
University of West Bohemia

Faculty of Applied Sciences

Department of Cybernetics

Image Captioning using Deep Learning

Master Thesis

Bc. Tomáš Železný

Supervisor: Ing. Marek Hrúz, Ph.D.

Pilsen, 2022

DECLARATION

Hereby I submit for assessment and defense the master thesis prepared at the end of my

studies at the Faculty of Applied Sciences of the University of West Bohemia in Pilsen.

I declare that I made this master thesis myself, exclusively using scientific literature and

sources, the complete list of which is a part of it.

PROHLÁŠENÍ

Předkládám t́ımto k posouzeńı a obhajobě diplomovou práci zpracovanou na závěr studia

na Fakultě aplikovaných věd Západočeské univerzity v Plzni.

Prohlašuji, že jsem diplomovou práci vypracoval samostatně a výhradně s použit́ım odborné

literatury a pramen̊u, jejichž úplný seznam je jej́ı součást́ı.

In Pilsen, date

V Plzni, dne ..

ACKNOWLEDGEMENTS

Firstly, I’d like to express my thanks to my supervisor Ing. Marek Hrúz, Ph.D. for his

professional approach and the time he devoted to me. Without his supervision, this thesis

would be hard or even impossible to finish. I would also like to thank Ing. Ivan Gruber,

Ph.D for his advice on the detection networks and throughout the work generally. I would

also like to thank Ing. Jǐŕı Vyskočil for sharing with me his experience in the field of ablation

studies.

I am also very grateful to my family and friends for their unceasing support and constant

encouragement.

In addition, I would like to thank Metacentrum for providing the computing capacity.

Computational resources were supplied by the project ”e-Infrastruktura CZ” (e-INFRA

CZ LM2018140) supported by the Ministry of Education, Youth and Sports of the Czech

Republic.

Abstract

In this work, I discuss an automatic image captioning technique based on an existing

method Oscar. Using a Faster-R-CNN detection network, I pre-process the images so that

they can be further used by Oscar. By combining these two methods, I create a pipeline

that allows me to generate a caption for any image. I evaluate its performance using metrics

BLEU-4: 0.312, METEOR: 0.272, CIDEr: 1.02, and SPICE: 0.201, which is a drop from

the original performance. Thus, I further discuss the causes in this work. Within the abla-

tion study, I investigate the impact of individual modalities of Oscar. The results of the expe-

riment suggest that Oscar is dependent on both modalities, with the visual modality

predominating. In the end, I discuss the interesting cases of the behavior when the

captioning pipeline is supposed to generate captions for images with objects unknown to it.

Key words

Image captioning, deep learning, computer vision, machine learning, object detection

Anotace

V této práci se zabývám technikou automatického popisu obrázk̊u, založenou na exis-

tuj́ıćı metodě Oscar. Pomoćı detekčńı śıtě Faster-R-CNN vhodně předzpracovávám obrázky

tak, aby mohly být dále použity metodou Oscar. Spojeńım těchto dvou metod vytvář́ım

systém, který umožňuje vygenerováńı popisku pro libovolný obrázek. Tento systém je poté

vyhodnocen na metrikách BLEU-4: 0.312, METEOR: 0.272, CIDEr: 1.02, a SPICE: 0.201,

což je pokles oproti p̊uvodńım. V práci se tak dále zabývám d̊uvody, které k tomu vedly.

V rámci ablačńı studie se věnuji zkoumáńı závislosti jednotlivých modalit metody Oscar.

Výsledky experimentu naznačuj́ı že Oscar je závislý na obou modalitách, vizuálńı modalita

převažuje. V závěru práce diskutuji r̊uzné př́ıpady chováńı mého popisovaćıho systému, kdy

měl generovat popisky k obrázk̊um s pro něj neznámými objekty.

Kĺıčová slova

Popis obrázk̊u, hluboké učeńı, poč́ıtačové viděńı, strojové učeńı, detekce objekt̊u

Contents

1 Introduction 3

2 Datasets 5

2.1 Flickr30k . 5

2.2 COCO Caption . 6

2.3 Conceptual Captions . 7

2.4 Multi30k . 7

2.5 Hateful Memes . 8

2.6 Localized Narratives . 8

2.7 Conclusion . 10

3 Caption Evaluation 11

3.1 BLEU . 12

3.2 ROUGE . 12

3.3 METEOR . 13

3.4 CIDEr . 14

3.5 SPICE . 15

4 Related Work 17

4.1 Types of methods . 17

4.2 Evolution of image captioning . 18

5 Implementing the Captioning Pipeline 21

5.1 Dataset . 21

5.2 Detector . 23

5.3 Fine-tuning Oscar . 25

5.4 Conclusion . 27

1

6 Ablation Study 30

6.1 Experiment . 30

6.2 Conclusion . 32

7 Final Discussion 35

8 Conclusion 39

2

Chapter 1

Introduction

Image captioning is the process of generating a description of the given image. Humans

can recognize at a glance which objects are important in the picture. They continue to look

for semantics, i. e. relationships between objects, what they do, and so on. Humans can

even imagine the context of the image - what happened before and after it was captured.

Captioning the image is used for many purposes including interpersonal communication,

searching in databases, or screen readers. In many cases, there are huge datasets that we

want to describe. As the interest in modern technology spreads, the number and volume

of these datasets are increasing. Therefore, it is not feasible to describe them manually by

humans. In these cases, we want the image to be described automatically.

Automatic image captioning is a very important task in many fields. It can be used for

automatic image indexing. Image indexing may be used by search engines, digital libraries,

social media platforms, and so on. Image captioning can also help people with vision

disabilities to better understand their surroundings. It can be also used in the medical [1]

or military [2] fields.

The aim of the image captioning task is to automatically generate a natural language

sentence that describes the content of the input image. It is a very complex task. Image

captioning system needs in some form to detect all the objects in the image, where they are,

and what are their relations with other objects. Then it summarizes all this information

and generates both semantically and syntactically correct sentence. For example, some

of the methods use an object detector to detect them followed by a caption generator,

which translates them into a sentence. An example can be seen in the Figure 1.1. When

people describe the images, everyone considers the details in the picture to be of different

importance. Because of this factor, each individual may generate a different description for

the same image. This is a very important feature of this task that makes it ambiguous.

The scientific community has been interested in this task for over a decade. Many

different approaches have been discovered. Some of the early methods use standard machine

learning and computer vision techniques, but in recent years deep learning has been mainly

3

Figure 1.1: Image being described by five different but correct captions. Objects that are

important for generating the captions are colored. Courtesy of [3].

used. In this work, I am replicating experiments of the current state-of-the-art. This way

I want to get new experience in this field, understand how image captioning task is being

solved, and get knowledge about deep learning in general. I replicate the results of the

existing model with the given dataset. Furthermore, I extend this task so that I am able to

generate captions for custom images, which are not part of the dataset.

4

Chapter 2

Datasets

Image captioning methods, whether they use traditional techniques or deep-learning-

based ones, need a sufficient amount of data for their training. Datasets for image captioning

task consist of image-caption pairs. There is a large amount of these datasets. Each of them

was created in its individual way. They vary in the domain they are used in and in a number

of images they consist of. The very important feature of the image captioning task is that

there is not only one correct description of a single image. Therefore, datasets often contain

more than one caption for a specific image. Individual datasets also vary in a number of

these captions. Even the caption may be written in a different type of format. Datasets

also vary in the approach, of how their captions were made and with which rules. In this

chapter, I individually discuss some of the most popular datasets that are used for the image

captioning task.

2.1 Flickr30k

Flickr30k [4] is a dataset that contains 31,000 images. It was created in 2013 as an

extension of the previous dataset Flickr8k [5] that contains 8,000 images. Dataset con-

sists of pictures of everyday scenes taken from the online photo-sharing application Flickr1.

Flickr30k is one of the most popular datasets used for Image captioning with over 1,400

citations. It is used for Image Captioning [6, 7], Image Retrieval [8, 9] and Cross-Modal

Retrieval [8, 10] tasks.

Captions for this dataset were created by human annotators. Each of the images was

described by five independent people. The total size of Flickr30k is thus over 150,000 image-

caption pairs.

1https://www.flickr.com/

5

https://www.flickr.com/

Figure 2.1: Data from Flickr30k dataset [4].

2.2 COCO Caption

Microsoft COCO Caption Dataset [11] is a very popular dataset used for the tasks of

Image Captioning [12, 13] and Text Generation [14, 15]. It was created by captioning images

in COCO Dataset [3]. It is a large dataset that contains images of everyday scenes taken

from Flickr. The images were gathered by searching for pairs of objects in their natural

context. The first version of the dataset was released in 2014, containing over 164,000

images split into training (83,000), validation (41,000), and test (41,000) sets. The second

version was created in 2015 by extending the test set with 40,000 additional images. Based

on community feedback in 2017, the third version was created by redistributing training

(118,000) and validation (5,000) data. The 2017 test set is a subset of 41,000 images of the

2015 test set. Additionally, COCO provides another set containing 123,000 unannotated

images.

