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Abstract: In recent years, multi-model databases have become very popular as
the individual models better suit the different domains, use cases or scenarios.
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in some cases, we lack insight into the structure of the data and the possible
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1. Introduction

In recent years, thanks to the variability of the data stored nowadays, it is common
to use more than a single data model in one solution. Various data models are
better suited for various data and use cases. For example, consider an online
e-commerce store that sells products to customers as depicted in Figure 1.1} The
data about the products may be better suited for the document data models
due to the high variability of the information about the products. At the same
time, the shopping cart’s content is described with a key-value data model to be
able to look up the simple relations fast. In addition, the customers can have
relationships with each other, and thus we would like to store this information
in a graph model and then recommend the products that their friends bought
recently.

|
KEY-VALUE DOCUMENT

I

|

I , I <

I ShoppingCart T v 4 Product
| ]

|

GRAPH

Figure 1.1: Multi-model scenario of an e-commerce store

The described example is considered a multi-model scenario, where the data
are stored in different data models. Yet, they might be a part of a single solution
and thus be interconnected. Due to the high variability of the data stored in
each model, the schema describing the structure of the data or the data itself is
often not specified in advance. We call this a schema-less variant as the opposite
of the schema-full variant. In the schema-full variant, the data stored in the
database has to follow the predefined schema description. This variant is iconic
and fundamental for the relational data model, the most traditional one presented
here. With the dawn of the NoSQL databases, the popularity of the schema-less
concept highly increased. Combining the two variants results in a schema-mized
variant, which allows the possibility to predefine the structure of the part of the
data, leaving the other part without additional restrictions.

When we want to analyse the data stored in schema-less databases, it is
necessary to have some knowledge about the structure or domain of the data in
order to write reasonable queries. Various approaches have been proposed in the
past that can analyse the data stored in the specific data model and generate a
more or less detailed view of the structure of the data. However, suppose we face
the single model approaches against the multi-model scenario. In that case, we
get a diverse result that lacks any information about the relationships between
the data stored in the models.



Considering these flaws, in this thesis we want to propose a multi-model ap-
proach that is able to extract the schema of the data from widely used data
models (namely relational, document, key-value, columnar and graph model) and
concerning the schema-full, schema-less as well as schema-mixed variants. The
approach will be able to unify the data models to produce a consistent result.
In addition, it will be able to infer the relationships between the data within a
single data model as well as between distinct data models. We will also observe
the similarities in the data to discover data redundancies that are common in the
world of NoSQL data.

The vision paper [I] can be considered as the basis for this thesis. The authors
discussed the open problems and challenges of a multi-model database. As for the
case of the schema inference, they noted that the proposed multi-model schema
inference approach should deal with references between records as an extension
on top of the existing single-model approaches.

This work is organised as follows: In Chapter [2, we will recall the necessary
preliminaries used throughout the thesis. In Chapter [3] the existing approaches
and other related work will be presented. Chapter [4 describes the proposed multi-
model approach. In Chapter [5 we will describe the implementation of the proof
of concept of the proposed approach. Chapter [6] will present the results of the
experiments of running our approach. In Chapter [7] we conclude and outline the
future work.



2. Preliminaries

Throughout this thesis, we will mainly consider the multi-model scenario based on
the IMDDb dataset [2]. We have slightly modified the dataset to serve our purposes
better. The high-level overview can be seen in Figure [2.1, The IMDb dataset
contains the information about the movies and the people behind the movies (e.g.
actors, writers, directors etc.) and also the total rating of the movies. We placed
the individual components of this scenario inside various models considering their
intended use cases. In addition, we introduced three components - User, Review
and FavouritePeople to describe all the considered data models.

KEY-VALUE COLUMNAR

| |
| |
[ . I < !
I FavouritePeople T v 4 User I
| |
| |

JSON

Figure 2.1: Modified multi-model scenario of IMDb dataset

2.1 Data models

This section presents an overview of the data models that we will consider in this
thesis for the multi-model schema inference approach.

2.1.1 Relational Model

The most traditional data model for storing data is the relational model. Data in
relational databases are stored in relations. The relation (table) comprises a set



of tuples (rows in the table), and each tuple shares a set of attributes (columns
in the table). Each row in the table has a unique identifier called the key. It
is common for this model to contain a predefined schema, which the individual
records then follow. All records represent real-world entities or relationships and
are grouped into tables.

Ezample. An example of relational data is depicted in Figure 2.2l The Rating
table is an example of single-model data, while table TitleAdditional contains
document inside its column additionalData. This scenario can be achieved using
PostgreSQL [3] database system using special data type jsonb.

]
TABLE TitleAdditional TABLE Rating
I 0031697 H 5 H Mayn Zundele “ Us “ tr ‘ p [noooootu H 57 H 1874 ]
"isOriginalTitle": 0, [ttOOOOOOZ H 59 ][ 248 ]
"types": ["alternative"],
"attributes": ["modern", "translation"] .
}
0000005 || 4 |[Blacksmith scene  |[ca |[en ‘ P
"isOriginalTitle": 0,
"types": ["alternative"]
}

Figure 2.2: Example of relational data

2.1.2 Document Model

Document models are semi-structured, meaning they lack rigid or fixed schema.
While the data do not conform to the explicit schema, they contain metadata and
tags that group elements together and thus create a hierarchy. Entities can be
grouped under the same type, even if they do not have exactly the same structure.
There are two principal representatives of the document model — JSON and XML.

JSON

JSON [] has become one of the most widely used data exchange formats on the
Internet in recent years. It comprises two fundamental structures — an unordered
collection of key-value pairs (objects) and an ordered list of values (arrays).

Ezample. An example of JSON document data is depicted in Figure 2.3, The
collection Title groups together the JSON documents that describe individual
titles. The structure is flexible, as can be seen by comparison of field writers.
In the first document, this field is an array, containing a single nested docu-
ment, while in the second document, the field writers is not present. One of the
most popular database system, that are based on JSON document data model is

MongoDB [5]. O



COLLECTION Title

{

"originalTitle": "My Son",
"isAdult": 0,

"startYear": 1939,
"runtimeMinutes": 90,
"genres": ["Drama"],
"directors": [

{

'nm0782393",

"primaryName": "Joseph Seiden",

"birthYear": 1892,

"deathYear": 1974,

"knownForTitles": ["tt0031697", "tt0031540", "tt0032582", "tt0032436"]

"writers": [
{
"nconst": "nm0781214",
"primaryName": "Sholom Secunda",
"birthYear"
"deathYear": 1974,
"knownForTitles": ["tt0030241", "tt0114319", "tt0397535", "tt5093026"]

"tconst": "tt0068120",
"titleType": "tvSeries",
"primaryTitle": "The Price Is Right",
"originalTitle": "The New Price Is Right",
"isAdult": 0,
"startYear": 1972,
"endYear": 2022,
"runtimeMinutes": 60,
"genres": ["Family", "Game-Show", "Reality-TV"],
"directors": [
{
"nconst": "nm1578488",
"primaryName": "Adam Sandler",
"knownForTitles": ["tt13689618", "tt12116598", "tt0068120", "tt10428498"]
}

1
}

Figure 2.3: Example of JSON data




XML

Although JSON is more popular today, XML [6] is still a widely used standard
for representing information in documents. To represent the data, it uses a tree
structure of elements containing values of simple types or nested elements. Ad-
ditionally, elements can contain simple types of attributes.

Example. In Figure [2.4] we can see an example of XML document. This data can
also contain a variable structure of user reviews. Comparing the two documents,

the field text is optional because it is missing in the second document.
O

COLLECTION Review

<review>
<authorld>uu0091591</authorld>
<titleld>tt0031697 </titleld>
<date>2008-10-31T15:07:38.6875000-05:00</date>
<text>Great movie</text>
<rating>9,5</rating>

<[review>

<review>
<authorld>uu0008457</authorld>
<titleld>tt0068120</titleld>
<date>2012-01-01721:02:01.8711000-01:00</date>
<rating>4</rating>

<[review>

Figure 2.4: Example of XML data

2.1.3 Key-value Model

The simplest data model of the ones we discuss is the key-value model, in which
the data is stored in key-value pairs grouped in a so-called bucket. This paradigm
is used for storing and managing associative arrays, hashes, and dictionaries.

Example. Figure[2.5]represents a bucket FavouritePeople which stores information
about which user likes which actors, producers and others. The data are identified

by userld and are represented by an array of Personlds.
O

BUCKET FavouritePeople

favouritePeople

[uuoooooo1H[“nm0000001t“nmooooozat“nmooooo4r1]

[uu0000003]|[1 ]

Figure 2.5: Example of key-value data

2.1.4 Columnar Model

A columnar model may be viewed as an extension of the key-value model, where
one key uniquely identifies a set of other key-value pairs — a row. These rows

8



are logically grouped into column families. This data organisation resembles
relational models, but in contrast, rows in column families can have a variable
structure.

Ezample. Figure describes a column family that holds the data about the
users. In this example, the primary key is stored in column userld. Note that the
optional columns needn’t be present in the specific row compared to the relational
model where the columns are fixed and optionality is achieved with the usage of
empty values.

]

COLUMN FAMILY User

[irs ] erone Lo Lomt———— v
uu0091591 || John W. [johnAw@emaiLcom H “Crime”, “Horror™ }
(4u0000003 |[Rose 1985 | “Comedy”

Figure 2.6: Example of columnar data

2.1.5 Graph Model

Nowadays, databases based on the graph model are increasingly being used to
describe the relationships and interconnections of entities. The graph model is
based on a mathematical representation of graph theory, hence it consists of graph
entities — nodes and edges. Graph nodes are tagged with labels, yet they also
contain a free data structure in the key-value format. The edges of the graph are
directed, they contain a reference to the start and end nodes beyond the structure
of nodes.

Example. In Figure the interconnections between the nodes labelled Person
and Title are described with the usage of a relationship of type Principal. The
relationship type connects only the nodes labelled Title. Each node has its iden-
tifier, while every edge contains references to start and end nodes. O]

2.2 Processing Large Datasets

To be able to process large-scale datasets, we want to take advantage of a frame-
work that enables us to process the data in parallel and ensures scalability. We
will consider two options: MapReduce [7] and Apache Spark [g].

2.2.1 MapReduce

Presented in paper [7], MapReduce is a programming model and implementation
that gives an opportunity to process large-scale datasets in a simple manner. The
execution is based on a divide-and-conquer paradigm and is composed of two
principal phases — map and reduce. During map phase, we break down a problem
into subproblems by processing a key-value pair to generate a set of intermediate



LABEL Person

TYPE Principal

nm0782393

nconst

N

"primaryName":" Joseph Seiden",
"birthYear": 1892,
"deathYear": 1974,

"knownForTitles"

"primaryProfession": ["producer", "director", "cinematographer"],
"tt0031697", "tt0031540", "tt0032582" }

Bl oosi67 |e

N

"ordering": 5,

tt0032436"]

nm1757601

nm0781214

' 10068120 |

]l

cn

"startYear": 1939,

"runtimeMinutes": 90,
"genres": ["Drama"]

10068120 | ®

(
"seasonNumber": 14,
"episodeNumber": 36

}

"primaryName": "Sholom Secunda", "ordering":
"birthYear": 1893,
"deathYear": 1974,
"primaryProfession": ["soundtrack", "composer", "writer"], "characters": ["Self - Model", "Dorothy Gale", "Self"]
"knownForTitles": ["tt0030241", "tt0114319", "tt0397535", "tt5093026"] }
}
LABEL Title
nd 10031697
"titleType": "movie",
"primaryTitle": "My Son",
TYPE Episode "originalTitle": "My Son",
"isAdult": 0

S| 0068120

"titleType": "tvSeries",

'The Price Is Right",
: "The New Price Is Right",

10056776

(
"seasonNumber": 1,
"episodeNumber": 6

}

"startYear": 1972,
"endYear": 2022,

"runtimeMinutes":
"genres": ["Family"

60,
"Game-Show", "Reality-TV"]

Figure 2.7: Example of graph data
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key-value pairs. In the reduce phase, we combine the subsolutions to solve the
problem by processing intermediate values with the same intermediate key.

When processing the user program, multiple copies of the program are created
on a cluster of machines. One copy of the program is called master, which is
responsible for assigning work to the other copies, called workers. When all the
subproblems are solved by the workers, the master wakes up the user program
and points him to the result.

