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Abstract

Gene expression regulation by Ago-loaded small RNAs is a complex
but essential process across species. Prediction of small RNA Ű target
site binding is an important Ąrst step in all small RNA target prediction
programs. To date, there are two widely used techniques for small
RNA Ű target site prediction: seed and cofold. Limitations of both these
techniques have presented target prediction tools selectively focusing
on targets with Şcanonical seedŤ, although unbiased experiments have
shown that less than 50 % of the small RNA targets are ŞcanonicalŤ.

In this thesis, we present a machine learning method for the pre-
diction of potential small RNA Ű target site binding. It is trained
on seed-unbiased experimental data and we show that our method
outperforms state-of-the-art approaches. The code, data and a web
server for two projects included in this thesis are available at https:

//github.com/ML-Bioinfo-CEITEC/miRBind and https://github.c

om/evaklimentova/smallRNA_binding.
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Introduction

MicroRNAs and potentially other types of small RNAs post-transcrip-
tionally regulate gene expression across species. The regulation works
on the principle of Ago protein-mediated small RNA binding to its
mRNA target. Gene expression regulation by small RNAs plays a role
in multiple essential processes and the effects of its dysfunction may
be important in many diseases such as schizophrenia, Alzheimer’s
disease or cancer. IdentiĄcation of small RNA Ű mRNA target inter-
actions is thus crucial for the exploration of the regulation network.
The easiest way is usually using some computational prediction tool
followed by experimental validation of predicted pairs.

An important part of the prediction of new small RNA and targets
they are able to regulate is predicting the Ąrst step of this machinery Ű
small RNA target Ago-mediated binding. There exist plenty of target
prediction tools but the majority of them use in their Ąrst Ąltering
step to determine the potential small RNA target binding place either
co-folding free energy measures or approaches based on the identiĄ-
cation of small RNA seed region binding. Limitations of both these
techniques have presented target prediction tools selectively focusing
on targets with Şcanonical seedŤ, although unbiased experiments have
shown that less than 50 % of the small RNA targets are ŞcanonicalŤ.

In this thesis, we present a machine learningmethod for the predic-
tion of potential small RNA Ű target site binding. The method is based
on two experimental high throughput CLASH datasets, one focusing
on Ago1 interactions, the second on Ago2. We show that our method
outperforms state-of-the-art tools for small RNA target binding site
recognition. To open up our method to the biology researchers we
develop a user-friendly standalone tool as well as a web server where
they can evaluate their potential small RNA Ű target pairs.

The thesis is divided into Ąve chapters. Chapter 1 introduces the bi-
ological background necessary to understand the concept and goals of
this work. Chapter 2 focuses on an overview of the Ąelds of deep learn-
ing and its relation to genomics. In chapter 3, methods used to build
the small RNA target binding site prediction tool are summarized
and chapter 4 follows by presenting the achieved results in a state-of-
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Introduction

the-art context. Finally, the chapter 5 summarizes the Ąndings of this
thesis and discusses further potential extensions and improvements.
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1 Biological background

This chapter will brieĆy introduce multiple terms and concepts from
biology to help readers properly understand the context and goals
of this thesis. The Ąrst section 1.1 presents small RNAs and their
different types, section 1.2 deals with Ago proteins and their function
and introduces the problem of small RNA target binding prediction.

1.1 Small RNAs

The discovery of small RNAs can be traced back to the 1950s when
transfer RNA and ribosomal RNA were discovered [1, 2]. Over the
years, a number of similar small RNA molecules that do not function
as messenger RNAs (mRNAs) were discovered and the term small
RNA was established. It is used for RNA molecules that are shorter
than 200 nucleotides long and are usually non-coding. The small RNAs
have an indispensable role in a wide range of cell functions such as
gene silencing, RNA processing and modiĄcation, or gene expression
regulation [3].

The following paragraphs brieĆy present some types of small
RNAs.

MicroRNAs (miRNAs) are approximately 22 nucleotide long small
RNAs that negatively regulate gene expression at the level of mRNA.
MiRNAs are processed from longer RNAsequences called pri-miRNAs
which contain a region that folds back on itself and forms a hairpin
structure. These folded molecules are subsequently processed and
cleaved into small double-stranded RNAs. One strand (or both) of
the miRNA duplex is then called the mature miRNAwhich then plays
its role in mRNA repression [4].

Small nucleolar RNAs (snoRNAs) are about 60 Ű 300 nucleotides long
molecules that are mainly found in the nucleolus. Their primary func-
tion is the posttranscriptional modiĄcation of ribosomal RNA or trans-
fer RNA [5].

4



1. Biological background

Transfer RNAs (tRNAs) are typically between 70 and 100 nucleotides
long molecules folding into the cloverleaf structure. They have a key
role in RNA translation into protein by recognizing speciĄc tri-nu-
cleotide codon and attaching appropriate amino acid to the growing
polypeptide chain [6].

Vault RNAs were Ąrstly discovered as part of the largest ribonucleo-
protein complexes named ŞvaultŤ and the group consists of only four
members in human. It has been shown that they are involved in central
signalling pathways and cell to cell communication but most of their
function is still unknown and their role is still under investigation [7].

YRNAs are about 100 nucleotides long with a stem-loop structure.
Even though they were discoveredmore than 40 years ago, their role is
still under investigation. They are for example reported to be important
for DNA replication. In total there exist only four different YRNAs [8].

1.2 Ago proteins

The Argonaute (ago) protein family is a widely conserved set of pro-
teins found in multiple species ranging from yeast to humans and
plants. In mammals, the Ago protein family is divided into two clades,
Ago and PIWI, each associated with small RNA driver sequences that
can target RNAs using some form of sequence complementarity. There
are four Ago proteins (Ago1 Ű 4) known in mammals that primarily
interact with miRNAs and form a complex called the RNA-induced
silencing complex (RISC) (Figure 1.1). Loaded miRNA then guides
Ago through base pairing to target mRNAs and regulate translation.
Of the four Ago proteins found in mammalian cells, Ago2 is unique
in its ŞslicerŤ ability which allows it to cleave highly complementary
targets [9]. Experiments performed on mice [9, 10] show that Ago2 is
the most important member of a possibly partially redundant family
of Ago proteins.