Captions for this dataset were created by human annotators. To ensure a consistent

format of the captions, annotators were asked to comply with the following rules:

• Describe all the important parts of the scene.

• Do not start the sentences with ”There is”.

• Do not describe unimportant details.

• Do not describe things that might have happened in the future or past.

• Do not describe what a person might say.

• Do not give people proper names.

• The sentences should contain at least 8 words.

6

Figure 2.2: Data from Microsoft COCO Caption dataset [11].

Two datasets were collected, c5 and c40. COCO c5 contains five captions for each of the

images in the COCO dataset. COCO c40 contains forty captions for the randomly chosen

5,000 images from the COCO testing dataset. The total number of image-caption pairs in

the COCO Caption dataset is thus over 1,000,000.

2.3 Conceptual Captions

Conceptual Captions [16] is a dataset used for Image Captioning [17] that was intro-

duced in 2018. It contains images that were collected from a huge quantity of web pages.

The captions were collected from the Alt-text HTML attribute associated with the images.

Authors then used the pipeline they developed to extract, filter, and transform the candi-

date image-caption pairs, with the goal of achieving cleanliness, informativeness, fluency,

and learnability of the resulting captions. The total number of image-caption pairs is over

3,000,000. Thanks to the unique approach, Conceptual Captions provide much more variety

both in images and captions than the Microsoft COCO dataset.

2.4 Multi30k

Multi30k [18] is a dataset, that was created to stimulate multilingual multimodal research

for English and German [19, 20]. It was introduced in 2016 as an extension of the Flickr30k

dataset [4]. Multi30k consists of two different datasets. The first dataset was created by

choosing one of the five English captions for each image, that Flickr30k provides. Then it

was translated by a professional translator into German. The first dataset thus consists of

31,000 triplets of an image, English caption, and German caption. The second dataset was

created by generating five German captions for each image, independently of the original

7

Figure 2.3: Data from Conceptual Captions dataset [16].

English captions and also independently of each other. The second set thus contains over

150,000 image-caption pairs in English and another 150,000 image-caption pairs in German.

2.5 Hateful Memes

Hateful Memes [21] is a dataset introduced in 2020. It is used for a task of multimodal

classification with a focus on detecting hate speech in multimodal memes [22]. The goal

of the task is the binary classification of whether the meme contains hate speech or not.

The source meme images were gathered from public social media groups. Then the non-

English and violent memes were filtered out. The rest of the memes were reconstructed by

using different, stock images and keeping the original text. Reconstructed images were then

labeled as hateful or not. For the subset of the memes, that were labeled as hateful, were

created memes with a different image or caption, which led to a change in meaning so that

they were not hateful. The total size of the Hateful Memes dataset is over 10,000 memes,

including non-hateful, hateful, and modified hateful memes.

2.6 Localized Narratives

Localized Narratives [23] is a multimodal dataset that was introduced in 2020. The

images are described by the annotators with their voices while simultaneously hovering the

mouse cursor over the described region of the image. The dataset is used for the task of

Image Captioning [24]. Localized Narratives dataset consists of images originating from

COCO [3], Flickr30k [4] and other datasets making it 849,000 images in total.

8

Figure 2.4: Data from Multi30k dataset [18]. On the left: one of the English captions is

translated into German by a professional translator. On the right: five English captions and

another five independent captions in German.

Figure 2.5: Data from Hateful Memes dataset [21].

9

Figure 2.6: Data from Localized Narratives dataset [23].

2.7 Conclusion

There are many datasets for image captioning. They vary in the category, size, and

data format. Different format of captions is created by applying different rules when a

dataset is created. A unified data format helps the machine to produce better results. The

negative feature is that applying any rules to captions leads to inductive bias. Although the

resulting model will be more accurate, it will be limited to the rules that were applied while

the dataset was created. Data that are based on different rules, or not based on the rules

at all, will produce worse results. When people describe an image, they do not apply any

rules. Each individual describes a picture as they are used to speak. However, inductive

bias may occur even without applying any rules. This may happen for instance when all

the annotators share the same style of expression. Thus, it is suitable to gather annotations

from annotators from the widest possible range. In order for the machine to generate the

most natural caption possible, multiple different datasets are often used for its training.

This may help to reduce the effect of inductive bias.

10

Chapter 3

Caption Evaluation

Evaluation of machine-generated captions is a complex task. A single image can be

described by numerous correct captions. But how can we determine, whether the machine-

generated caption is correct or not? When automatic captions are evaluated, their natu-

ralness is judged. If the caption is as if it was generated by a human, it can be considered

correct. The best evaluation metric for this task is human judgement. However, because

many times a huge amount of data needs to be evaluated, it is required to remove the human

factor. In such cases, automatic evaluation metrics are used to simulate human judgement.

Some of the evaluation metrics used for image captioning were originally designed for

the evaluation of different tasks such as machine translation or text summarization. These

evaluation tasks have much in common with the image captioning task. Image captioning

can be interpreted also as a translation from the content of the image to the natural language

sentence or as summarizing the content of the image into a sentence.

For the purpose of the caption evaluation, the image is not taken into account and

the caption evaluation is a purely linguistic task. Before the caption is evaluated, both

the candidate and the reference captions are pre-processed by a tokenizer. The individual

captions are represented as a set of n-grams. Some of the metrics are simple but focus on

the specific aspects of the quality, such as n-gram overlaps. There are also advanced and

complex metrics that also focus on the semantic structure of the captions. In this chapter,

I will discuss some of the most used evaluation metrics for image captioning.

Following metrics evaluate for an image Ii the quality of a candidate caption ci ∈ C for

a given set of reference captions Si = {si1, ..., sim} ∈ S. The captions are represented by

sets of n-grams ωk ∈ Ω. Each n-gram contains n ordered tokens. The number of n-gram ωk

appearing in the candidate caption ci is denoted as hk(ci) and in the reference caption sij

as hk(sij).

11

3.1 BLEU

BLEU (Bilingual Evaluation Understudy) [25] was originally designed for evaluating

machine translations. Its approach works on counting n-grams in both tokenized candidate

and reference sentences. Then the clipped n-gram precision is computed, defined as follows:

CPn(C, S) =

∑

i

∑

k min(hk(ci),max
j∈m

(hk(sij))
∑

i

∑

k hk(ci)
. (3.1)

The clipped precision favors a short sentences. In order to penalize the short candidate

captions, brevity penalty is used. It is defined as:

b(C, S) =

1 if lC > lS

e1−lS/lC if lC ≤ lS ,
(3.2)

where lC symbolizes the total length of candidate sentences ci’s and lS is the total length

of reference sentences si’s. When there are multiple reference captions for one candidate

caption, the closest reference length is used. The final BLEU score for the given N is

computed as follows:

BLEUN (C, S) = b(C, S)exp

(

N
∑

n=1

wn log (CPn(C, S))

)

, (3.3)

where N is the number of n used for n-grams and wn is the weight constant for all n.

Typically N = 1,2,3,4 and wn = 1

4
are used.

BLEU is a fast and simple metric that has been widely adopted. It is frequently used

in research so it is often used as one of the metrics for comparing different methods. It has

shown good performance on the corpus level evaluation, where a huge number of n-gram

matches exist. However, on the sentence level, the higher number of n-gram matches for

the higher n rarely occur. For the lower n, there may be a totally wrong sentence structure

even with a high number of matches. Another disadvantage is, that BLEU assumes that

both candidate and reference captions have been tokenized with the same tokenizer.

3.2 ROUGE

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) [26] is the set of metrics

that have originally been designed for evaluating text summarization. The following ROUGE

metrics are available:

• ROUGEN: Computes the n-gram recall of the candidate caption over all reference

captions:

ROUGEN(ci, Si) =

∑

j

∑

k min(hk(ci), (hk(sij))
∑

j

∑

k hk(sij)
. (3.4)

12

• ROUGEL: Looks for the Longest Common Subsequence (LCS). LCS is a longest

sequence shared by both captions that consists of words in the same order, but they

do not have to be contiguous. For the LCS length l(ci, sij) is ROUGEL computed as

Fβ score:

PL = max
j

l(ci, sij)

|ci|
, (3.5)

RL = max
j

l(ci, sij)

|sij |
, (3.6)

ROUGEL(ci, Si) =
(1 + β2)PlRl

β2Pl + Rl
, (3.7)

where Pl is a precision and Rl is a recall of LCS. β is the constant, it is typically set

to β = 1.2.

• ROUGEW: It is the metric based on ROUGEL. By setting weights, it favors consec-

utive LCS.

• ROUGES: Instead of LCS or n-grams, ROUGES uses skip bi-grams. Skip bi-grams

are pairs of words that match in the candidate and reference sentences in order. But

similarly to LCS, there may be any words in between them. ROUGES score is also

computed as Fβ score defined with precision and recall as follows:

PS = max
j

∑

k min(fk(ci), fk(sij))
∑

k fk(ci)
, (3.8)

RS = max
j

∑

k min(fk(ci), fk(sij))
∑

k fk(sij)
, (3.9)

ROUGES(ci, Si) =
(1 + β2)PSRS

β2PS + RS
, (3.10)

where fk is the count of skip bi-grams in the caption.