2.2.2 Apache Spark

The Apache Spark [§] is based on the MapReduce model, in addition, it sup-
ports in-memory cluster computing. Apart from the support of the MapReduce
model, it introduced higher-level tools like Spark SQL, Spark streaming, MLIib
for machine learning and GraphX for Graph algorithms. Spark executes opera-
tions on a cluster in parallel. The cluster consists of worker nodes that execute
assigned tasks and provide the results. An overview of the Apache Spark cluster
architecture can be seen in Figure |2.8|

Worker Node

Executor | Cache
o

Driver Program /’/_\' Task E
e /

SparkContext #  Cluster Manager

v '\. Worker Node
¥—‘ Executor | cache

Task

Figure 2.8: Apache Spark cluster [9]

In contrast to the basic MapReduce model, it is able to process the interme-
diate results in memory, while MapReduce is reliant on the shared file system.
Moreover, it supports more functions than simply map and reduce functions, e.g.
flatMap function that we will utilise in our approach when we will need to flatten
the processed tree.

The basic building block of the Spark processing is an in-memory fault-tolerant
collection of elements that can be operated on in parallel called a resilient dis-
tributed dataset (RDD). We can create RDDs in two ways: either by parallelising
a collection of elements or referencing a dataset in a storage system. In our
approach, we will be using the latter mentioned.

Due to the reasons mentioned above, we will use the Apache Spark framework
in our approach. We will use two notations throughout this thesis, RDD(x), or
RDD(z,y). In the former case, the notation describes that the element z is in
the form of a resilient distributed dataset. In the latter case, x stands for the key
that identifies y — the value. The pair is also in the form of a resilient distributed
dataset.
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3. Analysis of Existing
Approaches

To the best of our knowledge, there is no other approach for multi-model schema
discovery. However, there are multiple approaches that deal with NoSQL data in
a single-model manner. In this chapter, we inspect the existing schema inference
approaches for each model. We choose one approach for each of the models as a
representative. We then compare them to find the weaknesses of the approaches,
and thus identify the places that need improvement. Our multi-model approach
will then be based on these findings.

3.1 Relational Model

For the world of single-model database systems, it may be irrelevant to infer a
relational schema algorithmically, because the user defines the schema in advance
using the Data Definition Language (in the context of SQL). But if we place the
relational model in the context of multi-model databases, inference, in order to
reveal references and redundancies between models, starts to make sense. How-
ever, since we do not know of any other approach that would generate a schema
for multi-model databases, we will omit this model in the comparison.

3.2 Document Model

The building block of the document model databases is a document with two
principal representatives, JSON and XML. Due to the fact that these formats
were popular at different times in the past and they contain differences (e.g.
the mandatory order of the elements) in the description of the schema, various
approaches were proposed for the individual representatives. Hence, we will look
at the approaches individually based on the format of the documents.

3.2.1 JSON Schema Inference Approaches

As for the JSON-based document model databases, there is considerable research
on schema discovery. In the paper [10], the authors compared selected JSON
schema inference approaches to point out the flaws of existing approaches as well
as their strengths.

Paper [11] was one of the first to describe the process of inferring the schema
from multiple JSON documents. They proposed a model-based process that
makes use of different consecutive calls to the service. JSON documents from
the responses are then processed in order to create or refine the schema objects.
Finally, a basic approach to resolving the similarity of elements is used to find
and merge matching elements. This results in a model that summarises the
application domain.

Another approach [12] based the schema generation algorithm on graph the-
ory. The inspiration for such an approach was another research aimed at extract-

12



ing DTDs from a set of XML documents. When processing documents, trees are
created with a unique document key. The trees are then merged into a single
tree, with each tree entity carrying information about the documents it occurred
in. This approach can reveal mandatory and optional properties and at the same
time provide statistics on how regular the data in the collection are.

The approaches mentioned so far have worked on the basis of enrichment
and refinement of the created schemes. In [13] they introduced a completely
new way of obtaining the schema. The approach is based on the property of
Big Data — variety. The idea is that the documents in the same collection can
change structurally over time, creating new versions. Therefore, this approach
generates a set of simple document schemas, further reducing this set to only a set
of structurally different schemas. We then receive a separate version for each of
these schemas. Although this approach generates a relatively complex structure,
in some cases, the result is usually much finer than previous approaches. In
addition, this approach, using simple heuristics, looks for references between the
documents.

Baazizi et al. and Equivalence Relations

Due to the growing popularity of Big Data usage, the need to derive a schema
from large JSON data arose. One of the ways [14] is focused on massive JSON
datasets. The MapReduce principle implemented in Apache Spark is used for
document processing. This approach benefits from the possibility of running
the algorithms in parallel. A simple notation is used to represent schemas using
modified regular expressions. However, this approach does not provide the ability
to look for references between documents.

Let us analyse this approach even further, as our reducing approach will be
inspired by the fusion presented in this paper. This approach makes use of pa-
rameterisation of the reduction of inferred schemas, thus creating more or less fine
or verbose results. The reduction is a binary operation invoked over two schemas
and returns their generalisation. In order to do so, the schemas are compared
based on the parametrised equivalence relation. Suppose the two types are equiv-
alent based on the equivalence. In that case, they are fused, or else the result is
just a union of the two schemas.

Two equivalence relations were described in detail: label-equivalence and kind-
equivalence. The first mentioned label-equivalence fuses only those schemas that
contain the same set of labels. When two schemas share different labels, they are
joined with a union instead of being fused. The latter, kind-equivalence, will be
used in our approach with slight modification. This equivalence variant fuses two
schemas when they are similar primitive types, are both maps or arrays with no
other condition. The primitive types are joined with a simple union. In the case
of fusing two maps, the keys in the maps are compared, and the keys without
a match are just copied to the fused record type and are marked as optional.
On the other side, the matching keys are merged, and their types are recursively
fused.

Ezample. Suppose two schemas of documents s; and sy in Figure 3.1l Their
fusion with respect to kind-equivalence is depicted in Figure [3.2] The result of
the fusion based on label-equivalence can be seen in Figure [3.3] Note that much

13



{ {

person: person:
{ {
firstname: Str, firstname: Str,
lastname: Str, lastname: Null,
coordinates: [Num + Null] coordinates: [Num],
} email: Str
I }
}
(a) Schema s; (b) Schema s9

Figure 3.1: Schemas to be fused together [14]

broader domain of documents satisfies the schema of the kind-equivalence fusion
comparing the label-equivalence fusion. However, the label-equivalence tends to
be more verbose when working with a large variety of the data.

{

person:
{
firstname: Str,
lastname: Str + Null,
coordinates: [Num + Null],
email: Str?
}
}

Figure 3.2: Fusion of s; and sy considering the kind-equivalence [14]

{
person:
{
firstname: Str,
lastname: Str,
coordinates: [Num + Null]
o+
{
firstname: Str,
lastname: Null,
coordinates: [Num],
email: Str
}
}

Figure 3.3: Fusion of s; and sy considering the label-equivalence [14]

Wang et al.

The authors of approach described in paper [I5] proposed the schema manage-
ment framework for JSON document stores. The framework discovers and persists
the structure of the data in their own proposed data structure called eSiBu-Tree.
This custom data structure serves as a way to retrieve and store schemas and

14



:" Schema Consuming

i Schema
i [ Query J IPresentation] |

[ Schema Extraction & Discovery J

Figure 3.4: Schema management framework [15]

support queries. For the presentation part towards the user, they proposed a
Skeleton data structure, which summarises individual generated schemas.

The schema management framework depicted in Figure is composed of
the following components:

1. Schema Ezxtraction and Discovery serves as a generator of all distinct docu-
ment schemas for each input document. This component operates incremen-
tally, so when a new document is being processed, its schema is compared
with the currently existing document and persisted if it describes a new
version.

2. Schema Repository handles the persistence of existing schemas. It also
supports the extraction process and schema consumption by the following
components.

3. Query is a component that provides the functionality to find the exact
answer to basic types of queries — schema existence and attribute existence.

4. Schema Presentation provides a summarised representation of generated
schemas in the form of Skeleton. Skeleton is a generalisation of detailed
individual schemas and contains the schema of the highest quality, while
the quality is based on the frequency of the schema.

3.2.2 XML Schema Inference Approaches

There is a significant number of approaches and methods for generating an XML
schema for a set of documents. Paper [16] describes and compares various ap-
proaches. From those, we choose the XTRACT approach [I7], which, besides
naive approaches, uses more sophisticated techniques to generate a meaningful
description of the resulting schema. XTRACT is a system for inferring a DTD
schema for a database of XML documents. The process focuses on individual
elements across the input documents and generates a sequence of nested ele-
ments for each element with a complex structure. The architecture can be seen
in Figure [3.5]
For each such element the following process is performed:

1. Generalization uses heuristic algorithms to find repeating patterns of el-
ement structures and replace them with regular expressions in input se-
quences.
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Input Sequences
I'={ ab, abab, ac, ad, bc, bd, bbd, bbbbe }
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8,8 U {(ab)cld), b¥(dje) }

MDI.
Module

4 Y
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Inferred DTD:(ab)* | (a|b)(c|d) | b*(d|e)

i

bbd
hhhbe

(alb)(cld)

(a) (b)

Figure 3.5: Architecture of the XTRACT system [17]

2. Factoring step tries to factor individual regular expressions so that the
length of the DTD is less than the sum of the factored DTDs. This factoring
does not change the semantics of individual candidate DTDs. This step is
important because of the third step, when factoring can create a DTD that
results in a higher ranking and is therefore considered for the resulting DTD.
The authors propose heuristics on how to reduce the combinations of DTDs
that will be factored.

3. Minimum Description Length (MDL) Principle is used in order to select
the best candidate DTDs to represent the final schema. An almost optimal
DTD schema describing the input data set is created. The MDL evaluates
each DTD in two ways based on the number of bits needed to represent it.

The authors declare that their research showed that in most cases their ap-
proach produced a DTD that was identical or very similar to the originally in-
tended DTD.

3.3 Key-value Model

Presumably the only existing schema inference approach for the key-value model
is described in paper [I8]. It follows the prior approach for generating JSON
document schemas [19]. This approach generates a schema over the key-value
database Redis [20]. It distinguishes two basic data types:

1. JSON document — value is a valid JSON document. A raw schema is gen-
erated regarding the hierarchical structure of the attributes of the JSON
document.
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2. Byte sequence — otherwise, the value is a generic sequence of bytes. The
raw schema of the instance has only two attributes — key and value, both
of the String data type.

After the raw schemes of all records are generated, the next steps are exe-
cuted in the same way as in the document approach. Thus, the raw schemas are
compared with each other, the same schemas are grouped, unification occurs, and
finally, the global JSON schema is constructed.

3.4 Columnar Model

A few approaches to generate schema of data stored in columnar models were
proposed, one of which is described in paper [2I]. This approach traverses a
single namespace in a HBase [22] columnar database. The process depicted in
Figure [3.6] is rather simple and works as follows:

Input: | 1.Structure .| 2.Selecta .| 3.Selecta .| 4. Selecta —
HBase namespace “|  duplication - table “l  column - value
n n
Y
5. infers data
type
NO NO ! NO
z
6. Compare
with previcus
data types
4
Outout: 10. Translation VES 9. Have VES 8. Have YES 7. Have
DAL < to JSON & evaluated all |« evaluated all |« evaluated all p—
JSON Schema
Schema tables? columns? values?

Figure 3.6: The process of converting HBase namespace into JSON schema [21]

1. Data type inferring — For every value in each column in each table in the
namespace, the data type is inferred.

2. Combining data types — When all values in a column are processed, the
data types of processed values are compared with each other to define a
consensual data type.

3. Generating global JSON schema — With all data types discovered, the JSON
schema describing the namespace is created.

With this method, no references or integrity constraints are discovered. How-
ever, the inference of mandatory and optional columns is considered for future
work.
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3.5 Graph Model

To the best of our knowledge, to date, there is no other study of the schema
inference of graph models than the one proposed in paper [23] for the popular
graph database Neo4j [24]. The authors set themselves a goal of creating an
approach that could derive simple and complex types of graph entities, reveal
the hierarchy of nodes, and also derive the cardinality of edges. The schema
generation process depicted in Figure [3.7] works as follows:

Step 1: Step 2:

5 " Preprocessing Types & sl:.leopd:: Property
g-';zhv & Data Types Hierarchies Graph
Cardinalities Inference Schema

Inference

{Queries) (MapReduce)

Figure 3.7: Graph schema inference process [23]

1. Preprocessing — records corresponding to nodes and edges are extracted
using queries. By comparing the number of occurrences of labelled nodes
and the number of edges where the source or target is the labelled node, the
cardinality of individual types of edges is further determined. Finally, the
node and edge information is transformed to JSON for further processing
in the second step.