Primarily associated drivers of Ago proteins are miRNAs. How-
ever, it is becoming more and more apparent that other small RNA
molecules can also be loaded to Ago proteins and may act as targeting
drivers similarly to miRNAs [11].
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1. Biological background

Figure 1.1: Interaction between small RNA and target RNA
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Figure 1.2: miRNA Ű mRNA ŞcanonicalŤ seed binding

The exact process of how small RNA sequences loaded to Ago pro-
tein bind to their mRNA targets has been inspected by many studies
mostly working with miRNA-target interactions. The early identiĄed
pattern important in miRNA target recognition was the seed region
pairing. The ŞcanonicalŤ seed is a stretch of six to eight nucleotides
starting from position 2 from the 5’ end of the miRNAmolecule which
binds to the target sequence by perfect nucleotide complementarity
(Figure 1.2), while it is known that Şnon-canonicalŤ seeds allowing
a small number of mismatches or bulges are also functional [12]. How-
ever, also non-seed interactions have been known for a long time [13].
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1. Biological background

1.2.1 Prediction of miRNA targets

Early computational approaches to miRNA target prediction were
heavily based on seed complemented with additional features such as
evolutionary conservation of targets, the position of the target sites on
3’-UTRs, nucleotide content and others [12]. Other types of miRNA
target prediction methods utilized alignment or co-fold methodolo-
gies ignoring the seed region. In these approaches, an ideal structure
is calculated based on the affinity of the miRNA sequence to its target
sequence, and then measures such as alignment score or free energy
of binding of the two molecules are used to score binding probabil-
ity [14].

When the Ąrst high-throughput miRNA targeting datasets became
available [15, 16], it showed up that seed-based approaches outper-
form ŞcofoldŤ based methods [17]. The following years produced
a wealth of high-throughput miRNA targeting data utilizing methods
such as CrossLinking ImmunoPrecipitation (CLIP) sequencing that
identiĄed thousands of miRNAs and their targets [18]. An important
limitation of these techniques is that they do not produce speciĄc
miRNA Ű target site pairs. Instead, they produce peaks of Ago protein
binding, to which miRNAs need to be assigned. This is often done
by using a miRNA target prediction program, which usually utilises
the seed heuristic [19]. This creates a feedback loop of Şseed biasŤ
in which putative target sites with ŞcanonicalŤ seeds score high for
miRNA target prediction programs based on a seed heuristic, and then
in turn are prioritized for experimental validation. These validated
targets are in turn used to train the new generations of miRNA target
prediction programs. Even though more functional Şnon-canonicalŤ
seed binding sites are being continuously discovered, they remain
underrepresented by all miRNA prediction programs and databases
of validated miRNA targets.

Until 2013 when Crosslinking, Ligation, And Sequencing of Hy-
brids (CLASH)protocolwas presented [20], no unbiased high-through-
put experiment was performed to directly identify RNA Ű RNA Ago
mediated interactions. In the CLASH method, RNA Ű protein com-
plexes are stabilized and the Ago-loaded small RNA and RNA inter-
acting molecules are intermolecularly ligated. RNA Ű protein com-
plexes are then pulled out using immunoprecipitation and RNA se-
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1. Biological background
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Figure 1.3: Schematic of the CLASH experiment

quences are sequenced (Figure 1.3). CLASH sequencing results of-
fer three types of information: precise Ago-binding sites on RNAs
(similar to CLIP methods), Ago-loaded driver sequences and also
RNA driver Ű RNA target pairs (called chimeric reads) mediated by
Ago. This new CLASH experiment presented that only approximately
20 % of identiĄed miRNA Ű target chimeras have ŞcanonicalŤ seed
and about 20 % chimeras do not show any type of seed binding at
all [20]. This strengthens the need of using different algorithms than
the seed heuristic as a Ąrst Ąltering step in themiRNA target prediction
programs.

1.2.2 Non-miRNA Ago drivers

The small RNAs primarily associated with Ago proteins are miRNAs.
However, it has been demonstrated that other small RNA molecules
can be loaded to Ago too. It has been shown that for example tRNA
fragments (tRFs) can associate with Ago proteins [21] and silence
their targets in a similar manner to miRNAs [22]. When data from
Ago1 CLASH experiment [20] were reanalyzed, it showed out that
miRNAs are not the absolute majority in the chimeric reads [23]. In
a CLASH Ago2 experiment performed in CEITEC (see section 3.1.2),
approximately 14,000 chimeric target sites were found. Less than 50 %
of these target sites were associated with miRNAs, the rest was associ-
ated with tRNA, snoRNA, vault RNA and YRNA fragments.

Until recently, non-miRNA target prediction tools were limited to
miRNA target prediction tools. In the past couple of years, several tRF
prediction tools were introduced [24, 25, 26]. They work on the same

8



1. Biological background

ideas as miRNA prediction tools and use cofold or seed match. So far
any other non-miRNA prediction tools have been developed.
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2 Bioinformatics and Machine Learning Approaches

This chapter serves as a brief introduction to the terms such as ma-
chine learning and Neural Network. It will also provide a number of
practical examples that highlight the applications of machine learning
on biological data.

2.1 Machine learning

Machine learning (ML) is a set of algorithms that are able to learn
concepts and extract patterns from raw data. The ML algorithms can
help with many real-world problems however the behaviour of these
algorithms heavily depends on the input data representation. Many
tasks can be easily solved if appropriate features are extracted from the
input data and provided to a simple ML algorithm. Nonetheless, for
some problems, it might be challenging to construct such features [27].

