

Master’s thesis

Personalised real estate search application

using Semantic Web technologies

Bc. Tomáš Dvořák

Department of Web Engineering

Supervisor: Ing. Milan Dojčinovski, Ph.D.

May 5, 2022

Acknowledgements

I would like to thank my supervisor, Ing. Milan Dojčinovski, PhD, for mean-
ingful feedback and insights at consultations. I also want to thank my partner
and parents for their support in my education.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work for non-
profit purposes only, in any way that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on May 5, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Tomáš Dvořák. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Dvořák, Tomáš. Personalised real estate search application using Semantic
Web technologies. Master’s thesis. Czech Technical University in Prague,
Faculty of Information Technology, 2022.

Abstract

The COVID-19 pandemic led to increasing demand for real estate, mainly for
those in cities rich in civic amenities. Finding the right real estate property
without any domain insights is difficult. Creating a real estate portal with
more than just a base of advertisement listings can require the use of pro-
prietary technologies, which often do not allow storing information for later
usage and thus results in the state known as the vendor locking. This thesis
proposes an alternative way of creating a web-based scalable application using
open source technologies powered by a triple-store database which enables the
potential of the linked data.

Keywords real estate, semantic web, sparql, virtuoso, react, node, nestjs,
open linked data, rest api

vii

Abstrakt

Pandemie COVID-19 vedla ke zvýšeńı poptávky po nemovitostech, předevš́ım
ve městech s bohatou občanskou vybavenost́ı. Naj́ıt vhodnou nemovitost bez
jakýchkoli znalost́ı realitńıho trhu je obt́ıžné. Vytvořeńı realitńıho portálu s
v́ıce než jen základńı inzerćı nab́ıdek může vyžadovat použit́ı proprietárńıch
technologíı, které často neumožňuj́ı ukládáńı informaćı pro pozděǰśı využit́ı,
a tak docháźı ke stavu známému jako proprietárńı uzamčeńı. Tato práce na-
vrhuje alternativńı zp̊usob vytvořeńı škálovatelné webové aplikace s využit́ım
otevřených technologíı založených na databáźıch trojic, která umožňuje využ́ıt
potenciál propojených dat.

Kĺıčová slova nemovitosti, sémantický web, sparql, virtuoso, react, node,
nestjs, otevřená propojená data, rest api

ix

Contents

Introduction 1

1 Background and related work 3
1.1 Existing Real Estate portals . 3

1.1.1 Sreality . 4
1.1.2 Reality IDNES . 7
1.1.3 České Reality . 8
1.1.4 Bezrealitky . 10
1.1.5 Summary . 12

1.2 Semantic web . 13
1.2.1 RDF/RDFS . 13
1.2.2 Linked data . 14
1.2.3 SPARQL . 15

1.3 Relevant datasets . 17
1.3.1 OpenStreetMap . 17
1.3.2 RUIÁN . 18
1.3.3 Wikidata . 18
1.3.4 DBpedia . 19
1.3.5 Summary . 20

2 Requirements 21
2.1 Functional requirements . 21
2.2 Non-Functional requirements 23

3 Relevant technologies 25
3.1 TypeScript . 25
3.2 Virtuoso . 25
3.3 React . 26
3.4 NestJS . 28
3.5 Redis . 30

xi

3.6 Bull . 30
3.7 Monorepo . 31

4 Design 33
4.1 Monorepo architecture . 34
4.2 Data scraping architecture . 35
4.3 Data processing flow . 36
4.4 Data storage and retrieval . 38
4.5 Web application . 40

4.5.1 API Design . 44

5 Implementation 47
5.1 Project setup . 47
5.2 Core packages . 48

5.2.1 Database connection . 49
5.2.2 Entity representation . 50
5.2.3 SPARQL queries . 53

5.3 Scraper . 55
5.4 Analyser . 58
5.5 Web application . 60
5.6 API . 67

5.6.1 Estates module . 68
5.6.2 Places module . 72

6 Testing 75
6.1 Unit Testing . 75
6.2 Integration testing . 77
6.3 E2E Testing . 78
6.4 User Testing . 81

6.4.1 Pre-test . 82
6.4.2 Testing scenarios . 83
6.4.3 Post-test . 86

7 Conclusion 89
7.1 Future work . 90

Bibliography 91

A Web application screenshots 95

B List of Acronyms 101

C List of Source codes 105

D Content of enclosed SDHC Card 113

xii

List of Figures

1.1 List view of adverts located in Dejvice district 6

1.2 Detail view of flat for sale in Vinohrady district 6

1.3 The generic list of adverts for the whole Czech Republic 7

1.4 A detailed view of a flat for sale in the Holesovice district. 8

1.5 List view of adverts located in whole Czech Republic 9

1.6 Detail view of flat for sale in Zlič́ın district 9

1.7 List view of adverts located in Prague 11

1.8 Detail view of flat for sale in Trója district 11

1.9 RDF Triple visualization . 13

3.1 Propagation of state change from VDOM to DOM 26

3.2 Comparison of popularity between the Angular, React and Vue . . 27

3.3 Preview of NestJS modules architecture 28

3.4 Bull Job lifecycle . 31

4.1 Architecture diagram of the project 33

4.2 Diagram capturing packages and their dependencies 34

4.3 Diagram capturing scraper service interface 35

4.4 Communication between the scraper and analyser 36

4.5 Sequence diagram capturing revalidating existing entities 37

4.6 Preview of two core entities . 38

4.7 Preview of main components grouping in a core package. 39

4.8 Wireframe for the homepage of the web application 40

4.9 Wireframe for the search page of the web application 41

4.10 Wireframe for displaying search results 42

4.11 Wireframe for detail page (top) . 43

4.12 Wireframe for detail page (bottom) 43

4.13 Preview of the API endpoints exposed to the web application . . . 45

5.1 Top level overview of project’s directory structure 47

5.2 Directory listing of shared package 48

xiii

5.3 Directory listing of core package 49
5.4 Directory listing of database module 50
5.5 Directory listing of scraper package 55
5.6 Directory listing of analyser package 58
5.7 Directory listing of web package . 60
5.8 Preview of components composition on a listing page 63
5.9 Loading and error state preview 64
5.10 Detail page of real estate (top view) 65
5.11 Preview of history dialog in collapsed and expanded state 65
5.12 Place detail dialog (data from OSM) 66
5.13 Directory listing of api package . 67
5.14 Directory listing of estates module inside api package 68
5.15 Directory listing of places module inside api package 72

6.1 Nielsen’s usability curve depicting the relation between number of
testers and problems found . 81

A.1 A preview of the Homepage . 95
A.2 Preview of the Search page . 96
A.3 Preview of the listing page depicting founded results 97
A.4 Detail page of real estate (top view) 98
A.5 Detail page of real estate (bottom view) 98
A.6 Collapsed view of a real estate history 99
A.7 Expanded view of a real estate history 99
A.8 Place detail - restaurant (OSM & Wikidata) 100
A.9 Place detail - CTU FIT (OSM & Wikidata) 100

xiv

List of Listings

1.1 Description of a book in RDF (N-Triples serialization) 13

1.2 Description of a book in RDF (Turtle serialization) 14

1.3 SPARQL query for retrieving the number of friends 15

5.1 Entity class representation in a code 51

5.2 Transformation to RDF with @Class decorator 52

5.3 Partial RealEstateEntity as a JavaScript object 52

5.4 Conversion from a plain object to RDF 52

5.5 Minimal database repository class representation 53

5.6 Preview of conversion from code to SPARQL 54

5.7 startAll method in CoreService (scraper module) 56

5.8 startBrowsing method in SrealityService (scraper module) . . . 56

5.9 Implementation of the remove estate processor 58

5.10 Implementation of the add estate processor 59

5.11 App.tsx component in web application 61

5.12 Preview of HomePage.tsx component 62

5.13 Preview of real estate DTOs filter. 68

5.14 Controller method for real estate listing 69

5.15 Representation of complex filter in a SPARQL query 70

5.16 SPARQL query for searching city districts 73

5.17 SPARQL query for finding the closest tram stations 73

5.18 SPARQL Federated query for retrieving RUIÁN data based on
the OSM reference . 74

6.1 Verify that the repository will call beforeInsert method on the
subscriber (core package) . 75

6.2 Transform RDF to Class and vice versa (core package) 76

6.3 Parsing the advert from BezRealitky portal (scraper package) . 76

6.4 Verify parsing and ability to add advert to the queue for next
processing (scraper package) 77

6.5 Verify that the processor consumes the job and saves the real
estate to the database (analyser package) 78

xv

List of Figures

6.6 E2E test case to verify functionality of real estate listing page
(web package) . 79

6.7 E2E test case to verify functionality of district autocomplete
input (web package) . 80

C.1 Implementation of RealEstateHistorySubscriber 105
C.2 Defined vocabulary for the project needs in RDFS/OWL 107
C.3 The real estate entity described in RDF in Turtle serialization . 111

xvi

Introduction

Due to the COVID-19 pandemic and increasing inflation, people are worried
about their savings, resulting in increased demand for buying real estate [1, 2].
On the other hand side, this brings a possibility for real estate owners to sell
at higher prices. The situation creates the possibility for creating a real estate
portal that helps possible buyers to find quality property without just going
through lots of listings pages with adverts.

Creating an application like this requires use of multiple sources for data
retrieval as the user does not only want to see text with pictures but wants
to be also able to filter those adverts matching their expectation. This could,
for example, be finding real estate in a given city district with concrete types
of amenities and transport connections. Rather than have to mention all
these facts as part of their listing, real estate owners would prefer it, or might
expect, that the system is able to infer them with given system knowledge.
One can solve this problem with external services, which could later result
in a situation called vendor locking. Another disadvantage is the lack of
possibility to store retrieved data from external providers for subsequent
usage, which forces the application to do expensive range scans and prevents
developers from creating an internal knowledge base. The next issue is the
lack of semantics, meaning that the response data has a strong structure,
which is fine for developers, but it is quite limiting for the target user. Having
open source technologies reduces the impact of vendor lock and, in cases with
flexible but semantic data structures, unlocks possibilities to do queries across
heterogeneous datasets and thus leverage the potential of satisfying more users
than before. The goals of this master thesis are the following:

• analyze existing real estate portals,

• scrape and extract data from selected real estate portals,

• analyze and integrate relevant Open Linked Data sets to provide more
information about scraped data,

1

Introduction

• keeps track of all changes of each real estate,

• design own real estate portal based on semantic web technologies with
regard to highly scalable and modular architecture,

• implement the web application, which provides personalized searching
by a form with advanced search capabilities,

• provide testing procedures for each sub-system,

• evaluate the web application with user testing.

The thesis is organised as follows. The first chapter (Background and re-
lated work) introduces leading real estate portals in the Czech Republic and
discusses their usability and abilities. Portals are then followed by explaining
the main concepts of the Semantic web. The chapter concludes by exploring
relevant open linked datasets. The second chapter (Requirements) defines
the functional and non-functional requirements based on the thesis goals and
identifies limitations of the previously mentioned real estate portals. The
third chapter (Relevant technologies) describes which technologies have
been used and compares them with their alternatives. The fourth chapter
(Design) depicts how the project was designed and structured. The chapter
also describes the communication between the individual parts. It also shows
the wireframes of the web application. The fifth chapter (Implementation)
depicts how given system parts are implemented from modules bootstrapping,
dependency management, and shared database connection up to how data are
received from an API. The last chapter (Evaluation) summarises how the
whole project was tested. The chapter includes a description of unit testing,
integration testing, end to end, and user testing.

2

Chapter 1

Background and related work

This chapter introduces leading real estate portals with their pros and cons
and then explores relevant datasets and methods for creating a portal based
on semantic web technologies.

1.1 Existing Real Estate portals

There are numerous real estate portals in the Czech Republic. In this Section,
we will discuss the leading ones. We will mainly focus on their ability to
search over thousands of adverts with selected preferences. Afterwards, we
will then discuss how many property adverts the portal contains and the
overall usability.

Before focusing on individual portals, it is useful to look at their overall
popularity. The primary metric of popularity is the number of unique visi-
tors; secondly, we should also look at the page views, time per session and
total count of page views. All of those metrics are taken from Gemius com-
pany, the international research company, providing metrics from a webspace
[3]. Gemius collects data about Czech domains for independent organisation
Sdružeńı pro internetový rozvoj [3].

Table 1.1: Data metrics of explored real estate portals from November 2021 [4]

Portal
Real
visitors

Page
views

Total
Visitors

Avg. session
duration

sreality.cz 2 151 977 109 586 858 12 964 040 33.93 min.

reality.idnes.cz 918 611 60 427 816 2 446 583 16.14 min.

bezrealitky.cz 517 777 6 205 789 1379 076 12.12 min.

ceskereality.cz 230 725 2 223 178 494 643 7.88 min.

3

reality.idnes.cz
bezrealitky.cz
ceskereality.cz

1. Background and related work

1.1.1 Sreality

The biggest and leading estate portal in the Czech Republic was founded
by the company Seznam.cz, a.s. The portal contains over 13 000 house sale
adverts and nearly 7000 flat sale adverts across the Czech Republic, where
Prague represents nearly 35% of all houses and around 50% of all flats for
sale. [5]

The web application’s starting point is a narrow page that contains tiles
of links pointing to a complex search form for a given category. Adverts are
thus divided into the following categories:

• flats,

• houses,

• developer projects,

• lands,

• commercial objects,

• others - parking spaces, garages.

The complex search form mainly includes filtering based on estate prop-
erties and allows users to use filters telling more about the surrounding of a
given estate. Estates properties’ filter consists of the following parts.

• Layout multi choice (1+kk, 1+1, 2+kk, 2+1 and so forth).

• Price tag with lower and upper bound.

• State multi choice filter.

• Extra features multi choice for selecting extra features, like having a
balcony, parking space, lift, cellar or garden.

• Energy tag in range A to G.

• Floor/Usable area with lower and upper bound.

• Max advert age via date picker component.

• Floor with lower and upper bound.

• Ownership (private, collective or other type of law form)

• Structure of given house was built of like brick, stone or wood.

• Description search giving text in a free form to match with description
text of a given advert.

4

1.1. Existing Real Estate portals

The filters that make searching through tons of listings pages with adverts
more user friendly take advantage of surrounding information, and those filters
are following.

• Concrete locality selection, one can write a specific street or city dis-
trict. Search is powered by auto-completion and thus is immune to
common misspelling. Users can also specify a toleration radius via the
select box, which contains values varying from 0.5 km up to 25 km. The
range is wide enough to accommodate the whole country and not just
large cities.

• Civic amenities selection is composed of checkboxes representing var-
ious services like Schools, Shops, Parks or types of public transport.
Users can also select the desired radius in which the amenities should
be located. At the moment, the portal contains 13 types.

The whole web application is powered by the Angular framework and is
rendered via CSR method. This statement can be easily verified via looking
at the HTML template and seeing ng- prefixes and comments mentioning
Angular. For map visualization the application uses a widget from mapy.cz

(one of their next product).

5

mapy.cz

1. Background and related work

Figures 1.1 and 1.2 shows preview of list a page and a detail page.

Figure 1.1: List view of adverts located in Dejvice district

Figure 1.2: Detail view of flat for sale in Vinohrady district

6

1.1. Existing Real Estate portals

1.1.2 Reality IDNES

The next leading estate portal with 16 000 flats and nearly 13 000 houses for
sale is one of the applications belonging to MAFRA, a.s. [6]

The application firstly offers a simple search form with options selecting
base category (flat, house, lands, commercial, others) and option for selecting
the desired locality. The user is then able to use the advantage of more
complex filters related to real estate properties. The application preserves
filters in URL and thus can be easily shared. Another feature is marking
adverts which were recently discounted or recently added. On the other hand,
the portal does not offer any additional filter fields. In fact, the given portal
does not offer any filters for near surroundings, in contrast to the Sreality
portal.

An advert’s detail page contains a description with a list of features, fol-
lowed by contact details of the owner or appropriate real estate agent. The
details’ page also includes a small map at the end, after the contact informa-
tion.

For the map visualisation, the Open Street Map widget is being used.
From a technical point of view, the web application is implemented in PHP
and based on Nette framework.

Figures 1.3 and 1.4 shows preview of a list page and a detail page.

Figure 1.3: The generic list of adverts for the whole Czech Republic

7

1. Background and related work

Figure 1.4: A detailed view of a flat for sale in the Holesovice district.

1.1.3 České Reality

This portal has a total of over 7000 flats and nearly 8000 houses for sale [7].
Expect from categories mentioned in previous portals, ČeskéReality.cz also
focuses on advertising cottages. A further difference is the ability to browse
all real estate offices with their listings and overall statistics.

The homepage starts with various tiles of categories that point to the
page, beginning with a search form, followed by a list of filtered estates (by
default, no filters are selected). Estate properties’s filters are similar to the one
mentioned before. The search form also allows filtering via estate surrounding,
but in a relatively different way than the Sreality does. The user can select the
desired public transport type via available checkboxes and specify the location
of the given estate in a given district by available options like - In the centre,
the outskirts of the city, busy part of the city, and so forth. For Prague, the
public transport filter does not contain either tram or subway.

Figures 1.5 and 1.6 shows a preview of the list and the detailed page.

8

1.1. Existing Real Estate portals

Figure 1.5: List view of adverts located in whole Czech Republic

Figure 1.6: Detail view of flat for sale in Zlič́ın district

9

1. Background and related work

1.1.4 Bezrealitky

What makes BezRealitky1 portal different is a statement that with rising usage
of the internet, people are able to sell and buy estates quickly and without
the direct help of a real estate agent. This could create a situation in which
both sides benefit from lower prices/agent fees. The portal states that people,
thanks to using their service, save in total around 2 billion CZK yearly. [8]

Bezrealitky also focuses on those actively looking for a rental. The portal
states that via creating and paying for a Premium profile, messages delivered
to the landlord will be prioritised and should lead to higher chances of making
a deal.

The homepage contains a minimalist form to filter irrelevant adverts quickly.
Below the search form, text buttons with popular search tags are shown. When
the filter is submitted, the result page is displayed, starting with a map on
the left side and listing on the right side, similar to the look of Sreality. On
a listing page, the user can use a more advanced filter offering the following
fields.

• Advert type - Sell, Rent, Roommates.

• Type of estate - Flat, House, Commercial object, Land, Garage, Office,
Atellier, Cottage.

• Price interval - lower and upper bound.

• Layout - 1+kk, 2+kk, ... 7+1.

• Country - Czech Republic or Slovakia followed by selecting a concrete
district.

• Ownership - Private, Collective, General, Other.

• Equipment - fully, partially, none.

• Others - balcony, terrace, garage, lift, cellar, parking.

• Area - lower and upperbound in m2.

The portal shows amenities and the closest public transport stop on an
adverts detail page. For displaying adverts on a map, the Open Street Map
widget is being used.

Figures 1.7 and 1.8 shows preview of list page and a detail page.

1https://www.bezrealitky.cz/

10

https://www.bezrealitky.cz/

1.1. Existing Real Estate portals

Figure 1.7: List view of adverts located in whole Czech Republic

Figure 1.8: Detail view of flat for sale in Trója district

11

1. Background and related work

1.1.5 Summary

We have presented four major real estate portals with relatively high traffic.

From a functionality perspective, the Sreality portal provides the most
filters and is the only portal which provides filtering by social facilities and
public transport within a given distance. Expect from Reality IDNES; portals
provide calculating travel time from the given advert to the user’s chosen
address. On the other hand, when the advert was inserted or updated is
available only on Sreality and České Reality. However, on the Sreality, this
information is influenced by topping2.