The general difference between BLEU and ROUGE is that while the BLEU score focuses

on the precision, ROUGE focuses on the recall. Thanks to properties of skip bi-gram or

LCS, which do not depend on the consecutiveness, ROUGE tends to capture the sentence

structure more accurately.

3.3 METEOR

METEOR (Metric for Evaluation of Translation with Explicit Ordering) [27] was de-

signed for evaluating machine translation to improve existing metric BLEU. It generates

the alignment of each word in the candidate and the reference caption. The WordNet syn-

onyms and stemming can be used for aligning the words. The consecutive words in the

alignment are called chunks. The alignment is generated so that the number of chunks ξ is

13

minimized. For the set of the alignments of length m, the METEOR score is computed as

harmonic mean Fmean penalized by the chunk penalty θ as follows:

PM =
|m|

∑

k hk(ci)
, (3.11)

RM =
|m|

∑

k hk(sij)
, (3.12)

Fmean =
PMRM

αPM + (1 − α)RM
, (3.13)

θ = γ

(

ξ

m

)θ

, (3.14)

METEOR = (1 − θ)Fmean. (3.15)

where α, γ, θ are the parameters.

METEOR is the popular alternative to the BLEU score. The advantage is considering

both precision and recall, and favouring the big chunks of the candidate caption aligned

with the reference caption. It can also use semantic similarity when aligning the captions.

3.4 CIDEr

CIDEr (Consensus-based Image Description Evaluation) [28] is the metric used for image

captioning evaluation. For the stemmed candidate and reference sentences, it computes the

Term Frequency Inverse Document Frequency (TF-IDF) weighting for each n-gram. TF

gives more weight to such n-grams, which occurs in the reference captions of the image

more frequently. IDF reduces the weight of the n-grams which commonly occur in captions

across all of the images. For the given set of images I is TF-IDF wight gk(sij) computed as

follows:

gk(sij) =
hk(sij)

∑

ωl∈Ω
hl(sij)

log

(

|I|
∑

Ip∈I
min(1,

∑

q hk(sij))

)

. (3.16)

CIDErn score for n-grams of length n is then computed using the average cosine similarity

between the candidate and the reference sentences as:

CIDErn(ci, Si) =
1

m

∑

j

gn(ci)g
n(sij)

∥gn(ci)∥∥gn(sij)∥
. (3.17)

The final CIDEr score is computed by combining the CIDErn scores as follows:

CIDEr(ci, Si) =
N
∑

n=1

wnCIDErn(ci, Si), (3.18)

where wn = 1

N and N = 4 are usually used.

CIDEr-D is a modification of the CIDEr metric, to make it more robust against gaming.

Gaming refers to the phenomenon, where the caption is judged with a low score by human

14

and with a high score by the automatic metric. To suppress the gaming effect, CIDEr-D

uses clipping and a length-based Gaussian penalty to the CIDEr metric. It is computed by

the following equations:

CIDEr-Dn(ci, Si) =
10

m

∑

j

e
−(l(ci)−l(sij))

2

2σ2 ·
min(gn(ci), g

n(sij)) · g
n(sij)

∥gn(ci)∥∥gn(sij)∥
, (3.19)

CIDEr-D(ci, Si) =

N
∑

n=1

wnCIDEr-Dn(ci, Si), (3.20)

where l(ci) is length of the candidate caption and l(sij) is the length of the reference caption.

The constant σ = 6 is usually used. A factor of 10 is used in the numerator to make the

CIDEr-D scores numerically similar to the other metrics.

According to [28], CIDEr has shown the best results when it was compared with the

metrics described above. The disadvantage is that it requires the whole dataset to compute

the word frequencies. Also, the range is not between 0 and 1, unlike other metrics.

3.5 SPICE

SPICE (Semantic Propositional Image Caption Evaluation) [29] is the metric designed

for image captioning evaluation. It exploits the semantic structure of the captions by parsing

both the candidate and the reference captions into scene graphs. The scene graph of the

caption c is denoted as G(c):

G(c) = ⟨O(c), E(c),K(c)⟩, (3.21)

where O(c) is the set of objects mentioned, E(c) is the set of relations between objects, and

K(c) is the set of the attributes associated with objects. The caption parsing corresponds

to the given rules such as labeling each noun as an object, even if it does not have any

relations, or dropping plural nouns and the numeric modifiers being encoded as object

attributes instead. Next, the function T is defined as:

T (G(c)) ≜ O(c) ∪ E(c) ∪K(c). (3.22)

It returns logical tuples from a scene graph. Each tuple can contain one, two, or three

elements, representing the objects, their attributes, or relations. The final SPICE score is

then defined as the F1 score computed from precision and recall:

P (c, S) =
|T (G(c)) ⊗ T (G(S))|

|T (G(c))|
, (3.23)

R(c, S) =
|T (G(c)) ⊗ T (G(S))|

|T (G(S))|
, (3.24)

SPICE(c,S) = F1 =
2 · P (c, S) ·R(c, S)

P (c, S) + R(c, S)
, (3.25)

15

where ⊗ is the binary matching operator as the function that returns matching tuples in

two scene graphs. For matching the tuples, the WordNet synonyms and stemming are used.

Unlike CIDEr, SPICE does not require knowledge of the whole dataset for computing

word frequencies. Thanks to that, it can be used for both large and small datasets. Over-

all SPICE metric is a very good metric that correlates well with human judgement when

compared to the metrics listed above. The disadvantage of SPICE is its computational

complexity.

16

Chapter 4

Related Work

Image captioning is a very complex task. An image captioning system must first under-

stand the content of the image and then generate a semantically and syntactically correct

caption that describes the image. The interest in the task of image captioning has gradually

increased in the last decade. The evolution of methods used in image labeling over time cor-

responds to the evolution of general methods used in machine learning. There are numerous

works that thoroughly describe the existing image captioning techniques [30, 31, 32, 33, 34].

In this chapter, I briefly summarize the methods used in the image captioning task and

discuss the methods that I find interesting for my work.

4.1 Types of methods

The image captioning methods can generally be divided into two categories: traditional

computer vision and deep learning. Traditional computer vision methods include using

hand-crafted features such as Histogram of Oriented Gradients (HOG), Local Binary Pat-

terns (LPB), Scale Invariant Feature Transform (SIFT) or Speeded Up Robust Features

(SURF). Features extracted from the input image are then used for training a classifier such

as Support Vector Machine (SVM). The content of the real-world image is very complex

and the traditional methods can not cover the whole semantics of the image. Therefore,

traditional computer vision methods are used mainly for specific tasks.

In deep-learning-based methods, image features are automatically learned from the data.

Convolutional Neural Networks (CNN) are widely used for this purpose. After extracting the

features, CNN is generally followed by a Recurrent Neural Network (RNN) or a Multi-layer

Transformer.

Each of the different techniques is suitable for a different type of image captioning.

Image captioning can be generally divided into three categories: retrieval-based image cap-

tioning, template-based image captioning, and deep-learning-based caption generation. In

the retrieval-based approach, the caption for the given image can be retrieved either from

17

the set of existing captions or by their combination. The resulting captions are always syn-

tactically correct. On the other hand, they are very limited to describing specific elements

of the images and thus they achieve poor semantic quality.

In the template-based image captioning approach, a fixed template is used. Slots of the

template are then filled with corresponding words detected from the image. These include

objects, attributes, and actions. For example, [35] uses a triplet of scene elements to fill in

the slots of templates for generating image captions. Template-based methods can generate

syntactically correct captions. The disadvantage of this approach is the fixed length of the

caption.

In deep-learning-based image captioning, the methods first analyze the image and then

generate the caption using a language model. These methods generate captions with better

semantic accuracy and higher variability. These methods are usually based on deep learning.

Deep-learning-based image captioning achieves better both semantic and syntactic accuracy

and much higher variability than the two previously described methods. Therefore, research

in recent years has mainly focused on deep-learning-based captioning.

4.2 Evolution of image captioning

One of the first methods that resembles today’s image captioning, Every Picture Tells

a Story: Generating Sentences from Images [35], has been published in 2010. This

method retrieves the triplet of the object, action, and scene from the image. To solve this

task, the method uses Markov Random Field, where each node represents the object, action,

or scene. The potentials of edges are computed by the combination of scores from several

detectors and classifiers and the potentials of edges are computed by the frequencies. The

object can take one of 23 different values, action on of 16 values, and the scene one of 29

different values.

Figure 4.1: Markov Random Field used by [35].

18

As the performance of computers has increased, deep learning has come into use. It

is a powerful tool for complex tasks, which image captioning certainly is. In 2015, From

Captions to Visual Concepts and Back [36] was introduced. This method uses a CNN

model to detect the probability of words from a given set in the caption of the image. Then,

the most likely sentence is generated. A maximum entropy language model in a generative

framework is used for this purpose.

Figure 4.2: An illustrative example of a pipeline used in [36].