A subset of ML called Deep learning solves the problem of repre-
sentation by its ability to obtain complex concepts expressed using
simpler ones. This eliminates the issue of handcrafted features by in-
corporating the computation of these features into the deep learning
model itself [28].

2.2 Neural Network

One of the earliest algorithms in deep learning that has survived
until today was based on the idea of how learning in the brain could
work. From this concept emerged Artificial Neural Networks, usually
called simply Neural Network (NN). They consist of multiple layers
where the Ąrst layer is the input layer, the Ąnal layer is named the
output layer and all the remaining layers between them are hidden
layers. Each of these layers is then composed of individual nodes
termed artificial neurons which are interconnected between individual
subsequent layers. To go from one layer to the next one, the neurons
calculate a weighted sum of their inputs and pass the result through
a non-linear function [28].

10



2. Bioinformatics and Machine Learning Approaches

2.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a special type of NNs that
are designed to process data composed of multiple arrays. They are
typically used for data such as 2D images or 3D video. The classical
CNNs are contain two special types of layers: convolutional and pool-
ing. Neurons in convolutional layers are connected to the local regions
of the previous layer and compute the scalar product between their
weights and the connected region. The result is then passed through
a non-linear function. Neurons in the convolutional layer are orga-
nized to featuremapswhere the neurons from one featuremap use the
same set of weights called the kernel. The idea behind this architecture
is that each set of neurons in the same feature map searches for one
simple pattern independently of its position in the input layer. The
role of the pooling layer is to downsample the convolutional layer out-
put and merge similar features into one. A pooling neuron typically
computes the maximum of a local area of neurons in one or multiple
feature maps. Typical CNN consists of multiple stacked convolutional
and pooling layers, followed by classical fully-connected layers [27].

Thanks to their architecture CNNs are able to extract low-level
features and compose them into higher-level features. An example
in images may be the detection of simple patterns like edges which
can be then merged into simpler objects or their parts which can form
bigger objects [28]. The same idea can be applied toDNA sequences. In
them, simple motifs and motif interactions can be found, from which
a function may emerge [29].

2.4 Deep learning in the context of genomics

In the last couple of years, there has been an explosion of publications
presenting deep learning approaches to study the genome. This could
have happened thanks to the fast development of high-throughput
methods for analyzing genome structures and functions and thus the
availability of large datasets [30]. It has been demonstrated that deep
learning suits well tasks related to genomics as the multiple layers can
capture complex multi-level information. In comparison to the older
tools, deep learning methods do not need any handcrafted features

11



2. Bioinformatics and Machine Learning Approaches

as they can extract the features straight from the raw data and they
are able to catch not only individual motifs but also their higher-level
interactions [31]. Deep learning techniques can be nowadays found
in areas such as prediction of splicing [32], methylation status [33] or
sequence speciĄcity of binding proteins [34]. Another interesting ex-
ample of deep learning usage is the application of the natural language
processing model on DNA sequences [35].

12



3 Methods

This chapter outlines the datasets and methods used in the CNN
construction. Section 3.1 describes all datasets used, their origin and
preprocessing steps. Section 3.2 covers the NN technicalities such as
architecture or evaluation metrics.

3.1 Datasets

The major problem in the Ąeld of small RNA target prediction is the
lack of available data. These days there is only one published unbiased
high-throughput dataset focusing on Ago1 miRNA drivers and their
targets, namely the CLASH experiment from 2013 [20] (called CLASH
Ago1 dataset in this thesis). The second dataset which will be used in
this thesis is not yet published and comes from an experiment done
in CEITEC (called CLASH Ago2 dataset). It is similar to the CLASH
2013 dataset but is done not with Ago1 protein but Ago2 and brought
in addition to miRNA targets a lot of other non-miRNA small RNA
targets. Yet another dataset can potentially arise from a new eCLIP
experiment [36] when released.

The following subsections describe in detail the methods used for
obtaining the experimental CLASH Ago1 and Ago2 data and their
processing.

3.1.1 CLASH Ago1 dataset

Supplementary text Ąle S1 with information about miRNAs and their
targets was downloaded from Helwak et al. [20] supplement. To Ąt
the NN input shape, obtained miRNA sequences were cut to contain
only the Ąrst 20 bases, whereas shorter sequences were left untouched.
Target sequences needed to be reshaped to the length of 50 thus their
coordinates were centred around the original target middle point and
resized to the window length of 50 base pairs (bp). A custom database
of human transcripts was downloaded from hyb pipeline 1 [37] which
was originally used to process experimental CLASH Ago1 data. Ad-
justed target sequences were obtained from the modiĄed coordinates

1. https://github.com/gkudla/hyb/blob/master/data/db/hOH7.fasta.gz
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3. Methods

using bedtools [38] and hyb transcript database. The processed dataset
with 20 bp longmiRNAs and 50 bp long targets was called the positive
dataset of the classiĄcation problem and contained 18,392 pairs.

The dataset was further divided into training, validation and test-
ing set composed of 15,392, 2,000 and 1,000 miRNA Ű target pairs. The
splitting could not be done based on chromosome number, which
is usual when working with DNA sequences, because the original
dataset did not contain this information, thus the dataset was split
randomly.

The negative sets were formed by matching randomly selected
miRNA from the positive set and randomly selected target from the
positive set, taking care that the selected pair is not present in the
positive set. This approach was selected because it reĆects the real
situation Ű for example in AgoCLIP-seq experimentswhen it is needed
to match sequenced miRNAs to their targets on Ago-CLIP peaks.
When CLIP-seq experiments are nowadays done, peaks are often
assigned to the miRNAs using seed or cofold methods.