From a usability perspective, the Sreality provides the best user expe-
rience. It is the only portal built as a SPA, visitors are automatically linked
with their account on Seznam3 and thus do not need any explicit login. An-
other is the Bezrealitky portal, which uses an elegant and responsive design.
Marketing ads do not bother users as they are inserted between adverts, while
on the detail view, they are in the form of a mortgage calculator. The same
behaviour applies to Sreality. The next portal is Reality IDNES, which also
has a responsive design, but the web contains the ad that wraps around the
entire page content. In addition, that ad is not often related to real estate. Fi-
nally, the České Reality is the only a portal that does not provide a responsive
design (but when the mobile user agent is detected, it redirects the user to
the mobile version of the app) and also contains an ad that wraps around the
entire page content. It also contains ads in the form of images on an advert’s
detail page.

We have described the advantages and disadvantages of particular real
estate portals. A very common situation is that there is no adequate support
for filtering by amenities and public transport, apart from Sreality. The reason
why Sreality has strong support and connection to maps is because of their
related products mapy.cz (maps) and firmy.cz (companies). Those products
can or probably are interconnected and result in a competitive advantage.
It is worth mentioning that using their maps widget (via mapy.cz), which in
some way is being used for a product similar to theirs, results in a violation
of license aggrement4. One can consider using services from Google because
tons of APIs from maps visualisation, places search, geo-coding or finding the
quickest route between two points via chosen transport. The problem remains
the same as with Sreality or any other providers. One cannot5 store their
data; thus, no caching and no data scraping, which means every request must
go through the provider API and thus be billed.

2paying extra fees for displaying the advert on the top of others
3https://seznam.cz/
4https://licence.mapy.cz/
5https://cloud.google.com/maps-platform/terms

12

mapy.cz
firmy.cz
mapy.cz
https://seznam.cz/
https://licence.mapy.cz/
https://cloud.google.com/maps-platform/terms

1.2. Semantic web

The following Section will consider a different approach, using open datasets
with the help of technologies from a field called the Semantic Web to enrich
the overall information about the surroundings of real estate.

1.2 Semantic web

The web we use every day is known as the web of documents. Those documents
are represented via HTML and then read by web browsers. HTML uses tags to
represent a given piece of information, but those tags lack semantics, and thus
one needs to have prior knowledge to understand the context. The Semantic
Web vision is to have a web of data [9], where data have strong semantics
with well-defined vocabularies, which in the ideal case are standardised and
used across multiple sites. This vision supports the main idea that computers
can better understand and reason about the data on the web. Semantic web
are empowered by technologies such as RDF, RDFS, OWL and SPARQL [9].

1.2.1 RDF/RDFS

RDF stands for Resource Describe Framework and is a standard framework
for representing information on the web, which both humans and computers
understand [10]. The core concept is assigning statements about the described
subject. The statement consists of three parts and is called triple [11].

Figure 1.9: RDF Triple visualization

A set of triples is then called RDF Graph. Every described subject is
uniquely identified by a given absolute IRI or blank node6. The predicate is
also represented via a unique IRI. Lastly, the object part is one of the following
types: IRI, literal7 or a blank node.

For a better understanding, consider the following example, where we
briefly describe the source located on ex.com domain with the use of vocabu-
lary called dcterms, which defines the semantic of given predicates.

1 <http://ex.com/book/123> <http://purl.org/dc/terms/title>

2 "The Merry Adventures of Robin Hood"@en .

3

4 <http://ex.com/book/123> <http://purl.org/dc/terms/description>

6Blank node refers to a local identifier used in a given RDF Graph
7Simple value - number, string, boolean

13

1. Background and related work

5 "A book about the wildlife of Robin Hood."@en .

6

7 <http://ex.com/book/123> <http://purl.org/dc/terms/creator>

8 <http://dbpedia.org/resource/Howard_Pyle_Studios> .

Listing 1.1: Description of a book in RDF (N-Triples serialization)

The example provided uses the simplest serialisation called N-Triples. One
can see that the serialisation format is straight forward hence not very efficient
in terms of disk size or parsing. For the following example, which is equal to
the previous one, we will use a serialisation format called Turtle, which is an
extension of the previously mentioned N-Triples [11].

1 PREFIX book: <http://ex.com/book/>

2 PREFIX dcterms: <http://purl.org/dc/terms/>

3

4 book:123

5 dcterms:title "The Merry Adventures of Robin Hood"@en ;

6 dcterms:description "A book about wild life of Robin Hood."@en ;

7 dcterms:creator <http://dbpedia.org/resource/Howard_Pyle_Studios> .

Listing 1.2: Description of a book in RDF (Turtle serialization)

As can be seen, Turtle is a more compact format with the same testimonial
value. To define the meanings of statements in triples, the RDFS comes in.
The RDFS states for Resource description Framework Schema and is used
for providing data-modelling vocabulary for RDF data [12]. RDFS introduces
Classes and Properties where all of the things described by RDF are called
resources [12].

1.2.2 Linked data

In the previous section, we described very briefly how the book could be de-
scribed with dcterms vocabulary. If we look closely at dcterms:creator predi-
cate, the object is not literal but an IRI. In other words, we are using a link
to a given subject. This means that we are creating links between datasets,
leading to a greater knowledge base. If we would specify only the author’s
name, we would only know the name but nothing else. With the link, we can
query or look up the given link, which provides an additional set of triples
about a given subject (the RDF Graph).

Having interlinked data means having richer information across different
knowledge domains. As mentioned above, the desired goal of a Semantic Web
is the ability to understand the data from both a human and computer per-
spective. This ability is provided via a content negotiation mechanism, where
the data format of the resource is provided based on HTTP headers (concretely

14

1.2. Semantic web

via Accept header). For the sake of simplicity, we will consider having the
following source http: // dbpedia .org/ resource/ Howard_ Pyle_ Studios ,
when the web browser will make a request, the following response will be in
an HTML while for a reasoner (bot, scraper) that response will be in Turtle
serialization.

For more complex relations between subjects, one can use OWL because
of its richer vocabulary and ability to restrict property values. [13]

Linked Data principles

Using the following principles supports the overall interconnection of individ-
ual datasets and allows the client to browse through data similarly to how
people browse through the documents on the internet. Given principles are
defined as following: [14]

• use URIs as names for things,

• use HTTP URIs so that people can look up those names,

• when someone looks up a URI, provide useful information using the
standards (RDF, RDFS, SPARQL),

• include links to other URIs so that they can discover additional infor-
mation.

1.2.3 SPARQL

We have shown how one can create statements in triples and describe them
with vocabulary. The important tool, while having data, is the ability to
retrieve query them and thus retrieve meaningful information.

SPARQL is a set of specifications for querying and manipulating RDF
Graphs. Specification of SPARQL is divided into 11 sections [15], where each
section describes different areas. This section showcases the SPARQL Query
language by itself and its important parts.

1 PREFIX foaf: <http://xmlns.com/foaf/0.1/>

2

3 SELECT ?name (COUNT(?friend) AS ?count)

4 FROM <http://ex.com/my-graph>

5 WHERE {

6 ?person foaf:name ?name .

7 OPTIONAL { ?person foaf:knows ?friend } .

8 }

9 GROUP BY ?person ?name

10 ORDER BY ASC(?name) DESC(?count)

Listing 1.3: SPARQL query for retrieving the number of friends

15

http://dbpedia.org/resource/Howard_Pyle_Studios

1. Background and related work

Listing 1.3 returns all persons with the number of people that they know,
sorted ascending by name and then descending by the number of people they
know. It is essential to mention that the WHERE clause is required because
it is the place where one sets the required graph pattern.

As been shown, SPARQL supports aggregation function as SQL does.

11 PREFIX foaf: <http://xmlns.com/foaf/0.1/>

12

13 SELECT ?s (AVG(?age) AS ?avg)

14 FROM <http://ex.com/my-graph>

15 WHERE {

16 ?s foaf:age ?myAge .

17 FILTER(?myAge >= 18) .

18

19 # Usage property paths in version 1.1

20 ?s foaf:knows/foaf:age ?age .

21 }

22 GROUP BY ?s

23 ORDER BY DESC(?avg)

Listing 1.4: SPARQL query for getting average age of friends

Listing 1.4 will, for every person that is at least 18, find the average age
of his friends. The slash inside a query means it is a syntax form for sequence
path matching [16].

The next significant feature of SPARQL is the ability to execute part of
the query on another endpoint. This is fairly useful when having data linking
to other data that are not within the same database8.

24 PREFIX foaf: <http://xmlns.com/foaf/0.1/>

25

26 SELECT DISTINCT ?s (group_concat(DISTINCT ?m;separator=",") as ?m)

27 WHERE {

28 ?s a foaf:Person .

29

30 { SERVICE <http://a.com/sparql> {?s foaf:knows/foaf:mbox ?m } }

31 UNION

32 { SERVICE <http://b.com/sparql> {?s foaf:knows/foaf:mbox ?m } }

33 UNION

34 { SERVICE SILENT <http://ex.com> {?s foaf:knows/foaf:mbox ?m } }

35 }

Listing 1.5: Example of SPAQL Federated Query

8RDF Database stands for the Triple Store

16

1.3. Relevant datasets

Listing 1.5 shows how to get a list of friends (separated with a comma)
from multiple sources. The SILENT keywords say to the executor to continue
with execution; however, the endpoint may or may not work. [17]

Here we have described how queries are constructed and what they are able
to do. It is worth noting that SPARQL queries can be executed by sending an
HTTP request to the given endpoint. The structure of the response is defined
by standard [18].

1.3 Relevant datasets

In Section 1.1.1 we have introduced popular real estate portals in the Czech
Republic. Our findings led to the conclusion that, apart from Sreality no
other portal offers the ability to take into account civic amenities or public
transport.

To take advantage of those missing features, we are looking for datasets
or data sources that bring us the desired enrichment. Those data should be
ideally in RDF and at least partially interlinked.

1.3.1 OpenStreetMap

OpenStreetMap9 (OSM) is an initiative that aims to provide geographic data,
such as street maps. The OSM project is mainly powered by the community.
Every individual can be a contributor and helps the project to have up to date
data. The contribution to the map can be made manually or automatically
via additional tooling. The project states that they have more than a million
volunteers worldwide. The web application of OSM provides the following
features: [19]

• search for places,

• geo-coding and reverse geo-coding,

• query features around given point,

• calculating the route between two points,

• create map screenshots,

• share given map view via a link,

• view detail of given map node,

• download XML representation of the given node.

Each place node has attached a set of properties. The meaning of each
property can be found in the documentation10 page. Note, that even if link

9http://openstreetmap.org/
10https://wiki.openstreetmap.org/

17

http://openstreetmap.org/
https://wiki.openstreetmap.org/

1. Background and related work

is provided, it does not implicitly mean that the target provides related data
in RDF format. The reason for this is simply that the source can be in a non
semantic format, like CSV.

For personalized usage, OSM provides a subportal11 where the entire
datasets or weekly changesets can be downloaded. The dataset dump is pro-
vided in XML and PDB format. For using OSM in a triple store, an RDF
format is needed. The conversion between provided XML/PDB dump and
RDF can be made via a publicly available GitHub project called osm2rdf 12.
Based on the GitHub project owner, the project is maintained by the Univer-
sity of Freiburg. One can download the whole project and run the attached
Docker image, which does the conversion. University also provides weekly
dumps for the whole planet, continent or the particular country. For the
Czech Republic, the dump contains nearly 135.5 million triples. Those triples
are statements about almost every place in the Czech Republic.

The next project aims to provide data from the OSM in RDF is the Linked-
GeoData. Besides the data conversion to the RDF, the project also focuses
on interlinking the data to DBpedia. [20]

The reason why osm2rdf would be preferable over Linkedgeodata is that
the vast majority of links, including those to the ontology, are not working.
Besides that, the latest provided data dump is from 2015.

1.3.2 RUIÁN

The RUIÁN stands for Register of Territorial Identification, Addresses and
Real Estate. It is a public source of addresses and territorial elements, terri-
torial registration units and their interrelationships. [21]

Data browsing can be achieved via web13 application or via an public
SPARQL14 endpoint. The SPARQL endpoint has been created on Charles
University Faculty of Mathematics and Physics as part of the Comsode15

project. However, the SPARQL contains outdated data because the Czech
Geodetic and Cadastral Office do not publish data in the open linked data
form.

The reason why RUIÁN is an ideal candidate for usage is that the dom-
inant part of territorial elements in OSM comes from RUIÁN and thus are
interlinked.

1.3.3 Wikidata

Wikidata stands as a free, multilingual and collaborative database, collecting
structured data of its Wikimedia sister projects. One of the leading data

11https://planet.openstreetmap.org/
12https://github.com/ad-freiburg/osm2rdf
13https://vdp.cuzk.cz/
14https://linked.opendata.cz/sparql
15https://www.comsode.eu

18

https://planet.openstreetmap.org/
https://github.com/ad-freiburg/osm2rdf
https://vdp.cuzk.cz/
https://linked.opendata.cz/sparql
https://www.comsode.eu

1.3. Relevant datasets

sources for Wikidata is Wikipedia. The Wikidata provides its own public
SPARQL endpoint, where queries can be created with the help of the query
builder and thus does not need prior knowledge of Wikidata’s ontology or even
vocabulary. [22, 23]

Every entity in the Wikidata knowledge base is referenced via a persistent
URL. A given entity contains exactly one label, one description, aliases and
statements. Statements describe characteristics of the given entity, internally
they are triples. [22]

Having a persistent URL follows recommended Linked data principles men-
tioned in Section 1.2.2. Wikidata offers for a given entity multiple data for-
mats, whereas related links can be found in a head element in HTML response.

1.3.4 DBpedia

DBpedia is a crowd-sourced community project that creates and provides pub-
lic access to their Open Knowledge Graph by extracting structured information
from Wikipedia. Data is published with Linked Open Data principles and are
available in variety of different formats like HTML, Turtle, N-Triples, JSON-
LD, XML. [24]

The DBpedia similarly as Wikidata provides its own public SPARQL end-
point, where users can execute their queries. Because the data originally
comes from Wikipedia, which is also the source for the Wikidata and because
of the following Linked Open Data principles, one can retrieve facts about the
subject by knowing only the Wikidata identifier. The Listing 1.6 depicts how
to retrieve all triples from DBpedia about the Wikidata entity identified as
Q630893 (Czech National Library of Technology).

36 PREFIX owl: <http://www.w3.org/2002/07/owl#>

37 PREFIX wikidata: <http://www.wikidata.org/entity/>

38

39 SELECT ?s ?p ?o WHERE {

40 ?s ?p ?o .

41 FILTER EXISTS {

42 ?s owl:sameAs wikidata:Q630893

43 }

44 }

Listing 1.6: Retrieve all triples about Czech National Library of Technology
from DBpedia based on Wikidata identifier

19

1. Background and related work

1.3.5 Summary

We have introduced several relevant datasets with various information. The
most important one is the OpenStreetMap, which provides data that can be
converted to RDF via osm2rdf project. The OpenStreetMap has been chosen
because it is periodically updated and can also be used as a map widget on
the web application hence the data which users see on the map corresponds
to those that the application uses for search. More importantly, many places
are imported and linked based on that data analysis. The only disadvantage
is that those data may not be provided in RDF format, but that may change
in the near future. An example would be the RUIÁN, which does not provide
its data in RDF, but there is a SPARQL endpoint from the third-party source
which does. Data from OpenStreetMap often contains links to Wikidata which
provides the public SPARQL endpoint.

The combination of OSM, Wikidata and RUIÁN was chosen for this thesis
mainly for their timeliness and interconnectedness. The DBpedia dataset was
omitted because all of the relevant pieces of information are already within
in OSM or Wikidata. Based on research, there was no other relevant dataset
with such a similar size.

It is worth noting that more datasets relevant to the Czech Republic can
be found on Open data portal16, but not all the datasets are available in RDF.
To explore more datasets not relevant only to the Czech Republic, one can
look up the Linked Open Data Cloud17.

16https://data.gov.cz/
17https://lod-cloud.net/

20

https://data.gov.cz/
https://lod-cloud.net/

Chapter 2

Requirements

A goal of this thesis is to create a real estate portal with advanced search ca-
pabilities based on semantic web technologies. The application should scrape
data from the selected real estate portal introduced in Section 1.1 and leverage
the possibilities with the use of open linked datasets. All parts of the applica-
tion should be modular and thus be able to scale as the data or traffic grows
with the possibilities of future extension. Users should be able to search, filter
and display corresponding real estate adverts via provided UI.

2.1 Functional requirements

Description Priority

F1 Data source: The system will scrape, transform and
store adverts from sreality.cz and bezrealitky.cz.
Only flats for sale located in Prague will be included.

High

F2 Data sync: The system periodically revalidates
stored adverts and propagates appropriate changes to
its own storage. System stores history of each change
that occurs on the given advert.

High

F3 Browsing: The application allows users to browse
through all adverts via list view. Browsing should be
done via a list with pagination. The user should be
able to change the pagination settings.

High

F4 Map: The web application displays results on a map
(via markers) and list. Clicking on a marker or list
item will show the advert detail.

High

21

sreality.cz
bezrealitky.cz

2. Requirements

F5 Detail: A user can display the advert detail. The
detail should contain information about the specific
estate, including a list of local amenities and public
transport nearby.

High

F6 Search: The application should provide personalized
search abilities via the search form. The form should
have, among other things, the following filter fields:

• price range,

• layout type,

• condition,

• house structure,

• energy level,

• ownership form,

• monthly fees,

• floor range,

• usable area range,

• type of sell (auction, classic),

• added no longer than (date picker),

• edited no longer than (date picker),

• maximum amount of remaining annuity (only if
collective ownership is selected).

All form fields should be optional. The search form
should provide filters for amenities and public trans-
port within the user’s desired distance. Last but not
least, the user can filter adverts by providing the city
district.

High

F7 History: A user can see adverts history with high-
lighted changed values over time.

High

F8 Gallery: A user can browse photos of selected advert. Medium

22

2.2. Non-Functional requirements

F9 Redirects: The system must handle external data
source advert change and prevent re-insertion of the
same advert.

Medium

F10 Homepage: A user can see recently added adverts. Low

F11 Homepage: A user can see recently updated adverts. Low

2.2 Non-Functional requirements

Description

N1 The system is implemented as a web platform with frontend and
server services (backend).

N2 The whole system is written in a TypeScript language.

N3 Frontend is a web application powered by React library.

N4 Server related services are based on NestJS framework.

N5 API follows json:api18 specification.

N6 The system should be easily extendable to use data from external
providers.

18https://jsonapi.org/

23

https://jsonapi.org/

Chapter 3

Relevant technologies

This chapter describes a set of technologies being used in the project. The
technologies selection was motivated by having a single programming language
(TypeScript) to be able to share code between sub-packages.