Also in 2015, O. Vinyals et al. introduced a path-breaking approach to image captioning,

Show and Tell: A Neural Image Caption Generator [37]. Inspired by success in

machine translation, the authors used an encoder-decoder framework to create a generative

learning scenario. The CNN is used as an encoder to extract image features. Then, the RNN

architecture, LSTM, is used as a decoder to generate the sequence of words. In each time

step, LSTM decodes one word which is then used to update the state of the network and to

generate the next word. This technique is used also in other text-generation tasks, such as

machine translation. This method provided the state-of-the-art results of its time. However,

this method also has its disadvantages. One of them is its huge demand on computing

memory and time required for training. This is not such a problem for machine translation

methods where the input is the text. However, with image captioning methods, there is

dense information of the entire image on the input, which causes significant limitations.

Later in 2015, Show, Attend and Tell: Neural Image Caption Generation with

Visual Attention [38] came up with an attention-based encoder-decoder. It is another

important method in image captioning. In the decoder, the attention is computed over

the image. The attention gives importance to relevant portions of the input image in the

encoder for generating each word in the decoder. Unlike in the previous method, the image

features are extracted from the lower layers of the CNN in the encoder.

In 2018, [39] was published. It introduces new method UpDown. UpDown joins a

visual bottom-up mechanism and a task-specific context top-down one. The bottom-up

mechanism gives proposals on image regions that it considers important. The top-down

mechanism uses context to compute an attention distribution over them. This allows the

attention to be directed to the important objects in the input image.

19

Figure 4.3: LSTM model combined with a CNN image feature extractor and word embed-

dings used in [37].

Figure 4.4: Pipeline used in [13].

Methods of this time have weaknesses such as the lack of explicit alignment information

between the image regions and the captions. In addition, the image regions may contain

two different objects overlapping and thus making the information ambiguous and noisy. In

2020, method Oscar (Object-Semantics Aligned Pre-training) [13] was introduced.

To suppress these problems, Oscar uses object tags detected from images as ”anchor points”.

It uses the triplets of image features, text, and newly the object tags for its training and the

image features and tags for the inference. This helps when one of the channels is noisy and

the other can carry the information. Instead of RNN, Oscar uses a multi-layer transformer

for the generation of the caption. Transformer [40] is a deep learning architecture, that was

introduced in 2017. In 2020, it was adopted for tasks of image processing, such as object

detection [41] and image classification [42]. In 2020, Oscar achieved the best results in most

of the metrics on the COCO Captions dataset and held his position until mid-2021. At the

start of 2022, when this work is being written, the best BLEU-4 results provide the method

OFA (One For All), presented in [12].

Image captioning has many more different methods such as using reinforcement learn-

ing [43] or using generative adversarial networks [44]. It is a still an actual task and I believe,

the methods will be evolving also in the future.

20

Chapter 5

Implementing the Captioning

Pipeline

In this paper, I reproduce the results of some state-of-the-art image labeling methods.

For this purpose, I decided to use the method Oscar [13], which I also mentioned in Sec-

tion 4.2. The method was chosen based on its performance on the COCO Caption [11]

dataset. At the time I was deciding which method to work with, Oscar achieved the best

score on most of the comparing metrics. A table with the complete results is available at

Papers With Code1. Oscar uses a multi-layer transformer architecture [40]. It is a relatively

new technique introduced in 2017. I believe that by using and understanding this method,

I will gain experience in this field and an awareness of the state-of-the-art in deep learning.

The image captioning task has two main parts: feature extraction from the input image

and caption generation. Oscar provides only the second part. That means that image

features appear on the input of Oscar and need to be generated by an external detector.

The caption of a given image is the output of Oscar. For the demo to work, Oscar provides

features for all images in the COCO Caption data set. However, the authors do not specify

which detector was used to generate them. This means that whenever we want to generate

a caption for an image that is not part of this dataset, it is not clear how to extract features

from it. In this section, I implement a pipeline that is capable of generating a caption for a

custom image. I use the Detectron2 [45] detection framework to generate features from the

entire COCO dataset. I then train Oscar on the newly created dataset. In this section, I

describe these steps in detail.

5.1 Dataset

Oscar [13] provides the image features extracted from COCO Caption dataset [11]. Based

on this knowledge, I decided to use the COCO dataset, 2017 version, in my work. Thanks to

1https://paperswithcode.com/sota/image-captioning-on-coco-captions

21

https://paperswithcode.com/sota/image-captioning-on-coco-captions

that I am able to compare the results afterward. COCO Caption is the dataset containing

over 164,000 images of everyday scenes with multiple captions for each image. More infor-

mation about the structure of this dataset has been discussed in Section 2.2. It is widely

used and is well approachable. COCO also provides the evaluation server2, where methods

can be evaluated by some of the metrics discussed in Chapter 3.

The images from the COCO Caption dataset are processed by the detector. It returns

the set of detected objects, including their classes and feature vectors. Then, the data needs

to be restructured in a specific way, as Oscar requires. The resulting structure consists of

the following files:

• data.label.tsv

Contains two columns of image id and the list of objects detected by encoder. Each

of the object is represented by dictionary that consists of a class, position and its

confidence. This list is in json format.

184613 [{" class ": "animals", "rect": [140.4112 ,81.9309 ,

499.4400 , 303.80444] , "conf": 0.2314} , {" class": "hay",

"rect": [0.0, 169.6649 , 394.9242 , 335.4400] , "conf":

0.3473} , ...]

403013 [{" class ": "ceiling", "rect": [0.0, 0.0, 300.4983 ,

153.1022] , "conf": 0.9131} , {"class ": "kitchen", "rect":

[31.7213 , 5.3686 , 300.4983 , 266.1175] , "conf": 0.3067} ,

...]

...

• data.label.lineidx

Contains an index number on each line, representing the cumulative number of char-

acters data.label.tsv for a current line.

0

6221

...

• data.feature.tsv

Contains two columns of the image id and the dictionary. This dictionary contains a

number of objects detected by encoder and the features of these objects encoded into

base64 string. The features are n× 2056 long vectors, where n = number of detected

objects in the image.

184613 {" num_boxes ": 47, "features ": "AAAAALcFDUAFN18/

QA UcQN0VH0DX /4U/iv8KQOANoT9w2wU /3 beUPioqvD1ohH48gOXbPL

..."}

2https://competitions.codalab.org/competitions/3221

22

https://competitions.codalab.org/competitions/3221

403013 {" num_boxes ": 24, "features ": "9 YyqPgAAAADzhoA+

AA AAABXurjwAAAAAAAAAAAAAAADfO4tACi4CO3MZkj8AAAAALxxqPg

..."}

...

• data.feature.lineidx

Contains an index number on each line, representing the cumulative number of char-

acters data.feature.tsv for a current line.

0

514913

...

• data caption.json

Contains caption annotations by image id in the json format.

[{" image_id ": "106140" , "id": 98, "caption ": "A large

passenger airplane flying through the air."}, {" image_id

": "106140" , "id": 101, "caption ": "There is a GOL plane

taking off in a partly cloudy sky."}, ...]

• data.yaml

Contains settings - directories of all the files described above.

img: val.img.tsv

hw: val.hw.tsv

label: val.label.tsv

feature: val.feature.tsv

caption: val_caption.json

5.2 Detector

The authors of the method, which I am working with, Oscar [13], do not provide a

solution on how to extract features from the source image to be used as Oscar’s input. It

is known that it requires the objects detected from the given image, including their tag,

position, confidence, and the feature vector for each of them. The feature vector of one

object is 2054-dimensional, where the first 2048 elements are the image features and the

last 6 are the coordinates of the bounding box of the detected object in the input image

xmin, xmax, ymin, ymax, its width w = xmax − xmin and height h = ymax − ymin. Therefore,

I was looking for an object detector which I can extract a 2048-dimensional vector from.

For this purpose, I decided to use the architecture Faster-R-CNN implemented in De-

tectron2 [45] framework. Detectron2 is a popular library that provides state-of-the-art

23

detection and segmentation algorithms. It provides several different backbones. My goal

was to find a backbone that provides a 2048-dimensional vector in the last layer before the

softmax layer. I decided to use an R50-C4 backbone that meets this requirement. This

backbone uses a ResNet conv4 backbone with a conv5 head. The original baseline in the

Faster R-CNN paper [46].

Since the authors do not provide information on how to extract features from the images,

I had to conduct some research on provided data to be able to set up the detector correctly.

After analyzing the provided data, I think I came up with an algorithm that the authors

used to filter the detections:

• Every image has at least 10 detections. Maximum number of detections in one image

is 99. In average, there are 31-32 detections per image.

• The detections have confidence over 0.2.

• In the case, when the image does not have at least 10 detections with a confidence

over 0.2, detections with lower confidence are used to make a total of 10 detections.

• Multiple detections occur for a single object.

Detectron2 provides the detector weights pre-trained on the COCO dataset [3]. This

dataset contains labels of 80 different classes. Therefore, the detector I am using is capable

of detecting these 80 classes. This set of classes is designed to contain as wide a range of

common objects as possible. For my work, I have therefore chosen to use the detector with

the weights provided by the authors and will not further fine-tune the model to be able to

detect more classes. It is expected that the subsequent results will not perform as well as

the state-of-the-art methods perform. However, for my thesis, I have concluded that the

results obtained using these 80 classes are sufficient.