From each positive dataset (training, evaluation and testing) three
Ąnal datasets with different positive : negative ratios were composed Ű
1:1, 1:10 and 1:100. The 1:1 dataset represents the classically balanced
classiĄcation task whereas the 1:10 and 1:100 datasets reĆect better
the realistic scenario since non-target sequences usually outnumber
the target sequences.

3.1.2 CLASH Ago2 dataset

The sequencing data for this dataset were obtained by performing
CLASHexperiment onAgo2whichwas done inCEITEC 2. This section
will explain a bit deeper how to get from the raw sequencing data to
the dataset of chimeras and what problems and difficulties may arise
in this process.

The processing starts with high throughput Illumina sequencing
reads on the input. At Ąrst, the unique molecular identiĄers are ex-
tracted and the quality of reads is checked. If any adapters are detected
in the quality control step, they are trimmed as well as low-quality
reads or bases. The preprocessed reads are mapped to the human

2. Thanks belong to Nandan Mysore Varadarajan and prof. Štěpánka Vaňáčová
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Figure 3.1: Visualization of individual CLASH Ago2 pipeline steps

GRCh38 reference genome with very strict settings to detect only pre-
cisely aligned target genomic reads. All remaining reads from the
pure genomic read separation step were aligned to a custom database
of small RNAs containing miRNAs, tRNAs, snoRNAs, vault RNAs
and YRNAs. Reads fully aligned to the small RNA database were
separated and saved for future usage. Reads aligned to a small RNA
database with Ćanking part longer than 16 bp were considered as
potential chimeric reads and further examined. The rest of the reads
was trashed. From potential chimeric reads unaligned part was ex-
tracted and mapped to the human genome. Only reads with properly
mapped target genomic part were kept. To obtain only high conĄdence
chimeras, the chimeric reads were further collapsed, clustered and
Ąltered and the genomic targets were standardized to the length of
50 bp. Schema of the whole pipeline 3 is outlined in Figure 3.1.

To illustrate the yield of the reads in individual steps of the pipeline
in comparison to the input raw reads count, see Table 3.1. What can be
immediately seen is that out of the initial more than 800 million reads
there are only 14,205 unique chimeras, whichmakes the yield 0.0002%.
This low number makes the CLASH experiment very demanding. The

3. Credits for the whole pipeline design and development goes to Václav Hejret

15



3. Methods

Table 3.1: The number of reads in individual steps of the CLASH Ago2
pipeline. Labels of the pipeline steps correspond to the labels in Fig-
ure 3.1.

Pipeline step Reads number

(A) Sequenced reads 812,717,759
(B) Trimmed reads 730,731,281
(C) Single genomic target 194,551,480
(D) Single small RNA driver 119,640,814
(E) Chimeras partially mapped to genomic targets 16,817,797
(F) Chimeras after deduplication and Ąltering 14,205

issue of losing a large number of reads occurs in multiple steps. Due
to the low efficiency of the intermolecular ligation step of the CLASH
protocol, there is a much higher number of only single genomic target
reads and single small RNA reads than the potential chimeric reads.
The second major issue is in the Ąnal Ąltering step, where small RNA
chimeric parts, that align with the same conĄdence to more than one
type of small RNA are trashed.

For the ML part, the chimeric reads were sorted into six sets based
on the small RNAdriver type. Only half of them (miRNAs, tRNAs and
YRNAs) could be used as a positive set for training because the rest
(snoRNAs, and vault RNAs) contained less than 1,000 chimeras. From
the miRNA set, two different datasets were prepared: one with the
wholematuremiRNA sequence taken from themiRBase database [39]
and the second one with the truly observed part of the miRNA se-
quence. As the classical whole tRNA and YRNA sequences are much
longer than the observed fragments loaded to Ago, only datasets with
truly observed sequences could be constructed for tRNAs and YRNAs.
The disadvantage of using the truly observed sequences is that due to
the ligation and sequencing process the Ago-loaded sequence may be
incomplete, which may for example shift the seed region.

All positive datasets were further processed by cutting small RNA
sequences from the beginning to the length of 20 bp and splitting
them into train and test sets based on the target chromosome number.
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Table 3.2: Number of small RNA Ű target pairs in individual positive
datasets

Small RNA type Train set samples Test set samples

miRNA 3,860 719
tRNA 6,638 1,195
YRNA 956 163

Table 3.2 lists the number of small RNA Ű target tuples in each of the
datasets.

The negative sets were formed the sameway as in the CLASHAgo1
dataset. The Ąnal training sets were composed of positive : negative
ratio 1:10, the test sets had all 1:1, 1:10 and 1:100 ratios.

3.1.3 Data representation

As the problemwe are dealingwith is a binding of twoRNAmolecules,
it is indisputable that Watson-Crick base pairing is important in this
task. We decided to help the model with understanding the bind-
ing rules and thus elected a sequence agnostic approach where we
completely hide the small RNA and target sequences from the input.
Instead of using standard one hot encoded sequences, we build a 20
(small RNA size) x 50 (target size) matrix in which any Watson-Crick
binding nucleotide pair (A Ű T, C Ű G) is represented by 1, and any non-
binding pair or empty space in shorter sequences by 0. An example of
an encoded small RNA and target pair is shown in Figure 3.2.

3.2 Neural Network architecture

For the building of the classiĄer recognizing small RNA Ű target pairs,
Convolutional Neural Networks were chosen. Due to the nature of
2D image-like input data CNNs were chosen as they were shown to
perform well in tasks with image-like inputs [28]. The architecture
similar to PENGUINN [40] was chosen as the architecture on which
all attempts were based. The architecture consists of multiple layered
blocks composed of a convolutional layer, leaky ReLU, batch normal-
ization, pooling and dropout layer. The output of the last dropout
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Figure 3.2: Example of encoded small RNA and target

layer is Ćattened and connected to the layered blocks of dense, leaky
ReLU, batch normalization and dropout layer. The last layer is formed
of a single neuron with a sigmoid activation function, which outputs
the probability of input small RNA : target site binding. A schematic
picture of the network architecture can be found in Figure 3.3. The
network was compiled with Adam optimizer, binary cross-entropy
loss function was used.