2. Types and Data Types Inference — this step is implemented using the
MapReduce principle. In the Map phase, the data types of the individ-
ual properties are inferred. In the Reduce phase, the fusion takes place
according to an equivalence relation. The proposed solution uses the so-
called kind-equivalence described in [I4], which forms union types.

3. Inference of Node Hierarchies — in the last step, hierarchies of node types
are discovered. The names of properties of inferred types are compared, and
if a pair A, B is found for that it holds that A C B, then B is supertype
and A is its subtype.

3.6 Comparison of Selected Approaches

After looking at the individual database models and the representatives of the
schema generation approaches, we now proceed with the comparison of their
properties. Table compares approaches based on several properties. In this
section, we look at each of the properties and describe the extent to which the
approaches achieve the following qualities.

3.6.1 Data Types

Most of the schema inference approaches across various database models extract
the data types of elements into the schema. However, there are still some ap-
proaches, where the authors decided not to resolve data types, as we can see
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in the case of the approach by Wang et al. In other cases, the data types are
resolved based on the values of elements. An interesting case can be found in the
approach by Frozza et al. over the HBase database system. This system stores
data only in terms of byte arrays, thus the authors presented a set of rules to
determine the most common data types. The rules are based primarily on the
length of the arrays.

3.6.2 Optionality

Determining whether a given element in a dataset is mandatory or optional is
the most common access property, in addition to detecting data types. From
the representatives we have selected, only the approach of Frozza et al. in the
columnar model does not resolve the optionality. However, in their article, the
authors describe that their approach is prepared for this extension and is planned
for future work. Other approaches deal with the optionality of elements as follows:

Wang et al. generates an eSiBu-Tree tree in which individual versions of
elements are recorded. From these versions, it is possible to read whether any of
the child elements are optional.

XTRACT system generates a DTD with regular expressions from the input
XML document set that supports the ? operator, which says that the specified
element is optional.

REx translates records into JSON raw schemas and, above that, it determines
the number of occurrences of the element. If the number of these occurrences is
lower than the number of parent occurrences, the element is marked as optional.

Lbath et al. determines the cardinality of the edges in the Preprocessing phase
and observes structural differences in the Reduction phase, which in the end can
express the optionality of individual elements.

3.6.3 Uniqueness

The element is called unique if and only if all the values of the element are distinct
regarding the input data. To the best of our knowledge, none of the discussed
approaches can distinguish between unique and non-unique elements. It is due to
the fact that all selected approaches analyse only the structure of elements, while
they do not consider the values. Inferring uniqueness is crucial when inferring
various integrity constraints.

3.6.4 References

As like in the aforementioned case of resolving uniqueness, none of the approaches
manage to resolve advanced references between the elements. In most cases,
simple aggregate relationships are being inferred, i.e. the built-in parent-child
relationship of the JSON documents. The graph model approach by Lbath et al.
can resolve references based on the labels of the source nodes and target nodes
of the edges.
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3.6.5 Redundancy/Subtype

Only one of the approaches presented here, to some extent, looks for similarities
between elements in order to find subtypes. It is the graph model approach by
Lbath et al. that compares the labels in the structure of nodes and, based on
that, is able to create a hierarchical structure of nodes. However, as said above,
the domain analysis of the element values needs to be implemented in order to
be able to enhance inferring redundancies and other similarities.

3.6.6 Union Type

Production of a union type is based on the fusion of the various raw schemas of
an element. Only the document model approach by Wang et al. is not capable
of producing union types of the inferred elements.

3.6.7 Type Versions

In contrast to union types, distinct raw schemas of a single element are considered
to be different schema versions of the element. The approach by Wang et al. is
generating multiple versions based on the introduction of raw schemas of elements
into the process. The approach by Lbath et al. is able to choose between the
two reduction equivalences, the label-oriented variant, which produces the union
type, or the kind-oriented variant, producing type versions.
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4. Proposal of a Multi-Model
Schema Inference Approach

In this chapter, we present the proposed approach for generating a schema for
multi-model data. First, we will look at a naive approach, which we will gradually
enrich in order to optimise the processing of the algorithm or to enhance the
quality of the result.

4.1 Definition of the Problem

The fundamental problem we need to solve is to obtain the schema from multiple
database systems, for which it is assumed that the data contained therein will
be interconnected. Note that database systems are available in three variants,
differing in the existence of the schema. We distinguish between schema-full,
schema-less, and schema-mixed variants.

The first mentioned variant says that the data in the database adheres to
the data structure, which is defined in advance. The schema-less variant is the
exact opposite — the data in the database does not follow the explicitly defined
data structure, but the structure is irregular. In this variant, the schema is not
explicitly specified, but there is still an implicit schema that the query system
maintains. A combination of the mentioned variants is the schema-mixed case,
where only some part of the data conforms to the specified schema, while the
other part can have variable structure. PostgreSQL [3] database system is an
example of this variant — the relational part of the data has to conform to the
predefined schema, while the data of the data type jsonb are stored without an
explicit schema.

While it is possible to apply different approaches mentioned in Chapter [3| to
each of the models in the multi-model data, the approaches differ in the details
they provide in the resulting schemas. This can lead to irregular results, which we
intend to avoid and solve the inconsistency problem. Besides, the single-model
approaches will not be sufficient for exploring the relationships, i.e. references
and redundancies. Hence, in order to accurately analyse not only the structure
of the data but also the semantics, we need to process raw data in a low-level
manner.

For this reason, we will create a unified system for each model. This system
helps us to create a universal approach, for which it does not matter from which
database model the data come, because all data will be processed in the same
way.

Fzample. An example described in Figure shows the multi-model data from
various database models as presented in Chapter [2] Each colour corresponds to
the particular data model, i.e. purple stands for relational data model, green is
for the JSON document data model, grey is for the XML data model. Key-value
data model is marked brown, columnar model is red and finally the graph model
is blue. In this section, we will consider this model with minor modifications. [J
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TABLE TitleAdditional BUCKET FavouritePeople
[wo031607][ 5 |[ Mayn zundete [uw0000001 [ *nm0000001", “nm0000023", “nm0000041" ]
“isOriginalTitle": 0, ‘ 4u0000003 “ 0
"types": ["alternative"] -
“attributes”: ["modern", "translation”] :
COLLECTION Title
110000005 [ 4 |[ Backsmith scene —|[ca|[en | :
"isOriginalTitle": 0, i
“"types": ["alternative"] ‘tconsf
“titleType": "movie",
“primaryTitle'
. “originalTitl
. “isAdult": 0,
"startYear": 1939,
TR Sl Ates ?o.
averageRating numVotes
[ 0000001 (57 (1874 m0782393",
|nooooooz ] | = ‘ [ o ] primaryName": "Joseph Seiden”,

"birthYear"; 1892,
"deathYear": 1974,
"knownForTitles" [

t0031697", "tt0031540", "tt0032582", "tt0032436"]

}
1
COLLECTION Review "writers": [
<review> "nconst
<authorld>uu0091591</authorld> "primaryName": "Sholom Secunda",
<titleld>tt0031697</titleld> "birthYear": 1893,
<date>2008-10-31T15:07:38.6875000-05:00</date> "deathYear": 1974,
<text>Great movie</text> "knownForTitles": ["tt0030241", "tt0114319", "tt0397535", "tt5093026"]
<rating>9,5</rating> }
<lreview> ]
}
<review>
<authorld>uu0008457</authorld>
<titleld>tt0068120</titleld> "tconst": "tt0068120",
<date>2012-01-01T21:02:01.8711000-01:00</date> "titleType": "tvSeries",
<rating>4</rating> "primaryTitle": "The Price Is Right",
<lreview> “originalTitle": "The New Price Is Right",
“isAdult": 0,
. "startYear": 1972,
- “endYear": 2022,
“runtimeMinutes": 60,
CE I "genres": ["Family", "Game-Show", "Reality-TV"],

0091591 | [John W.

[ johnw@emaiL.com ] “Crime", “Horror” ]

"nconst’
"primaryName""

m1578488",
‘Adam Sandler",

(40000003 ][ Rose (2085 ‘ [LJ "knownForTitles": ["tt13689618", "tt12116598", "tt0068120", "tt10428498"]
5 }
C ]
}
LABEL Person TYPE Principal
nm0782393
10031697
“primaryName":" Joseph Seiden",
“birthYear": 1892, e
"deathYear": 1974, ‘'ordering": 5,
“primaryProfession": ["producer”, "director", "cinematographer"],
"knownForTitles": ["tt0031697", "tt0031540", "0032582", "tt0032436"] }
}
nm1757601
nm0781214 P ctcoss120 |
{ da {
“primaryName": "Sholom Secunda", “ordering™ 9,
“birthYear": 1893, "category": "self",
"deathYear": 1974, "job": "actor",
"primaryProfession": ["soundtrack”, "composer", "writer"], “characters": ["Self - Model", "Dorothy Gale", "Self"]
"knownForTitles": ['tt0030241", "t0114319", "tt0397535", "tt5093026"]
}
LABEL Title
10031697 |
“titleType" "movie",
“primaryTitle"
TYPE Episode TginalT
Pwvepswan| "startYear": 1939,
2N 0031697 “runtimeMinutes": 90,
0068120 "genres": ["Drama’]
«
"seasonNumber":
"episodeNumber": 0068120
{
“titleType": "tvSeries",
#0659595 “primaryTitle": "The Price Is Right",
"originalTitl The New Price Is Right",
110056776 "isAdult": 0,
: "startYear": 1972,
B “endYear": 2022,
'seasonNumber" " "
e "runtimeMinutes": 60,
) : "genres": ["Family", "Game-Show", "Reality-TV"]

Figure
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4.2 Unification of Models

As discussed in the previous section, we need to unify all processed models to build
the universal algorithm. We will achieve this unification by building a so-called
wrapper for every database system. The wrapper should produce a consistent
output for each considered data model. While some concepts in various data
models are similar, they are not the same, and thus we need to unify them.

4.2.1 Unlification of Terms

Before we can proceed, we need to unify the basic terms used in different models.
Table 1] shows the fundamental terms in various models and unifies similar
concepts into single terms, which we will use in the rest of the text.

Table 4.1: Unification of terms in popular models

Unifying | Relational Graph Key-value Document Column
term
Kind Table Label / Bucket Collection Column
Type family
Record Tuple Node / Pair (key, Document Row
edge value)
Property Attribute Property Value JSON Field  Column
/ XML
element or
attribute
Domain Data type Data type - Data type Data
type
Value Value Value Value Value Value
Identifier Key Identifier Key JSON Row key
identifier /
XML ID or
key
Reference | Foreign key - - JSON -
reference /
XML keyref
Array - Array Array JSON array  Array
Structure | — - Set / ZSet /  Nested Super
Hash document column

4.2.2 Database Wrapper

A database wrapper is a module with the purpose of providing the data from the
database in a unified form. Basically, it generates a raw schema from a database
instance in the database system for which this wrapper is intended. The wrapper
extracts all the requested records from the database using simple queries that are
specially designed for the database system.

We need to choose the most general representation of the records. The rep-
resentation has to respect the tree-like structure in order to describe the records
together with their properties. It will also contain the basic information we can
generate at the lowest level of the structural analysis — while processing the data
by the wrapper. That is the name of a property, the data type, information
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about the optionality of a property and information about the data model that
this property is stored in.

We also can distinguish between different wrappers even for the same database
system. As stated above, database systems can either be schema-full, schema-
less, or schema-mixed. With this knowledge, we can build a schema-full wrapper
that retrieves the schema and converts it to the unified raw schema or a schema-
less wrapper that does not process or ignores the predefined schema and tries to
infer the schema with a universal approach instead.

4.3 Naive approach

Having unified the various models and being able to generate records, we now
describe the process of inference of the schema from these records. We start with
the naive approach and gradually add optimisations and enhancements to reach
the set goal.

4.3.1 Inference Algorithm

We implement the inference algorithm utilising the MapReduce pattern (see
Chapter . The process can be seen in Algorithm . Let us now break down
each step in the algorithm and discuss them in the following sections.