3.1 TypeScript

TypeScript is a strongly typed programming language that builds on top of
JavaScript [25]. The typeScript was created by Microsoft and was firstly an-
nounced in October 2012 [26]. The main reason TypeScript has been adopted
and gained such popularity in recent years is due to increased complexity
of web application leading to increased codebase size. Using strongly typed
languages provides for writing a less error-prone code. [25]

3.2 Virtuoso

Virtuoso is a high-performance and scalable Multi-Model RDBMS, Data Inte-
gration Middleware, Linked Data Deployment, and HTTP Application Server
Platform. [27]

Virtuoso is currently developed as a commercial (version 8.x) and open-
source version (version 7.x). For purposes of this thesis, the open-source ver-
sion was chosen instead of the commercial one. One of the core functionalities
that Virtuoso offers is the RDF Triple Store for storing triples. The Virtu-
oso RDF Triple Store is built on top of the classical relational database and
transforms SPARQL queries into optimized SQL queries. [27]

Triples can be loaded into the triple store via Virtuoso Bulk Loader (pre-
ferred for large RDF dumps) or directly via the SPARQL endpoint, which can
be accessed via HTTP protocol that conforms to the standard.

Developing an application with frequent database queries, one can decide
to use a direct TCP/IP connection via JDBC driver. Executing queries di-

25

3. Relevant technologies

rectly saves additional overhead caused by creating new connections when the
HTTP method is being used.

An important note to consider is the lack of ability to validate incoming
triples to RDF Store, which is not related to Virtuoso by itself, but rather to
all triple stores. One can validate triples via tools implementing the SHACL
standard, but note that the primary focus of the standard is to verify that
the object matches the given shape [28]. Based on comments on the reported
issue19 in the Virtuoso OpenSource Github project, there are no plans to add
SHACL support for the open-source version. Hence it is up to the programmer
to provide integrity constraints. Note that missing integrity constraints do not
implicitly mean that the database engine by itself is not robust. It is mainly
because the Semantic Web is based on the open-world assumption, whereas
SQL is based on the closed-world assumption [29].

3.3 React

React, also known as React.js or ReactJS, is a Javascript library for building
user interfaces for web applications. The main developer of React is Meta,
although the community is very active. [30]

The main pillar of React are reusable components with their own state,
logic, and render function. Every component must return an HTML element,
Javascript primitive or React component. The whole application thus consists
of an n-ary tree structure, where nodes are React components and leaves are
JavaScript primitives or HTML elements. That structure is then captured in
a Virtual DOM. [30]

Figure 3.1: Propagation of state change from VDOM to DOM [31]

19https://github.com/openlink/virtuoso-opensource/issues/660

26

https://github.com/openlink/virtuoso-opensource/issues/660

3.3. React

Figure 3.1 depicts the steps that occur right after the state change in a
given component. When the state of one component changes, the React’s
”diffing” algorithm recalculates how those changes affect the related compo-
nents in a given subtree. Based on those changes, the algorithm will first
propagate changes to the VDOM and then modify the real DOM structure.
This approach minimizes the amount of modifications and thus leads to better
performance.

Comparision

It is worth noting, that for developing modern web applications, one can
choose other libraries or either frameworks. According to the Stack Overflow
survey [32] React is the most popular (40.14 %) library for building web ap-
plication, followed by the Angular (22.96 %) and then by Vue.js (18.97 %).
This statement is supported by total amount of downloads between 2015-2022
(see Figure 3.2).

Figure 3.2: Comparison of popularity between the Angular, React and Vue [33]

Apart from the popularity perspective, we should address some major
differences between these three. First Angular and Vue.js both provide a
templating system on top of HTML [34, 35] whereas React does the templat-
ing in the JavaScript directly, with the JSX and uses one-way binding [30],
whereas Angular and Vue.js supports two-way binding [34, 35]. Angular de-
fines how the project structure should look [34], whereas Vue.js and React
leave this decision up to the developer. In summary, Angular is suitable for
enterprise-grade applications because of its steeper learning curve and mod-
ular system. In comparison between React and Vue, one might prefer to go
with Vue because of no need to learn completely new syntax, whereas one
might choose React with its more complex JSX that is more natural within
the JavaScript environment. Based on the overall popularity, ecosystem and
syntax, the React has been chosen as a core library for the web application.

27

3. Relevant technologies

3.4 NestJS

NestJS stands for a progressive Node.js framework for building efficient, reli-
able and scalable server-side applications written in TypeScript. [36]

The framework provides the out-of-the-box architecture for creating server-
side applications like an API or microservices. For HTTP communication,
the framework, by default uses Express as an HTTP adapter but can also be
configured with Fastify. [36]

Every application based on NestJS follows modular architecture. Each
module contains application domain-specific features. Having an organized
project like this ensures you follow the SOLID principles. Every module is
described by its module definition, which consists of four parts: [36]

• controllers - list of controllers implemented by this module,

• providers - list of services,

• imports - list of external modules used by services/controllers inside
this module,

• exports - list of providers (services) that are allowed to be imported
from other modules.

Because of the following structure, the framework can handle Dependency
Injection and resolves potential circular dependencies. One can observe that
certain parts of the module definition encourage the developer to use MVC
architecture when creating an API.

Figure 3.3: Preview of NestJS modules architecture [37]

28

3.4. NestJS

NestJS provides a set of sub-packages and built-in utilities. The following
list briefly introduces and describes the features that the NestJS comes with.

• Validation/Transformation pipes are built-in framework functions
located in a core package called @nestjs/common. Validation pipes are
compatible with class-transformer and class-validator packages. Those
packages export decorator functions that are later applied to DTO or
Entity properties. When the request comes in, the ValidationPipe and
TransformPipe catch it and transform the request into an instance of a
class that corresponds to a desired DTO or Entity. This means that the
development is spared from doing manual validation in the controller or
other types of services.

• Caching module is contained in a core @nestjs/common package and
provides declarative configuration of cache storage without any direct
manipulation. One can register CacheModule with an in-memory cache,
file system or configure a caching module to be used with one of the
supported databases like Redis/MongoDB/Couchbase or Hazelcast.

• Config module is one of the main modules providing a tiny wrapper
around the dotenv package, which takes care of parsing appropriate .env
files containing environmental variables for a given environment.

• Testing utilities are provided via the @nestjs/testing package, which
exports a set of functions for easier creation of test suites with support
for core framework features, like Dependency injection. The package also
provides functions for mocking parts of the NestJS module dependencies.

• Queue module from @nestjs/bull is a wrapper around bull20 that en-
ables the developer to use Message Queues design pattern and thus split
and scale application into multiple smaller parts.

Alternatives

Besides the NestJS, there are more frameworks that one can use. The most
well known is the Express, which is very lightweight [38], supports middlewares
and provides a routing mechanism. However, in contrast to other frameworks,
it is low-level and thus requires more tooling for a larger application. The
more advanced frameworks are Koa and AdonisJS. Both of them provide more
declarative notation of common tasks imposed on creating the API [39, 40].
In addition to these functionalities, NestJS also provides the more abstract
architecture that shades the programmer of the low-level parts, like manual
parsing of the request body, validation or throwing error responses. The next
major difference is that the only one that uses the Typescript decorators is well

20Redis-based queue for NodeJS

29

3. Relevant technologies

known in other programming languages. Based on the support of decorators
for almost every provided functionality, MVC architecture, built-in support
for request validations, automatic API and rich ecosystem, NestJS was chosen
as the core technology.

3.5 Redis

Redis is an open-source, cross-platform, in-memory data structure store writ-
ten in C language. The advantages include running atomic operations over
data, periodical database dump to a disk or external storage, asynchronous
replication and auto-reconnection. Community and Redis core has developed
a set of client packages that enable the use of Redis from multiple program-
ming languages. [41]

Because of the internal implementation of Redis as being key/value storage
fully running in a memory, the database lookup with a known key is a fast
operation. This is an ideal scenario for use cases like caching or queues.

3.6 Bull

Bull is a Node library that implements a fast and robust queue system based
on Redis. The key concept of Bull is a queue and the base work unit is called
a job. The queue can be created by simply creating an instance of a Bull class
with the name of the queue as a constructor parameter. A queue instance can
be responsible for up to 3 roles. The roles and appropriate responsibilities are
summarized in the following list: [42]

• Producer responsibility is to add new jobs to one or more queues.

• Consumer or sometimes called worker receives jobs from one or more
queues.

• Listener listens to selected events that are being emitted from the Bull
mechanism. Those caught events can be used for logging or statistical
reporting.

From an implementation perspective, giving a specific role to a queue is
registering a callback function via exposed methods from the queue instance.
Queue instances can thus be created multiple times. The queue instance
with an already existing name and without registered events does not create
additional entries in a Redis store [42]. However, it creates a new Redis
connection.

When a job is being created and added to the queue, the job enters the
lifecycle depicted in Figure 3.4.

30

3.7. Monorepo

Figure 3.4: Bull Job lifecycle [42]

The given job can carry additional meta-information, which will influence
its behaviour. One of those properties is prioritization, where jobs with higher
prioritization get processed faster. Insertion of such a job is O(n) [42], where
n stands for a number of jobs currently waiting in the queue. The job can
also be delayed, periodically run or even repeated in case of failure.

3.7 Monorepo

Large applications are often split into smaller pieces which are versioned inside
separate GIT repositories to efficiently split responsibilities between different
teams and thus improve the overall development speed. In the context of
a web application, the common pattern is to split Frontend (UI - the web
application) and Backend (API) into separate repositories.

Data transfer between the web application and the appropriate server is
established via an HTTP connection. Related requests/responses should be
well documented via appropriate technologies. The problem can occur when
API introduces changes in the shape (interface) of the response data. This
would cause a hard brake of the web application. It is also worth mentioning
that those interfaces must be copy-pasted between projects which violate the
DRY principle. The DRY principle is even more violated where multiple
services use the same core parts like database connection.

One of the possibilities to solve these problems is to publish shared parts
of the whole project inside installable packages, which will then be marked
as dependencies in other projects. Having that flow delegates part of the
problem to the package manager system like Yarn or the most popular NPM.
This solution works till the point when test workflow comes in because the
applications are still separate and not forced to use the newer package version
used in production. The next concern includes E2E testing. Adding commits
to the main branch can succeed in the committed project, but the introduced
change can brake the dependent project.

31

3. Relevant technologies

The key concept of Monorepo, also known as shared codebase is having a
single repository where applications (packages) are stored inside. Having a
structured project like this results in having the following benefits: [43]

• Code reusability – Similar functionality or core features can be ab-
stracted into shared libraries and directly included by projects.

• Simplified dependency management – In a multiple repository envi-
ronment individual repositories often depend on same packages or shared
modules. The bundle size in a monorepo can be thus reduced.

• Large-scale refactoring - Since developers have access to the entire
project, refactoring individual modules can be tested and tried out in a
single place.

• Improved testing - Given CI/CD has access to the whole repository
and thus is able to run appropriate tests at one place.

Lerna

The Lerna is a library for managing JavaScript projects with multiple pack-
ages. Main functionality is provided by set of commands for bootstrapping
and running commands across multiple repositories. [44]

Those commands can also serve as a tiny interface for more straightforward
use. For instance, one can start all applications via a single command.

32

Chapter 4

Design

This chapter describes the system’s overall architecture, responsibilities of
individual services and how they communicate together. The design empha-
sises the division of responsibilities according to requirements and the overall
scalability of the system.

Figure 4.1: Architecture diagram of the project

Figure 4.1 depicts the overall system architecture. There are four applica-
tions - Client (Web Application), API, Scraper and Analyser. The only visible
part of the whole system is the API, which provides data for the visualisation
in the Web Application. The API uses cache mechanism backboned by the
Redis. Scrapped data from the real estate portals are sent from the Scraper

33

4. Design

application to the Redis queue, where those jobs are consumed in the Analyser.
The Analyser then validates and saves data to the database.

4.1 Monorepo architecture

Because the whole project will be based on a single programming language
(TypeScript), it is beneficial to keep the whole project inside a mono repository
for simplified core maintenance and to ensure type safety across packages.

Figure 4.2: Diagram capturing packages and their dependencies

• Shared (library) package should contain only interfaces representing
entities, server responses, types and predefined constants. Changing
them influences other parts of the system. For instance, one of the
interfaces can represent the real estate; changing it will influence system
parts.

• Core (library) package should contain functionality purely for server
services, like entities classes, database-related services or utility func-
tions.

• Scraper (application) package is responsible for scraping and revali-
dating data from configured real estate portals. Those processed entities
will be sent via a queue to the analyser application.

• Analyser (application) processes jobs from the queue and makes the
appropriate changes to the database.

34

4.2. Data scraping architecture

• API (application) package re-uses functionalities from the core pack-
age and provides REST API endpoints for the web application (con-
tained in web package).

• Web (application) powered by React provides a user interface for
clients. The package is dependent on share package, which contains
interfaces that the application can expect from an API.

4.2 Data scraping architecture

Source data can come from various sources, which can change over time. Be-
cause of this, the scraping and storing tooling are separated into distinct
packages. The scraper package contains the single orchestrator, which by the
given configuration file loads appropriate sub-services representing the given
portal to scrape data from. This would be done via a single interface that the
concrete service then implements.

Figure 4.3: Diagram capturing scraper interface

The methods depicted in the Figure 4.3 are described as follows:

• startBrowsing() method browses over all adverts for the given plat-
form.

• startRevalidating(url) method must be able to parse a given set of
URLs and throw an error if some of them cannot be processed (for
example, because they are not from the given portal).

• parse(id, url?) method scrapes the concrete advert; every mentioned
portal in Section 1.1 uses an internal identifier for each advert. The
service should be able to compose final URL just with it. The optional
url part is provided for ability to track any changes to the original URL.

35

4. Design

• getIdFromUrl(url) firstly validates if the given URL comes from the
implemented portal and then parses the identificator of the resource.

• isValidUrl(url) validates if given URL belongs to the given portal.
The purpose of this method is mainly for locating responsible service for
given resource.

We described the main interface and purpose of each individual scraper
service. Those services can be easily tested as no dependencies are needed
and because they are just responsible for retrieving data. The implementation
methods can vary based on the implementation of a given portal.

4.3 Data processing flow

The previous section described how the scraper package is structured and what
each sub-module should look like. We did not cover how those tasks should be
orchestrated. For running jobs, the package contains core and cron modules.
The core service behaves as a facade and hides implementation details. One
can give the core module a random URL and it finds out which service knows
how to process it. The whole scraping/revalidating workflow will be started
via a provided cron service, which the scraper should contain.

Figure 4.4: Communication between the scraper and analyser

36

4.3. Data processing flow

Figure 4.5: Sequence diagram capturing revalidating existing entities

Based on the analysis, not all data about specific real estate is contained
in a straightforward parsable way. In other words, some required data can
be contained in a free-text form, and to understand the context, the Natural
Language Processing (NLP) methods shall be used. The key methods of NLP
are the following: [45]

• Tokenization is a task of splitting a given sequence of characters into
smaller pieces, called tokens. Tokens based on context are usually re-
ferred as words. Those tokens are also cleared from a certain character,
such as punctuation.

• Stemming is a process of removing the end of the word (affixes) to
return its root word. This technique does not use vocabulary and thus
returns a word that does not exist.

• Lemmatization is similar to Stemming, but the result is a base of the
word. The Lemmatization process uses vocabulary and morphological
analysis of the word.

37

4. Design

4.4 Data storage and retrieval

Figures 4.4 and 4.5 show that scraped entities go from the scraper module to a
queue and they are then retrieved by processor in analyser package. When the
job arrives, it will be removed. However, when a new estate queue retrieves a
job, it can lead to a new entity creation or an entity update. In other cases a
job will be ignored if there are no changes detected or the advert is a duplicate
of another advert.

First of all, let us see how entities are represented; note the interfaces
definition. Using interfaces prior to classes is easier for integration with web
applications where serialisation is present due to the data transfer over the
network.

Figure 4.6: Preview of two core entities of the project

38

4.4. Data storage and retrieval

Note that we are not using a relational database, and thus, the data will
not be normalised across multiple tables as is a known pattern for relational
databases. In fact, the corresponding data are triples, as shown in Section
1.2.1. The responsibility for storing those data in a given format is up to the
repository service; thus, one can change the storage to another triple store or
even to a relational database, and only the underlying repository must change.

Figure 4.7: Preview of components grouping in a core package.

Modules can be imported as dependencies and configured independently.
Because of the lack of native integrity constraints in triple stores like Virtuoso,
the integrity constraints must be validated inside a responsible repository. It
is the repository because it is the last part that directly sends queries to a
database.

39

4. Design

4.5 Web application

The web application is the only part of the system that the client will directly
access. The design process was done in the form of wireframes. Based on the
requirements defined in Chapter 2 (Requirements), the web application will
contain the following pages:

• Home - introduce the project,

• Search provides search form with filters,

• Listing of adverts contains a listing of real estate with pagination and
an interactive map with markers,

• Detail of advert depicts all properties of the real estate with informa-
tion about its surrounding.

Figure 4.8: Wireframe for the homepage of the web application

The homepage should welcome users and give them a brief description of
the project. The page will then lead the user to visit a search page via the
action button.

40

4.5. Web application

Figure 4.9: Wireframe for the search page of the web application

41

4. Design

Figure 4.10 depicts what the user can expect after submitting the search
form mentioned in Figure 4.9.

The left side of the screen will be filled with an interactive map where each
real estate will be depicted as a marker. After the data loads, the map will be
justified on the centre and reasonably zoomed-in regarding distances between
markers. The user will then be able to scroll, zoom and drag the map in any
direction. Clicking on the marker will result in the display of a detail page.

The right side of the page will contain a list of real estate matching the
user’s filters. The list starts with a header and gives the user the ability to
return to the search page while preserving21 filter parameters. The item then
includes price, title, location, brief description and image carousel with the
ability to scroll to the left and right. Images can vary in height and width,
so the carousel must accommodate that. Finally, the list contains pagination
with a customizable page size. Pagination changes should also be preserved
and therefore be used for link sharing.

Figure 4.10: Wireframe for displaying search results

Figure 4.11 and 4.12 introduces the detail page. The beginning of the page
is in a similar style as a list view depicted in Figure 4.10. The reason for that
is consistency. From a detail page, the user can go back to the search results

21storing as query parameter

42

4.5. Web application

via the link button in the header or via the browser’s go back button. After
the load process, the map should align itself to a selected marker.

The page provides a button to show a modal window with all changes
which have occurred. Figure 4.12 shows how civic amenities and the public
transport are displayed. They should also be clickable, and related data will
be shown in a modal dialog.

Figure 4.11: Wireframe for displaying search results (top)

Figure 4.12: Wireframe for displaying search results (bottom)

43

4. Design

4.5.1 API Design

The api package should serve as an API for the web application. The API will
be designed in REST [46] architectural style. To increase interoperability, the
API will follow json:api specification. The API will not take full advantage
of the specification; hence, it does not use relation conventionally. Although,
the API will not violate any of the specification rules.

The API will reuse exported modules from the core package and build
its own functionality on top of them. In general, the API will contain mod-
ules oriented on resources, where each module consists mainly of controllers
and services, where the controller receives the request and, based on internal
knowledge, delegates the processing to the appropriate service and finally re-
sponds with a JSON22 data format.

Wireframes defined in Section 4.5 implicitly define the requirements for an
API. Those requirements are the following:

• list of real estate based on filters coming from the search form,

• list of a real estate nearby,

• details of the real estate by a unique identifier,

• social facilities and public transport (collectively referred to as POIs)
around given real estate,

• full detail of given POI,

• full history of a given real estate with information about changed fields
in every revision.

Figure 4.13 depicts API endpoints exposed to a web application based on
requirements specified in an enumerated list above.

22concretely in application/vnd.api+json format to match json:api specification

44

4.5. Web application

Figure 4.13: Preview of the API endpoints exposed to the web application

Note that the filters query parameter used on estates endpoint must be
complex enough to cover the needs of the search form. Filters can include
fields related to real estate interface or even virtual ones, like filtering estates
falling under a given city district. The ideal scenario would be to use an
isomorphic serialization on API and the web app.