To Ąnd the best set of parameters to use, hyperparameter search
was performed. It was done on the CLASHAgo1 dataset separately for
all three positive : negative ratios (1:1, 1:10 and 1:100) using the train
set for model training and evaluation set for comparison. Bayesian
optimization implemented in Keras Tuner was used to perform the
hyperparameters search. The optimized parameters were number of
blockswith convolutional layer (2Ű6) and number of blockswith dense
layer (2Ű6) (α and β in Figure 3.3), convolutional layer kernel size
(3Ű6), pool size of the pooling layer (2Ű5), dropout rate (0Ű0.6) and
learning rate (0.0001Ű0.01). The total number of model conĄguration
trials was set to 100. All the models were trained over 10 epochs with
batch size 32.

For CLASH Ago2 datasets, the best performing models architec-
ture with training dataset 1:10 ratio (see section 4.1.1) was selected
for the training of all models.

18



3. Methods

20

50{

{

Input

C
o

n
v

o
lu

ti
o

n

B
at

ch
 N

o
rm

al
iz

at
io

n

M
ax

-P
o

o
li

n
g

D
ro

p
o

u
t

L
ea

k
y

 R
eL

U

D
en

se

B
at

ch
 N

o
rm

al
iz

at
io

n

M
ax

-P
o

o
li

n
g

D
ro

p
o

u
t

L
ea

k
y

 R
eL

U

Flatten Score
0 - 1

Outputα x β x

Figure 3.3: Compact representation of network architecture, α and β
are hyperparameters

The code for training and bayesian optimization can be found on
CLASH Ago1 github and CLASH Ago2 github.

Another two architectures were tried for the CLASH Ago1 dataset
by two different people. Katarína Grešová was working on an architec-
ture based on a recently published transformer-based model named
DNABERT [35]. DNABERT uses tokenized k-mer sequences as input
and it can be Ąne-tuned for multiple tasks. As the input to DNABERT
is a set of sequences, miRNA Ű target pair were converted into a single
sequence, in which miRNA and target sequences are interlaid with
four N nucleotides, as shown in Figure 3.4. The DNABERT model was
Ąne-tuned on the 1:1 training set.

The second model was recently presented by Ján Krčmář [41]. The
architecture used in his approach is based on the ResNet architec-
ture [42]. Another concept used in his work is label smoothing, where
the labels of samples which are hard to classify are changed to pre-
vent the model from being too conĄdent with its predictions. This is
achieved by Ąrst training multiple small models and then evaluating
them. The hard samples are then chosen and their labels are smoothed.
The new regular model is then trained on the modiĄed dataset. Jan
created two Ąnal models Ű one ŞclassicalŤ ResNet and one ensemble
of multiple ResNets.
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Figure 3.4: Representation of DNABERT model architecture input en-
coding

3.2.1 Evaluation metrics

As the problem of Ąnding small RNA targets is imbalanced, it is impor-
tant to choose appropriate metrics because, for example, a widely used
accuracy metric is unsuitable for this problem. The metrics advisable
for detecting rare events is precision and recall [27]. They are deĄned
as

precision =
TP

TP + FP
(3.1)

recall =
TP

TP + FN
(3.2)

where TP are true positives, FP false positives and FN false negatives.
For the visual idea of the model performance, precision recall curve
(PR curve) is used, for direct comparison area under the PR curve (AU
PRC). The AU PRC metric was also applied in the hyperparameter
tuning task.

3.2.2 Prediction of new targets

To enable potential users to make a new prediction of small RNA
targets, a standalone python script and a web server were created.
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The python script allows the user to upload tsv Ąle with small RNA
and target sequences and outputs a tsv where for each small RNA Ű
target pair a score is predicted by the loaded selected model. The web
interface is a more user-friendly and intuitive way of predicting user-
submitted small RNA and target binding score. It works on a similar
principle as the python script using trained keras models converted to
json format. The web page for miRNA Ű target prediction based on
CLASH Ago1 dataset was developed by Ilektra - Chara Giassa, the
other web page based on CLASH Ago2 was developed by the author
of this thesis. All the tools described in this paragraph are available
on github 4 5.

3.3 Small RNA target binding state of the art

The problem with small RNA target binding prediction is that most of
the available tools focus not only on the binding problem itself but go
further and consider also the functionality of the binding. Classical
target prediction state-of-the-art tools are thus not directly comparable
to the ML methods developed in this thesis. Another problem with
the comparison arises because target prediction methods usually use
as the input not only small RNA and potential target sequence, but
also many additional features such as conservation score of the target,
upstream or downstream nucleotide content or minimum free energy.
The methods with which the developed ML tool can be directly com-
pared are thus very limited as the tool is designed more as a potential
Ąrst Ąltering step in the classical target prediction programs, it can be
used for example instead of seed.

This section describes the chosen external tools and methods used
in this thesis as a state of the art comparison in target binding predic-
tion. For every tool, there is a brief description and explanation of how
it was run.

4. CLASH Ago1: https://github.com/ML-Bioinfo-CEITEC/miRBind

5. CLASH Ago2: https://github.com/evaklimentova/smallRNA_binding
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3.3.1 Seed

ŞCanonicalŤ seed consisting of a stretch of perfectly binding six nu-
cleotides starting from position 2 at the small RNAs 5’ end was used.
A custom implementation of this method was done in python with
a small RNA driver and mRNA target sequences at the input. The
seed section from second to seventh (including) nucleotide from the
beginning of the small RNA sequence is extracted and reverse comple-
mented. The target sequence is then searched with the reverse com-
plemented seed for an exact match. If there is such a match, a score of
1 goes to the output, in case of not Ąnding a match, the output is 0.