In order to extract as much semantic information as possible from an image, many

objects need to be detected. The data limited by Oscar does not seem to be limited by the

number of objects detected. Therefore, my goal is to extract the detection of as many objects

as possible from the image. One way to affect the number of detections is by changing the

confidence threshold. However, if this threshold is set too low, false detections will start to

occur, which is not a desirable effect. After trying several different settings, I have concluded

that the optimal setting for my detector is a reliability threshold = 0.2. At this value, a

sufficient number of objects are detected and at the same time, there are not many false

detections. Moreover, this value corresponds to the value used by Oscar. However, my

approach differs from Oscar’s in that I do not use detections with a confidence threshold

lower than 0.2 when there are not enough of them. The reason for this decision is purely

practical. The detector framework does not support setting a minimum number of detected

objects and its implementation would require deep intervention in the source code. Since it

is desirable to have as many detected objects as possible, and it is known that Oscar uses

24

Detected objects by the detector

elephant, person, elephant, fire hydrant, bot-

tle, elephant, baseball glove, elephant

Objects provided by Oscar

dirt, road, elephant, ground, tree, sky, trees,

shirt, ear, ground, fence, elephant, fire hy-

drant, head, sign, sign, pole, grass, tusk,

hat, eye, elephants, man, trunk, trunk, pole,

field, grass, mouth, elephant, tree, fire extin-

guisher, foot

Figure 5.1: Object tags detected in the image by the detector, compared with object tags

provided by Oscar for the same image. All the detected objects with confidence > 0.2

are taken into account. Although it may seem that the objects detected by the detector

represent the image well, there are only 8 of them, which is below the threshold value of 10.

Thus, I do not use this image to train Oscar. Courtesy of [3].

multiple detections for a single object, I also decided to tune the value of the intersection

over union (IoU) threshold. After trying several different values, I decided to use the value

that generated the closest number of detections to Oscar: thrIoU=0.8.

Even if the detector settings are optimized, in some images the detector is not able to

detect the required number of objects, i.e. 10. The volume of images with less than 10

detections with confidence above 0.2 is approximately 19 % of the whole dataset. Since I

have enough data to train Oscar for my needs, I decided to preserve the data structure of

Oscar and not use this 19 % of the data to train it. In the image in Figure 5.2, the examples

of images with extreme numbers of detected objects can be seen.

5.3 Fine-tuning Oscar

Oscar [13] is a multi-layer transformer based method. It is implemented in Python 3.7,

using Pytorch 1.2, torchvision 0.4.0, and cuda 10.0. Oscar is pre-trained on a large-scale

visual-language dataset composed of Flickr30k, COCO Captions, Conceptual captions, and

more datasets to achieve a total size of 6.5 million image-caption pairs. It allows fine-tuning

and evaluation on seven visual-language understanding and generation tasks, such as image

captioning, visual question answering, or image-text retrieval.

25

Figure 5.2: Images with the extreme number of detected objects. On the left: an image

with 90+ detected objects. On the right: an image in which the detector did not detect

any objects. After inspecting such images, I concluded that those are quite often images of

traffic signs. Courtesy of [3].

In Section 5.2, I extract the features from the source images from the COCO dataset.

Then, the detector output is re-structured into Oscar input structure, which is discussed in

detail in Section 5.1. In this section, I use the newly acquired data to fine-tune Oscar on

the image captioning task. Oscar provides different pre-trained checkpoints depending on

the language model variant used. Oscar can be trained with different settings. I decided to

train Oscar with the inspiration of the model zoo on its GitHub 3 and train it first using

cross-entropy loss. The settings do not exactly match the zoo model: the batch size is set

according to the physical capabilities of the hardware I used. To train Oscar I used the

following settings:

• Pre-trained checkpoint: bert base uncased

• Initial learning rate: 3 · 10−5

• Batch size: 32

• Number of training epochs: 30.

It takes over 100 hours to train 30 epochs on the hardware I used. However, I was

limited to training for a maximum of 24 hours at a time. However, the code provided by

Oscar does not support resuming training. Therefore, during training, I saved checkpoints

after each epoch from which I could then resume training. These checkpoints contain the

current model weights, but do not contain the optimizer state. Thus, during each of the

training interruptions, the optimizer momentum was reset. The learning rate was set at

each resuming to the value the model had when the checkpoint was saved.

3https://github.com/microsoft/Oscar

26

https://github.com/microsoft/Oscar

1. boat, boat, sports ball, boat,

boat, boat, person, boat, per-

son, boat, bird, person, boat,

boat, boat, sports ball, per-

son, person, person, boat, per-

son, boat, boat, person, per-

son, boat, boat

2. A small boat in a large body of

water.

Figure 5.3: Example of an image that is not part of the COCO dataset. 1. - Detected object

tags by the detector, 2. - Prediction of my custom pipeline.

After training with cross-entropy loss, model zoo continues with additional 5 epochs

of fine-tuning with CIDEr optimization using Self-critical Sequence Training. However,

the authors do not provide the files needed for Self-critical Sequence Training. Therefore, I

decided to fine-tune Oscar without using Self-critical Sequence Training. I used the following

settings:

• Initial learning rate: 5 · 10−6

• Batch size: 16

• Number of training epochs: 5.

5.4 Conclusion

In my work, I decided to use Oscar [13] as the core of my captioning pipeline. It is a

state-of-the-art image captioning method based on a multi-layer transformer. Oscar is used

for several vision-language tasks, such as image captioning, vision question answering, or

image-text retrieval. The authors provide image features extracted from the COCO dataset

but do not specify which detector has been used. If we want to generate a caption for an

image that is not part of the provided dataset, we need to extract features from the image

first. However, since the authors do not provide information about which detector they used

to extract the features, the one that satisfies the dimension requirements of its output must

be chosen. From the wide range of various detectors, I decided to use the Faster-R-CNN

architecture implemented within the Detectron2 [45] framework to create my own dataset

of features. This dataset was then used to train Oscar. By having Oscar trained on the

27

features that come from a known detector I am thus able to generate a caption for any

image. I do this by first extracting features from the image using Faster-R-CNN and then

using these features as input to the Oscar program.

The results achieved by my custom pipeline cannot be sufficiently compared with the

results achieved by Oscar. Its authors do not sufficiently describe how and on which dataset

they perform the evaluation. It is known that Oscar was evaluated on the COCO dataset.

However, the authors provide the results of metrics that the official COCO evaluation server4

does not support. Thus, I decided to evaluate my model on validation data for which COCO

provides ground truth data. In Table 5.1, the results of the metrics that the Oscar article

publishes are compared with my results for the same metrics.

Metric BLEU-4 METEOR CIDEr SPICE

Original Oscar [13] 0.417 0.306 1.40 0.245

My pipeline 0.312 0.272 1.02 0.201

Table 5.1: Performance of Oscar on COCO presented by [13], compared with performance

of Oscar trained on my dataset on validation data.

The table shows that Oscar outperforms my pipeline in every metric. This is an expected

result caused by several reasons. The first major difference between the approach presented

in [13] and mine is the dataset. I only use the COCO 2017 dataset, while [13] uses a

huge corpus consisting of seven different datasets. In total, I use 590,000 image-caption

pairs to train Oscar, while [13] uses 6,500,000 image-caption pairs. The detector I used

is able to detect objects of 80 different classes. [13] does not specify which detector was

used to extract the features, but it can be assumed that the number of possible classes was

much larger. A comparison of the object classes in the image can be seen in the example

in Figure 5.1. Another difference is the pre-trained checkpoint used. Oscar provides two

variants: basic and large. According to [13], large provides better results, but at the cost of

higher computational requirements. To achieve the result in Table 5.1 I used basic and the

original Oscar uses the large one. More details on the checkpoints can be seen in [13]. The

last known difference between my pipeline and the original Oscar that may affect the metric

score is the approach to filtering detected objects. All the objects that were detected with

confidence > 0.2 are used. If there are less than 10 such objects, I do not use that image to

train Oscar. However, the original Oscar uses objects with lower confidence in this case, so

that there are a total of 10 objects.

The performance of my pipeline could be improved in the future. In my opinion, the

most significant improvement would be to use a larger dataset with more possible classes

on which both detector and Oscar could be tuned. Another improvement might be to use

a different approach to filtering detections from the detector. Original Oscar uses at least

4https://competitions.codalab.org/competitions/3221

28

https://competitions.codalab.org/competitions/3221

10 detections per frame. During my work, I have concluded that Oscar performs reliably

even with fewer detections. It might be interesting to conduct an experiment and try a

different minimum number of detections per image. If the minimum number of 10 detections

had to be preserved, another experiment could be done by trying different approaches to

complementing the detections, so that less than 10 detections would make just 10. One

technique is to do it like the original Oscar, i.e., use even those with less confidence so that

there are 10 in total. Since multiple detections of a single object are used, another technique

for completing the detections to a total of 10 may be to duplicate those with the highest

confidence.