Following the place detail, endpoint does not contain given fields. That
is because the interface cannot be fully determined, as the source of places
(POIs) will come from OSM or another source with a flexible data format.
Only some common properties are known. In other words, we can be sure
that a tram station and a supermarket have a name, but we also know that
they do not have all properties in common, like opening hours.

45

Chapter 5

Implementation

This chapter covers the implementation of the architecture described in the
Chapter 4 (Design). The chapter describes the monorepo directory structure,
followed by the implementation of shared and core packages because other
packages depend on them. Lastly, the chapter describes the implementation
of each application (Scraper, Analyser, Web and API).

5.1 Project setup

For managing the monorepo architecture, the Lerna package, described in
Section 3.7, has been used. This is mainly because of its ability to track de-
pendencies between packages and thus is able to build a single application
without building the unnecessary ones, the same applies to application boot-
strapping. Figure 5.1 depicts the overall project directory structure.

lerna.json

package.json

libs..non-runnable libraries
shared.....................................used by all applications
core....................................used by server applications

apps...runnable applications
scraper

analyser

api

web

importer.....................set of CLI functions for import/export

Figure 5.1: Top level overview of project’s directory structure

The lerna.json file defines the name of the package manager (npm or yarn),
versioning policies and locations where sub-packages can be found; in our case,

47

5. Implementation

the directories are libs and apps. Lerna needs to know where the packages lie
due to dependency management, symlinking packages and, last but not least,
for running commands across all projects from a single place.

The package.json then contains meta information and mainly a list of
dependencies and scripts. Because of Lerna, scripts can be defined as runnable
across all packages. It helps bootstrap and starts all applications at once.

In addition to the files mentioned above, the root directory also contains
configuration files for code style (Prettier, ESLint). Those files are not de-
scribed because they have no impact on code functionality but instead on
formatting.

Finally, the root directory contains various Dockerfiles (for each project),
Docker Compose (to build and run all containers) and PM2 configuration files.

5.2 Core packages

The shared package provides interfaces and shared constants. The package is
used in all other packages. Figure 5.2 depicts directory structure.

package.json

tsconfig.json

src

index.ts

constants

index.ts

RealEstate.constants.ts

interfaces

index.ts

IPlace.ts

IRealEstate.ts

IRealEstateHistory.ts

ITransport.ts

IPlace.ts

ITransport.ts

IHistory.ts

IWikida.ts

Figure 5.2: Directory listing of shared package

Note the index.ts file in each subdirectory. Their purpose is to choose those
interfaces/constants exposed to the upper layer. Because every directory fol-
lows this rule, the src/index.ts file exports all from underlying sub-directories.
In other words, every directory23 takes the responsibility for the outputs.

23or module, depending on context

48

5.2. Core packages

In contrast with the shared package, the core package provides interfaces,
constants, utility functions and mainly database related services which are
used in other server-side packages. The core package is based on NestJS
framework described in Section 3.4. Following Figure 5.3 depicts the overall24

directory and file structure.

entity

Abstract.entity.ts

RealEstate.entity.ts

RealEstateHistory.entity.ts

decorator

SemanticProperty.decorator.ts

transformer

Entity.transformer.ts. Triples to classes and vice versa
repository

Abstract.repository.ts................provides CRUD operations
constants

namespaces.ts the graphs and vocabularies namespaces
modules

database

real-estate

Figure 5.3: Directory listing of core package

Services or functions that do not depend on NestJS functionalities or
NestJS modules are located outside the modules directory.

5.2.1 Database connection

The database connection module located in the core package is responsible
for providing a database connection to the Virtuoso database. Besides that
service exposes two methods for sending queries. The most important is the
query() method, which takes a SPARQL query as a parameter and executes
it directly on the database and based on query syntax analysis, the method
decides how the response should be formatted. For SELECT/CONSTRUCT
query types, the array of triples is returned. For ASK queries the boolean
value is returned, otherwise null.

We mentioned in Section 3.2 that when an application does frequent queries,
it may be worthwhile to create a direct database connection, which will be
reused across multiple queries. Since there is no nativeVirtuoso driver for
NodeJS, the only option is to use Java bindings, which enables communica-
tion between a JDBC driver and NodeJS application. The @naxmefy/jdbc25

24the not important files are omitted - like style configs or even some index.ts files
25https://github.com/naxmefy/node-jdbc

49

https://github.com/naxmefy/node-jdbc

5. Implementation

DatabaseConnection.module.ts

DatabaseConnection.service.ts

DatabaseConnection.child.ts

IDatabaseConnection.config.ts

types.ts

utils

initJVM.ts

VirtuosoResult.parser.ts

Figure 5.4: Directory listing of core package

package provides a support for a communication with JDBC driver, which is
appropriate because Virtuoso provides a JDBC driver and thus they can be
used together. The only disadvantage of this approach is that the process
needs to start JVM and whenever it crashes, it crashes the whole application.

To prevent the crash of the whole application, the DatabaseConnectionSer-
vice manages a pool of child processes (DatabaseConnectionChild) which are
responsible for the queries execution. Selection of the child process is made by
Round Robin load balancing mechanism [47]. Delegation of the execution is
done in the form of sending messages through the IPC channel, with a unified
interface defined in types.ts file. Once the query inside the message is being
resolved by the child process, it sends a new message with the response back
to the service. In case of a crash of the JVM, for instance, due to the broken
connection with the database or segmentation fault, the child will be termi-
nated and deleted from the pool. Because the child processes are detached
from the parent, they do not crash the application, but only themselves.

The DatabaseConnectionModule is a NestJS module that encapsulates the
services within a module and exports only service for the database connec-
tion. Besides that, the module provides static methods for configuration so
that the dependent package can provide its configuration options (server, user-
name, password, pool size and so forth). The configuration option interface
is contained in IDatabaseConnection.config.ts file. Once the module has been
initialized, it can be used across the application via the dependency injection
mechanism.

5.2.2 Entity representation

To represent entity in a triple-store, we first need to define the vocabulary
with terms that we will use later on. The definition of the project’s vocab-
ulary can be seen in Figure C.2 and the following usage in Figure C.3. The
appropriate HTML documentation for the vocabulary can be generated via

50

5.2. Core packages

ontospy26 package. The generating command and appropriate documentation
are included within the project in the README.md file in the root directory.

To understand how SPARQL queries (in repositories services) are gener-
ated and how the integrity validation is achieved, we need first to look at how
a given entity class is represented.

1 @Class(RealityMakerVocab.RealEstate)
2 @IriPrefix(RealityMakerEntity.RealEstate)
3 class RealEstateEntity extends AbstractEntity implements IRealEstate
4 {
5 @IsString()
6 @Type(() => String)
7 @Property(ns.dcterms.identifier)
8 id: string
9

10 @IsString()
11 @Property(ns.dcterms.title, {
12 language: "cs",
13 })
14 title: string
15

16 @IsNumber()
17 @Min(200_000)
18 @Transform(compose(parseFloat, get('value')))
19 @Property(ns.RealityMakerVocab.price, {
20 datatype: ns.xsd.nonNegativeInteger,
21 })
22 price: number
23

24 @IsString()
25 @Property(ns.schema.address)
26 address: string
27

28 @IsDate()
29 @Type(() => Date)
30 @Property(ns.dcterms.created, {
31 datatype: ns.xsd.dateTime,
32 })
33 createdAt: Date
34 ...
35 }

Listing 5.1: Entity class representation in a code

The code depicted in Listing 5.1 shows how one can achieve integrity con-
straints and semantic enrichment with decorators. First of all, the @IsString,
@IsNumber and @IsDate decorators came from the class-validator package.
Besides the decorator functions, the package contains a set of functions for
transformations. One of those functions is plainToClass, which takes two
parameters; a plain object and a reference to the desired class constructor.
The function then resolves to which metadata are associated with given fields
and does the transformation. If some properties do not match the defined
validation schema, the function throws an error.

26https://github.com/lambdamusic/Ontospy

51

https://github.com/lambdamusic/Ontospy

5. Implementation

Next, the @IriPrefix, @Class and @Property are custom decorators im-
plemented inside the package. Their purpose is to give the class with its
properties a semantic meaning.

The @IriPrefix decorator function is the simplest one. It simply sets the
IRI prefix for the subject. The way the query is built is implemented in the
AbstractEntity. The implementation can be overridden in a subclass, in our
case in RealEstateHistoryEntity. The default behaviour is to take the value of
id property and append it after the prefix.

The @Class decorator function tells which RDF class the object is an
instance of. For instance, RealityMakerVocab.RealEstate is a named node for
http://reality-maker.cz/vocabulary/RealEstatate, then assume that IRI for our
entity is http://reality-maker.cz/entity/c032b866. Based on the usage of the
@Class decorator, the entity transformer will produce the following output.

1 PREFIX realm: <http://reality-maker.cz/vocabulary/>

2 PREFIX entity: <http://reality-maker.cz/entity/>

3

4 entity:c032b866 rdf:type realm:RealEstate .

Listing 5.2: Transformation to RDF with @Class decorator

Finally, the @Property decorator defines the corresponding IRI for a
given class property. Besides it, one can also define the concrete datatype and
language tag. If the data type is not specified, it will be derived based on
the data type of the current value. The responsible transformer knows how
to handle the conversion. To describe the full transformation, let us consider
the following plain object.

1 {
2 id: "c032b866",
3 title: "Prodej bytu 3+1",
4 price: 7500000,
5 address: "Na Klimentce, Praha 6 - Dejvice",
6 createdAt: "2022-03-27T20:00:40.507Z"
7 }

Listing 5.3: Partial RealEstateEntity as a JavaScript object

The plain object will be then via functions from class-transformer package
transformed to a class instance, which then will be via EntityTransformer
converted to RDF in Turtle serialization.

1 PREFIX realm: <http://reality-maker.cz/vocabulary/>

2 PREFIX entity: <http://reality-maker.cz/entity/>

3 PREFIX schema: <http://schema.org/>

4 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

5

52

5.2. Core packages

6 entity:c032b866 rdf:type realm:RealEstate ;

7 dcterms:identifier "c032b866" ;

8 dcterms:title "Prodej bytu 3+1"@cs ;

9 realm:price "7500000"ˆˆxsd:nonNegativeInteger ;

10 schema:address "Na Klimentce, Praha 6 - Dejvice" ;

11 dcterms:created "2022-03-27T20:00:40.507Z"ˆˆxsd:dateTime .

Listing 5.4: Conversion from a plain object to RDF

Note, that the conversion from the plain objects to one of RDF’s is only
done before sending the SPARQL query. Meanwhile they are represented as
class instances which corresponds to interfaces defined in RDF/JS: Data model
specification27.

5.2.3 SPARQL queries

We have just shown how the convertor process works, but the SPARQL queries
must be used for actual modifications to the database. That is achieved via
AbstractRepository class, which provides base CRUD operations. Besides that,
the repository implements the Observer pattern thus other services can register
for listening on changes. This ability is then used for capturing the history of
the advert and is realized by RealEstateHistorySubscriber class inside the core
package.

Because of overall complexity and size of the AbstractRepository, only the
usage will be described. The following Figure (5.5) shows the abbreviated
version of RealEstateRepository28.

1 class RealEstateRepository extends AbstractRepository<RealEstateEntity> {
2 static get GRAPH_NAME(): NamedNode<string> {
3 return rdf.namedNode('http://reality-maker.cz/graph/sell')
4 }
5

6 getEntityClass() {
7 return RealEstateEntity
8 }
9 }

Listing 5.5: Minimal database repository class representation

Note, that we only need to implement two methods to create a complete
CRUD functionality over the entity. That is because the meta information
needed for conversion to RDF are extracted from the appropriate entity class
because of their meta decorators.

Because we extend AbstractRepository we inherit the CRUD functionality.
One can specify which fields want to select, offset, limit, order and mentioned
property filters. These filters will be translated to a SPARQL query in a base

27http://rdf.js.org/data-model-spec/
28RealEstateHistoryRepository is implemented in similar way

53

http://rdf.js.org/data-model-spec/

5. Implementation

repository class. The following examples show how the filters are propagated
to the final SPARQL query.

repository.findAll({

select: ['id', 'price'],

where: [{

key: 'price',

value: 200000,

operator: '>',

}, {

key: 'price',

value: 800000,

operator: '<',

}, {

key: 'energyLevel',

operator: 'IN',

value: ['A', 'B'],

}, {

key: 'hasLift',

operator: '=',

value: true,

}],

order: [{

key: 'price',

desc: true

}],

offset: 10,

limit: 20

})

PREFIX dcterms:

<http://purl.org/dc/terms/>

PREFIX realm:

<http://reality-maker.cz/vocabulary/>

PREFIX entity:

<http://reality-maker.cz/entity/>

PREFIX schema:

<http://schema.org/>

PREFIX xsd:

<http://www.w3.org/2001/XMLSchema#>

SELECT DISTINCT ?id ?price

FROM

<http://reality-maker.cz/graph/sell>

WHERE {

?entity a realm:RealEstate .

?entity dcterms:identifier ?id .

?entity realm:energyLevel ?energyLevel .

?entity realm:price ?price .

?entity realm:hasLift ?hasLift .

FILTER (?price >

"200000"ˆˆxsd:nonNegativeInteger) .

FILTER (?price <

"800000"ˆˆxsd:nonNegativeInteger) .

FILTER (?energyLevel IN ("A", "B")) .

FILTER (?hasLift = "true"ˆˆxsd:boolean)

}

ORDER BY desc(?price)

LIMIT 20 OFFSET 10

Listing 5.6: Preview of conversion from code to SPARQL

Although the Listing 5.6 depicts the core search options, the underlying
mechanism provides even further search capabilities. For instance: selecting
data from multiple graphs, passing custom filter expressions or casting data
types.

54

5.3. Scraper

5.3 Scraper

The scraper package’s responsibility is to scrape data from various real estate
portals and send those results to the Redis queue, where are further processed
by the Analyser. The scraper package supports scraping data from two real
estate portals; Bezrealitky and SReality. Scraping from Bezrealitky is based
on downloading plain HTML files which are then parsed via the node-html-
parser package to create DOM, which is then processed with the help of CSS
selectors. On the other hand, the scraping of sreality.cz is done via sending
requests to a public (but not documented) API. Besides the scraping process,
the package also contains a cron module for periodically starting the scraping
of new adverts and revalidation of existing adverts.

The directory structure is similar to other NestJS applications in this
project and is described in Figure 5.5.

main.ts.......................................application’s entry point
bootstrap.ts............................. initialize NestJS application
app.module.ts

interface

IScraper.ts. defines required interface for scrapers
utils......................................shared utilities for scraping
modules

core. delegates the work to concrete scraper service
core.module.ts

core.service.ts

cron. periodically triggers scraping and data revalidating
sreality

sreality.module.ts

client

detail.processor.ts

list.processor.ts

api.transformer.ts

interfaces

ISrealityApiResponse.ts

bezrealitky

bezrealitky.module.ts

bezrealitky.service.ts

client

constants.ts

detail.processor.ts

list.processor.ts

Figure 5.5: Directory listing of scraper package

55

5. Implementation

When the application starts it first initializes the base app.module.ts, which
imports and sets up the the database connection (via exposed database module
from the core package), cron module and internal core module.

The internal core module encapsulates the behaviour of all scraper services
via a single interface depicted in a Figure 4.3. Once the module has been im-
ported from the core module, it loads its related modules (sreality, bezrealitky),
based on configuration in the .env file. Note that based on the configuration
file, only those explicitly mentioned services will be loaded, which implies that
in the cloud environment, the application can be scaled for each scraper service
independently.

When one wants to parse a single URL, the receiver (CoreService) selects
appropriate service by calling isValidUrl method on each scraper’s services
until one responds with true value, otherwise an error is thrown. This pat-
tern is well known in OOP and leads to better code readibility, because the
information does not have to be hardcoded inside the CoreService. Having
large switch/if statements in a code violates the OCP. The following figures
describe how data are retrieved from scrapers.

1 // scrapes all adverts from all portals
2 async startAll() {
3 await Promise.all(
4 this.services.map(async (scraper: IScraper) => {
5 // asynchronously receive chunk of parsed adverts
6 for await (const chunk of scraper.startBrowsing()) {
7 // send those adverts to a queue
8 await this.addToQueues(chunk)
9 }

10 })
11)
12 }

Listing 5.7: startAll method in CoreService (scraper module)

The previous Listing shows what the scraper’s services are called. The
following Listing shows what the concrete SrealityService scraper looks like.

1 async *startBrowsing() {
2 const pageIterator = browsePagesFactory(CHUNK_SIZE)
3

4 // receive listing of estates from SReality private API
5 for await (const [estatesData, loadedItems, totalCount] of pageIterator()) {
6 // for every received id, get the full detail
7 const parsedEstates = await Promise.all(
8 estatesData.map((estate) => this.parse(estate.hash_id))
9)

10 // pause the execution by returning valid results
11 yield parsedEstates.filter(isEntityToAdd)
12 }
13 }

Listing 5.8: startBrowsing method in SrealityService (scraper module)

56

5.3. Scraper

We just showed the communication flow between the CoreService and SRe-
alityService. Now we will describe in more detail the functions that were used
inside a startBrowsing method.

The browsePagesFactory function creates a generator that, on every
iteration, returns a chunk of data, in JSON format, received from SReality
API, generator end when the last page is processed.

On the other hand, the parse method does the transformation from a
JSON data to a valid IRealEstate or IInvalidRealEstate interface. The method
is internally implemented within two phases:

1. Fetching raw data from Sreality API with retry mechanism.

2. Extracting data to match the IRealEstate interface.

The extraction process starts with iterating over the properties of the
received object. Each property key is normalized29 to improve matching once
the API that we have no control over changes. Every field is then checked,
and if there is an implemented parsing mechanism for it, it is being processed,
otherwise skipped. Once all properties have been processed, the parse will
lookup up to the text fields (like description or price notes) and extract desired
properties via NLP methods (normalization, tokenization and stemming). The
property description is then parsed as follows:

1. remove HTML tags and language abbreviations,

2. split full description into sentences (via regex expression),

3. normalize, tokenize (with stopwords removal) and stem each sentence,

4. lookup if some stemmed words match given pattern (price, monthly fees,
layout, structure), if so, update the parsed result.

The NLP methods are used from node-nlp30 package which has a par-
tial support for the Czech language. The reason why stemming is used over
lemmatization has two reasons: the library does not support lemmatization
but only stemming. The second is that it does not matter as long as we just
parse a text without further sentence analysis.

Once the data are being processed, they are sent to the queue via addTo-
Queues method. The way how they are processed will be described in the
following section.

A similar process applies to a bezrealitky.cz, the only difference is that
the data about adverts are not directly taken from an object (after JSON
conversion) but the DOM via CSS selectors. The way they are then processed
is the same.

29via webalize package
30https://github.com/axa-group/nlp.js

57

https://github.com/axa-group/nlp.js

5. Implementation

5.4 Analyser

The analyser package’s responsibility is to process jobs from the Redis queue,
created by scrapers.

The directory structure is similar to other NestJS applications in this
project and is described in Figure 5.6.

main.ts.......................................application’s entry point
bootstrap.ts............................. initialize NestJS application
app.module.ts

utils

isDuplicate.ts

modules

processor

processor.module.ts

RemoveEstate.processor.ts

NewEstate.processor.ts

Figure 5.6: Directory listing of analyser package

On the application bootstrap, the process first registers two queues, one
for retrieving valid real estate and one for deleting. The Listing 5.9 depicts
how adverts for deletion are consumed from the queue.