3.3.2 Cofold

The idea of folding methods is represented by the RNAcofold tool from
ViennaRNAPackage [14].RNAcofold computes the hybridization energy
and base-pairing pattern of an input pair of interacting RNAmolecule
sequences. The computed minimum free energy [43] of the folding
represents how well the two molecules hold together. The lower the
free energy, the stronger the binding.

Input to RNAcofold are small RNA and target sequences concate-
nated with Ş&Ť symbol, formatted to fasta Ąle. Their minimum free
energy was computed using the following command:
RNAcofold --noPS input.fasta > output.fasta

To simplify direct comparison with other tools, minimum free energy
scores were normalized to the range from 0 to 1 where 1 represents
the strongest binding.

3.3.3 RNA22

RNA22 is a method for identifying miRNA binding sites and is one of
the few methods that does not rely on any additional features except
miRNA and target sequences. The algorithm is based on the Markov
chain which helps to Ąnd recurring patterns in miRNA sequences.
Potential targets are then searched with the identiĄed patterns and
areas with accumulated hits are paired with miRNAs based on the
nucleotide pairing and free energy.
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The standalone version of the RNA22 program was used 6 and run
with default parameters apart from ŞminenergyŤ which was set to
-5. On the input, there were individual miRNA and target sequences
in fasta format. The program can output either an empty Ąle, which
means that the input miRNA and target do not bind or potentially
multiple exact positions of the miRNA binding to the target accompa-
nied by a p-value representing the likelihood that the target site loci is
random. Processing of the RNA22 output was done by putting score
1 to the pairs that were not recognized as binding and reporting the
lowest score for pairs with multiple recognized target binding places.

6. https://cm.jefferson.edu/rna22/Interactive/remoteRNA22v2.zip
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4 Results

4.1 CLASH Ago1 dataset

This section provides a summary of models trained on CLASH Ago1
dataset and evaluates their performance in the state-of-the-art context.

4.1.1 Hyperparameter tuning results

As described in section 3.2, hyperparameter tuning was performed
for models trained on all three datasets with ratios 1:1, 1:10 and 1:100.
The best hyperparameters for all three models are summarised in
Table 4.1. To pick one best model for the whole CLASH Ago1 dataset,
all three tuned models were compared on all three evaluation datasets
(Table 4.2). The best performing model on all three datasets was the
one trained on the dataset with 1:10 ratio, which was named miRBind.
The rest of this thesis will use for all other comparisons only this one
miRBind model.

Table 4.1: Summary of the best hyperparameters for models trained
on datasets with 1:1, 1:10 and 1:100 ratios

Hyperparameter
Dataset ratio

1:1 1:10 1:100

Number of convolutional layer blocks 6 6 6
Number of dense layer blocks 3 2 3
Convolutional layer kernel size 4 5 5
Pool size of the pooling layer 2 2 2
Dropout rate 0.2 0.3 0.1
Learning rate 0.01 0.00152 0.00027

4.1.2 Comparison with state-of-the-art

miRBindmethodwas comparedwith three other state-of-the-art meth-
ods on all three left out test sets (Figure 4.1). The seed approach recog-
nizes a perfectly complementary match of the 2Ű7 miRNA hexamer on
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Table 4.2: AU PRC for three models trained on train sets with different
pos : neg ratios evaluated on three evaluation sets

Evaluation set
Model trained on

1:1 1:10 1:100

1:1 0.9660 0.9670 0.9645
1:10 0.7986 0.8140 0.8001
1:100 0.4211 0.4629 0.4512

Figure 4.1: PR curve for miRBind, RNA22, cofold and seed tested on
1:1, 1:10, and 1:100 test sets

the target sequence. Since the match is a binary decision, no AU PRC
may be calculated. The cofold method evaluates potential binding
pairs based on the free energy of folding the sequences. Seed and
cofold represent widely used approaches to quickly identify poten-
tial miRNA (or small RNA) targets and are commonly plugged in to
more complex target prediction programs. The third method RNA22
represent a lightweight class of target prediction programs but in com-
parison to the standard target prediction program, it does not predict
only functional targets but all putative miRNA binding sites.

In the 1:1 dataset, miRBind outperforms both cofold and RNA22
with the AU PRC of 0.9634 versus 0.7784 for cofold and 0.6203 for
RNA22. The difference is even more highlighted in the more realistic
1:10 and 1:100 datasets. The seed method performs similarly to cofold,
it is very precise (precision 0.8796, recall 0.1425) in the balanced task,
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which made it promising as the Ąrst step in target prediction pro-
grams as well as for assigning miRNAs to CLIP-Seq peaks. However,
when going to the imbalanced datasets, the precision drops again
very quickly. Assigning targets to miRNAs using the standard cofold
or seed method is thus unreliable in realistic scenarios. In contrast,
miRBind shows an almost perfect precision up to 50 % recall in the 1:1
dataset and is more robust in comparison to other methods in the 1:10
and 1:100 datasets.

4.1.3 Comparison with different architectures

Two other architectures used for training on CLASH Ago1 dataset
were presented in this thesis (see section 3.2). Figure 4.2 shows their
comparison with our miRBind method on the test sets. The ResNet
method with label smoothing developed by Ján Krčmář outperforms
the miRBind model on all sets. While the difference on the 1:1 set is
minimal (0.9634 for miRBind versus 0.9689 for ResNet), the biggest
difference can be observed on the hardest 1:100 set (0.4464 formiRBind
versus 0.5372 for ResNet). DNABERT performs theworse of all models.
As DNABERT was pretrained on single DNA sequences and the task
we are dealing with is the pairing of two RNA sequences, this shift
might be too hard for the model to perform well. Also, the input to the
DNABERTmodel is different than for the rest of the models. Revealing
Watson-Crick base pairing from the one hot encoded sequences on the
input might be too hard for the model but it is crucial for the miRNA Ű
target binding.