29

Chapter 6

Ablation Study

The previous section describes the implementation of an image captioning pipeline based

on the method Oscar [13]. Since Oscar is a multi-modal system, it may be interesting to

test its sensitivity to individual modalities. To recapitulate, Oscar uses a visual modality,

represented by the image features of the objects detected in the image. In addition, Oscar

introduces object tags, represented by the class of the detected object, as a textual modality.

In this chapter, I conduct an ablation study to test the robustness and sensitivity of Oscar

to each modality. In the experiment, I remove one of the modalities while keeping the

other, and monitor the output of the system. The sensitivity to each modality is measured

by comparing the metric score obtained by predicting the captions using a dataset with

complete information and another dataset with one of the modalities removed.

6.1 Experiment

In this experiment, I create new datasets with removed modalities based on a dataset

with complete modality information. To evaluate the sensitivity, I compare the predictions

of the dataset with full and restricted information generated by my pipeline, which I created

in Chapter 5. To compare the datasets, I decided to use the official COCO evaluation server1.

This evaluation server computes on the COCO 2014 validation and test dataset some of the

metrics described in Chapter 3. Because of this, I conduct the ablation study specifically

on these two datasets. The structure of these datasets is described in detail in Section 5.1.

For both, the COCO 2014 validation and test datasets, I create two new datasets. One

for each of the modalities, visual and textual. It is done by modifying the original datasets

so that in each new dataset, one of the modalities is removed while the other modality is

retained. There are two main files in the data structure that carry information about the

image. The first is data.feature.tsv. It carries information about the visual modality, which

is represented by a 2056-dimensional vector encoded in a base64 string. The second file is

1https://competitions.codalab.org/competitions/3221

30

https://competitions.codalab.org/competitions/3221

data.label.tsv, which carries the textual modality. It is represented as a set of detected class

names expressed in text form.

First, I create a dataset with the visual modality removed while keeping the textual

modality. The visual modality is removed by editing the data.feature.tsv file. I decode the

string into an array of floats. I replace these numbers with zeros and encode the array back

into a byte64 string in the correct form. I then create another dataset with the textual

modality removed. It is stored in the data.label.tsv file as the name of the detected classes

in text form. I replace these class names with an empty string expression. The previews of

the modified files then look as follows:

• data.features.tsv

184613 {" num_boxes ": 47, "features": "AAAAAAAAAAAAAAAAAA

AAA..." }

403013 {" num_boxes ": 24, "features": "AAAAAAAAAAAAAAAAAA

AAA..." }

...

• data.labels.tsv

184613 [{ "class": "" , "rect": [140.4112 ,81.9309 , 499.4400 ,

303.80444] , "conf": 0.2314} , { "class": "" , "rect":

[0.0, 169.6649 , 394.9242 , 335.4400] , "conf": 0.3473} ,

...]

403013 [{ "class": "" , "rect": [0.0, 0.0, 300.4983 ,

153.1022] , "conf": 0.9131} , { "class": "" , "rect":

[31.7213 , 5.3686 , 300.4983 , 266.1175] , "conf": 0.3067} ,

...]

...

For the purposes of the ablation study, I created a total of 6 datasets. The first two were

created from the COCO 2014 validation and test dataset using the detector. The evaluation

server requires the prediction of all the images from the datasets. In Chapter 5, I did not use

the images with less than 10 detected objects. To meet the requirements of the evaluation

server, I predict captions for every image that has any detections in this experiment. In case

the image has no detection, an empty string is used as a caption for evaluation purposes.

The next two datasets were created by modifying the first two datasets by removing the

visual modality. Another two datasets were also created by modifying the first two datasets,

but this time by removing the textual modality. I used the official COCO evaluation server,

which requires both validation and test datasets, to calculate the metrics that can be seen

in Table 6.1.

31

Metric B-1 B-2 B-3 B-4 M R-L C-D

Full information 0.697 0.526 0.393 0.296 0.265 0.531 0.977

Features removed 0.549 0.356 0.228 0.152 0.183 0.409 0.504

Tags removed 0.672 0.498 0.366 0.272 0.250 0.511 0.875

Table 6.1: B-1-4: BLEU-1-4, M: METEOR, R-L: ROUGEL, C-D: CIDEr-D. Results of

metrics computed for the captions generated by the pipeline I made in Chapter 5. The

comparison is between the different approaches when the system had access to all the infor-

mation, when the visual modality was removed, and when the textual modality was removed.

6.2 Conclusion

In this chapter, I conducted an ablation study on the multi-modal image captioning

method Oscar [13]. This method uses a visual modality represented as image features and

a textual modality represented as the name of the detected class. Using my custom pipeline

described in Chapter 5, I created two feature datasets from the COCO 2014 validation and

test datasets. In order to satisfy the requirements of the COCO evaluation server2 I use for

evaluation, the images with less than 10 detections were kept instead of discarded. I then

created two more variants of the datasets: one variant with the visual modality removed

while retaining the textual modality, and one with the textual modality removed. Then,

I evaluated them on the COCO evaluation server. The results can be seen in Table 6.1.

Both datasets with the modality removed give worse scores than the original. This is the

expected result. It means that Oscar is sensitive to both modalities.

The dataset with the textual modality removed achieves better results than the one which

has the visual modality removed. Although this may suggest that Oscar is more sensitive

to the visual modality, I do not explicitly conclude this. An object tag is represented by

a name of the class, which comes from the set of the 80 possible ones. This means that

when Oscar is generating the caption of data with image features having removed, it has

very limited options to generate the caption from. The idea is illustrated in the Figure 5.1.

The detector I used, successfully detects the elephant but does not detect any object that

may give out the context of the image, such as where the elephant is. It has no information

whether the elephant is in the middle of city streets or in the countryside. However, the tags

provided by the original Oscar signalize that the content of the image is probably happening

somewhere in nature. On the other hand, we can not disregard the importance of the visual

modality. It contains information that tags can never carry. From tags, it probably never

be possible to know, for instance, color, size, position of objects, and so on. I think it may

be interesting in the future to repeat the experiment on the data with a larger variety of

2https://competitions.codalab.org/competitions/3221

32

https://competitions.codalab.org/competitions/3221

possible class names in order to determine whether the difference of the scores I provided

changes or not.

The example of predicted captions, from all three versions of the datasets this chapter

talks about, can be seen in Figure 6.1. It is interesting to observe what context Oscar

assign to objects when features were removed. For instance, Oscar generated the caption

mentioning a street and a tall building. It may be assumed that the truck close to the

bench appears mostly on the street next to tall buildings in the training data. A similar

interpretation can be done for the second image, where Oscar correctly guessed the tree in

the background, having only the information of train and person being in the image. From

this, I conclude that a train near a tree often appears in the training data.

33

1. truck, truck, truck, truck, bench

2. A rusted out pickup truck sitting in a field

of tall grass.

3. A truck driving down a street next to a tall

building.

4. A rusted out truck sitting on top of a lush

green field.

1. train, person

2. A yellow and blue train traveling down

train tracks.

3. A train on a train track with trees in the

background.

4. A yellow and blue train traveling down

train tracks.

1. clock, clock

2. A black and white clock on a brick wall.

3. A tall building with a large clock on the

side of it.

4. A clock that is on the side of a building.

1. laptop, cat, book, bottle, laptop, laptop,

cat, laptop, laptop, bottle, laptop, cup,

laptop, laptop, book, book, laptop, laptop,

microwave, book, cat, laptop, laptop, bowl,

book, book, book, tv, laptop, book

2. A cat that is sitting on top of a laptop.

3. An open laptop computer sitting on top of

a wooden desk.

4. A cat laying on top of a laptop computer.

Figure 6.1: Predictions from the dataset with full information compared to predictions from

the dataset with one modality removed. 1 - Detected objects by the detector, 2 - Prediction

from full information, 3 - Prediction with features removed, 4 - Prediction with tags removed.

Courtesy of [3].

34

Chapter 7

Final Discussion

In chapter 5, I created an image captioning pipeline, based on the method Oscar [13].

I concluded that the quality of the generated captions depends on the quality and volume

of the data that was used to train the models. It is known that the detector I use in my

pipeline can detect objects from the known set of the 80 classes. I found it interesting to

use the pipeline to generate labels for images that I believe contain features that were not

included in the training data of the models used in the pipeline. For this purpose, I have

created a mini-set of images that, in my opinion, meet this requirement. These images are

not part of the COCO dataset [3] that I use in my experiments. They were taken by me

or were manually retrieved from the web, based on my personal ideas. In this chapter, I

discuss and give my personal opinion on the images and their captions from this mini-set

that I find most interesting.

Figure 7.1 - Swans: I find this picture an interesting illustration of the similarity of

human thinking to a machine. Swan is not part of the set of COCO class names. The

detector detects objects that it assumes belong to the bird class. After 30 epochs of training,

Oscar predicts a caption that refers to a group of birds. However, after another 5 epochs

of fine-tuning, Oscar changes its prediction to a flock of ducks. Even though duck is also

not part of the COCO class names, It is able to recognize from the semantic information. I

believe it is able to do this thanks to a sufficient amount of ducks in the training data. In

my eyes, the intermediate step between bird and swan is the duck. I believe that if a human

did not know a swan, they would refer to it as a duck or a bird, like Oscar. On the other

hand, I think that if the swan was in the training data enough times, Oscar would be able

to improve his prediction to a swan at some point after further fine-tuning. However, since

swan and duck are not part of the COCO class names, it is not possible to determine with

certainty how many of them the training dataset contains.