1 @Injectable()
2 @Processor(Core.Constant.REAL_ESTATE_REMOVE_QUEUE)
3 class RemoveEstateQueueProcessor {
4 constructor(
5 @Inject(Core.Module.RealEstate.RealEstateRepository)
6 private readonly repository
7) {}
8

9 @Process()
10 async removeEntities(job: Job<IInvalidRealEstate[]>) {
11 const { data } = job
12

13 await Promise.all(
14 data.map(async ({ source }) => {
15 const entity = this.repository.findOne({
16 where: [{
17 key: 'source',
18 value: source,
19 operator: '=',
20 }]
21 })
22 await this.repository.delete(entity)
23 })
24)
25 }
26 }

Listing 5.9: Implementation of the remove estate processor

58

5.4. Analyser

The @Processor decorator is imported from the @nestjs/bull package. Us-
ing that decorator on top of the class defines that this concrete class can listen
to bull events and thus process the jobs. The @Process decorator function de-
fines that the concrete method is responsible for processing the jobs in the
queue, so once the job is inserted into the queue, it will be automatically
processed by internally calling this function.

On the other hand, the NewRealEstateProcessor is more complex as it must
decide whether the received real estate already exists or if it is a duplicate of
another real estate.

1 ...
2 @Process()
3 async processEntities(job: Job<IScraperRealEstate[]>) {
4 // The URL of adverts can change in a time
5 // this method updates them
6 await this.fixUrlChanges(job.data)
7

8 // Convert plain objects to class instances
9 const realEstates: Core.Entity.RealEstateEntity[] = await

10 this.convertToClassInstances(job.data)
11

12 // Process every single estate
13 for (const newEstate of realEstates) {
14 // Check if estate exists or not
15 const dbEstate = await this.findOriginEstate(newEstate)
16

17 if (!dbEstate) {
18 await this.repository.insert(newEstate)
19 continue;
20 }
21

22 const diff = Core.Util.diffEntities(newEstate, dbEstate)
23 if (Object.keys(diff).length > 0) {
24 await this.repository.update({
25 id: dbEstate.id,
26 ...diff,
27 })
28 }
29 }
30 }
31 ...

Listing 5.10: Implementation of the add estate processor

59

5. Implementation

5.5 Web application

The web package provides web application that is the only visible part for the
end user. The web application is built on React UI, the UI components are
build on top of Ant Design31 with state managed by Redux and side effects
(like calling API) handled by Redux-Toolkit Query. For SEO markup, the
React-Helmet library has been used.

The application design is built in a functional matter, rather than object-
oriented, as is the case in this project’s other back-end application. One of
the main reasons for that is that functions can be tree-shakeable32 and thus
reduce the bundle size of the application. Besides that, the pure functions are
easier to test and easier to use and composite together. From the architectural
perspective, the application is built on reusable modules, where each module
is oriented on a specific feature and groups the related functionality. Firstly,
let us explore the collapsed source directory structure.

index.tsx application’s entry point
App.tsx. component for bootstraping core packages
utils. shared utilities functions
config. ... application’s config
constants.. application’s constants
hooks. .. top-level hooks
translations. translations directory
pages......................................components for page views
modules

adverts..........................components for displaying adverts
core..........................core components for app initialization

api......................services for communication with an API
store..............................application state managment
i18n......................services for translations within the app
router.........................shows a page based on URL path
styles...........global CSS resets, external load of CSS modules

error..........................error components and error handling
layout............................layout, header, navigation, footer
network. logic related to network conditions
search.............................search form, autocomplete fields
ui........................pure UI components with no-dependencies

Figure 5.7: Directory listing of web package

31https://ant.design/
32bundler do not bundle code that you do not use

60

https://ant.design/

5.5. Web application

The most crucial component, which is run first, is App.tsx. It simply
initializes the external libraries to allow usage of their components inside an
application.

1 const App = () => (
2 // Initialize application state (store)
3 <Redux store={store}>
4 {/* Connect app router to the store */}
5 <ConnectedRouter history={history}>
6 {/* Monitor and notify user about network state changes */}
7 <NetworkCheck />
8 {/* Initialize styled-components for CSS-in-JS styling */}
9 <StyledComponents>

10 {/* Initialize translation package */}
11 <Lingui>
12 {/* Render page layout */}
13 <PageLayout>
14 {/* Run Router to serve concrete page */}
15 <AppRouter />
16 </PageLayout>
17 </Lingui>
18 </StyledComponents>
19 </ConnectedRouter>
20 </Redux>
21)

Listing 5.11: App.tsx component in web application

Before we further explore the more complex modules, we must stop at the
ui module. The ui module contains only those components which are not
related to any concrete feature, like titles, paragraphs, buttons or images. If
one wants to change the button’s colour, he only wraps the component with
customized styles but does not copy the whole component. Those components
can be then used as a visual representation of the UI system with libraries like
StoryBook.

The AppRouter component from ”modules/core/router” listens for URL
changes and based on that change renders the appropriate page component
from ”pages” directory. The loading is done using the React Suspense feature,
which provides a lazy loading mechanism. For instance, when a user visits
the detail of a real estate, the browser will not download the components used
in a search form and vice versa. Because less data is transferred, less code
is executed, leading to an increase in overall application performance. Note
that the lazyload procedure comes inside the AppRouter component, but the
PageLayout component is rendered before. In other words, the page layout
will be displayed while the appropriate page will be loading.

We place restrictions for page components not to contain any internal
state. They should compose other components to render a given page. The
reason for the above is that changing the state in a top-level component would
cause a re-render to all sub-components.

The following Listing 5.12 shows how the homepage representation looks
from the top-level component.

61

5. Implementation

1 const HomePage = () => (
2 <>
3 {/* SEO related data */}
4 <Helmet>
5 <title>{t({ id: 'homepage.seo.title' })}</title>
6 <meta
7 name="description"
8 content={t({ id: 'homepage.seo.description' })}
9 />

10 </Helmet>
11

12 <ImageHeader
13 src={'/images/header-hp.jpg'}
14 title={<Trans id={'homepage.title'} />}
15 description={<Trans id={'homepage.description'} />}
16 />
17

18 <StyledContent fullWidth={false}>
19 <RecentlyAdded />
20 <RecentlyUpdated />
21 </StyledContent>
22 </>
23)

Listing 5.12: Preview of HomePage.tsx component

One can see that the page component composes the related components
together. Using this principle, one can easily locate the needed component.
Note, the Trans component and t macro function, these come from transla-
tion library called LinguiJS33. Based on the given id property, the library
will find the corresponding translation. Those translations are located in a
”translations” directory. The current language can be easily changed in the
root component and the application will re-render.

The layout module includes components related to Header, Footer and
page grid system. Besides that, the module contains functionality related to
the side panel.

The search module is responsible for all functions related to the search
form and searching in general. The main component is AdvancedSearchForm,
which corresponds to the form in wireframes. Each field shown in the form is
a separate component, containing just the necessary actions to display them-
selves. The search form component composes them together. The field regis-
tration to the form state is automatically done via the internal context mech-
anism provided by Ant Design, which we use underlying input components
from. Names of fields within the form contain very compact naming. Those
namings correspond to IRealEstateEntity properties and thus can be easily
converted to a requested filter expression depicted in Listing 5.6. For filters
with custom comparison (<, >, <=, >=, IN) the square brackets are used, for
instance, price[>=]. Once the filters are validated, they are serialized via qs

33https://lingui.js.org/

62

https://lingui.js.org/

5.5. Web application

library to URL encoded form and sent to the server and propagated to the
browser’s navigation bar (as a search parameter). During the client’s browsing
through the app, thanks to propagating state to the URL, an application can
update accordingly even if the user uses the back button in a browser.

The adverts module is responsible for everything related to displaying in-
formation about adverts, whether a list of them or a single detail. The follow-
ing Figure shows which components are used when the application displays
found real estate.

Figure 5.8: Preview of components composition on a listing page

Note that only the most important parts are shown. The internal imple-
mentation is even more granular. For map visualization, the Leaflet library
was used with external plugin Leaflet.markercluster. This plugin solves a sit-
uation where multiple estates are close to each other. The AdvertCarousel
handles different sizes of images and adapts accordingly to them. The Image
component has a fallback mechanism. If the image fetching fails, it displays a
placeholder. Based on window size, the page will update accordingly, includ-
ing the collapse of a map panel or the list panel.

Once the AdvertsMap component or AdvertsList component mounts, they
trigger a request to the API. The underlying mechanism is smart enough to
recognize that two components want the same data and sends only one request.

63

5. Implementation

When the same request occurs in a short period, it is retrieved from the local
browser cache and no request is sent to the server. Once the advert detail is
opened, the following requests are sent:

• get the advert information,

• get 50 closest real estate near me,

• get the information about places nearby (within 500 meters).

Those requests are processed asynchronously and displayed independently.
All components which display some data provide a loading placeholder. When
such an error occurs, components provide an alert box with the error and Try
again button. The error message is either a general one or a concrete one
received from an API endpoint. Based on the selected language, the API can
further translate an error message to a given language.

Figure 5.9: Loading and error state preview

The following Figures show an advert detail page, which combines re-
sources from scraped data, RUIÁN and OSM. Place detail combines sources
from OSM and Wikidata. Data from OSM serves for displaying names for
civic facilities and public transport. RUIÁN data shows additional informa-
tion about the building that the flat belongs to.

64

5.5. Web application

Figure 5.10: Detail page of real estate (top view)

Figure 5.11: Preview of history dialog in collapsed and expanded state

65

5. Implementation

Figure (5.12) shows what the modal dialog for a place detail looks like. The
received information about a particular place has flexible structure and thus
the web application has specific transformers for these fields (phone number,
website, e-mail addresses, opening hours and so forth). If there is no existing
transformer for a given fact, it will simply render the text information as it
was received. Similar process applies to translations. Data about places are
retrieved from OSM and Wikidata, and they are served from the API.

Figure 5.12: Place detail (OSM & Wikidata)

66

5.6. API

5.6 API

The api package, like other backend services, is based on NestJS. Apart from
other services, API exposes the interface for communication over HTTP. The
API follows json:api standard and is built in a MVC style. Computational
heavy endpoints use caching mechanism backboned by distributed key-value
storage called Redis. The interface provided by an API in the form of HTTP
endpoints is fully documented by OAS and accessible through Swagger UI.

Before deep-diving into an implementation, let us take a moment on the
documentation. The OAS supports two data formats: JSON and YAML [?].
One can first implement an API and then manually create the documentation
scheme in one of the mentioned formats. A different approach is the automatic
generating, such as in case of the NodeJS project, powered by TypeScript deco-
rators applied to entities and DTO classes which are then used to generate the
schema. Note that runtime code cannot use interfaces for schema generation,
as they do not exist in runtime because JavaScript is a dynamically-typed
language. The second approach was chosen and uses helper functions from
@nestjs/swagger library, which later builds the schema on the fly. Another
tooling is located in ”src/swagger” directory. Once the entity’s shape has
changed, it will automatically propagate to the schema without additional
work. The following Figure depicts the overall directory structure of an api
package (for the sake of simplicity, some files have been excluded).

main.ts.......................................application’s entry point
bootstrap.ts............................ initializes NestJS application
app.module.ts

app.controller.ts

filter..error exception filters
decorator...............................custom application decorators
interceptor. request/response transformers
serializer.......................entity convertor to json:api structure
swagger......................utility functions related to documentation
modules

health...................................application’s health check
health.module.ts

health.controller.ts

estates

....

places

....

Figure 5.13: Directory listing of api package

67

5. Implementation

The boostrap.ts besides initializing the application, sets up CORS pol-
icy, Swagger UI documentation, global request/response interceptors, mid-
dlewares, pipes and filters.

During the application initialization, the AppModule registers database
connection (provided from @reality-maker/core package). Besides that, it
initializes every other module mentioned in the directory listing above.

Once the application is fully initialized, the underlying Express server
starts listening on a given port (propagated from environment variables).

5.6.1 Estates module

The estates module realizes endpoints depicted in diagram 4.13. The module
by itself has the following directory structure.

estates.moule.ts

estates.controller.ts.......................retrieves HTTP requets
estates.service.ts

dto. query parameters representation by classes
estateQuery.dto.ts

transformer.....................transform query parameters to classes
estatesFilter.transformer.ts

estatesSort.transformer.ts

validators..................validate received query/search parameters
estatesQuery.validator.ts

serializer. convert entities to json:api format
estate.serializer.ts

estateHistory.serializer.ts

Figure 5.14: Directory listing of estates module inside api package

The most complex processing method of the EstatesController controller
is the method for listing through adverts because it is the endpoint which
receives the data from the search form in the web application. Before we
look at the given method, we first need to understand how we transform and
validate inputs. The core of this information is inside the given DTO, which
is later mentioned inside a controller method.

1 class EstatesQueryDto {
2 @ApiProperty() // expose to OAS schema
3 @ValidateNested() // follow validation rules in sub-class
4 page: PaginationDto
5

6 @ApiProperty() // expose to OAS schema
7 @IsOptional()
8 @EstatesFilterTransformer() // transform before validating
9 @EstatesFilterValidator() // custom validation function

10 filter: IEstatesQueryFilter = {
11 baseFilters: [],

68

5.6. API

12 virtualFilters: {},
13 }
14

15 @ApiProperty()
16 @IsOptional()
17 @EstatesSortTransformer()
18 sort: IEstatesQuerySort = []
19

20 @ApiProperty()
21 @IsOptional()
22 @IsArray()
23 @IsIn(AllowedFields, {
24 each: true,
25 })
26 fields: IEstatesFields = []
27 }

Listing 5.13: Preview of real estate DTOs filter.

1 ...
2 // handles root path of "/estates" resource
3 @Get()
4 // hint OAS generator
5 @ApiProducesJsonApi()
6 @ApiNestedQuery(EstatesQueryDto)
7 public async findAll(@Query() filters: EstatesQueryDto) {
8 // delegate request processing to the service
9 const { response, count } = await this.service.findAll(filters)

10

11 // transform to json:api format
12 return this.serializer.serializeAsync(response, {
13 count,
14 search: filters,
15 })
16 }
17 ...

Listing 5.14: Controller method for real estate listing

As one can see, using TypeScript decorators leads to an elegant and declar-
ative way to extend functionality. Without them, the controller method or
service must handle the validation process. In our case, we tell the frame-
work that we expect the query filter as an instance of EstatesQueryDto class,
and if that conversion is not possible, throw an error34. The internal logic
of how the validation and transformation work is not described because they
it is not crucial for understanding the overall data flow. The only important
thing about them is that they convert the inputs to the object shape, which
can be directly passed to the entity repository. They also split basic filters
related to entity and filters related to social amenities and public transport.
The next part describes how the filters are evaluated and processed in the
EstatesCacheService.

34framework is smart enough to throw BadRequestExpection with the correct status code
(400) rather than InternalServerError with status code 500.

69

5. Implementation

The EstatesCacheService is a wrapper around EstateService, where Es-
tatesCacheService overrides particular methods, where if the cache entry ex-
ists, it returns it. Otherwise, it fallbacks to the base service and then saves the
result to the cache. The dependency injection mechanism resolves to the con-
crete one based on the environmental variable. If the caching is enabled, the
resolution token for EstateService will resolve to EstateCacheService. With
this solution, no “if“ statements are needed, and the code is thus cleaner.

Based on the received filters, the service prepares the filters and sends
two asynchronous requests to the database, one for the data and one for the
count of total results to provide data for pagination on the web. Some filters
take precedence to optimize the query performance. For instance, comparing
the distance between two points or checking if the given point lies in a given
polygon or even multi polygon is much more expensive than comparing if the
flat’s floor area is over 50m2. The subsequent optimization is to split the
query into two parts:

1. retrieve estates matching the filters from graph A,

2. retrieve social facilities and public transport from graph B.

To imagine how such a SPARQL query looks, let us show one. The fol-
lowing list will define our requirements:

• price must be less or equal to 7 500 000, Kč,

• usable area at least 50m2,

• building should be made of brick or stone,

• should lie in a ”Dejvice” district,

• the layout of the flat should be one of the following 2+1 or 2+kk,

• at least one subway stop must be within 500 metres,

• at least one restaurant must be within 250 metres,

Those requirements can be quickly filled inside a search form, sent to
the API, transformed to a given shape, validated, retrieved in a controller,
passed to service and finally composed together in a repository. The following
SPARQL query represents the retrieved filters.

1 SELECT DISTINCT ?id ?usableArea ...
2 WHERE {
3 GRAPH <http://reality-maker.cz/graph/sell> {
4 ?entity a realm:RealEstate ;
5 dcterms:identifier ?id ;
6 realm:usableArea ?usableArea ;

70

5.6. API

7 realm:layout ?layout ;
8 wgs:lat ?mapLat ;
9 wgs:long ?mapLon ;

10 realm:price ?price ;
11 realm:structure ?structure .
12

13 FILTER (?price <= "7500000"ˆˆxsd:nonNegativeInteger)
14 FILTER (?layout IN ("2+1", "2+kk"))
15 FILTER (?structure IN ("Cihlová"@cs, "Kamenná"@cs))
16 FILTER (?usableArea >= "50"ˆˆxsd:positiveInteger)
17

18 # The "Dejvice" district
19 BIND("MULTIPOLYGON(((14.4075807 50.097657...)))"
20 ˆˆvirtrdf:Geometry as ?districtBoundary)
21 BIND(bif:st_point(?mapLon, ?mapLat) as ?mapPoint)
22 FILTER(bif:st_intersects(?districtBoundary, ?mapPoint))
23 }
24

25 GRAPH <http://reality-maker.cz/osm/cze/prague> {
26 # Has restaurant within 250 meters
27 FILTER EXISTS {
28 ?s rdf:type osm:node ;
29 geo:hasGeometry ?geo ;
30 osmt:amenity "restaurant" .
31 MINUS {
32 ?s rdf:type osm:node ;
33 geo:hasGeometry ?geo ;
34 osmt:amenity "restaurant" .
35

36 FILTER(geof:distance(?mapPoint, ?geo, uom:metre) > 250)
37 }
38 }
39

40 # Has subway within 500 meters
41 FILTER EXISTS {
42 ?s rdf:type osm:node ;
43 geo:hasGeometry ?geo ;
44 osmt:public_transport "station" ;
45 osmt:railway "station" ;
46 osmt:subway "yes" .
47

48 MINUS {
49 ?s rdf:type osm:node ;
50 geo:hasGeometry ?geo ;
51 osmt:public_transport "station" ;
52 osmt:railway "station" ;
53 osmt:subway "yes" .
54

55 FILTER(geof:distance(?mapPoint, ?geo, uom:metre) > 500)
56 }
57 }
58 }
59 }
60 LIMIT 10

Listing 5.15: Representation of complex filter in a SPARQL query

71

5. Implementation

Note that the filters used represents only a tiny subset of all possible com-
binations. If one wants to use more filters for public transport or amenities,
another block of expression must be used. Otherwise, they will be executed as
logical OR rather than logical AND. One can note that those MINUS blocks
can be omitted entirely and replaced by a single distance filter; the reason why
they are not is based on the Virtuoso evaluation. Without the MINUS block,
the evaluation time grows exponentially, whereas, with the selected approach,
the time grows linearly. The reason for the slow evaluation is probably be-
cause the variable will be bounded, and thus the FILTER operation will cause
a range scan over the whole graph (internally table).