4.1.4 Usage

The expected target group of users are biologists or bioinformaticians
interested inmiRNAbinding, for example, to allocatemiRNAs to CLIP-
Seq peaks. To run a large number of predictions or to plug miRBind
into a custom pipeline, a standalone python script is provided. For the
less experienced group of users, web server may be a user friendly and
easy way to use miRBind method for custom miRNA target binding
prediction (Figure 4.3).

All data concerning the miRBind project are available on miRBind
github.
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Figure 4.2: PR curve for miRBind, Ąne-tuned DNABERT and Jan’s
ResNet model tested on 1:1, 1:10, and 1:100 test sets

Figure 4.3: Screenshot from the miRBind web page
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4.2 CLASH Ago2 dataset

This section provides a summary of all four models trained on CLASH
Ago2 datasets (see section 3.1.2) and compares their performancewith
the state-of-the-art as well as individual models with each other on
the left-out test sets.

4.2.1 Comparison with state-of-the-art

Bothmodels trained onmiRNAdataset with database (namedmiRNA
model) or truly observed miRNA sequences (named miRNA real se-
quence model) were compared with RNA22, cofold and seedmethods
like in the CLASH Ago1 section 4.1.2. For comparison with models
trained on tRNA and YRNA dataset, only cofold and seed were used.
As RNA22 is a tool developed and tested only on miRNAs, we omitted
it from this comparison. SpeciĄc tools for the prediction of non-miRNA
target binding have not been developed yet, but there exist a couple of
target prediction programs for tRNA drivers which use in their Ąrst
Ąltering step seed or cofold.

Both miRNA models (Figure 4.4a and 4.4b) show the same trends
as miRBind. The models outperform state-of-the-art and the differ-
ences are more pronounced in the datasets with higher negative ratios.

The tRNA model again outperforms both cofold and seed meth-
ods (Figure 4.4c) across all datasets. In the balanced 1:1 dataset, the
tRNA model outperforms cofold with AU PRC 0.8387 against 0.6990.
When adding more negatives, the difference deepens. Seed keeps its
high precision (0.8502) in the balanced dataset but drops with recall
(0.1473) in comparison to the CLASH Ago2 miRNA datasets (around
0.24). This drop might be caused by tRNAs behaving differently than
miRNA drivers when targeting the mRNA as the seed region might
not be the most important binding part.

The YRNA model performs very poorly as well as the other meth-
ods (Figure 4.4d). The problem for the YRNA model might be in the
size of the training set, as it is relatively small Ű it contains only less
than a thousand positive samples. The model thus probably was not
able to properly train. Yet another problem may be in the dataset it-
self as some parts of the data can be artefacts from the experiment
preparation.
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(a)

(b)

(c)

(d)

Figure 4.4: PR curves for methods evaluated on individual CLASH
Ago2 test datasets with different positive : negative ratios
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4.2.2 Cross comparison between CLASH Ago2 datasets

Two datasets were created for CLASH Ago2 miRNAs Ű dataset with
databasemiRNA sequences and dataset with experimentally observed
miRNAs. Based on these two datasets, two different models were
trained. Next, the trained models were evaluated on both database-
based and real miRNA test datasets. On the miRNA database test set
both models performed very similarly across all ratios (Table A.2)
but on the miRNA real sequence dataset the model trained on this
dataset performed a bit better than the model trained on database
miRNA sequences (Table A.3). The results show, that there is enough
information also in the truly observed miRNA sequences even though
the sequences may be noisier (couple of nucleotides shorter or contain
mismatches). This supported the idea that training on observed tRNA
fragments may bring reasonable results. The possible reason why
the miRNA real sequence model outperforms the database sequence
model on miRNA real sequence dataset but performs just as well
as the database sequence model on the miRNA database sequence
dataset is that the real sequence model orients better in the noisier
dataset and when evaluated on the clean dataset it can spot the same
patterns. However, the database model might not be able to deal with
the noisier sequences. Another possible explanation is that the real
miRNA sequences contain some extra information which is lost when
using database sequences.

An interesting fact is, that even the tRNA model performs pretty
well on both miRNA datasets and similarly, both miRNA models
perform well on tRNA datasets and outperform cofold and seed (see
supplement A). These results support the idea of Ago loadedmiRNAs
and tRNAs binding to their targets in a similar way.

When evaluating the YRNAmodel on any other small RNAdataset,
the model performs very poorly. On the other hand, all models evalu-
ated on the YRNA datasets perform badly and close to random (see
supplement A). This could mean that either YRNA targeting works
in a completely different way than miRNA or tRNA targeting or that
the dataset is very noisy, which is the more probable version.
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Figure 4.5: Screenshot from the web page for CLASH Ago2 miRNA
and tRNA target predictions

4.2.3 Usage

For evaluation of new potential small RNA and target tuples, similar
interfaces as for miRBind were created (see section 4.1.4). The stan-
dalone python script with the possibility to load different small RNA
models serves for fast evaluation of bigger datasets. For simple re-
quests, there is a webpage (Figure 4.5) with the possibility to evaluate
miRNAs or tRNAs and their targets. The model evaluating miRNAs
is the one trained with database sequences. Due to the YRNAmodel’s
poor performance, YRNAs are not included on the webpage.

All models and the web server from the small RNA CLASH Ago2
project can be found on github.

4.3 Comparison between CLASH Ago1 and Ago2

To prove that the trained models are not overĄtted and able to gen-
eralize, CLASH Ago1 dataset was used for the evaluation of models
trained on miRNA CLASH Ago2 and vice versa (Figures 4.6a and
4.6b). In both datasets, native models perform the best, however, the
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(a)

(b)

Figure 4.6: PR curves for methods evaluated on (a) CLASH Ago1 and
(b) CLASH Ago2 test datasets

32



4. Results

model trained on the other dataset still performs pretty well and out-
performs other state-of-the-art methods. From the biological point of
view, Ago1 and Ago2 work generally similarly, nonetheless Ago2 is
known to have an extra ŞslicerŤ activity. The CLASH Ago1 and Ago2
datasets can thus have mostly similar but partially different binding
rules. The good performance of models on different dataset conĄrms
the common binding rules for both datasets and shows that themodels
are able to apply the learned rules even for a bit different dataset.