Algorithm 1: Record-based local schema inference algorithm

Input: wp — Wrapper for database system (or model) D

1 Np — Set of names of kinds whose schema is to be inferred

Output: S — Set of RSDs describing the schemas of input kinds

Schema S := ()

foreach name, in Np do

// map phase: load and map each record of a given kind to
a separate trivial RSD

4 RDD(r) := wp.mapRecordsToRSDs(name,)

// reduce phase: each collection of RSDs sharing the same
name, is reduced into a single RSD describing a schema
of kind &

5 re = RDD(r).reduce()

// schema collection phase

6 | S.add(ry)

7 return S

w N

Map Phase

The fundamental part of schema inference is generating the structure and data
types. Inferring the structure of individual records is a relatively simple task. It
is necessary to traverse the record and consider the aggregation relationships. In
doing so, we can also analyse the data types of properties with primitive values.
Besides that, we will be generating additional information about the individual
properties.
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Record Schema Description. We will now introduce the Record Schema
Description (RSD) tree-like structure. It will serve multiple purposes as the
representation of the following:

o raw schema of a single record generated by the wrapper
o the intermediate schema processed by the algorithm
o the final result

Definition 1. Record Schema Description is a 9-tuple (name, unique, share, id,
types, models, children, regexp, ref) consisting of

« a name of a property or when the property is not named, then the name is
anonymous, denoted by an underscore (_).

o a unique flag, that describes whether the property has unique values. The
values can be either T' (true) or F' (false). We set U (unknown) in the
intermediate representation.

 ashare, that is a 2-tuple (share,, share;), where share, is the number of all
occurrences of the property and share; is the number of first occurrences of
the property within its parent property, i.e., the number of parent properties
in which it occurs.

o an id flag, that describes whether the property is an identifier. The values
can be either 7" (true) or F' (false). We set U (unknown) in the intermediate
representation.

« aset of data types of a property. Data type can be either primitive (String,
Integer, ...), or complex (Array, Map, Set).

o a set of models of a property that the property is represented in. Model
can be one of the following: (JSON = JSON document, XML = XML
document, REL = relational, GRAPH = graph, COL = column, KV =
key-value).

e a set of recursively defined RSDs of child properties.

« an optional regexp describing the regular expression of the complex struc-
ture. It is used mainly to support the standards of XML format possibly
in other models (e.g. the exact order of subelements).

« an optional ref that specifies that the property refers to another property.

Note that we have chosen not to include an optionality flag. It is because
more information about the structural consistency in the kind is extracted with
the usage of a counter. After inferring the schema, we compare the share; with
the parent.share,. If share; < parent.share,, the property is optional, other-
wise, when share; = parent.share,, the property is required. In addition, we
can determine whether this optionality is due to an error in the data, for exam-
ple, when the property is present in all documents except one (in other words,
share; = parent.share, — 1). The user then can conclude that there is an unin-
tentional inconsistency in the data.

Moreover, separating the total number of property occurrences (share,) and
the total number of first occurrences of a property within its parent property
(sharey) gives the ability to distinguish the multiplicated properties. A property
is multiplicated when it forms an element of an array with multiple elements.
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Mapping Process. The fundamental idea behind the map phase can be seen
in Mapping Process Algorithm [2] of a single record will be as follows.

1. We traverse all the records from the kind and all their properties.

2. While traversing the records and properties, we map each one into the
respective RSD and infer all the features based on the implementation of
the wrapper.

3. The record and properties with complex values are processed recursively
and then added to the set of children of their parent property.

Algorithm 2: Mapping process

1 Algorithm mapRecords ()
Input: wp — Wrapper for database system (or model) D
2 name, — Name of the kind to be mapped
Output: R — Set of RSDs of the records from the kind «
R:=10
foreach record r in wp.getRecords(name, ) do

| R.add(map(wp, r))

6 return R

7 Function map ()
Input: wp — Wrapper for database system (or model) D

8 r — Record or property to be mapped
Output: rsd — RSDs of the record or property
9 rsd := wp.inferRawSchema(r)

10 foreach property p in r.getChildren() do
11 L rsd.children.add(map(wp, p))

12 return rsd

FExample. Mapping of the records from Figure [4.1] can be seen in Figure in
the form of RSDs for the given kinds. RSDs are depicted as a 9-tuple where the
features are in the order as presented in Definition [1| For each model, we have
inferred the hierarchy of properties, the names, model and data type together
with counters. In the case of the XML model we have extracted the regexp. [

Reduce Phase

Having extracted the schema definitions from every record, we need to merge them
to get the schema describing the given kind, i.e., a set of records. That brings
us to the reduction phase. We can reduce using the modified kind-equivalence
presented in [I4] and described in Section [3.2.1] The basic principle of this
reduction is to merge the individual properties based on the equality of the keys,
i.e., the names of the properties in RDSs.

The reduction is recursive and works as follows:
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TitleAdditional RSDs

FavouritePeople RSDs

Title RSDs

(- U, (1, 1), U, [Map], [REL], [
(titleld, U, (1, 1), U, [String], [REL], @, €, €),
(ordering, U, (1, 1), U, [Integer], [REL], @, €, €),
(title, U, (1, 1), U, [String], [REL], @, &, €),
(region, U, (1, 1), U, [String], [REL], @, €, €),
(language, U, (1, 1), U, [String], [REL], @, &, €),
(additionalData, U, (1, 1), U, [Map], [REL], [
(isOriginalTitle, U, (1, 1), U, [Integer], [DOC], @, ¢, €),
(types. U, (1, 1), U, [Array], [DOC], [
(= U, (1, 1), U, [String], [DOC], @, €, €)
&),
(attributes, U, (1, 1), U, [Array], [DOC], [
(- U, (1, 1), U, [String], [DOC], @, €, €),
(- U, (1,0), U, [String], [DOC], @, &, €)
1&¢)
1.€€)
1&g

(- U, (1, 1), U, [Map], [REL], [
(titleld, U, (1, 1), U, [String], [REL], @, €, €),
(ordering, U, (1, 1), U, [Integer], [REL], @, €, €),
(title, U, (1, 1), U, [String], [REL], @, &, €),
(region, U, (1, 1), U, [String], [REL], @, €, &),
(language, U, (1, 1), U, [String], [REL], @, &, €),
(additionalData, U, (1, 1), U, [Map], [REL], [
(isOriginalTitle, U, (1, 1), U, [Boolean], [DOC], @, €, €),
(types, U, (1, 1), U, [Array], [DOC], [
(- U, (1, 1), U, [String], [DOC], @, &, €)
1&¢)
les
1.€¢)

(U, (1,2), U, Map], [KV], [
(userld, U, (1, 1), U, [String], [KV], @, &, €),
(favouritePeople, U, (1, 1), U, [Array], [KV], [
(= U, (1, 1), U, [String], [KV], @, €, €),
(= U, (1,0), U, [String], [KV], @, €, €),
(= U, (1,0), U, [String], [KV], D, €, €)
1e¢)
l&¢9)

(U, (1, 1), U, Map], [KV], [

(userld, U, (1, 1), U, [String], [KV], @, €, €),
(favouritePeople, U, (1, 1), U, [Array], [KV], @, €, €)
1&¢8)

Rating RSDs

(- U, (1, 1), U, [Map], [REL], [
(tconst, U, (1, 1), U, [String], [REL], @, &, €),
(averageRating, U, (1, 1), U, [Double], [REL], @, &, €),
(numVotes, U, (1, 1), U, [Long], [REL], @, €, €)

1&g

(- U, (1, 1), U, [Map], [REL], [
(tconst, U, (1, 1), U, [String], [REL], @, &, €),
(averageRating, U, (1, 1), U, [Double], [REL], @, &, €),
(numVotes, U, (1, 1), U, [Long], [REL], @, €, €)

lg¢)

User RSDs

(U, (1, 1), U, [Map], [COL], [
(userld, U, (1, 1), U, [String], [COL], @, , ),
(username, U, (1, 1), U, [String], [COL], @, &, €),
(email, U, (1, 1), U, [String], [COL], @, €, €),
(favouriteGenres, U, (1, 1), U, [Array], [COL], [
(= U, (1, 1), U, [String], [KV], @, €, €),
(- U, (1,0), U, [String], [KV], @, €, €),
l&¢)
1.€€)

(- U, (1, 1), U, [Map], [COL], [

(userld, U, (1, 1), U, [String], [COL], @, &, €),

(username, U, (1, 1), U, [String], [COL], @, &, €),

(birthYear, U, (1, 1), U, [Integer], [COL], @, &, €),

(favouriteGenres, U, (1, 1), U, [Array], [COL], [
(= U, (1, 1), U, [String], [KV], D, €, €)

1&g

l&¢9)

Review RSDs

(review, U, (1, 1), U, [Map], [DOC], [
(authorld, U, (1, 1), U, [String], [DOC], @, ¢, €),
(titleld, U, (1, 1), U, [String], [DOC], 9, ¢, €),
(date, U, (1, 1), U, [DateTime], [DOC], @, €, €),
(text, U, (1, 1), U, [Array], [DOC], @, &, €),
(rating, U, (1, 1), U, [Double], [DOC], @, €, €)
1. (authorld, titleld, date, text, rating), €)

(review, U, (1, 1), U, [Map], [DOC], [
(authorld, U, (1, 1), U, [String], [DOC], @, €, €),
(titleld, U, (1, 1), U, [String], [DOC], 9, &, €),
(date, U, (1, 1), U, [DateTime], [DOC], @, €, €),
(rating, U, (1, 1), U, [Integer], [DOC], @, €, €)
1, (authorld, titleld, date, rating), €)

Title RSDs

(- U, (1, 1), U, [Map], [GRAPH], [
(tconst, U, (1, 1), U, [String], [GRAPH], @, €, €),
(titleType, U, (1, 1), U, [String], [DOC], @, &, €),
(primaryTitle, U, (1, 1), U, [String], [DOC], 9, &, €),
(originalTitle, U, (1, 1), U, [String], [DOC], 9, &, €),
(isAdult, U, (1, 1), U, [Integer], [DOC], @, &, €),
(startYear, U, (1, 1), U, [Integer], [DOC], @, €, €),
(endYear, U, (1, 1), U, [Integer], [DOC], @, &, €),
(runtimeMinutes, U, (1, 1), U, [Integer], [DOC], @, &, €),
(genres, U, (1, 1), U, [Array], [DOC], [

(= U, (1, 1), U, [String], [DOC], @, €, €)

l&e),

1.&¢)

(L, U, (1, 1), U, [Map], [GRAPH], [
(tconst, U, (1, 1), U, [String], [GRAPH], @, €, €),
(titleType, U, (1, 1), U, [String], [DOC], @, &, €),
(primaryTitle, U, (1, 1), U, [String], [DOC], @, €, €),
(originalTitle, U, (1, 1), U, [String], [DOC], @, €, €),
(isAdult, U, (1, 1), U, [Integer], [DOC], @, &, €),
(startYear, U, (1, 1), U, [Integer], [DOC], @, &, €),
(endYear, U, (1, 1), U, [Integer], [DOC], @, €, €),
(runtimeMinutes, U, (1, 1), U, [Integer], [DOC], @, &, €),
(genres, U, (1, 1), U, [Array], [DOC], [

(- U, (1, 1), U, [String], [DOC], @, €, €),

(- U, (1, 0), U, [String], [DOC], @, €, €),

(- U, (1, 0), U, [String], [DOC], @, €, €)
l&e),

1.&¢)

Person RSDs

(L U, (1, 1), U, [Map], [GRAPH], [
(nconst, U, (1, 1), U, [String], [GRAPH], @, &, €),
(primaryName, U, (1, 1), U, [String], [GRAPH], @, &, €),
(birthYear, U, (1, 1), U, [Integer], [GRAPH], @, &, €),
(deathYear, U, (1, 1), U, [Integer], [GRAPH], @, €, €),
(primaryProfession, U, (1, 1), U, [Array], [GRAPH], [

(- U, (1, 1), U, [String], [GRAPH], @, €, €),

(-, U, (1,0), U, [String], [GRAPH], @, €, €),

(- U, (1,0), U, [String], [GRAPH], @, €, £)
lee),

(knownForTitles, U, (1, 1), U, [Array], [GRAPH], [
(- U, (1, 1), U, [String], [GRAPH], @, €, €),
(- U, (1, 0), U, [String], [GRAPH], @, €, €),
(= U, (1, 0), U, [String], [GRAPH], @, €, €),
(= U, (1, 0), U, [String], [GRAPH], @, €, €)

1&¢),

1.€¢)

(- U, (1, 1), U, [Map], [GRAPH], [
(nconst, U, (1, 1), U, [String], [GRAPH], @, &, €),
(primaryName, U, (1, 1), U, [String], [GRAPH], 9, €, €),
(birthYear, U, (1, 1), U, [Integer], [GRAPH], , &, €),
(deathYear, U, (1, 1), U, [Integer], [GRAPH], @, &, €),
(primaryProfession, U, (1, 1), U, [Array], [GRAPH], [
(- U, (1, 1), U, [String], [GRAPH], @, ¢, €),
(L U, (1,0), U, [String], [GRAPH], @, €, €),
(- U, (1,0), U, [String], [GRAPH], @, €, €)
&),
(knownForTitles, U, (1, 1), U, [Array], [GRAPH], [
(= U, (1, 1), U, [String], [GRAPH], @, €, €),
(- U, (1,0), U, [String], [GRAPH], @, €, €),
(U, (1,0), U, [String], [GRAPH], @, €, €),
(- U, (1,0), U, [String], [GRAPH], @, €, €)
lee),