To support the filtering by the UTF8 characters, one must compile the
latest Virtuoso from the develop branch due to issues with UTF8 encoding in
the stable version. After that, one must set XAnyNormalization = 3 inside
the Virtuoso configuration file and enable geos plugin for supporting geometry
functions. The final configuration file used is located within the project.

Once the query execution is complete, the cache service will create a hash
from the filter object and store it to Redis. The cache entry expiration is set
to one hour and can be easily changed.

Other endpoints are based on similar logic, except they do not receive
filters from the user, apart from query parameters used for selecting a single
entity.

5.6.2 Places module

The places module is structured in a similar fashion as the estates module. The
main responsibility of the places module is to provide information about given
places identified by an OSM identifier. Besides that, the module provides an
endpoint for search by providing just a part of the district’s name.

places.module.ts

places.controller.ts

places.service.ts

places.serializer.ts

utils

amenityTypeConvertor.ts

Figure 5.15: Directory listing of places module inside api package

As mentioned in the Chapter 4 (Design), the places controller exposes two
following endpoints. One for receiving data and the second for retrieving infor-
mation about a given place. Once the request is retrieved inside a controller,
it is then delegated to the PlaceService, the results are then passed to the
PlaceSerializer which converts the output to the json:api data shape.

Following SPARQL query shows how the retrieval of district names is done,
not that the graph name differs. This is due to improving query execution.

72

5.6. API

1 SELECT DISTINCT ?name

2 FROM <http://reality-maker.cz/osm/cze/prague/districts>

3 WHERE {

4 ?iri a osm:relation ;

5 osmt:type "boundary" ;

6 geo:hasGeometry ?placeGeo ;

7 osmt:name ?name .

8

9 FILTER(bif:contains(?name, ’"Dejv*"’))

10 }

11 ORDER BY ?name

Listing 5.16: SPARQL query for searching city districts

The following SPARQL query shows how to retrieve the nearest tram stop
for a given point in a radius of 500 meters. For trams and bus stops, one can
receive duplicated names. That is because there are more platforms with the
same names. This issue is solved by picking the one closer to the given point.

1 SELECT DISTINCT ?iri ?name ?distance ?color

2 FROM <http://reality-maker.cz/osm/cze/prague>

3 WHERE {

4 ?iri a osm:node ;

5 osmt:name ?name ;

6 osmt:tram ?type ;

7 geo:hasGeometry ?geo .

8

9 FILTER(REGEX(?geo, "ˆPOINT"))

10 BIND(bif:st_distance(?geo, bif:st_point(...)) as ?distance)

11 FILTER(?distance < "5.0E-1"ˆˆxsd:double)

12

13 FILTER NOT EXISTS {

14 ?iri2 a osm:node ;

15 osmt:name ?name ;

16 osmt:tram ?type ;

17 geo:hasGeometry ?geo2 .

18

19 FILTER(REGEX(?geo2, "ˆPOINT"))

20 BIND(bif:st_distance(?geo2, bif:st_point(...)) as ?distance2)

21 FILTER(?distance2 < ?distance)

22 }

23 }

24 ORDER BY ?distance

Listing 5.17: SPARQL query for finding the closest tram stations

73

5. Implementation

To retrieve data from RUIÁN, we first need to find the related reference.
The input for this query are coordinates of the real estate.

1 PREFIX ruian: <https://ruian.linked.opendata.cz/slovnı́k/>

2 PREFIX schema: <http://schema.org/>

3 PREFIX osmt: <https://www.openstreetmap.org/wiki/Key>

4

5 SELECT DISTINCT ?flatCount ?floorCount ?district

6 WHERE {

7 ?s rdf:type osm:way ;

8 osmt:ref:ruian:building ?ruian ;

9 geo:hasGeometry ?geoBuilding .

10

11 FILTER(REGEX(?geoBuilding, "ˆMULTIPOLYGON"))

12 FILTER(bif:st_intersects(?geoBuilding, bif:st_point(...)))

13

14 BIND(IRI(CONCAT(

15 ’https://ruian.linked.opendata.cz/zdroj/stavebnı́-objekty/’,

16 ?ruian)) as ?ruianIRI)

17

18 SERVICE <https://ruian.linked.opendata.cz/sparql> {

19 OPTIONAL { ?ruianIRI ruian:početBytů ?flatCount . }

20 OPTIONAL { ?ruianIRI ruian:početPodlažı́ ?floorCount . }

21 OPTIONAL { ?ruianIRI ruian:částObce/schema:name ?district . }

22 }

23 }

Listing 5.18: SPARQL Federated query for retrieving RUIÁN data based on
the OSM reference

The reason for queries to external services being split is due to perfor-
mance. Querying public SPARQL endpoints are not processed within mil-
liseconds but rather in seconds.

74

Chapter 6

Testing

The following Chapter describes the overall testing of the client-side and
server-side of the application. The testing process starts with Automated
testing, where each application or even shared package contains test cases,
which ensures that the given functionality behaves as expected. On the other
hand, the second part of the testing process is based on User testing, which
rather reveals the usability problems. For unit and integration testing, the
Jest [48] library was selected. E2E tests were done by Cypress [49].

6.1 Unit Testing

The idea behind unit testing is to test a small isolated unit, ideally a single
function35. Those units are isolated from the surrounding code by mocking
their external dependencies. [50]

The unit tests were created for all packages except for shared package
(no functionality, just types and enums) and web application (will be tested
later by E2E testing). In every package, unit tests are located within the
given module and their filename has suffix ”*.spec.ts”. The following listings
showcase some of the unit tests used in this project.

1 it('On insert only beforeInsert is called', async () => {
2 subscriber.startListening()
3

4 const spy = jest.spyOn(subscriber, 'beforeInsert').mockImplementation()
5

6 await repository.insert(validRealEstate)
7 expect(spy).toBeCalledTimes(1)
8 })

Listing 6.1: Verify that the repository will call beforeInsert method on the
subscriber (core package)

35In OOP world, just a single method

75

6. Testing

The Listing 6.2 verifies that the valid real estate object can be transformed
to the corresponding RDF and vice versa.

1 it('Construct Class from RDF and vice versa', async () => {
2 const target: RealEstateEntity = fromPlainToEntity(
3 RealEstateEntity,
4 createValidRealEstate()
5)
6 const { id } = target
7

8 const targetRDF = EntityTransformer
9 .toRDF(id, target, RealEstateEntity)

10

11 const targetB = EntityTransformer.fromRDF(RealEstateEntity, targetRDF)
12 const targetBRDF = EntityTransformer.toRDF(id, target, RealEstateEntity)
13

14 expect(targetB).toStrictEqual(target)
15 expect(targetRDF).toStrictEqual(targetBRDF)
16 })

Listing 6.2: Transform RDF to Class and vice versa (core package)

To showcase a test case from a different package, let us show a test case
responsible for parsing the advert from Bezrealitky portal (scraper module).
Because of making unit testing and not E2E test, we mock the server response
and thus verify only the parsing process.

1 it.each(['715060', '694271', '678645', '709843'])('Parsing %s',
2 async (advertId: string) => {
3 // Because of unit testing, mock server response
4 const html = await fs.promises.readFile(
5 path.join(__dirname, `__fixtures__/${ID}.fixture.html`)
6)
7 // Mock response to HTTP call that the parser will trigger
8 fetchMock.mockOnce(html.toString(())
9

10 const estate = await service.parse(advertId)
11

12 // Verify it matches the expected snapshot
13 expect(estate).toBeDefined()
14 expect(estate).toMatchSnapshot({
15 sourceUpdatedAt: expect.any(Date),
16 })
17 }
18)

Listing 6.3: Parsing the advert from BezRealitky portal (scraper package)

In summary, the whole system contains over 60 unit test cases, where
most of them belongs to core and scraper package. The reason why the core
module is highly tested is that other modules directly depend on it as it
contains repositories and database connections.

76

6.2. Integration testing

6.2 Integration testing

In unit tests, we were trying to verify that a small unit of codes behaves as
expected [50]. However, widespread practice is that multiple distinct parts of
the application communicate between themselves, and we want to verify that
the cooperation between those parts is working. Having just unit tests, we
would not know until we go to production that the system as a whole is not
working. On the other hand, having just integration tests, we would know
that the system is broken, but we would not know where. That is why it is
beneficial to have both of them.

In integration tests, we test larger parts of the application that somehow
communicate together [50]. The next crucial part is trying to minimize the
need for mocking dependencies. It can be, for instance, executing SPARQL
queries against the database rather than mocking the responses.

Because of testing bigger parts of functionality which is not always within
a single module, the test cases are located within src/test directory in each
tested package. The filename of those tests has suffix ”.int.spec.ts”.

Listing 6.4 depicts how the single entity is scraped and passed to the queue
for the next processing. At this point, the responsibility of the scraper package
ends. Following processing will be done in analyzer package. Note that we
have to mock the server response for the advert because the advert can be no
longer available - it is either deleted or obsolete (as the property is already
sold). Listing 6.5 depicts the test case of how the analyser package consumes
the jobs from the queue.

1 it('Scrapes single entity and add it to the queue', async () => {
2 const data = await fs.promises.readFile(path.join(
3 __dirname, `../__fixtures__/715060.fixture.html`

4))
5 fetchMock.mockOnce(data.toString())
6

7 // Retrieve queue job created by the CoreService
8 const { added, removed } = await service.revalidateOne(
9 'https://www.bezrealitky.cz/nemovitosti-byty-domy/715060...'

10)
11

12 // Nothing was inserted into the delete queue
13 expect(removed).toBeNull()
14 await expect(removeQueue.count()).resolves.toBe(0)
15

16 // Only one job with one advert has been added to the new queue
17 expect(added).toBeDefined()
18 expect(added.data).toHaveLength(1)
19 await expect(addQueue.count()).resolves.toBe(1)
20

21 await added.remove()
22 })

Listing 6.4: Verify parsing and ability to add advert to the queue for next
processing (scraper package)

77

6. Testing

1 it('Receive and insert a real estate to the database', async () => {
2 // Verify that the database is empty
3 await expect(repository.count()).resolves.toBe(0)
4

5 // Simulate the situation, that somebody adds a job to the queue
6 const job = await addQueue.add([scraperResult], {
7 removeOnComplete: true,
8 removeOnFail: true
9 })

10

11 // Wait until the job is fully consumed by the producer
12 await job.finished()
13

14 // Verify that the real estate has been saved to the database
15 await expect(repository.count()).resolves.toBe(1)
16 })

Listing 6.5: Verify that the processor consumes the job and saves the real
estate to the database (analyser package)

Besides that, the analyzer package contains additional test cases, including
insertion of invalid real estate, handling URL changes, processing jobs from
the delete queue and so forth. As previously mentioned, most of the test cases
are contained within core package, which contains crucial services for working
with the database.

6.3 E2E Testing

End-to-end (E2E) tests the functionality of the whole system and can be done
in several ways. Those tests reveal if the system is working as expected from
the client way, where the client can be a web application or application calling
the exposed API. [50]

Tests were made for the web application (web package) because it tests
the system from various perspectives. First, it tests that the UI of the web
application is working, and secondly, it verifies that the API is working and
provides data in the required shape.

Because the web application is implemented as SPA, we need to run a
headless browser which we can control via JavaScript. This functionality is
provided by Cypress library [49]. Cypress testing syntax is similar to syntax
that Jest uses. Test cases are located in Cypress directory inside the web
package. Besides that the directory contains configuration files and plugins
related to the Cypress.

Test cases cover all pages that the web application provides. Testing aims
to verify that the pages retrieve data from API, react to user inputs and render
all the expected components. For this type of testing, no mocks are present.
Thus the API and web application must be running. The following figures
depict some of the test cases that were used in part of the E2E testing.

78

6.3. E2E Testing

1 describe('Adverts page', () => {
2 beforeEach(() => {
3 // Catch all request to the API for later usage
4 cy.intercept('GET', '**/estates?*').as('getEstates')
5

6 // Visit the listing page
7 cy.visit('/inzeraty/prodej')
8 })
9

10 it('Contains map with markers, list and pagination', () => {
11 // Wait and verify server response
12 cy.wait('@getEstates')
13 .its('response.statusCode')
14 .should('be.oneOf', [200, 304])
15

16 // Verify that application renders adverts to the list
17 cy.get('[data-cy="advert-list-item-card"]')
18 .should('have.length.at.least', 10)
19 .as('cards')
20

21 // Verify that every item has a galery
22 cy.get('@cards')
23 .find('.slick-list')
24 .children()
25 .should('have.length.at.least', 1)
26

27 // Verify that map is present
28 cy.get('[data-cy="map-container"]')
29 .should('have.length', 1)
30 .should('be.visible')
31

32 // Verify that adverts are also displayed on a map
33 cy.get('[data-cy="map-container"]')
34 .should('have.length', 1)
35 .get('.leaflet-marker-icon')
36 .should('have.length.at.least', 10)
37 .should('be.visible')
38

39 // Check that pagination is present
40 cy.get('.ant-list-pagination')
41 .should('have.length', 1)
42 .should('be.visible')
43 })
44 })

Listing 6.6: E2E test case to verify functionality of real estate listing page
(web package)

Besides verifying that specific components are present and rendered with-
out an error, other test cases in a given test file focus on a more granular
functionality. The example can be verifying that changing the URL parame-
ter for page size propagates to the number of results in a list. Next, it verifies
that clicking on the Next page button reloads the page content and modifies
the URL.

79

6. Testing

1 describe('Search page', () => {
2 beforeEach(() => {
3 cy.visit('/vyhledat')
4 })
5

6 it('Search for a given district', () => {
7 cy.get('[data-cy="search-form"]')
8 .should('have.length', 1)
9

10 cy.get('[data-cy="district-autocomplete"]')
11 .should('have.length', 1)
12

13 cy.intercept('GET', '**/district?*')
14 .as('getDistricts')
15

16 cy.get('[data-cy="district-autocomplete"]')
17 .scrollIntoView()
18 .type('Dejvice', {
19 // simulate slow typing
20 delay: 75,
21 })
22

23 cy.wait('@getDistricts')
24 .its('response.statusCode')
25 .should('be.oneOf', [200, 304])
26

27 cy.get('.autocomplete-dropdown')
28 .should('be.visible')
29 .find('.ant-select-item')
30 .should('have.length', 1)
31 .eq(0)
32 .should('have.text', 'Dejvice')
33 })
34 })

Listing 6.7: E2E test case to verify functionality of district autocomplete input
(web package)

The test cases related to a Search page besides the autocomplete feature
verify that one can submit a form without explicitly filling the fields, that
specific fields cannot contain negative values or that a reset button resets the
form to the initial state.

Other pages are tested in the same fashion, starting with checking for all
expected components and then testing the individual functionality. Finally,
the automated tests cover the functionality requirements of the system defined
in Chapter 2 (Requirements).

80

6.4. User Testing

6.4 User Testing

User testing is a process of testing the user interface and functionality of a
given application by allowing real users to perform specific tasks under realistic
conditions [51]. In contrast to automated testing, real users can reveal the
usability issues rather than the technical issues. The testing process of the
web application consisted of three parts:

• Pre-testing questions aim to reveal the background of the tester,
starting with a set of questions about their knowledge, about the prob-
lem that the application solves and also their experience with related
applications.

• User testing is the part where the tester works on given tasks, and the
supervisor takes notes about the user’s progress.

• Post-testing questions capture the testers’ feedback on the system as
a whole. They identify why the tester engaged or disengaged with the
application and tester’s problems with the application.

To determine the ideal number of testers which balances the percentage
of founded usability problems and the number of testers needed, the Nielsen’s
usability curve has been used. Based on the curve depicted in Figure 6.1 we
can observe that for discovering 85% of the usability problems, we only need
5 testers, whereas, for 100%, that number of testers must be 15 [52]. Based
on that claim, five testers were invited. The test group was selected to cover
both young and middle-aged individuals living in Prague.

Figure 6.1: Nielsen’s usability curve depicting the relation between number of
testers and problems found [52]

81

6. Testing

6.4.1 Pre-test

Before the application testing, every tester was briefly introduced to the appli-
cation, and then the tester was asked to answer a set of questions describing
his background. Answers are depicted in Table 6.1.

Table 6.1: Background information of the tester group

Tester A (student) B (student) C D E

Age 24 22 48 39 31

Gender Male Female Male Female Female

Field Economy BME36 IT IT Architecture

Education Bachelor Bachelor A level HND37 Master’s

After the introduction part, the testers were asked the following set of
questions related to real estate:

• Are you interested in the real estate market?

• Have you ever bought or sold real estate?

• Which real estate portals do you know?

• Do you miss any feature on those portals?

• What are the deciding factors when buying real estate?

• If you ever consider buying real estate, would you rather use a real estate
portal or engage a real estate agency?

All of the testers share a passive interest in the real estate market. Two of
them have sold, bought or rented at least one flat, and they occasionally visit
real estate portals to monitor price trends.

One of the testers confirmed missing a filter for adverts without exactly
specified price38 while another tester reported missing more filters about social
facilities. The rest of the testers found the set-up satisfactory. All respondents
stated that they know SReality and BezRealitky, two of them also named M&M
reality39 and Reality IDNES and one named České Reality and RealityMIX40.

Concerning the deciding factors, everyone agreed that the most important
part is the location with wide availability of civic amenities, followed by pub-
lic transport. One also mentioned the importance of a number of flats in the

38some real estate agencies provide the price only to those who call
39https://www.mmreality.cz/
40https://realitymix.cz/

82

https://www.mmreality.cz/
https://realitymix.cz/

6.4. User Testing

building, which is supposedly not provided in any well known real estate por-
tal. Those who never bought a real estate would rather use real estate agency
services, whereas those who already bought one would rather do it themselves.

6.4.2 Testing scenarios

The actual testing is done in such a way that the task given to the testers
was able to be completed without any additional help or hint. During the ex-
ecution of the given scenario, notes were taken. Three testers used their own
computers while two used the provided laptop. For this user testing session,
the web application has been deployed to the private server.

Table 6.2: Scenario A - Find specific real estate

Description Verify the usability of the search form and listing page

Assignment
Find and select one of real estate in “Vinohrady“ district
with subway within 350m2, price bellow 10 000 000 CZK,
“Private“ ownership and is situated on the second floor.

Expected
behaviour

1. use the Action button on the homepage or link in the
menu,

2. fill a search form,

3. click on one of the adverts in the list.

Observation: Testers successfully completed the task without any prob-
lems. Two of them found it challenging to fill the floor field to match only
those on a second floor.

Performed changes: Based on the issue identified above, the placehold-
ers were added to the search’s form fields.

83

6. Testing

Table 6.3: Scenario B - Find specific real estate

Description
Verify the visibility of clickable place details’ links inside the
advert detail

Assignment
Find real estate with a restaurant within 500 meters in the
“Dejvice“ district and show the detail of such a restaurant.

Expected
behaviour

1. fill a search form,

2. click on one of the adverts in the list,

3. scroll down to the “Restaurants“ subsection and click on
one of the provided restaurants’ names.

Observation: The testers successfully completed the task without any prob-
lems, except for one tester, who tried to search the restaurant name on the
map without going into detail. Eventually, the tester was asked to find a dif-
ferent way and after a while, managed to locate it in the advert’s detail page.

Performed changes: Based on one tester’s different approach, the maximal
possible zoom settings of the map have been changed.