33



5 Conclusion

In this thesis, we presented multiple machine learning models that
can be used to predict the pairing of Ago1 or Ago2 loaded miRNAs
or tRFs to their mRNA targets. We show that our method performs
better in comparison to older state-of-the-art methods such as seed
and cofold. An important fact is that our method is trained on unbi-
ased experimental data which are not overĄlled with Şcanonical seedŤ
targets and offers thus a more realistic view of the small RNA binding
problem. Thanks to this, our method may be able to replace existing
widely used tools and help with revealing non-canonical binding sites
on top of an increasing number of experimentally identiĄed ones. To
open up the presented method to wider biological society, we pre-
pared a python script for more complex requests supplemented by
easy to use web application. The Ąndings introduced in this thesis
will be presumably published in two separate papers Ű one dealing
with miRBind method trained on CLASH Ago1 dataset and one ded-
icated to the CLASH Ago2 project including the experimental part,
bioinformatical processing and machine learning model.

We hope our method will be used for example as a way to allocate
miRNAs toCLIP-Seq peaks instead of the currently used seed. Another
very interesting application may be to plug our method to some target
prediction program as the Ąrst Ąltering step to obtain small RNA
binding sites which will be then Ąltered to get only functional targets.

Up to this date, there are only two unbiased high throughput
Ago CLASH datasets, but another can be built from the new eCLIP
methodwhen the data are released. The already presentedmodels can
be evaluated on this dataset and even a new model may be trained.

There exist studies trying to sort different binding rules into mul-
tiple categories, for example, canonical seed binding, 3’-end binding
or centred miRNA pairing. It would be interesting as a future plan
to look into the machine learning model features and try to interpret
what the model has learned and match it with the known binding
categories.
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A AU PRC for different methods evaluated across

all test datasets

Table A.1: AU PRC for listed methods evaluated on miRNA CLASH
Ago1 test datasets. For seed method, sensitivity and precision are
given.

1:1 test set 1:10 test set 1:100 test set

miRBind 0.9634 0.7969 0.4464
miRNA Ago2 0.8863 0.5737 0.2015
miRNA real seq Ago2 0.8890 0.5831 0.2055
Cofold 0.7784 0.2842 0.0413
RNA22 0.6203 0.1507 0.0265

Seed
sens: 0.1425
prec: 0.8796

sens: 0.1425
prec: 0.46117

sens: 0.1425
prec: 0.0824

Table A.2: AU PRC for listed methods evaluated on miRNA CLASH
Ago2 test datasets. For seed method, sensitivity and precision are
given.

1:1 test set 1:10 test set 1:100 test set

miRBind 0.8535 0.5167 0.1564
miRNA Ago2 0.8891 0.6058 0.2178
miRNA real seq Ago2 0.8902 0.6169 0.2384
tRNA Ago2 0.8338 0.4871 0.1496
YRNA Ago2 0.6980 0.2088 0.0265
Cofold 0.7709 0.2896 0.0394
RNA22 0.6884 0.2151 0.0311

Seed
sens: 0.2448
prec: 0.9215

sens: 0.2448
prec: 0.5847

sens: 0.2448
prec: 0.1193
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A. AU PRC for different methods evaluated across all test datasets

Table A.3: AU PRC for listed methods evaluated on miRNA real se-
quence CLASH Ago2 test datasets. For seed method, sensitivity and
precision are given.

1:1 test set 1:10 test set 1:100 test set

miRBind 0.8128 0.4079 0.1122
miRNA Ago2 0.8366 0.4906 0.1486
miRNA real seq Ago2 0.8638 0.5564 0.1959
tRNA Ago2 0.8069 0.4569 0.1292
YRNA Ago2 0.6916 0.2114 0.0266
Cofold 0.7577 0.2737 0.0399
RNA22 0.6897 0.2289 0.0334

Seed
sens: 0.2462
prec: 0.9031

sens: 0.2462
prec: 0.5747

sens: 0.2462
prec: 0.1164

Table A.4:AUPRC for listedmethods evaluated on tRNACLASHAgo2
test datasets. For seed method, sensitivity and precision are given.

1:1 test set 1:10 test set 1:100 test set

miRBind 0.6912 0.2293 0.0339
miRNA Ago2 0.7281 0.2895 0.0575
miRNA real seq Ago2 0.7443 0.3025 0.0601
tRNA Ago2 0.8387 0.4947 0.1643
YRNA Ago2 0.6301 0.1472 0.0164
Cofold 0.6990 0.1983 0.0239

Seed
sens: 0.1473
prec: 0.8502

sens: 0.1473
prec: 0.4037

sens: 0.1473
prec: 0.0719
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A. AU PRC for different methods evaluated across all test datasets

Table A.5: AU PRC for listed methods evaluated on YRNA CLASH
Ago2 test datasets. For seed method, sensitivity and precision are
given.

1:1 test set 1:10 test set 1:100 test set

miRBind 0.6179 0.1850 0.0237
miRNA Ago2 0.5845 0.1568 0.0198
miRNA real seq Ago2 0.6451 0.1758 0.02311
tRNA Ago2 0.6389 0.1879 0.0236
YRNA Ago2 0.6934 0.2331 0.0292
Cofold 0.6084 0.1871 0.0230

Seed
sens: 0.1411
prec: 0.6571

sens: 0.1411
prec: 0.2771

sens: 0.1411
prec: 0.0362
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