(- U, (1, 1), U, [Map], [DOC], [
(tconst, U, (1, 1), U, [String], [DOC], @, &, €),
(titleType, U, (1, 1), U, [String], [DOC], @, &, €),
(primaryTitle, U, (1, 1), U, [String], [DOC], @, €, €),
(originalTitle, U, (1, 1), U, [String], [DOC], @, €, €),
(isAdult, U, (1, 1), U, [Integer], [DOC], 9, &, €),
(startYear, U, (1, 1), U, [Integer], [DOC], @, ¢, €),
(runtimeMinutes, U, (1, 1), U, [Integer], [DOC], 9, &, ),
(genres, U, (1, 1), U, [Array], [DOC], [
(LU, (1, 1), U, [String], [DOC], @, &, £),
lee),
(directors, U, (1, 1), U, [Array], [DOC], [
(- U, (1,1),U, [Map], [DOC], [
(nconst, U, (1, 1), U, [String], [DOC], @, &, €),
(primaryName, U, (1, 1), U, [String], [DOC], 9, &, €),
(birthYear, U, (1, 1), U, [Integer], [DOC], @, &, €),
(deathYear, U, (1, 1), U, [Integer], [DOC], @, €, €),
(knownForTitles, U, (1, 1), U, [Array], [DOC], [
(- U, (1, 1), U, [String], [DOC], @, ¢, €),
(- U, (1,0), U, [String], [DOC], @, €, €),
(- U, (1,0), U, [String], [DOC], @, €, €),
(- U, (1,0), U, [String], [DOC], @, €, €),
1&¢),
lee),
l&e),
(writers, U, (1, 1), U, [String], [DOC], [
(U, (1,1), U, Map], [DOC], [
(nconst, U, (1, 1), U, [String], [DOC], @, €, €),
(primaryName, U, (1, 1), U, [String], [DOC], , &, €),
(birthYear, U, (1, 1), U, [Integer], [DOC], @, &, €),
(deathYear, U, (1, 1), U, [Integer], [DOC], @, €, €),
(knownForTitles, U, (1, 1), U, [Array], [DOC], [
(- U, (1, 1), U, [String], [DOC], D, €, €),
(- U, (1,0), U, [String], [DOC], @, &, €),
(- U, (1,0), U, [String], [DOC], @, &, €),
(- U, (1,0), U, [String], [DOC], @, ¢, €),
lee),
1),
1&g
1.&€)

(U, (1,1), U, [Map], [DOC], [
(teonst, U, (1, 1), U, [String], [DOC], @, €, €),
(titleType, U, (1, 1), U, [String], [DOC], @, &, €),
(primaryTitle, U, (1, 1), U, [String], [DOC], @, €, ),
(originalTitle, U, (1, 1), U, [String], [DOC], @, €, €),
(isAdult, U, (1, 1), U, [Integer], [DOC], 9, &, €),
(startYear, U, (1, 1), U, [Integer], [DOC], @, &, €),
(endYear, U, (1, 1), U, [Integer], [DOC], @, &, €),
(runtimeMinutes, U, (1, 1), U, [Integer], [DOC], @, &, €),
(genres, U, (1, 1), U, [Array], [DOC], [
(- U, (1, 1), U, [String], [DOC], @, ¢, €),
(- U, (1,0), U, [String], [DOC], @, €, €),
(- U, (1,0), U, [String], [DOC], @, €, €),
1.&¢),
(directors, U, (1, 1), U, [Array], [DOC], [
(U, (1,1), U, [Map], [DOC], [
(nconst, U, (1, 1), U, [String], [DOC], @, &, €),
(primaryName, U, (1, 1), U, [String], [DOC], @, &, €),
(knownForTitles, U, (1, 1), U, [Array], [DOC], [
(- U, (1, 1), U, [String], [DOC], @, ¢, €),
(LU, (1,0), U, [String], [DOC], @, , £),
(- U, (1,0), U, [String], [DOC], @, €, €),
(- U, (1,0), U, [String], [DOC], @, €, €),
1&¢),
1&%),
le¢)

1.€¢)

Episode RSDs

(L U, (1, 1), U, [Map], [GRAPH], [
(from, U, (1, 1), U, [String], [GRAPH], @, €, €),
(to, U, (1, 1), U, [String], [GRAPH], @, £, £),
(seasonNumber, U, (1, 1), U, [Integer], [DOC], @, €, €),
(episodeNumber, U, (1, 1), U, [Integer], [DOC], @, &, €)
1&g

(L U, (1, 1), U, [Map], [GRAPH], [
(from, U, (1, 1), U, [String], [GRAPH], @, €, €),
(to, U, (1, 1), U, [String], [GRAPH], @, &, €),
(seasonNumber, U, (1, 1), U, [Integer], [DOC], @, €, €),
(episodeNumber, U, (1, 1), U, [Integer], [DOC], @, &, €)

1&g

1€ ¢)

Principal RSDs

(- U, (1, 1), U, [Map], [GRAPH], [
(from, U, (1, 1), U, [String], [GRAPH], @, €, €),
(to, U, (1, 1), U, [String], [GRAPH], 9, &, €),
(ordering, U, (1, 1), U, [Integer], [DOC], @, &, €),
(category, U, (1, 1), U, [String], [DOC], @, €, €)
l&¢8)

(- U, (1, 1), U, [Map], [GRAPH], [
(from, U, (1, 1), U, [String], [GRAPH], @, €, €),
(to, U, (1, 1), U, [String], [GRAPH], @, &, €),
(ordering, U, (1, 1), U, [Integer], [DOC], @, ¢, €),
(category, U, (1, 1), U, [String], [DOC], @, &, €),
(job, U, (1, 1), U, [String], [DOC], @, &, €),
(characters, U, (1, 1), U, [Array], [DOC], [
(- U, (1, 1), U, [String], [DOC], @, €, €),
(- U, (1,0), U, [String], [DOC], @, €, €),
(- U, (1,0), U, [String], [DOC], @, €, €),
1&g
1.&¢)

Figure 4.2:

Example of RSDs after the map phase
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1. We reduce two RSDs with the same name according to Record-Based Local

Merge Function (Algorithm [3).

. Children of RSDs are merged using function mergeChildren() in Line 8 of

the algorithm:

(a) Different properties in terms of kind-equivalence are unified and in-
serted into the set of children of the resulting RSD. All the children
are inserted with the flag required set to false.

(b) The remaining equivalent properties are recursively merged, and the
merged results are added to the children of the resulting RSD.

. The regular expression are merged using function mergeRegexp(). This

function utilises the existing elaborated approaches (e.g. XTRACT [I7] or
sk-ANT [25]) that infer regular expressions describing the structure of an
XML element.

Algorithm 3: Record-based local merge function

1

Input: r — First RSD to be merged

ry — Second RSD to be merged

Output: r — Merged RSD
// the names are always equal

2 r.name = ry.name

// select minimum, i.e., F<UKT

3 raunique ;= min(ry.unique, ry.unique)

// sum shares

4 r.share := sum(ry.share, ry.share)

// select minimum, i.e., F < UK T

5 1.id := min(ry.id,ro.1d)

// type merge operator

6 r.lypes := ry.types © ro.types

// union of models

7 r.models := ri.models U ry.models

// recursively reduce children

8 r.children := mergeChildren(r;.children,ry.children)

// reduce regular expressions

9 r.children := mergeRegexp(ri.regexp,ry.regexp)

// references are the same or missing, therefore arbitrary

ref is selected

10 rref :=nryref

11 return r

Ezample. The result after the reduce phase can be seen in Figure [4.3] Note that
the number of RSDs were reduced by half due to the merging of records in the
individual kinds. Analysing the reduced RSDs, we can determine the optionality
of the properties. For example the property birthYear in User kind has share;
set to 1, while its parent, anonymous root “ " has share, set to 2. Thus the
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property birthYear is optional as it is present only in one of the records. We can
also derive the multiplied properties, e.g. the anonymous property “_” inside the
property genres in the Title kind of a JSON document data model. The share,
is set to 8, while share; is only 4, which means, that at least one record exists,

for which there are multiple properties in the same array. O

(- U, (2,2), U, [Map], [REL], [
(titleld, U, (2, 2), U, [String], [REL], @, €, €),
(ordering, U, (2, 2), U, [Integer], [REL], @, €, €), (favouritePeople, U, (2, 2), U, [Array], [KV], [
(title, U, (2, 2), U, [String], [REL], @, &, €), (- U, (3,1), U, [String], [KV], @, €, €)
(region, U, (2, 2), U, [String], [REL], @, €, €), 1.€¢)
(language, U, (2, 2), U, [String], [REL], @, &, €), 1.&¢€)
(additionalData, U, (2, 2), U, [Map], [REL], [
(isOriginalTitle, U, (2, 2), U, [Integer, Boolean], [DOC], @, &, €),
(types. U, (2, 2), U, [Array], [DOC], [ (runtimeMinutes, U, (2, 2), U, [Integer], [DOC], @, &, €),
(- U, (2,2), U, [String], [DOC], @, €, €) (genres, U, (2, 2) rray], [DOC], [
1.e8), (.U, (4.2), U, [String]. [DOC], 0. €. €),

(attributes, U, (1, 1), U, [Array], [DOC], [ TN iconT lee).

(- U, (2,2), U, [Map], [KV], [
(userld, U, (2, 2), U, [String], [KV], @, €, €),

(- U, (1, 1), U, [Map], [DOC], [
(tconst, U, (2, 2), U, [String], [DOC], @, &, €),
(titleType, U, (2, 2), U, [String], [DOC], @, &, €),
(primaryTitle, U, (2, 2), U, [String], [DOC], @, &, €),
(originalTitle, U, (2, 2), U, [String], [DOC], @, , €),
(isAdult, U, (2, 2), U, [Integer], [DOC], @, €, €),
(startYear, U, (2, 2), U, [Integer], [DOC], @, &, €),
(endYear, U, (1, 1), U, [Integer], [DOC], , &, €),

(- U, (2, 1), U, [String], [DOC], @, €, €) - (directors, U, (2, 2), U, [Array], [DOC], [
T (userld, U, (2, 2), U, [String], [COL], @, €, €), G oG
L :: z; (u?ername, U, (2, 2), U, [String], [COL], @, €, €), "(néon's" u '(2‘ 2. u [Strinlg], [DOC1, 0. 5. €),
) ::::ﬁj r‘(;J‘{)LJ)‘[:t‘ri[rt]eg[(e:gl[]cgl—lv f, & (primaryName, U, (2, 2), U, [String], [DOC], @, £, €),
o .t 29) e L. (birthYear, U, (2, 2), U, [Integer], [DOC], @, £, ),
T LU.3.2)U, [String), (V] B, 5.8) (deathYear 22 teoetIDOCY B8
(.U, (2.2). U, [Map], [RELI [ Les R (kr(mllJnF(Zrzl)ﬂ\eJS'[szi('zv ?"[S'O[S";V" [D)oq'[
U, (2,2),U, [Map], b 2D . U, (8, 4), U, [String], , D, €, €
(tconst, U, (2, 2), U, [String], [REL], @, €, €), &g Lee),
(averageRating, U, (2, 2), U, [Double], [REL], @, , €), lLee)
(numVotes, U, (2, 2), U, [Long], [REL], &, €, ) Lee),
lLee (writers, U, (1, 1), U, [String], [DOC], [

(- U, (1,1), U, [Map], [DOC], [
(nconst, U, (1, 1), U, [String], [DOC], @, €, €),
(primaryName, U, (1, 1), U, [String], [DOC], @, €, ),
(birthYear, U, (1, 1), U, [Integer], [DOC], @, , €),

Person RSDs

(= U, (2,2), U, [Map], [GRAPH], [
(nconst, U, (2, 2), U, [String], [GRAPH], @, €, €),

Review RSDs

(review, U, (2, 2), U, [Map], [DOC], [

(authorld, U, (2, 2), U, [String], [DOC], @, &, €),
(titleld, U, (2, 2), U, [String], [DOC], @, &, €),
(date, U, (2, 2), U, [DateTime], [DOC], @, &, €),

(primaryName, U, (2, 2), U, [String], [GRAPH], @, , £),
(birthYear, U, (2, 2), U, [Integer], [GRAPH], @, &, ),
(deathYear, U, (2, 2), U, [Integer], [GRAPH], @, €, €),