35

1. person, bird, bird, bird, sheep, cow,

cow, sheep, bird, sheep, person, bird,

sheep, sheep, bird, fire hydrant, sheep,

person, bird, cow, cow, sheep, person,

bird, bird, elephant, bird, bird, cow,

bird, sheep, sheep, bird

2. A group of birds that are sitting in the

grass.

3. A flock of ducks sitting on top of a lush

green field.

Figure 7.1: Example of how Oscar deals with the image of swans that are not part of the set

of COCO class names. 1. - Detected object tags by the detector, 2. - Prediction of Oscar

after 30 epochs of training, 3. - Prediction of Oscar after another 5 epochs of fine-tuning.

Figure 7.2 - Tigers: Since the detector is restricted to 80 possible classes, I found it

interesting to let Oscar generate a caption for an image of animals, that are not part of

these classes, but have similar characteristics to animals that are part of the 80 class set.

The detector detected zebra, dog, cat and bear. From my personal gaze, I see that the tiger

has some elements of each of those animals. In my opinion, the most interesting part is

the caption that Oscar generated based on these detections. It called two tigers a couple of

animals. Since the tiger is not part of the set, Oscar dealt with this problem very successfully.

I assume it mimicked human behavior when asked to describe the image of an animal they

had never seen in their lives.

1. zebra, dog, zebra, zebra, zebra, dog, dog,

zebra, cat, cat, zebra, person, person, per-

son, bear

2. A couple of animals that are in the dirt.

Figure 7.2: Example of how Oscar deals with the image of tigers that are not part of the

set of COCO class names. 1. - Detected object tags by the detector, 2. - Prediction my

custom pipeline1.

1https://unsplash.com/photos/dkeOcAkors4

36

https://unsplash.com/photos/dkeOcAkors4

Figure 7.3 - Purple cow: Within this Chapter, I wanted to test the importance of the

coloring of the object to Oscar. I decided to generate a caption for the image of a purple

cow. As can be seen in the figure, the detector correctly detected the cow without any

difficulties. From the detections, Oscar generated a caption about a black and white cow.

I assume there was no purple and white cow in the training data, but there were a lot of

black and white ones. The fact is, lightning may affect the colour. Therefore I believe, that

if there were black and white cows under bluish light in the training data, Oscar probably

had no problems interpreting the purple cow.

1. cow, cow, cow, cow, cow, cow, cow, cow,

cow

2. A black and white cow standing on top of

a grass covered field.

Figure 7.3: Example of how Oscar deals with the image of a cow in unnatural colors. 1. -

Detected object tags by the detector, 2. - Prediction my custom pipeline2.

1. bed, bed, bed, bed, bed, potted plant, bed,

suitcase, couch

2. a bed sitting on top of a lush green field.

Figure 7.4: Example of how Oscar deals with the image of a bed in a unnatural environment

- forest. 1. - Detected object tags by the detector, 2. - Prediction my custom pipeline3.

2https://aura.ch/webyep-system/daten/9-49-gl-fineart-9712.jpg
3https://www.presseportal.de/pm/110692/4121876

37

https://aura.ch/webyep-system/daten/9-49-gl-fineart-9712.jpg
https://www.presseportal.de/pm/110692/4121876

Figure 7.4 - Bed in the forest: I found it interesting to generate the image caption

where the object is not in its natural environment. For this purpose, I used the example of

an image of a bed in the forest. Oscar generated a caption that describes the image well

but did not use the word forest. This is probably due to the fact that the word forest or

tree is not in the set of the COCO class names. It is interesting to compare this with the

image in Figure 7.5, where Oscar recognized the forest. I assume this is due to the context

of the objects in the training data. While the forest around the river and the boat is fairly

natural, the forest around the bed is not as common and thus probably not in the training

data.

1. boat, boat, boat, boat, bird, bird, boat,

bird

2. a boat sitting on top of a river next to a

forest.

Figure 7.5: This image serves as a comparison with the image in the Figure 7.4. The forest

was recognised here. 1. - Detected object tags by the detector, 2. - Prediction my custom

pipeline. Courtesy of [3].

38

Chapter 8

Conclusion

In this work, my goal was to analyze an image captioning state-of-the-art method and

perform experiments on it. Within that, I wanted to gain knowledge of the image captioning

task and deep learning in general. For this purpose, I decided to focus on a specific state-

of-the-art method Oscar [13]. It is a transformer-based method. Transformer [40] is a deep

learning architecture, that was introduced in 2017, used for sequence processing. In 2020, it

has been adopted for image processing [41, 42]. At the time I decided to use it, Oscar was

providing the best results on the image captioning task on one of the most popular datasets

in use, COCO Caption [11]. When analyzing how Oscar works, I found that it generates a

caption for a given image that has already been pre-processed. The authors have provided

a pre-processed set of image features from the COCO [3] dataset that can be used as input

but do not specify how they were obtained from the source images. In order to generate

a caption for a custom image that was not part of the provided dataset, I decided to use

the Faster-R-CNN architecture [46] implemented within Detectron2 [45] as the detector to

extract the features from the source images. I conducted experiments to find out how to

set up the detector properly and how to restructure the data so that they can be used as

Oscar input. Based on the acquired knowledge, I generated features from the COCO 2017

dataset to fine-tune Oscar. In this way, I created a pipeline that is capable of generating

a caption for any given image. The fine-tuned Oscar has been evaluated on the validation

split of the COCO 2017 dataset so that it can be compared to the performance presented in

the source document [13]. My pipeline achieves worse results than presented in the original

paper. This is an expected result due to the lower variability of the training data. The

details are described in Chapter 5.

Oscar is a multi-modal system. It uses a visual modality represented as image features

and in addition it uses object tags as a textual modality. This fact gives the opportunity

and motivation to conduct an ablation study experiment. In the experiment, which was

discussed in detail in Chapter 6, I investigate how removing one of the modalities affects

the results. The experiment confirmed Oscar’s sensitivity to both modalities. The results

39

I obtained suggest that the visual modality is more important than the textual modality.

However, based on the knowledge I gained during this work, I believe that the difference of

sensitivities in the different modalities would not be as large if both Oscar and the detector

were trained on more variable data.

My custom pipeline achieves the following score: BLEU-4: 0.312, METEOR: 0.272,

CIDEr: 1.02, and SPICE: 0.201. Even though the achieved results are not as good as

original Oscar published, I still consider the result of my work a success. I managed to

implement a pipeline that can generate a caption for any image using Oscar. This was not

possible from public sources at the time I started my work. Part of my work has involved

creating tools to help me analyze data, create datasets, edit them, etc. These can be found

on GitHub1.

During the course of working on the thesis, I came to the conclusion that Oscar is a

reasonably robust method. It is able to generate meaningful captions even with a reduced

amount of information. It can furthermore generate captions even for images with a small

number of objects detected or objects unseen in the training data. I suggest that these facts

open up possibilities for further research on the method Oscar in the feature. For example

by using more variable training data or more sophisticated approach to detection filtering.

1https://github.com/zeleznyt/Image_captioning_custom_Oscar

40

https://github.com/zeleznyt/Image_captioning_custom_Oscar

Bibliography

[1] J. Pavlopoulos, V. Kougia, and I. Androutsopoulos, “A survey on biomedical image

captioning,” in Proceedings of the second workshop on shortcomings in vision and

language, pp. 26–36, 2019.

[2] S. Das, L. Jain, and A. Das, “Deep learning for military image captioning,” in 2018

21st International Conference on Information Fusion (FUSION), pp. 2165–2171, IEEE,

2018.

[3] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and

C. L. Zitnick, “Microsoft coco: Common objects in context,” in European conference

on computer vision, pp. 740–755, Springer, 2014.

[4] P. Young, A. Lai, M. Hodosh, and J. Hockenmaier, “From image descriptions to visual

denotations: New similarity metrics for semantic inference over event descriptions,”

Transactions of the Association for Computational Linguistics, vol. 2, pp. 67–78, 02

2014.

[5] C. Rashtchian, P. Young, M. Hodosh, and J. Hockenmaier, “Collecting image anno-

tations using amazon’s mechanical turk,” in Proceedings of the NAACL HLT 2010

workshop on creating speech and language data with Amazon’s Mechanical Turk,

pp. 139–147, 2010.

[6] L. Zhou, H. Palangi, L. Zhang, H. Hu, J. Corso, and J. Gao, “Unified vision-language

pre-training for image captioning and vqa,” in Proceedings of the AAAI Conference on

Artificial Intelligence, vol. 34, pp. 13041–13049, 2020.

[7] A. Karpathy and L. Fei-Fei, “Deep visual-semantic alignments for generating image

descriptions,” in Proceedings of the IEEE conference on computer vision and pattern

recognition, pp. 3128–3137, 2015.

[8] Y. Zeng, X. Zhang, and H. Li, “Multi-grained vision language pre-training: Aligning

texts with visual concepts,” arXiv preprint arXiv:2111.08276, 2021.