Table 6.4: Scenario C - Filter editing

Description
Verify that tester navigates through the application via pro-
vided UI elements.

Assignment
Find real estate with a floor area over 75m2 in the “Žižkov“
district. Afterwards, change filters to select only those that
have a lift.

Expected
behaviour

1. click on a search button in the navigation or on the home-
page’s header,

2. fill the form fields,

3. submit the form,

4. click “Edit filters“ button in the list’s header,

5. update the form fields and submit the form again.

84

6.4. User Testing

Observation: Three out of five testers clicked on the expected “Edit filters“
button, whereas two of them used the web browser’s back button. Besides
that, one tester complained about not being able to click on the text but had
to click on the back arrow instead.

Performed changes: Because the web application is aware of the web
browser’s back button, only the text field has been changed to be also clickable.

Table 6.5: Scenario D - Pagination and browsing

Description Verify that the pagination and its settings are visible.

Assignment
Show list of real estate and go to the next page, then change
the pagination size to 20.

Expected
behaviour

1. click on “Listing of adverts“ item in the main menu,

2. click on the next page button in the pagination section,

3. wait for the page to load,

4. click to pagination’s size dropdown,

5. select a given page size.

Observation: Testers successfully completed the task in an expected way,
except for a little deflection, where one tester went to the listing page through
the search form instead of from the main menu, but the result was the same.
After that, one of the testers tried to edit filters and noted that his selected
page size was not carried through across the filter’s changes.

Performed changes: The state mechanism has been updated to preserve
the user’s selected page size.

85

6. Testing

Table 6.6: Scenario E - History of a real estate

Description
Verify that the “Show history“ button on the adverts’ detail
is visible and highlighted changes are easy to understand.

Assignment
Select one of the recently updated adverts and investigate
the changes made to the advert.

Expected
behaviour

1. scroll the page to the section “Recently updated“,

2. select one of the listed adverts,

3. click on the “Show history“ button,

4. collapse the latest version’s changes,

5. note the changed properties.

Observation: Testers completed the task without any problems. However,
one tester compared the changed fields with those on the advert’s page because
he opened the first revision with the initial version instead of the last revision.
Thanks to that, the tester revealed that the price information is missing from
the list of advert’s properties. A very surprising finding was that nobody read
the short explanation about how the history dialogue works.

Performed changes: The advert’s price has also been added to the advert’s
properties table.

6.4.3 Post-test

After the completion of the mentioned scenarios, testers were given the fol-
lowing questions:

• Rate the functionality aspect on a scale of 1 (worst) to 10 (best).

• Rate the visual aspect on a scale of 1 (worst) to 10 (best).

• Rate the usability aspect on a scale of 1 (worst) to 10 (best).

• How would you describe your overall experience with the application?

• What did you like the most?

• What did you like at least?

Table 6.7 depicts responses to first three questions. Testers were overly
satisfied with the providing functionality, design and also with the usability.

86

6.4. User Testing

Table 6.7: Usability post-test rating evaluation

Tester A B C D E Average

Functionality 10 9 9 10 10 9.6

Design 10 10 10 10 9 9.8

Usability 9 9 10 10 9 9.4

Average 9.7 9.3 9.7 10.0 9.3

They stated that the application is fast and reliable, and the design is pleas-
ing. One tester especially highlighted that his most liked functionality was the
auto-scrolling41. Others mentioned the possibility of filtering by many types
of civic amenities and the ability to display their detail with additional infor-
mation. Besides the civic amenities, testers appreciated the advert’s history
feature, which they stated is especially useful for monitoring price changes.
The following issues were reported besides the positive feedback:

• cannot zoom the map to the level where one can read the names of the
map’s objects,

• pagination setting is not preserved after filters change,

• missing placeholders in a search form,

• missing advert’s price in a property description,

• text overlaps on a smaller screen.

Those issues were, after the testing session, fixed and deployed. Overall,
user testing has been beneficial as it leads to application improvements.

41Whenever the user hovers the mouse over the marker on the map, the application will
scroll down to the advert detail in a list

87

Chapter 7

Conclusion

The goal of this thesis was to create a real estate portal capable of pro-
viding advanced search abilities with the use of semantic web tech-
nologies and open linked datasets. The theme was driven by the increase
in demand for real estate as result of the COVID-19 pandemic and rising in-
flation. As the existing real estate portals provide no or limited information
about the property’s environment, people are forced to browse through vari-
ous adverts’ listings without the ability of more focused personalized searching
options (such as civic amenities, public transport etc); for those they have to
search separately.

The thesis started with the analysis of a selection of the most popular real
estate portals in the Czech Republic and relevant datasets. That was followed
by the design and implementation of the web application, which retrieves data
from REST API that combines various data sources, starting with extracted
data from real estate portals followed by data from OpenStreetMap, Wikidata
and RUIÁN. Besides the data extraction, the system periodically monitors
new adverts and tracks the changes made to existing extracted details. Those
changes are then visible in the web application, where the user can browse
through the history. Beyond the scope of the assignment, the application was
deployed to the server and made available to the testers.

At the moment, the application provides more search possibilities in terms
of comparison with mentioned real estate portals, especially in terms of civic
amenities. In terms of the potential production use, the triple-store database
would need much more system resources42, because all of the expensive geo-
metric operations are done on the fly or by additional SPARQL query opti-
mization.

The project architecture is designed as a group of independent and high-
scalable applications, ready for running in the Cloud environment. The code-
base is purely written purely in TypeScript and uses the Virtuoso triple-store

42especially more than the average laptop offers

89

7. Conclusion

for data storage. The project code is managed as a monorepo, where each ap-
plication uses the functionality from the shared package. The system and its
sub-packages are tested via automated tests - unit, integration and end-to-end
tests followed by user testing. Last but not least, all system parts are fully
Dockerized. Besides Docker, the application can be run with the preconfigured
PM2 process manager.

During the time spent on this thesis, eight bugs43 were found in the Virtu-
oso database. Some of them influence the querying style while others impact
the performance or even the matched results. Besides that, other minor issues
were reported to the other related libraries and projects.

7.1 Future work

Based on storing all data in RDF there are numerous ways how to query
them. One can use their datasets with links to Wikidata, DBpedia or Open-
StreetMap and thus retrieve data about real estate. For instance, one can ask
questions like: “Give me all real estate within one kilometre of the football sta-
dium, which has more than 500 seats and where at least one team plays with
a goalkeeper not born in the Czech Republic, but in a country with the popu-
lation of over 10 million“. The query will be complex, but one of the future
features can be providing the possibility to enter or even generate SPARQL
queries while preserving the provided user interface. Another feature could be
scraping data from more real estate portals and removing the restriction on
scraping only flats in Prague, which was done due to performance issues.

In addition to further expanding datasets and performance, the web ap-
plication could offer the following features:

• user registration with the ability to save favourite adverts,

• notify users about changes to their selected real estate,

• provide subscription for newly listed adverts,

• calculate travel distance from given real estate to the user-defined place,

• include other forms of criteria such as rent or roommate.

43https://github.com/openlink/virtuoso-opensource/issues?q=is:issue+author:

Tomas2D+

90

https://github.com/openlink/virtuoso-opensource/issues?q=is:issue+author:Tomas2D+

Bibliography

[1] Výročńı zpráva ČNB za rok 2020. [online], Apr 2021, [visited on 2022-
04-02]. Available from: https://www.cnb.cz/export/sites/cnb/cs/o_

cnb/.galleries/hospodareni/vyrocni_zpravy/download/vyrocni_

zprava_2020.pdf

[2] Výročńı zpráva ČNB za rok 2021. [online], Apr 2022, [visited on 2022-
04-02]. Available from: https://www.cnb.cz/export/sites/cnb/cs/o_

cnb/.galleries/hospodareni/vyrocni_zpravy/download/vyrocni_

zprava_2021.pdf

[3] Frequently asked question. [online], 2021, [visited on 2022-02-28]. Avail-
able from: http://www.cz.gemius.com/caste-dotazy.html

[4] Czech - Gemius Rating. 2021, [visited on 2022-02-28]. Available from:
https://rating.gemius.com/cz/tree/2

[5] O službě Sreality.cz. [online], [visited on 2022-03-02]. Available from:
https://napoveda.seznam.cz/cz/sreality/o-sluzbe-sreality.cz/

[6] MAFRA, a. [online], [visited on 2022-03-02]. Available from: https://

reality.idnes.cz/

[7] INTERNET, [online], [visited on 2022-03-03]. Available from: https:

//www.ceskereality.cz/

[8] Bezrealitky. O portálu Bezrealitky. [online], [visited on 2022-03-04]. Avail-
able from: https://www.bezrealitky.cz/informace/o-nas

[9] W3C. Semantic Web. [online], [visited on 2022-03-10]. Available from:
https://www.w3.org/standards/semanticweb/

[10] W3C. RDF 1.1 Concepts and Abstract Syntax. [online], [visited on 2022-
03-12]. Available from: https://www.w3.org/TR/rdf11-concepts/

91

https://www.cnb.cz/export/sites/cnb/cs/o_cnb/.galleries/hospodareni/vyrocni_zpravy/download/vyrocni_zprava_2020.pdf
https://www.cnb.cz/export/sites/cnb/cs/o_cnb/.galleries/hospodareni/vyrocni_zpravy/download/vyrocni_zprava_2021.pdf
http://www.cz.gemius.com/caste-dotazy.html
https://rating.gemius.com/cz/tree/2
https://napoveda.seznam.cz/cz/sreality/o-sluzbe-sreality.cz/
https://reality.idnes.cz/
https://www.ceskereality.cz/
https://www.bezrealitky.cz/informace/o-nas
https://www.w3.org/standards/semanticweb/
https://www.w3.org/TR/rdf11-concepts/

Bibliography

[11] W3C. RDF 1.1 Primer. [online], Jun 2014, [visited on 2022-03-15]. Avail-
able from: https://www.w3.org/TR/rdf11-primer/#section-triple

[12] W3C. RDF Schema 1.1. [online], Feb 2014, [visited on 2022-03-16]. Avail-
able from: https://www.w3.org/TR/rdf-schema/

[13] W3C. OWL 2 Web Ontology Language. [online], Dec 2012, [visited on
2022-03-20]. Available from: https://www.w3.org/TR/owl-overview/

[14] Berners-Lee, T. Linked data. [online], Jul 2006, [visited on 2022-03-24].
Available from: https://www.w3.org/DesignIssues/LinkedData.html

[15] W3C. SPARQL 1.1 Overview. [online], Mar 2006, [visited on 2022-03-26].
Available from: https://www.w3.org/TR/sparql11-overview/

[16] W3C. SPARQL 1.1 Query Language. Mar 2013, [visited on 2022-03-27].
Available from: https://www.w3.org/TR/sparql11-query

[17] W3C. SPARQL 1.1 Federated Query. [online], Mar 2013, [visited on 2022-
03-27]. Available from: https://www.w3.org/TR/sparql11-federated-

query/

[18] W3C. SPARQL 1.1 Protocol. [online], Mar 2013, [visited on 2022-03-18].
Available from: https://www.w3.org/TR/sparql11-protocol/

[19] Foundation, O. About OpenStreetMap. [online], [visited on 2022-03-28].
Available from: https://www.openstreetmap.org/about

[20] LinkedGeoData. [online], [visited on 2022-03-29]. Available from: http:

//linkedgeodata.org/

[21] Registr územńı identifikace, Adres a nemovitost́ı (RÚIAN). [online], 2022,
[visited on 2022-04-01]. Available from: https://www.cuzk.cz/ruian/

[22] Wikidata. Dec 2019, [visited on 2022-04-01]. Available from: https://

www.wikidata.org/wiki/Wikidata:Main_Page

[23] Sahoo, N.; Abdulhamid, A.; et al. Synchronising Wikidata and
Wikipedia: An outreachy project. [online], Oct 2021, [visited on 2022-
04-01]. Available from: https://diff.wikimedia.org/2021/10/01/

synchronising-wikidata-and-wikipedia-an-outreachy-project/

[24] About Dbpedia. [online], Mar 2021, [visited on 2022-04-02]. Available
from: https://www.dbpedia.org/about/

[25] JavaScript with syntax for types. [online], [visited on 2022-04-03]. Avail-
able from: https://www.typescriptlang.org/

92

https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/owl-overview/
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/TR/sparql11-overview/
https://www.w3.org/TR/sparql11-query
https://www.w3.org/TR/sparql11-federated-query/
https://www.w3.org/TR/sparql11-protocol/
https://www.openstreetmap.org/about
http://linkedgeodata.org/
https://www.cuzk.cz/ruian/
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://diff.wikimedia.org/2021/10/01/synchronising-wikidata-and-wikipedia-an-outreachy-project/
https://www.dbpedia.org/about/
https://www.typescriptlang.org/

Bibliography

[26] Turner, J. Announcing typescript 1.0. [online], Feb 2019, [visited on 2022-
04-03]. Available from: https://devblogs.microsoft.com/typescript/

announcing-typescript-1-0/

[27] RDF Triple Store FAQ. [online], [visited on 2022-04-04]. Available from:
http://vos.openlinksw.com/owiki/wiki/VOS/VOSRDFFAQ

[28] W3C. Shapes Constraint Language (SHACL). [online], Jul 2017, [visited
on 2022-04-04]. Available from: https://www.w3.org/TR/shacl/

[29] Sequeda, J. Introduction to: Open world assumption vs closed world
assumption. [online], Jan 2015, [visited on 2022-04-04]. Available
from: https://www.dataversity.net/introduction-to-open-world-

assumption-vs-closed-world-assumption/

[30] Meta Platforms, I. React – a JavaScript library for building user in-
terfaces. [online], [visited on 2022-04-01]. Available from: https://

reactjs.org/

[31] Learning React Native. [online], 2020, [visited on 2022-04-05]. Avail-
able from: https://www.oreilly.com/library/view/learning-react-

native/9781491929049/ch02.html

[32] Inc, S. E. Stack overflow developer survey 2021. [online], [visited on 2022-
04-05]. Available from: https://insights.stackoverflow.com/survey/

2021

[33] NPM Trends - Angular vs React vs Vue. [online], [visited on 2022-04-
05]. Available from: https://www.npmtrends.com/angular-vs-react-

vs-vue

[34] Angular - the modern web developer’s platform. [online], [visited on 2022-
04-05]. Available from: https://angular.io/

[35] Vue.js - the progressive javascript framework. [online], [visited on 2022-
04-05]. Available from: https://vuejs.org/

[36] Documentation: Nestjs - a progressive node.js framework. [online], [vis-
ited on 2022-04-06]. Available from: https://docs.nestjs.com/

[37] Documentation: Nestjs - a progressive node.js framework. [online], [vis-
ited on 2022-04-06]. Available from: https://docs.nestjs.com/modules

[38] Node.js web application framework. [online], [visited on 2022-04-06].
Available from: https://expressjs.com/

[39] Introduction. [online], [visited on 2022-04-06]. Available from: https:

//koajs.com/

93

https://devblogs.microsoft.com/typescript/announcing-typescript-1-0/
http://vos.openlinksw.com/owiki/wiki/VOS/VOSRDFFAQ
https://www.w3.org/TR/shacl/
https://www.dataversity.net/introduction-to-open-world-assumption-vs-closed-world-assumption/
https://reactjs.org/
https://www.oreilly.com/library/view/learning-react-native/9781491929049/ch02.html
https://insights.stackoverflow.com/survey/2021
https://www.npmtrends.com/angular-vs-react-vs-vue
https://angular.io/
https://vuejs.org/
https://docs.nestjs.com/
https://docs.nestjs.com/modules
https://expressjs.com/
https://koajs.com/

Bibliography

[40] A fully featured web framework for Node.js. [online], [visited on 2022-04-
06]. Available from: https://adonisjs.com/

[41] Ltd., R. Introduction to Redis. [visited on 2022-04-08]. Available from:
https://redis.io/docs/about/

[42] OptimalBits. Bull’s documentation. [online], [visited on 2022-04-08].
Available from: https://optimalbits.github.io/bull/

[43] Rachel Potvin, J. L. Why Google stores billions of lines of code in a single
repository. [online], Jul 2016, [visited on 2022-04-09]. Available from:
https://cacm.acm.org/magazines/2016/7/204032-why-google-

stores-billions-of-lines-of-code-in-a-single-repository/

fulltext

[44] Lerna - A tool for managing JavaScript projects with multiple packages.
2020, [visited on 2022-04-09]. Available from: https://lerna.js.org/

[45] Manning, C. D.; Raghavan, P.; et al. Introduction to information re-
trieval. Cambridge University Press, 2018.