(deathYear, U, (1, 1), U, [Integer], [DOC], @, €, €),
(knownForTitles, U, (1, 1), U, [Array], [DOC], [
(- U, (4, 1), U, [String], [DOC], @, €, €)

(text, U, (1, 1), U, [Array], [DOC], D, €, €), (primaryProfession, U, (2, 2), U, [Array], [GRAPH], [ lee),
(rating, U, (2, 2), U, [Double], [DOC], @, €, ) (. U, (6. 2), U, [String], [GRAPH], @, £, €) 1.&%),
1. (authorld, titleld, date, text, rating), &) 1.e8), 1. &€
(knownForTitles, U, (2, 2), U, [Array], [GRAPH], [ 1.&¢€)
(.U, (8.2), U, [String], [GRAPH], 0. €, €)
lee),
(- U, (2,2), U, [Map], [GRAPH], [ 1e¢€)

(tconst, U, (2, 2), U, [String], [GRAPH], @, , €),
(titleType, U, (2, 2), U, [String], [DOC], @, &, €),
(primaryTitle, U, (2, 2), U, [String], [DOC], @, €, €),
(originalTitle, U, (2, 2), U, [String], [DOC], @, €, €),
(isAdult, U, (2, 2), U, [Integer], [DOC], @, €, €),
(startYear, U, (2, 2), U, [Integer], [DOC], @, &, €),
(endYear, U, (2, 2), U, [Integer], [DOC], @, , €),
(runtimeMinutes, U, (2, 2), U, [Integer], [DOC], @, €, €),
(genres, U, (2, 2), U, [Array], [DOC], [ (to, U, (2, 2), U, [String], [GRAPH], @, €, €), (characters, U, (1, 1), U, [Array], [DOC], [
(- U, (4,2), U, [String], [DOC], @, €, €) (seasonNumber, U, (2, 2), U, [Integer], [DOC], @, &, €), (- U, (3,1), U, [String], [DOC], D, €, €)
1.&¢), (episodeNumber, U, (2, 2), U, [Integer], [DOC], @, £, €) 1.€8)
1&g 1.e¢€) 1.&¢€)

Principal RSDs

(.U, (2,2), U, [Map], [GRAPH], [
(from, U, (2, 2), U, [String], [GRAPH], @, €, €),
(to, U, (2, 2), U, [String], [GRAPH], @, €, €),
(ordering, U, (2, 2), U, [Integer], [DOC], @, &, €),
(category, U, (2, 2), U, [String], [DOC], 9, &, €),
(job, U, (1, 1), U, [String], [DOC], @, &, €),

Episode RSDs

(- U, (2,2), U, [Map], [GRAPH], [
(from, U, (2, 2), U, [String], [GRAPH], @, €, €),

Figure 4.3: Example of RSDs after the reduce phase

Collection Phase

We can now finalise the naive approach with the collection phase with all the
RSDs describing the kinds’ schemas in databases. An overall schema will be
represented as a forest of generated RSDs. However, we cannot tell whether any
RSDs are interconnected, because the focus so far was on inferring the schemas
of single kinds.

4.3.2 Analysis of the Naive Approach

Let us summarise what we have received out of the described approach.

For each kind in every input database, we have generated a single schema
description in the form of RSD. From these RSDs, we can inspect the structure
of each kind, also with details of the data types of the properties. Furthermore,
we inferred the optionality of properties in records. Thus, to some extent, we
generated the schema of the multi-model collection of databases.
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However, with all of this data, we cannot tell how the involved databases or
kinds are interconnected, which is one of the main goals of the proposed approach.
In order to provide a more descriptive schema, we need to enhance the approach
and consider not only the structure of the kinds but also understand the values
of the records and their properties.

4.4 Discovering References

Regarding the discovering of references, one of the existing approaches described
in [13] proposed a simple strategy based on the naming conventions of properties.
When a property is named entity Name_ id, it refers to the entity Name property
if the referenced property exists. While this may apply to the single-model data in
a single database, where the naming conventions are respected, it is not a universal
solution, and for multi-database and multi-model schema, a more sophisticated
technique needs to be applied.

4.4.1 Comparing the Domains

We base our technique on the fact that the domain of the referencing property is
a subset of the domain of the referenced property. Hence, we need to perform an
analysis of the pairs of properties throughout the entire structure of the records.

We will choose a slightly different strategy of traversing the records than in
the naive approach, where we were processing individual record at a time during
map phase. We recursively extract all the properties from each record, together
with the hierarchical name of the property. The hierarchical name is the name
of the database of the record joined with the name of the kind, followed by an
absolute path from the root property to the extracted property. In other words,
as every record has a tree-like structure, we flatten the tree.

Ezxample. Figure depicts naive approach of generating the domain of val-
ues from the properties. Comparing the extracted domains of properties
with every other property, we can see that the set of values of the property
rDb.Rating/__/tconst C the set of values of the property dDb.Title/ /tconst
and thus the data in kind Rating reference the data in kind Title. O]

Having extracted all properties from every record, we now group them by
their hierarchical name. As a result, we have explored all the properties and for
each property, we have extracted all the values across the records. We now can
compare the domains of every pair of properties p;, ps to each other. Let k be
a treshold that can be parametrised. If p;.domain C py.domain and also the
|p1.domain N py.domain| >= k, we denote that property p; refers to property ps.

4.4.2 Comparing the Footprints of the Domains

Although the technique mentioned in the previous section is theoretically accept-
able, it does not perform well with a more extensive data set. It is resource-
intensive to manage the entire domain at each algorithm step. Therefore, we
need to move towards heuristic principles to process large data sets.
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TABLE Rating

| 0031697 || 48 | 547

I

A4

COLLECTION Title

{
"tconst": "tt0031697",
"directors": [
{

"nconst™: "nm9258412",
"primaryName": "John Doe",
"birthYear": 1892,
"deathYear": 1974

"tconst": "tt0078124",
"directors": [
{
"nconst": "nm2482487",
"primaryName": "John Doe",
"birthYear": 1963,
"deathYear": 2011

"nconst": "nm0865412",
"primaryName": "Mary Jane",
"birthYear": 1963,

A4

Flattened and Grouped Tree of Table Rating

[

]

(rDb.Rating/_/tconst, ["tt0031697"]),
(gDb.Rating/_/averageRating, [4.8]),
(gDb.Rating/_/numVotes, [547])

Flattened and Grouped Tree of Collection Title

[

(dDb.Title/_/tconst, ["tt0031697", "tt0078124"]),
(dDb.Title/_/directors/_/nconst, ["'nm9258412", "nm2482487", "nm0865412"]),
(gDb.Title/_/directors/_/primaryName, ["John Doe", "John Doe", "Mary Jane"]),
(gDb.Title/_/directors/_/birthYear, [1892, 1963, 1963]),
(gDb.Title/_/directors/_/deathYear, [1974, 2011])

Figure 4.4: Flattened records for the naive discovery of relationships.
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Domain Boundaries

For two sets S7, Sy with comparable elements, it holds that if S C S, =
min(Sy) > min(Sy) A max(S;) < maz(Sy). Using this assumption, we can
reduce the properties that need to be compared with each other by comparing
the boundaries of the domains.

To apply the comparison of the boundaries, we need to make all values com-
parable with each other. We will achieve this by comparing the hash of the
properties to compare. With this approach we will reduce the time and space
complexity when comparing large values.

Bloom Filters

We can extend this technique even further by using a Bloom filter presented
n [26]. A Bloom filter is a space-efficient data structure that stores an approxi-
mation of the original set. Its principal intention is to decide whether a value is
in the set or not. Using this data structure, we do not get any false negatives.
However, there is the possibility of false positives.

The implementation of a Bloom filter BF of a set .S will be as follows: Let k
be the length of a Bloom filter, and let i : S — [0..k — 1] be a hash function. For
each value s € S, set BF[h(s)] := 1, otherwise, if s ¢ S, set BF[h(s)] := 0.

Note that using a Bloom filter as a footprint of the domain, it is straightfor-
ward to determine for two sets whether one may be the subset of the other. Let
S1, Sa be two sets, S; C S, with Bloom filters BFy, BF5, respectively, both of
the same length k. Then Vi € [0..k — 1], BF[i] < BEF]i].

Using this knowledge, we reduce the reference checks of the properties, firstly
by the boundaries, then by comparing the Bloom filters. However, while we may
have reduced the computation complexity, the space intensity is still too big to
be used over large datasets. It is because we still maintain the entire domain
together with the Bloom filter. Therefore, instead of maintaining the domain
during the grouping phase, we will add the values to the Bloom filter rather than
storing them in sets.

4.4.3 Property Domain Footprint

With all the tools prepared, we are now able to define the supporting data struc-
ture named Property Domain Footprint (PDF). The data structure PDF contains
the descriptors of the domain of a single property. Together with the RSD, we
will use this data structure to represent raw properties with intermediate results
during aggregation.

Definition 2. Property Domain Footprint (PDF) is an 8-tuple (unique, required,
multiplicated, sequential, min, max, average, bloomFilter) consisting of:
» aunique flag that describes whether the property has unique values. Values
can be T' (true) or F' (false).
o a required flag that describes whether the presence of a property is manda-
tory in the parent property. Values can be T (true) or F' (false).
o a multiplicated flag that describes whether the property is a forming ele-
ment of an array with multiple values. Values can be T' (true) or F' (false).
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o a sequential flag that describes whether the integer values of the property
forms a sequence. Values can be T' (true) or F' (false).

e a min value, that is minimal in the domain of values of the property with
respect to the hash values.

o a max value, which is maximal in the domain of values of the property with
respect to the hash values.

e an average value, that is an average in the domain of values of the property
with respect to the hash values.

e a bloomF'ilter data structure as described above.

In addition, we store auxiliary features as a 5-tuple(count, total, first, _min,
__max) with the PDF:

o a count of the values of properties.

 a total value that equals the sum of the values of the properties with respect
to the hash values.

e a first count that reflects the total of first occurrences of a property within
its parent property.

e _min and _max that store the minimal and maximal integer value of the
property.

4.4.4 Footprint Miner Algorithm

Let us propose the Footprint Miner Algorithm (see Algorithm [4]) that generates
the footprints from the set of kinds. We will use the MapReduce pattern once
more. The aggregation of the properties in Line 5 of the Footprint Miner Al-
gorithm will be straightforward and can be seen in Footprint Miner Aggregate
Function in Algorithm [5} The collection phase is responsible for building a tree
out of the pairs of hierarchical name and footprint in order to compute additional
features like required, sequential and average. The part that builds the tree is de-
scribed in function addToForest() in Algorithm [6] The finalise phase computes
the features as described in Algorithm [7]

FExample. In Figure the process of the footprint miner is described. In the
first stage, the properties are flattened with inferred features including the aux-
iliary ones. After the finalise stage, the properties are enriched with remaining
properties, and thus the footprints are mined. O

4.4.5 Applying Information to Detect Relationships

Let us now inspect the extracted data to detect relationships between the prop-
erties. We start by discovering the identifiers as it is the fundamental part of the
reference discovery.

Identifiers

To this moment, we have omitted one fundamental characteristic of a reference
relationship. If property p; refers to property ps, then py has to be specified
across all the records, and it has to have unique values in all the records.

Note that we can decide whether the value has been probably already added
into the set by using a Bloom filter. This can give us approximate results of the
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Figure 4.5: Process of the footprint miner
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Algorithm 4: Footprint miner algorithm

Input: Wp — Wrapper for database system (or model) D
Np — Set of names of kinds whose footprints are to be mined
foreach name,, in Np do
// preparation phase: load and map each property from
every record of a given kind to a single pair
(hierarchicalName, trivial footprint)
3 RDD(name,, f) :=
Wp.flatMapRecordToNameFootprintPairs(name,)
// aggregate footprints containing raw values to create a
single footprint for each property p
RDD(name,, f) := RDD(name,, f).mergeValueDuplicates()
RDD(name,, F) := RDD(name,, f).groupByKey()
6 (name,, f,) = (name,, F,).aggregateByHierarchicalName()
// footprint collection phase
7 foreach (name,,p) in RDD(name,,p) do
8 L addToForest(p, 5)

// footprint finalisation phase - evaluation of features

required, sequential, and average
9 | finalise(S)

N =

uniqueness of the properties. On the other hand, to determine if the property is
required, we do not have any tool that can help us to answer the question.