41

[9] K. Li, Y. Zhang, K. Li, Y. Li, and Y. Fu, “Visual semantic reasoning for image-text

matching,” in Proceedings of the IEEE/CVF International conference on computer

vision, pp. 4654–4662, 2019.

[10] K.-H. Lee, X. Chen, G. Hua, H. Hu, and X. He, “Stacked cross attention for image-text

matching,” in Proceedings of the European Conference on Computer Vision (ECCV),

pp. 201–216, 2018.

[11] X. Chen, H. Fang, T.-Y. Lin, R. Vedantam, S. Gupta, P. Dollár, and C. L. Zit-

nick, “Microsoft coco captions: Data collection and evaluation server,” arXiv preprint

arXiv:1504.00325, 2015.

[12] P. Wang, A. Yang, R. Men, J. Lin, S. Bai, Z. Li, J. Ma, C. Zhou, J. Zhou, and H. Yang,

“Unifying architectures, tasks, and modalities through a simple sequence-to-sequence

learning framework,” arXiv preprint arXiv:2202.03052, 2022.

[13] X. Li, X. Yin, C. Li, P. Zhang, X. Hu, L. Zhang, L. Wang, H. Hu, L. Dong, F. Wei, et al.,

“Oscar: Object-semantics aligned pre-training for vision-language tasks,” in European

Conference on Computer Vision, pp. 121–137, Springer, 2020.

[14] J. Guo, S. Lu, H. Cai, W. Zhang, Y. Yu, and J. Wang, “Long text generation via

adversarial training with leaked information,” in Proceedings of the AAAI Conference

on Artificial Intelligence, vol. 32, 2018.

[15] L. Yu, W. Zhang, J. Wang, and Y. Yu, “Seqgan: Sequence generative adversarial nets

with policy gradient,” in Proceedings of the AAAI conference on artificial intelligence,

vol. 31, 2017.

[16] P. Sharma, N. Ding, S. Goodman, and R. Soricut, “Conceptual captions: A cleaned,

hypernymed, image alt-text dataset for automatic image captioning,” in Proceedings

of the 56th Annual Meeting of the Association for Computational Linguistics (Volume

1: Long Papers), pp. 2556–2565, 2018.

[17] R. Mokady, A. Hertz, and A. H. Bermano, “Clipcap: Clip prefix for image captioning,”

arXiv preprint arXiv:2111.09734, 2021.

[18] D. Elliott, S. Frank, K. Sima’an, and L. Specia, “Multi30k: Multilingual english-german

image descriptions,” arXiv preprint arXiv:1605.00459, 2016.

[19] I. Calixto, Q. Liu, and N. Campbell, “Incorporating global visual features into

attention-based neural machine translation,” arXiv preprint arXiv:1701.06521, 2017.

[20] H. Lin, F. Meng, J. Su, Y. Yin, Z. Yang, Y. Ge, J. Zhou, and J. Luo, “Dynamic

context-guided capsule network for multimodal machine translation,” in Proceedings

of the 28th ACM International Conference on Multimedia, pp. 1320–1329, 2020.

42

[21] D. Kiela, H. Firooz, A. Mohan, V. Goswami, A. Singh, P. Ringshia, and D. Testuggine,

“The hateful memes challenge: Detecting hate speech in multimodal memes,” Advances

in Neural Information Processing Systems, vol. 33, pp. 2611–2624, 2020.

[22] R. Velioglu and J. Rose, “Detecting hate speech in memes using multimodal deep learn-

ing approaches: Prize-winning solution to hateful memes challenge,” arXiv preprint

arXiv:2012.12975, 2020.

[23] J. Pont-Tuset, J. Uijlings, S. Changpinyo, R. Soricut, and V. Ferrari, “Connecting

vision and language with localized narratives,” in European Conference on Computer

Vision, pp. 647–664, Springer, 2020.

[24] K. Yan, L. Ji, H. Luo, M. Zhou, N. Duan, and S. Ma, “Control image captioning

spatially and temporally,” in Proceedings of the 59th Annual Meeting of the Association

for Computational Linguistics and the 11th International Joint Conference on Natural

Language Processing (Volume 1: Long Papers), pp. 2014–2025, 2021.

[25] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for automatic

evaluation of machine translation,” in Proceedings of the 40th annual meeting of the

Association for Computational Linguistics, pp. 311–318, 2002.

[26] C.-Y. Lin, “Rouge: A package for automatic evaluation of summaries,” in Text

summarization branches out, pp. 74–81, 2004.

[27] S. Banerjee and A. Lavie, “Meteor: An automatic metric for mt evaluation with

improved correlation with human judgments,” in Proceedings of the acl workshop

on intrinsic and extrinsic evaluation measures for machine translation and/or

summarization, pp. 65–72, 2005.

[28] R. Vedantam, C. Lawrence Zitnick, and D. Parikh, “Cider: Consensus-based image

description evaluation,” in Proceedings of the IEEE conference on computer vision and

pattern recognition, pp. 4566–4575, 2015.

[29] P. Anderson, B. Fernando, M. Johnson, and S. Gould, “Spice: Semantic propositional

image caption evaluation,” in European conference on computer vision, pp. 382–398,

Springer, 2016.

[30] M. Z. Hossain, F. Sohel, M. F. Shiratuddin, and H. Laga, “A comprehensive survey of

deep learning for image captioning,” ACM Computing Surveys (CsUR), vol. 51, no. 6,

pp. 1–36, 2019.

[31] R. Staniūtė and D. Šešok, “A systematic literature review on image captioning,”

Applied Sciences, vol. 9, no. 10, p. 2024, 2019.

43

[32] M. Z. Hossain, F. Sohel, M. F. Shiratuddin, and H. Laga, “A comprehensive survey of

deep learning for image captioning,” ACM Computing Surveys (CsUR), vol. 51, no. 6,

pp. 1–36, 2019.

[33] K. Nithya and V. V. Kumar, “A review on automatic image captioning techniques,”

in 2020 International Conference on Communication and Signal Processing (ICCSP),

pp. 0432–0437, IEEE, 2020.

[34] M. Chohan, A. Khan, M. S. Mahar, S. Hassan, A. Ghafoor, and M. Khan, “Image

captioning using deep learning: A systematic,” Image, vol. 11, no. 5, 2020.

[35] A. Farhadi, M. Hejrati, M. A. Sadeghi, P. Young, C. Rashtchian, J. Hockenmaier,

and D. Forsyth, “Every picture tells a story: Generating sentences from images,” in

European conference on computer vision, pp. 15–29, Springer, 2010.

[36] H. Fang, S. Gupta, F. Iandola, R. K. Srivastava, L. Deng, P. Dollár, J. Gao, X. He,

M. Mitchell, J. C. Platt, et al., “From captions to visual concepts and back,” in

Proceedings of the IEEE conference on computer vision and pattern recognition,

pp. 1473–1482, 2015.

[37] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A neural image

caption generator,” in Proceedings of the IEEE conference on computer vision and

pattern recognition, pp. 3156–3164, 2015.

[38] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel, and Y. Bengio,

“Show, attend and tell: Neural image caption generation with visual attention,” in

International conference on machine learning, pp. 2048–2057, PMLR, 2015.

[39] P. Anderson, X. He, C. Buehler, D. Teney, M. Johnson, S. Gould, and L. Zhang,

“Bottom-up and top-down attention for image captioning and visual question answer-

ing,” in Proceedings of the IEEE conference on computer vision and pattern recognition,

pp. 6077–6086, 2018.

[40] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and

I. Polosukhin, “Attention is all you need,” Advances in neural information processing

systems, vol. 30, 2017.

[41] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko, “End-to-

end object detection with transformers,” in European conference on computer vision,

pp. 213–229, Springer, 2020.

[42] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,

M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al., “An image is worth 16x16

words: Transformers for image recognition at scale,” arXiv preprint arXiv:2010.11929,

2020.

44

[43] N. Li, Z. Chen, and S. Liu, “Meta learning for image captioning,” in Proceedings of

the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8626–8633, 2019.

[44] C. Chen, S. Mu, W. Xiao, Z. Ye, L. Wu, and Q. Ju, “Improving image captioning with

conditional generative adversarial nets,” in Proceedings of the AAAI Conference on

Artificial Intelligence, vol. 33, pp. 8142–8150, 2019.

[45] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, “Detectron2.” https://

github.com/facebookresearch/detectron2, 2019.

[46] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object de-

tection with region proposal networks,” Advances in neural information processing

systems, vol. 28, 2015.

45

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

	Introduction
	Datasets
	Flickr30k
	COCO Caption
	Conceptual Captions
	Multi30k
	Hateful Memes
	Localized Narratives
	Conclusion

	Caption Evaluation
	BLEU
	ROUGE
	METEOR
	CIDEr
	SPICE

	Related Work
	Types of methods
	Evolution of image captioning

	Implementing the Captioning Pipeline
	Dataset
	Detector
	Fine-tuning Oscar
	Conclusion

	Ablation Study
	Experiment
	Conclusion

	Final Discussion
	Conclusion