[46] Fielding, R. T. Fielding dissertation: Chapter 5: Representa-
tional state transfer (rest). 2000, [visited on 2022-04-11]. Avail-
able from: https://www.ics.uci.edu/˜fielding/pubs/dissertation/

rest_arch_style.htm

[47] Using round robin for simple load balancing. [online], Mar 2022, [visited
on 2022-04-13]. Available from: https://www.nginx.com/resources/

glossary/round-robin-load-balancing/

[48] Jest - delightful JavaScript testing. 2016, [visited on 2022-04-17]. Avail-
able from: https://jestjs.io/

[49] JavaScript end to end testing framework. [online], 2022, [visited on 2022-
04-17]. Available from: https://www.cypress.io/

[50] Pittet, S. The different types of testing in software. [visited on
2022-04-17]. Available from: https://www.atlassian.com/continuous-

delivery/software-testing/types-of-software-testing

[51] Hotjar. What is usability testing? (and what it isn’t). [online], Feb
2022, [visited on 2022-04-18]. Available from: https://www.hotjar.com/

usability-testing/

[52] Nielsen, J. Why you only need to test with 5 users. [online], Mar
2000, [visited on 2022-04-18]. Available from: https://www.nngroup.com/

articles/why-you-only-need-to-test-with-5-users/

94

https://adonisjs.com/
https://redis.io/docs/about/
https://optimalbits.github.io/bull/
https://cacm.acm.org/magazines/2016/7/204032-why-google-stores-billions-of-lines-of-code-in-a-single-repository/fulltext
https://lerna.js.org/
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.nginx.com/resources/glossary/round-robin-load-balancing/
https://jestjs.io/
https://www.cypress.io/
https://www.atlassian.com/continuous-delivery/software-testing/types-of-software-testing
https://www.hotjar.com/usability-testing/
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/

Appendix A

Web application screenshots

Figure A.1: A preview of the Homepage

95

A. Web application screenshots

Figure A.2: Preview of the Search page

96

Figure A.3: Preview of the listing page depicting founded results

97

A. Web application screenshots

Figure A.4: Detail page of real estate (top view)

Figure A.5: Detail page of real estate (bottom view)

98

Figure A.6: Collapsed view of a real estate history

Figure A.7: Expanded view of a real estate history

99

A. Web application screenshots

Figure A.8: Place detail (OSM & Wikidata)

Figure A.9: Place detail (OSM & Wikidata)

100

Appendix B

List of Acronyms

API Application Programming Interface. xiii, 12, 23, 28–31, 33, 35, 44, 45,
55, 57, 60, 63, 64, 66, 67, 70, 78

CD Continuous Delivery. 32

CI Continuous Integration. 32

CLI Command Line Interface. 47

CRUD Create-Read-Update-Delete. 49, 53

CSR Client Side Rendering. 5

CSS Cascading Style Sheets. 55, 57, 60

CSV Comma-separated values. 18

DOM Document Object Model. 26, 27, 55, 57

DRY Do not Repeat Yourself. 31

DTO Data Transfer Object. 29, 67, 68

E2E End-to-End. xvi, 31, 75, 76, 78–80

GIT Global Information Tracker. 31

HTML Hypertext Markup Language. 5, 13, 15, 19, 26, 27, 50, 55, 57

HTTP Hypertext Transfer Protocol. 14, 15, 17, 25, 26, 28, 31, 67, 68

IPC Inter Process Communication. 50

101

List of Acronyms

IRI Internationalized Resource Identifier. 13, 14, 52

JDBC Java DataBase Connectivity. 25, 49, 50

JSON JavaScript Object Notation. 44, 57, 67

JSX JavaScript Syntax Extension. 27

JVM Java Virtual Machine. 50

MVC Model-View-Controller. 28, 30, 67

NLP Natural Language Processing. 37, 57

NPM Node Package Manager. 31

OAS Open API Specification. 67

OCP Open Closed Principle. 56

OOP Object Oriented Programming. 56, 75

OSM OpenStreetMap. xiv, xv, 17, 18, 20, 45, 64, 66, 72, 74

OWL Web Ontology Language. xvi, 13, 15, 111

PDB Protein Data Bank. 18

POI Point of Interest. 44, 45

RDBMS Relational Database Management System. 25

RDF Resource Description Framework. xv, xvi, 13–15, 17, 18, 20, 25, 26, 52,
53, 76, 112

RDFS Resource Description Framework Schema. xvi, 13–15, 111

REST Representational State Transfer. 35, 44

RUIÁN Register of Territorial Identification, Addresses and Real Estate. xv,
18, 20, 64, 74

SEO Search Engine Optimalization. 60

SHACL Shapes Constraint Language. 26

SPA Single Page Application. 12, 78

102

List of Acronyms

SPARQL Simple Protocol and RDF Query Language. xv, 13, 15–20, 25, 49,
51, 53, 54, 70–74, 77

SQL Structured Query Language. 16, 25, 26

UI User Interface. 21, 31, 60, 61, 78

URI Uniform Resource Identifier. 15

URL Uniform Resource Locator. 7, 19, 35, 36, 56, 60, 61, 63, 78, 79

VDOM Virtual Document Object Model. 26, 27

XML Extensible Markup Language. 17, 18

YAML YAML Ain’t Markup Language. 67

103

Appendix C

List of Source codes

1 @Injectable()
2 export class RealEstateHistorySubscriber implements
3 IEntitySubscriber<RealEstateEntity> {
4

5 protected readonly rdfProperties =
6 EntityTransformer.getRdfProperties(RealEstateEntity)
7

8 // Passing required parameters is done dependency injection mechanism
9 constructor(

10 protected readonly entityRepository: RealEstateRepository,
11 protected readonly historyRepository: RealEstateHistoryRepository
12) {
13 // public methods will be called when occurs once the changes
14 // occurs on RealEstateEntity
15 this.startListening()
16 }
17

18 async beforeDelete(newPartialEntity: Partial<RealEstateEntity>) {
19 const id = newPartialEntity.id
20 const oldEntity = await this.entityRepository.findById(id)
21

22 await this.saveChanges(
23 oldEntity,
24 newPartialEntity,
25 [], // no changed fields
26 SharedConstant.HistoryOperation.DELETED
27)
28 }
29

30 async beforeUpdate(newPartialEntity: Partial<RealEstateEntity>) {
31 const id = newPartialEntity.id
32 const oldEntity = await this.entityRepository.findById(id)
33

34 const newEntity: RealEstateEntity =
35 await transformAndValidate(RealEstateEntity, {
36 ...oldEntity,
37 ...newPartialEntity,
38 })

105

C. List of Source codes

39

40 const changedFields: NamedNode[] =
41 Object.keys(diffEntities(newEntity, oldEntity!))
42 .filter((key) => this.rdfProperties.hasOwnProperty(key))
43 .map((key) => this.rdfProperties[key].node)
44

45 if (changedFields.length > 0) {
46 await this.saveChanges(
47 oldEntity,
48 newEntity,
49 changedFields,
50 SharedConstant.HistoryOperation.UPDATED
51)
52 }
53 }
54

55 async beforeInsert(entity: RealEstateEntity) {
56 const historyEntityPlain: IRealEstateHistory = {
57 ...entity,
58 changedField: [],
59 version: 1,
60 operation: SharedConstant.HistoryOperation.CREATED,
61 }
62

63 const classInstance = await transformAndValidate(
64 RealEstateHistoryEntity,
65 historyEntityPlain
66)
67

68 await this.historyRepository.insert(classEntity)
69 }
70

71 startListening() {
72 this.entityRepository.subscribe(this)
73 }
74

75 stopListening() {
76 this.entityRepository.unsubscribe(this)
77 }
78

79 // Creates new history snapshot
80 protected async saveChanges(
81 oldEntity: RealEstateEntity,
82 newEntity: RealEstateEntity,
83 changedField: NamedNode[],
84 operation: SharedConstant.HistoryOperationType
85) {
86 const lastEntity = await this.historyRepository.findOne({
87 select: ['version'],
88 where: [
89 {
90 key: 'source',
91 value: newEntity.source,
92 operator: '=',
93 },
94],

106

95 order: [
96 {
97 key: 'version',
98 desc: true,
99 },

100],
101 })
102

103 const version = lastEntity ? lastEntity.version + 1 : 1
104 const plainHistoryEntity: IRealEstateHistory = {
105 ...oldEntity,
106 ...newEntity,
107 changedField,
108 operation,
109 version,
110 }
111

112 const historyInstance = await transformAndValidate(
113 RealEstateHistoryEntity,
114 plainHistoryEntity
115)
116 await this.historyRepository.insert(historyInstance)
117 }
118 }

Listing C.1: Implementation of RealEstateHistorySubscriber

1 @prefix foaf: <http://xmlns.com/foaf/0.1/> .

2 @prefix interval: <http://reference.data.gov.uk/def/intervals/> .

3 @prefix qb: <http://purl.org/linked-data/cube#> .

4 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

5 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

6 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

7 @prefix owl: <http://www.w3.org/2002/07/owl#> .

8 @prefix euvoc: <http://publications.europa.eu/ontology/euvoc#> .

9 @prefix realm: <http://reality-maker.cz/vocabulary/> .

10 @prefix dcterms: <http://purl.org/dc/terms/> .

11

12 # Class definitions

13 realm:RealEstate rdf:type rdfs:Class, owl:Class ;

14 rdfs:label "Real Estate" ;

15 rdfs:comment "Sell advertisement for Real Estate - flat"@en ;

16 rdfs:isDefinedBy realm: .

17

18 realm:RealEstateHistory rdf:type rdfs:Class, owl:Class ;

19 rdfs:label "Real Estate History" ;

20 rdfs:comment "Snapshot of RealEstate entity in given time."@en ;

21 rdfs:subClassOf realm:RealEstate ;

22 rdfs:isDefinedBy realm: .

23

24 # Property definitions

25 realm:version rdf:type rdf:Property, owl:FunctionalProperty ;

107

C. List of Source codes

26 rdfs:domain realm:RealEstateHistory ;

27 rdfs:range xsd:positiveInteger ;

28 rdfs:comment "Number of current version."@en ;

29 owl:cardinality "1"ˆˆxsd:nonNegativeInteger ;

30 rdfs:isDefinedBy realm: .

31

32 realm:changedFields rdf:type rdf:Property, owl:FunctionalProperty ;

33 rdfs:domain realm:RealEstateHistory ;

34 rdfs:range [owl:oneOf ("CREATED" "UPDATED" "DELETED")] ;

35 rdfs:comment "Reason why entry was created"@en ;

36 owl:cardinality "1"ˆˆxsd:nonNegativeInteger ;

37 rdfs:isDefinedBy realm: .

38

39 realm:operation rdf:type rdf:Property, owl:FunctionalProperty ;

40 rdfs:domain realm:RealEstateHistory ;

41 rdfs:range xsd:anyURI ;

42 rdfs:comment "IRI to a property which has changed"@en ;

43 owl:minCardinality "1"ˆˆxsd:nonNegativeInteger ;

44 rdfs:isDefinedBy realm: .

45

46 realm:images rdf:type rdf:Property, owl:ObjectProperty ;

47 rdfs:domain realm:RealEstate ;

48 rdfs:range xsd:anyURI ;

49 rdfs:comment "Related image"@en ;

50 rdfs:isDefinedBy realm: .

51

52 realm:annuity rdf:type rdf:Property, owl:FunctionalProperty ;

53 rdfs:domain realm:RealEstate ;

54 rdfs:range xsd:nonNegativeInteger ;

55 rdfs:comment "Remaining annuity (payment) in CZK currency."@en ;

56 owl:maxCardinality "1"ˆˆxsd:nonNegativeInteger ;

57 rdfs:isDefinedBy realm: .

58

59 realm:energyLevel rdf:type rdf:Property, owl:FunctionalProperty ;

60 rdfs:domain realm:RealEstate ;

61 rdfs:range [owl:oneOf ("A" "B" "C" "D" "E" "F" "G")] ;

62 rdfs:comment "Energy level of electric consumption

63 (A - best, G - worst). "@en ;

64 owl:cardinality "1"ˆˆxsd:nonNegativeInteger ;

65 rdfs:isDefinedBy realm: .

66

67 realm:floor rdf:type rdf:Property, owl:FunctionalProperty ;

68 rdfs:domain realm:RealEstate ;

69 rdfs:range xsd:integer ;

70 rdfs:comment "Floor where the given flat belongs to.

71 Zero equals to ground floor."@en ;

72 owl:cardinality "1"ˆˆxsd:nonNegativeInteger ;

73 rdfs:isDefinedBy realm: .

74

108

75 realm:usableArea rdf:type rdf:Property, owl:FunctionalProperty ;

76 rdfs:domain realm:RealEstate ;

77 rdfs:range xsd:positiveInteger ;

78 rdfs:comment "Fully-enclosed space that is available for

79 the exclusive use of a building

80 occupant for personnel, materials, furniture,

81 fixtures and equipment. Exluding internal partitions."@en ;

82 owl:cardinality "1"ˆˆxsd:nonNegativeInteger ;

83 rdfs:isDefinedBy realm: .

84

85 realm:floorArea rdf:type rdf:Property, owl:FunctionalProperty ;

86 rdfs:domain realm:RealEstate ;

87 rdfs:range xsd:positiveInteger ;

88 rdfs:comment "Sum of whole are of flat space

89 including internal partitions."@en ;

90 owl:cardinality "1"ˆˆxsd:nonNegativeInteger ;

91 rdfs:isDefinedBy realm: .

92

93 realm:layout rdf:type rdf:Property, owl:FunctionalProperty ;

94 rdfs:domain realm:RealEstate ;

95 rdfs:range [owl:oneOf ("1+kk" "1+1" "2+1" "3+kk" "3+1" "4+1"

96 "4+kk" "5+1" "5+kk" "6+1" "atypic" "unknown")] ;

97 rdfs:comment "Layout of the given estate."@en ;

98 owl:cardinality "1"ˆˆxsd:nonNegativeInteger ;

99 rdfs:isDefinedBy realm: .

100

101 realm:ownership rdf:type rdf:Property, owl:FunctionalProperty ;

102 rdfs:domain realm:RealEstate ;

103 rdfs:range xsd:string ;

104 rdfs:comment "Type of legal entity who owns the estate."@en ;

105 owl:cardinality "1"ˆˆxsd:nonNegativeInteger ;

106 rdfs:isDefinedBy realm: .

107

108 realm:structure rdf:type rdf:Property, owl:FunctionalProperty ;

109 rdfs:domain realm:RealEstate ;

110 rdfs:range xsd:string ;

111 rdfs:comment "Material with building is made of"@en ;

112 owl:cardinality "1"ˆˆxsd:nonNegativeInteger ;

113 rdfs:isDefinedBy realm: .

114

115 realm:state rdf:type rdf:Property, owl:FunctionalProperty ;

116 rdfs:domain realm:RealEstate ;

117 rdfs:range xsd:string ;

118 rdfs:comment "State of the given estate."@en ;

119 owl:cardinality "1"ˆˆxsd:nonNegativeInteger ;

120 rdfs:isDefinedBy realm: .

121

122 realm:unitType rdf:type rdf:Property, owl:FunctionalProperty ;

123 rdfs:domain realm:RealEstate ;

109

C. List of Source codes

124 rdfs:range xsd:string ;

125 rdfs:comment "Law status describing

126 the usage of the given property."@en ;

127 owl:cardinality "1"ˆˆxsd:nonNegativeInteger ;

128 rdfs:isDefinedBy realm: .

129

130 realm:monthlyFees rdf:type rdf:Property, owl:FunctionalProperty ;

131 rdfs:domain realm:RealEstate ;

132 rdfs:range xsd:nonNegativeInteger ;

133 rdfs:comment "Monthly fees in CZK currency."@en ;

134 owl:cardinality "1"ˆˆxsd:nonNegativeInteger ;

135 rdfs:isDefinedBy realm: .

136

137 realm:price rdf:type rdf:Property, owl:FunctionalProperty ;

138 rdfs:domain realm:RealEstate ;

139 rdfs:range xsd:nonNegativeInteger ;

140 rdfs:comment "Price of the Real estate in CZK currency."@en ;

141 owl:cardinality "1"ˆˆxsd:nonNegativeInteger ;

142 rdfs:isDefinedBy realm: .

143

144 realm:hasCellar rdf:type rdf:Property, owl:FunctionalProperty ;

145 rdfs:domain realm:RealEstate ;

146 rdfs:range xsd:boolean ;

147 rdfs:comment "Tels if given estate has a cellar."@en ;

148 owl:cardinality "1"ˆˆxsd:nonNegativeInteger ;

149 rdfs:isDefinedBy realm: .

150

151 realm:hasLift rdf:type rdf:Property, owl:FunctionalProperty ;

152 rdfs:domain realm:RealEstate ;

153 rdfs:range xsd:boolean ;

154 rdfs:comment "Tels if given estate has a cellar."@en ;

155 owl:cardinality "1"ˆˆxsd:nonNegativeInteger ;

156 rdfs:isDefinedBy realm: .

157

158 realm:hasParking rdf:type rdf:Property, owl:FunctionalProperty ;

159 rdfs:domain realm:RealEstate ;

160 rdfs:range xsd:boolean ;

161 rdfs:comment "Tels if given estate has a parking place."@en ;

162 owl:cardinality "1"ˆˆxsd:nonNegativeInteger ;

163 rdfs:isDefinedBy realm: .

164

165 realm:hasTerrace rdf:type rdf:Property, owl:FunctionalProperty ;

166 rdfs:domain realm:RealEstate ;

167 rdfs:range xsd:boolean ;

168 rdfs:comment "Tels if given estate has a terrace."@en ;

169 owl:cardinality "1"ˆˆxsd:nonNegativeInteger ;

170 rdfs:isDefinedBy realm: .

171

172 realm:isAuction rdf:type rdf:Property, owl:FunctionalProperty ;

110

173 rdfs:domain realm:RealEstate ;

174 rdfs:range xsd:boolean ;

175 rdfs:comment "Tels if the given real estate

176 advertisment is an auction."@en ;

177 owl:cardinality "1"ˆˆxsd:nonNegativeInteger ;

178 rdfs:isDefinedBy realm: .

179

180 realm:isLastFloor rdf:type rdf:Property, owl:FunctionalProperty ;

181 rdfs:domain realm:RealEstate ;

182 rdfs:range xsd:boolean ;

183 rdfs:comment "Tels if the given flat is in the last floor."@en ;

184 owl:cardinality "1"ˆˆxsd:nonNegativeInteger ;

185 rdfs:isDefinedBy realm: .

186

187 realm:withEquipment rdf:type rdf:Property, owl:FunctionalProperty ;

188 rdfs:domain realm:RealEstate ;

189 rdfs:range xsd:boolean ;

190 rdfs:comment "Tells if the real estate is with equipment."@en ;

191 owl:cardinality "1"ˆˆxsd:nonNegativeInteger ;

192 rdfs:isDefinedBy realm: .

193

194 realm:sourceUpdatedAt rdf:type rdf:Property, owl:FunctionalProperty ;

195 rdfs:domain realm:RealEstate ;

196 rdfs:subPropertyOf dcterms:modified ;

197 rdfs:range xsd:dateTime ;

198 rdfs:comment "Reflects the date time

199 when the source has been updated."@en ;

200 owl:cardinality "1"ˆˆxsd:nonNegativeInteger ;

201 rdfs:isDefinedBy realm: .

Listing C.2: Defined vocabulary for the project needs in RDFS/OWL

1 @prefix realm: <http://reality-maker.cz/vocabulary/>.

2 @prefix entity: <http://reality-maker.cz/entity/> .

3 @prefix dcterms: <http://purl.org/dc/terms/>.

4 @prefix schema: <http://schema.org/>.

5 @prefix wgs: <http://www.w3.org/2003/01/geo/wgs84_pos#>.

6 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

7

8 entity:2ecf75f5 a realm:RealEstate;

9 dcterms:title "Prodej bytu 3+kk 36 m"@cs;

10 dcterms:description "Prodej bytu 3+kk s výměrou..."@cs;

11 dcterms:created "2022-03-27T20:00:40.507Z"ˆˆxsd:dateTime;

12 dcterms:modified "2022-03-28T22:02:46.507Z"ˆˆxsd:dateTime;

13 dcterms:identifier "2ecf75f5-2ba2-48e9-8afa-7185189016ec";

14 realm:sourceModified "2022-03-27T22:02:41.983Z"ˆˆxsd:dateTime.

15 realm:source <https://www.sreality.cz/detail/prodej/123>;

16 wgs:long "14.4371415"ˆˆxsd:double;

111

C. List of Source codes

17 wgs:lat "50.0173345"ˆˆxsd:double;

18 schema:address "Zvolská, Praha 4 - Kamýk";

19 realm:withEquipment "true"ˆˆxsd:boolean;

20 realm:isLastFloor "false"ˆˆxsd:boolean;

21 realm:isAuction "false"ˆˆxsd:boolean;

22 realm:hasTerrace "true"ˆˆxsd:boolean;

23 realm:hasParking "false"ˆˆxsd:boolean;

24 realm:hasLift "true"ˆˆxsd:boolean;

25 realm:hasCellar "true"ˆˆxsd:boolean;

26 realm:unitType "Bytová jednotka"@cs;

27 realm:structure "Panelová"@cs;

28 realm:price "4990000"ˆˆxsd:nonNegativeInteger;

29 realm:ownership "Osobnı́"@cs;

30 realm:monthlyFees "3586"ˆˆxsd:nonNegativeInteger;

31 realm:state "Velmi dobrý"@cs;

32 realm:layout "3+kk";

33 realm:usableArea "36"ˆˆxsd:positiveInteger;

34 realm:floorArea "36"ˆˆxsd:positiveInteger;

35 realm:floor "4"ˆˆxsd:integer;

36 realm:energyLevel "G".

Listing C.3: The real estate entity described in RDF in Turtle serialization

112

Appendix D

Content of enclosed SDHC Card

README.md..............description of the contents of the sub-directories
src.......................................the directory of source codes

README.md........................description with installation steps
apps. the directory with runnable application

api. .. REST API
web..Web Application
scraper...Scraper Service
analyser. Analyser Service

libs. the directory with shared libraries
core

shared

thesis.pdf..............................the thesis text in PDF format
latex...................the directory of LATEXsource codes of the thesis

113