Let us improve the proposed algorithm yet, mainly the part of flattening
the records and grouping the flattened properties. During the flattening phase,
we will be storing hierarchical names and values and assigning each flattened
property a count preset to 1. After that, we remove duplicates in the values of
the properties with the same hierarchical name. With each duplicate removal, we
increase the property counter that has a duplicate. Next, in the grouping phase,
we sum the counters and add all the unique values into the Bloom filter. If all
individual counters of one property had a value of 1, the property is marked as
unique.

Thanks to these improvements, we can get more information about the data.
We can now undoubtedly tell that a property is unique. When resolving the
optionality, we need to consider the aggregation relationship of the property with
its parent. If the count of the child property is equal to the count of the parent
property, then the child property is marked as required within the parent property.

As can be seen in the Identifiers Builder Algorithm (see Algorithm [§)), if the
property is unique and required, it can now be marked as an identifier.

As a side effect of the aforementioned improvements, if we store unique values
in the Bloom filter, we can adjust the definition of the Bloom filter. Instead of
setting the value of BF[h(s)] to 1, we increase the value by 1 with each insert.
When comparing the Bloom filters, we now get more precise results.
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Algorithm 5: Footprint miner aggregate function

Input: F' — Non-empty list of footprints to be aggregated
Output: r — Aggregated footprint

r:=(T,T, F,0,0,0,[0,...,0])

foreach footprint f in F' do

[V

3 raunique = r.aunique AND f.unique
// required and sequential are resolved in finalisation
phase
4 | r.min := min(r.min, f.min)

r.max := max(r.max, f.max)

// auxiliary total and count are computed while average is
resolved in finalisation phase using the helping values

6 r.total := sum(r.total, f.total)

r.count := sum(r.count, f.count)

8 r.bloomFilter := merge(r.bloomFilter, f.bloomF'ilter)
// additional helping properties

9 r._man = min(r.__min, f._min)

10 r._max = max(r._mazx, f._max)

11 r.first == sum(r. first, f.first)

12 return r

References

With all the data we have collected so far, we can proceed with the lookup of
the references between the pairs of properties. We will implement this straight-
forwardly by comparing the footprints of the domains of each pair of properties
as can be seen in Algorithm [9] However, we consider only those pairs where the
possibly referenced property is the identifier.

To refine the results even more, we will try to find and distinguish the acci-
dental references which we will mark as weak. For this, we introduce the feature
of a property called sequential. A property is marked as sequential if its integer
values form a sequence. To decide whether a property is sequential, we use the
following statement: Let min be the minimum of values, max be the maximum
of values, count be the count of values. A property is sequential if holds that
(max — min) = count — 1.

We say that the reference is weak, if both properties of the reference pair are
auto-incremented, which means that they are required, unique, sequential and
not multiplicated.

Redundancies

It is common in multi-model data to contain relatively the same data in different
models. For example, to store the information about users of social networks in a
graph-model database to traverse the relationships quickly and in the document-
model database to access basic information about the individual users. We call
this data redundancy.

In addition, we distinguish between full and partial redundancy. The full
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Algorithm 6: Function addToForest() (forest appender)

Input: name, — hierarchical name of a property p
1 o, — object, i.e., a schema description (RSD) or a footprint of
property p
O — schema forest or footprint forest
name,, := name,.kind()
node := O.getOrCreate Root(name,)
name := name,.head()
repeat
if node.hasChildren(name) then
L node := node.getChildren(name);

o N O oA W N

else
10 L node := node.getOrCreateChildren(name)

©

11 if name is name,.tail() then

// if node represents inner node, its content is merged
// otherwise (leaf) its placed as is

12 node.placeContent(o,)

13 until name is name,.tail()

Algorithm 7: Function finalise()

Input: O — footprint forest
1 foreach footprint f in O do
f.required := f.first = f.parent.count
f.sequential := (max — min) = count — 1
f.average := total /count

oW N

redundancy means that all the values are replicated inside both properties. On
the other hand, partial redundancy denotes that only a subset of values in one
property form the domain of the other property.

As we can compare the active domains of the properties, we will apply this
strategy to find redundancies. The algorithm is similar to the reference miner
algorithm from the previous section, as can be seen in Redundancies Builder in

Algorithm [10]

4.4.6 Optimisation of the Relationship Detection

Using the so far presented approach, we can detect identifiers both with reference
and redundancy relationships across different kinds. However, some optimisations
should take place as we process all the pairs of properties multiple times, even
though we can reduce these comparisons based on the intermediate results.
Note that the property referenced to in the reference pair must be an identifier.
Instead of taking a whole set of properties, we can thus use the precomputed set
of properties in the previous step and find the properties that refer to them.
Moreover, we can see multiple similarities between the exploration of refer-
ences and redundancies. Note that for the redundancy to occur, there must be
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Algorithm 8: Identifiers builder — naive algorithm

Input: F — list of (pre)computed footprints
Cident = @
foreach footprint f in F' do
if funique AND f.required AND not f.multiplicated then
L | Cident-add(f)

return Cjge,;

N W N =

(S}

Algorithm 9: References builder — naive algorithm

Input: F — list of (pre)computed footprints
1 Crep =10
2 foreach footprint f; in ' do
3 foreach footprint fo in F'\ f; do
4 if isldentifier(fa) A fi.min > fo.min A fi.mazx < fy.mazx then
5 if fi.bloomFilter C fy.bloomFilter then
6 weak = fi.isAutoincremented() N\ fo.isAutoincremented()
7 L Cref-add((f1, fa, weak))

8 return (C.y)

some reference because one of the domains in the redundancy pair of the property
has to be a subset of another. Therefore we can use the references as the basis for
the redundancies and search only the neighbourhood of each involved property
to find the redundancy pairs. Also, we parameterise the minimum number of in-
volved pairs in a redundancy relationship to eliminate trivial redundancies, such
as, for example, the redundancy of a single referencing property to a referenced
property, which we consider a reference relationship.

As previously said, we distinguish between the full and partial redundancy.
Instead of comparing only the boundaries and the Bloom filters of the domains
of the properties, we present a function to resolve whether one footprint forms
a subset of another footprint. The algorithm of function formsSubset() can be
seen in Algorithm [TI] We use this function when comparing the domains of
the proposed references or redundancies. Based on the optimisations mentioned
above, we propose the algorithm to build the constraints and relationships, as
described in Constraints and Relationships Builder in Algorithm [12]

Ezxample. Figure |4.6] shows the process of the mining candidates. Firstly, we
generate the PDFs from the records of the individual kinds. Then, we mark the
identifiers of the properties and from those, we try to find the references. Finally,
the redundancies are discovered based on the previous knowledge. O]

Exploring the Neighbourhood of a Property

As mentioned earlier in this section, we need to discover a property’s neighbour-
hood to find redundancy pairs. We benefit from the tree-like structure, and thus
we will check the descendants and siblings of the property in the kind tree.
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Algorithm 10: Redundancies builder — naive algorithm

Input: F — list of (pre)computed footprints

1 Cred = @

2 foreach footprint f; in I’ do

3 foreach footprint fy in F'\ f; do

4 a:= fy

5 b= fg

6 full -= false

7 if fi.min < fy.min then

8 a = fy

9 b:= fi

10 else

11 if fi.min = fy.min then

12 L full := true

13 if b.max > a.max N a.bloomFilter C b.bloomFilter then

14 | Crea-add((a, b, false))

15 else

16 if a.max = b.max N full = true A
a.bloom Filter = b.bloom Filter then

17 L Creqa-add((a, b, true))

18 return (Ceq)

For this, we can build the tree like in function addToForest() (see Algo-
rithm @ and then find the desired properties with the help of the graph algo-
rithms. However, a more time-and-space-efficient approach exist if we consider
the hierarchical names of the properties, as we can see in Descendant or Sibling
Algorithm specified in Algorithm [13] Recall that the hierarchical name has a
delimiter ”/”, so in order to find all the nodes that are lower than the parent of
the base property, we take the full hierarchical name except the last part, which
denotes the base property.

4.5 Property-based Approach

In the previous section, we have presented an alternative approach to processing
the input records in order to generate footprints of the domain. However, we can
also adjust this algorithm to generate the schema of the kind.

Instead of generating footprints of the grouped properties, we will generate an
RSD of each property as we did in the naive approach, except for the recursive
part of processing children. We benefit from the flattened tree and hierarchical
names. After having extracted all the RSDs describing each property, we will
build a tree using Algorithm[6, where the input o, will be the RSD of the property.
As a result, we get a schema forest that describes the resulting schema of the
kinds, much like the naive approach.
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Algorithm 11: Function formsSubset()

Input: f; — first footprint
1 fo — second footprint

// fi.min == fy.min — "FULL"

// fi.min > fa.min — "PARTIAL"

// fimin < fy.min — "EMPTY"
2 minType := determine( f;.min, fo.min)

// fi.max == fy.max — "FULL"

// fimax < fo.max — "PARTIAL"

// fimax > fy.maxr — "EMPTY"
3 maxType := determine( f;.mazx, fy.max)

// fi.average == fs.average — "FULL"

// fi.average <> fy.average — "EMPTY"
4 avgType := determine( fi.average, fs.average)
// Yi: fi.bloomFilter|i] == fy.bloomFilter[i] — "FULL"
// Yi: fi.bloomFilter[i] <= fy.bloomFilter[i] — "PARTIAL"
// Fi: fi.bloomFilter|i] > fy.bloomFilter[i] — "EMPTY"
bfType := determine( f.bloomFlilter, fy.bloomF'ilter)

if min(minType,maxType,avgType,bfType) is "FULL" then
L return "FULL"

9 else if min(minType,maxType,bfType) is "EMPTY" then
10 L return '"EMPTY"

11 else

12 L return "PARTIAL'

® N O »

4.6 Universal Approach

Note that if we want to get the schema description of the databases, both with the
identifiers and relationships, we need to run two algorithms over the same data
set. However, even this can be simplified with a combination of Property-Based
Approach and Discovering References due to their similarities.

For each property, we will generate not only the raw schema, but also the raw
footprint of the domain. After the generation, we will group the properties with
the same hierarchical name and thus create the RSD describing the property both
with the footprint of the domain. Then we will build a schema forest representing
the schema of the data set and a footprint forest in order to generate the identifiers
and relationships.

4.7 Presentation of Local Schema and Candi-
dates

Before we proceed to the final stage of merging the RSDs by the relationship, we
have to recall that all the relationships we have generated are only candidates
based on the probabilistic data structure — Bloom filter. Therefore, there is a
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chance of false positives and thus we need to let the user decide which relationships
(s)he would like to include in the final stage. Using this interaction with the user,
we may be able to reduce the false positives even more and generate a more
relevant result.

We will talk about this presentation even more in the Chapter [5| dedicated
to the proof of concept. We will look at the ways the user can interact with the
approaches.

4.8 Merging of Local Schemas using Candidates

After the user resolved all the candidates and confirmed the selection, we can
proceed with a so-called global stage. In this stage we will produce a schema that
will represent the whole input data set.

The fundamental principle will be to connect RSDs according to the relation-
ships. Based on the type of relationship, we define:

o Reference connection: We connect the referencing property with the ref-
erenced property by populating the field ref in the definition of the RSD
with the hierarchical name of the referenced property.

o Redundancy connection: The RSDs that represent the properties of redun-
dancy pairs are reduced into a single RSD, and their parents will contain
the reduced RSD in the set of children instead of the previous RSD.
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Algorithm 12: Constraints and relationships builder algorithm

Input: F — list of (pre)computed footprints

1 k — minimal number of siblings/descendants to form a
redundancy

2 Cident = @

3 Cre f = @

4 Cred = @

// Identifier phase:
5 foreach footprint f in F' do
6 if funique AND f.required AND not f.multiplicated then
7 L L Cident-add(f)

// Reference phase:
8 foreach ident ¢ in Cj4ep,; do

9 foreach footprint f in F'\ ¢ do

10 r := formsSubset(f, ¢)

11 if r is not "EMPTY" then

12 if isAutoincrement(f, ¢) then
13 L Crefadd((f.c,"WEAK" r))
14 else

15 | Crep-add((f,c,"STRONG' 7))

// Redundancy phase:

16 foreach ref (f,c,t,7) in C,.s do
17 Dy := descendantOrSibling( f);
18 D.. := descendantOrSibling(c);

19 R:=1

20 red := "FULL"

21 foreach d, in Dy do

22 foreach dy in D, do

23 type := formsSubset(d;, ds)
24 if type is not "EMPTY" then
25 R.add(dl,d2>

26 L red := min(red, type)
27 | if R.size() > k then

28 R.add((f,c))

29 red := min(red, 7)

30 Creq-add((R,red))

31 t:="WEAK"

32 return (Cidenta OT€f7 Cred)
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Algorithm 13: Descendant or sibling algorithm

Input: P — list of properties
Po — base property
D:=0
So := po.hierarchicalName.substring(0, lastIndexOf(’/"))
foreach property p in P do
L if p.hierarchical Name.startsWith(sg) then

o Ut~ W N =

L D.add(p)

return D

~
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5.

