.708 1.476 0.232 0.345 1.545 1.664 0.724
823,344.9 0.995 1.116 1.251 1.711 0.205 1.672 0.400
806,692.8 1.937 1.533 0.248 0.200 1.285 2.000 1.118
806,420.0 2.000 2.000 0.305 0.200 2.000 2.000 0.829
817,712.9 1.174 2.000 0.200 0.200 1.822 2.000 1.385
812,078.5 2.000 1.378 0.200 0.200 1.900 2.000 0.276
812,525.4 2.000 1.837 0.813 0.200 1.506 1.823 0.840
813,664.5 1.808 1.123 0.324 0.272 0.966 1.579 1.334
802,087.6 1.690 1.265 1.305 1.189 1.276 1.349 0.822
829,658.9 0.447 1.988 0.741 1.418 0.428 1.499 0.342
816,703.3 1.460 1.057 0.416 0.220 1.492 1.828 0.584
812,620.2 0.234 1.753 0.969 0.552 1.426 0.945 0.884
822,982.5 0.807 0.919 1.311 1.021 1.551 0.627 1.758
826,470.5 1.017 1.768 1.005 0.353 0.323 1.511 1.476
802,619.6 1.535 1.430 0.558 0.449 1.280 1.991 0.758
809,832.8 1.574 1.316 0.517 0.471 1.264 1.696 0.659
818,963.7 1.936 0.366 1.404 1.680 1.404 1.173 1.762
817,514.1 1.975 1.808 0.804 0.272 1.467 1.702 0.795
815,853.5 0.250 1.019 1.440 0.544 1.409 0.814 1.677
819,827.5 0.711 0.994 0.631 1.527 1.085 1.525 0.952
805,688.0 1.388 1.558 1.035 0.649 1.561 0.702 1.117
810,908.4 1.568 1.616 0.377 0.456 1.203 1.707 0.522
812,619.3 1.564 1.184 0.483 0.383 1.037 1.830 0.675
805,781.3 1.783 1.191 1.180 1.136 1.134 1.414 0.684
814,884.0 1.473 1.531 0.421 0.439 1.190 1.872 0.844
822,929.5 1.570 1.392 0.517 1.678 1.351 0.468 1.905
819,325.5 1.337 1.693 1.565 1.726 0.872 1.147 0.503
807,182.2 1.493 1.515 0.646 0.392 1.270 1.923 0.679
813,505.2 1.729 1.233 1.252 1.166 1.216 1.377 0.763
801,551.7 1.536 1.560 1.052 0.920 1.579 0.802 1.062
824,693.2 0.564 1.665 0.492 1.128 0.478 1.143 0.672
827,952.6 0.255 0.970 1.770 1.397 1.144 0.416 0.367

80

	Introduction
	Problem overview
	Vehicle routing problems
	Pickup and delivery problem with transfers
	Real-world problem

	Formal model
	Underlying graph
	Graph nodes
	Graph edges

	Model constraints and objective
	Vehicle routes
	Request load flows
	Additional constraints
	Objective

	State of the art
	Exact methods
	Multi-phase heuristics
	Methods based on large neighbourhood search
	Population-based methods
	Discussion

	PDPT solver
	PDPT search schema
	PDP solver component
	Instance front generator component
	Split schemes
	Clustering and instance generation

	Prior solver designs

	OpenStreetMaps instance generator
	Location extraction
	Transfer point placement
	Weighted facility location problem model
	Instance generation process

	Experiments
	Data
	Parameter settings
	Solver run insights
	Evaluation

	Conclusion
	Contributions
	Future works

	Bibliography
	Appendix
	Appendix