Proof of Concept

In order to verify the proposed algorithm and approaches, the proof of concept
was implemented in two variants. Let us introduce and describe them.

5.1 Standalone Java Application

The first one we describe is the standalone java application with the architecture
that can be seen in Figure [5.1 The main component is the Java application,
that processes the user input and based on that selects the required wrapper in
order to connect to the databases where the data are stored in. To process the
algorithms, the Spark cluster component receives the tasks and execute the jobs.
The application is able to process the following algorithms:

Record-based inferrer — corresponds to the naive approach in Section [4.3]

Property-based inferrer — corresponds to the property-based approach in

Section [4.5]

Candidate Miner Naive — corresponds to the naive approach of generating
candidates in Section [4.4.5]

Candidate Miner Optimized — corresponds to the optimised approach of
generating candidates in Section [4.4.5]

Universal — corresponds to the combination of generating candidates and
property based approach — the universal approach in Section [4.0]

Also the following wrappers were implemented and can be used:

Schemaless MongoDB Wrapper — generate records from the MongoDB [5]
database system.

Schemaless PostgreSQL Wrapper — generate records from the Post-
greSQL [3] database system.

o Schemaless Neojj Wrapper — generate records from the Neo4j [24] database

system.

5.1.1 Running the Application

The MM-Infer application can be run using JRE 8 with following options:

algorithm-options:

e —algorithm (-a)

The identifier of the algorithm to be run. Available arguments are:
record__based__inferrer, property based_inferrer, candidate miner _naive,
candidate__miner_optimized, universal_inferrer.
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o -wrapper (-w)

Selected  wrapper to be used. Available arguments are:
mongo__schema__less, neojj schema__less, postgres schema__less.

Note that in the case of the record-based approach and property-based ap-
proach, only one (first) kind is processed in the algorithm. If the user wants to
infer the schema for multiple kinds, the application must run multiple times.

5.1.2 Application Result

The application provides a result encoded in JSON after doing its work based on
the selected algorithm. In the case of the record-based approach and property-
based approach, the application gives the RSD describing the schema of the
selected kind. Both versions of the candidate miner output the 3-tuple (identifiers,
references, redundancies). Finally, the universal inferrer combines the results
mentioned above.

5.2 Schema Inference Framework

In this solution, we have integrated the aforementioned Java application into
a Spring boot [27] application. Together with the persistence storage for user
sessions and results, it creates a back-end that is accessible via REST API. On
the client-side, the Web application has been developed in Flutter [28] framework.

The core of this application on the server-side is similar as described in the
previous section. In addition, we introduced a Web application to allow the user
to interact with the MM-Infer application. The architecture of this solution is
depicted in Figure [5.2

5.2.1 Common Usage of the Framework

We now provide a description of the usage of this framework by an example. We
consider the IMDb multi-model scenario as described in Chapter [2] limited only
to the relational, JSON document and graph model.

Firstly, we connect our application to the databases that store the data as
can be seen in Figure [5.3] In our case, three databases are used, each for every
model. The graph structure is saved in Neo4j database called db__graph_mouvies
hosted on localhost, db_rel _movies is a PostgreSQL database and stores rela-
tional model data and lastly the JSON document model data are stored in a
MongoDB database, db_doc__movies.
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Figure 5.2: High-level architecture of the framework
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Figure 5.3: Adding a database

After connecting the databases successfully, the application explored the
databases and retrieved the kinds, that can be processed. User can now set,
as depicted in Figure [5.4] which kinds (s)he would like to include in the follow-
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ing phases, as the user may not want to include all of them. The user can also
select the strategy to perform, however for the time being, only one strategy is
available, the schema-less strategy.

MM-schema

I Laad Databases configuration
dalabascs

db_graph_mavies
@ create hsDs e

Zelect strateqy Mullimadel universal stralegy -
Resolve

candidates

Episode ]
Result
- Person
Select kinds ta
[EIEEE Principal
Title =

7 db_rel_movies
m PastgraSGl instance

. db_doc_movies
KongalDE instance Configure £

Proceed »

m
o
o
=

Figure 5.4: Configuring the strategy and the kinds to process

When the user confirms the configuration, the inference process begins and
the user can watch its progress as shown in Figure [5.5

Creating RSDs

Database 1/3 - db_graph_maovies [Meod] instance, Multimodel universal strategy}

D

Generating data  Analyzing data, inferring data
Types

Interrupt |

Figure 5.5: Progress of the schema inference

After the schema is inferred and the candidates are extracted, the user is
presented with the result as shown in Figure [5.6 Four tabs are available, where
the user can resolve the candidates. In the References tab (see Figure , the
user can view the inferred references and select, which ones (s)he wants to include
in the result. By default, only the strong references are checked and thus included.
The user can also specify own references.
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Figure 5.6: Resolving the reference candidates

In the Identifiers tab (see Figure, the user can view the inferred identifiers
and also select, which ones (s)he would like to be included in the result. In
addition, he can also modify the set of identifiers by selecting the desired options.

MM-schema .
inference Resolve Candidates
References Identifiers Data typas Redundancy
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. e o
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o
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Figure 5.7: Resolving the identifier candidates

Data types tab (see Figure|5.8) shows the inferred data types for each property.
By default, the most relevant one is selected, however user can also select another
possible data types from the list.
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Figure 5.8: Resolving the data types

Lastly, the redundancies are presented in tab Redundancy (see Figure ,
where the user can view the inferred redundancies and can choose which ones
(s)he would like to include in the global result.
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Figure 5.9: Resolving the redundancy candidates

After the user resolves all the candidates, the global phase is performed, where
the individual schemas are joined based on the results of local phase and the user
input. The result in this scenario can be seen in Figure[5.10] The user can observe
the overview of the schema and also for each of the kinds can see its schema. The
user can also see, how the kinds are interconnected. To get the raw result, (s)he
can also export the schema from the export tab.
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6. Experimental Results

In this chapter, we will look at the experimental results of the presented ap-
proaches. The application was tested in standalone mode as described in Sec-
tion[5.1lon Ubuntu 18.04.6 LTS server with 62GB of RAM and 8 CPUs. The data
used in the experiments were generated by the data generation tool — UniGen [29].
We have generated the data with the following scaling factors: 1, 2, 4, 8, and 16
to test the scalability of the individual approaches. From the generated dataset,
the data from the kinds Products, Orders and Invoices were imported into the
MongoDB [5] document data store and then the experiments were performed.
The sizes of the datasets are shown in Figure [6.1

Table 6.1: Size of the dataset

Scaling Number of documents Size of documents in MB
Factor | Orders | Invoices | Products | Total Orders | Invoices | Products | Total
1 5000 1156 5000 11156 9,56 4,33 0,99 14,88
2 10000 2312 10000 22312 19,10 8,67 1,99 29,76
4 20000 4624 20000 44624 38,21 17,33 3,98 59,51
8 40000 9248 40000 89248 76,42 34,66 7,96 119,03
16 80000 18496 80000 178496 | 152,84 | 69,32 15,91 238,07

6.1 Inferrers

Firstly, we compare the runtime of the approaches that only generate the schema
of the data as depicted in Figure [6.1] As the dataset size grows, the difference
between the two approaches is more pronounced. In this case, the record-based
approach performs better. It is because the documents in the dataset are rel-
atively flat, and with the increasing depth, the potential of the property-based
approach’s performance may be better exploited.

55,00 51,87
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30,00
25,00
20,00
15,00
10,00

Duration in seconds

0,00 50,00 100,00 150,00 200,00 250,00
Total Size of Documents in MB

—&—Record-Based -@— Property-Based

Figure 6.1: Comparison of the inferrer algorithms
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6.2 Candidate Miners

In the case of comparison of the mining candidates, both naive and optimised
approaches performed similarly, which is the expected result in the case of the
flat structure of the input documents. The results can be seen in Figure [6.2]
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40,97

40,00 ___—

40,83

35,00

30,00

25,00

Duration in seconds

20,00
15,00

10,00
0,00 50,00 100,00 150,00 200,00 250,00

Total Size of Documents in MB

—@— Candidate Miner Optirnised —@— Candidate Miner Naive

Figure 6.2: Comparison of the candidate miner algorithms

6.3 Universal Approach

Next, we compared the universal approach to the successive runs of inferrers and
candidate miners. The universal approach combines schema inference together
with exploring the candidates. The universal approach is principally a combi-
nation of the property based inferrer and the optimised candidate miner with
the possibility of mapping and reducing the input data in a single run. Thus
presumably, the universal approach should outperform the combination. We can
see the result of this hypothesis in Figure [6.3]
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Figure 6.3: Comparison of universal and property-based with candidate miner

Lastly, we compare the universal approach to the combination of the best-
performing ones from the previous sections. We can observe from Figure [6.4] that
the universal approach outperforms the runtime of the other two approaches in
the tested case.
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Figure 6.4: Comparison of universal and record-based with candidate miner
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7. Conclusion

In this thesis, we presented a novel approach to the process of multi-model schema
inference. To the best of our knowledge, our approach is the first one that provides
an insight into the structure of a multi-model dataset and the interconnections be-
tween the data stored in different models. Apart from the considered approaches
for single-model datasets, we presented an approach that is able to process data
from various data models in a unified manner.

First, a unification of existing data models was proposed in this thesis. The
unification is general enough to cover all the popular data models. In addition,
it is also extensible for other data models that were not included in this thesis
(e.g. RDF (Resource Descriptive Framework) or array data model). The unifi-
cation was achieved by building modular wrappers for any datasets, thus being
easily replaceable and extensible. Benefiting from the unification, we were able to
propose general algorithms that process the data in an agnostic way of the data
models behind the data. We also support different variants of database systems
with respect to the knowledge of the schema beforehand; i.e. schema-full vari-
ant, where the schema is predefined by the user, schema-less variant, where the
schema is implicit, and the structure of the data is flexible and schema-mixed,
where only a part of the data has to comply with a rigid schema.

Next, we have presented algorithms that utilise the Apache Spark [§] frame-
work and its MapReduce pattern. Benefiting from the selected framework, the
algorithms are scalable and can run in parallel; hence they perform well when
used over large-scale datasets. We presented two variants of the schema inference
algorithm, which process the data either by the individual records or by the prop-
erties present in those records. Moreover, we were able to extend the algorithms
even further in order to examine the semantics of the data and introduce the
integrity constraints to the resulting schema.

Our approach is able to discover the relationships not only within the single
dataset but also across multiple datasets, where it is expected that the data
are interconnected. Our approach is able to infer the properties that uniquely
identify the kinds of the data, i.e. identifiers. Based on the knowledge of the
identifiers and the analysis of the data, we were able to discover the candidates
of references and redundancies in the data, two principles that are very common
in the scenarios where more than a single dataset is involved in the solution. To
discover the references and redundancies in the data, we have utilised heuristical
techniques and probabilistic data structures. The results of these algorithms are
customisable as the user can control which relationships are relevant and should
be a part of the global schema of the multi-model dataset.

In contrast with the existing single-model approaches, to the best of our knowl-
edge, we are able to extract more information about the data as we introduced
the inference of the integrity constraints and the relationships even for the single-
model data. Moreover, in opposition to the JSON schema inference approaches,
we are able to infer the order of the child properties with the usage of regular
expressions.

The proposed approach was implemented as a proof of concept over the three
selected models, namely relational, document and graph). The results of this the-
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sis were published in a demonstration paper [30] followed by a journal paper [31],
currently under review.

7.1 Future Work

The future work will extend the support for other data models, namely the RDF
data model and array data model. We will also propose more advanced tech-
niques to infer the integrity constraints from the datasets. As we consider only
simple identifiers and references, we will focus on more complex constraints, e.g.
composite identifiers.

In addition, a more experimental evaluation will be performed in order to
compare the proposed approaches regarding not only the size of the dataset but
also the variability or the large depth of the individual records.

Finally, as the implementation was created as a proof of concept, the optimi-
sation and extension will take place to cover the aspects presented in this thesis
fully. We will support more wrappers for the different database systems, enhance
the user experience and provide the result schema in different variants (e.g. UML,
JSON schema).
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A. Attachments

The implementation of the proof of concept (see Chapter [5) is included in the
attached package to this thesis. It consists of two individual implementations,
MM infer BE that contains the implementation of the processing side of the
whole solution and MM _infer FFE that represents a frontend web application of
the solution.
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