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Abstract

This work introduces CodeFormer, a Python source code generator pre-

trained on a massive GitHub crawl consisting of 230M Python functions.

The released model, built on BART architecture, generates Python func-

tions based on descriptions in English. On a CodeSearchNet dataset, the

CodeFormer sets a new state of the art with 46.12 BLEU, representing an

improvement of 13.86 BLEU. We also release a new parallel corpus for code

generation called Stack Overflow Code Generation Dataset (SOCGD), on

which our model sets a baseline of 47.68 BLEU. The resulting model is

ready to be integrated into a source code suggestion system in an IDE, where

it can improve software developers’ productivity. During our research, we

discovered a better way of training the BART for machine translation. How-

ever, the applicability of our approach to other domains must be verified in

subsequent work.

Abstrakt

Tato diplomová práce představuje CodeFormer, nový model neuronové sítě,

schopný na základě popisu úlohy v anglickém jazyce generovat funkce v pro-

gramovacím jazyce Python. Tento model, založený na architektuře modelu

BART, je předtrénovaný na 230 milionech funkcích získaných z veřejných

GitHub repozitářů. Po dotrénování na CodeSearchNet datasetu náš model

překonává konkurenční modely a nastavuje tak nové state of the art s 46,12

BLEU, což představuje zlepšení o 13,86 BLEU. Vedle CodeFormer modelu

tato práce představuje nový Stack Overflow Code Generation Dataset (SO-

CGD), který je určený k trénování generativních modelů zdrojových kódů.

Na tomto datasetu náš model dosahuje výsledku 47,68 BLEU. Výsledný

model lze integrovat do vývojových prostředí a umožnit tak programáto-

rům generovat části zdrojových kódů s cílem zvýšit efektivitu jejich práce.

V rámci našeho výzkumu jsme také objevili lepší přístup k trénování modelu

BART na úloze strojového překladu. Použitelnost tohoto přístupu na jiných

doménách je třeba ověřit v navazující práci.
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1 Introduction

In recent years, modern natural language processing methods have achi-

eved excellent results in many different tasks and domains. One of the

domains that have not escaped the attention of researchers is software engin-

eering. Given that software development is a demanding discipline requiring

a large amount of knowledge and is prone to human error, it is appropri-

ate to develop automated tools to make software engineers’ day-to-day work

more manageable.

One way to make software developers more efficient is to create a system

that generates a piece of code according to a prompt written in natural

language. Such a system can be implemented directly in the integrated

development environment (IDE), allowing the developers to effectively find

solutions to their problems without visiting one of the well-known question

and answer websites, such as Stack Overflow.

This work aims to create and train a modern generative model of a neural

network, which can generate a suitable source code in Python according to

a description in English. Although similar models already exist, they are

often based on older text generation methods or are provided for a fee.

The main benefits of this work are as follows: 1) We publish a fine-tuned

CodeFormer model that generates source code from an English description

and is ready for integration into IDEs. 2) We publish a new corpus of source

codes in the Python language, containing about 230M training examples

and thus allowing easy follow-up on our work. 3) We publish a new Stack

Overflow Code Generation Dataset (SOCGD) for training Python source

code generators.

This master’s thesis is structured as follows. The first two chapters

present a theoretical background of generative neural networks and their

applications in source code processing. Subsequently, the analytical chapter

discusses the various aspects of the problem and outlines our solution’s dir-

ection. The last two chapters are then devoted to realizing the proposed

solution. Namely, they focus on pre-training the chosen neural network

model and its subsequent use for code generation.
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2 Generative Models

The field of natural language processing (NLP) is extensively wide and

encompasses dozens of different tasks with various real-world usages. A

significant portion of the NLP tasks, to some extent, involve a kind of text

generation. An example of such a task that naturally requires generating

text is a machine translation, which aims to generate a text in a target

language given a text in a source language. Since this work aims to build

a source code generation system based on neural networks (NN) [1], the

problem of generative models is very important for the rest of this thesis.

This chapter is structured as follows. Firstly, we present the generat-

ive models in the context of natural language processing, including their

definition and possible applications. Subsequently, we provide architectural

examples of neural network models classified as generative. Following that

point, we also discuss technical topics related to training, evaluation, and

usage of generative models such as text tokenization, decoding algorithms,

and evaluation metrics.

2.1 Introduction to Generative Models

In statistics, we distinguish two elementary types of statistical models.

The first class is represented by discriminative models, whereas the others

are generative models. All of these models are extensively applied to different

NLP tasks, but as mentioned previously, the generative class of models is the

important one for our work. Therefore, in the rest of this section, we briefly

introduce the generative models, including their definition, comparison to

discriminative models, and possible applications.

2.1.1 Definition

A statistical model of a joint probability P (X, Y ), where X is an ob-

servation from a space of inputs and Y is a corresponding label, is called a

generative model [2]. If working with unlabeled data, the generative model

captures just P (X). Intuitively, a generative model captures how likely an

observation appears in the input space, which can be utilized to generate

new examples by sampling from the modeled distribution [3].

11



Generative vs. Discriminative

When defining generative models, we should also compare them to dis-

criminative models whose aim is entirely different. Instead of capturing the

P (X, Y ), the discriminative models learn a conditional probability P (Y |X =

x). In other words, they model a probability of an observation x from an

input space X having the label Y [3].

Put differently, the generative models can generate new data since they

focus on data distribution. On the other hand, the discriminative models

can classify data since they focus on a decision boundary. This difference is

marked out in figure 2.1.

Generative Discriminative

Figure 2.1: Demonstration of a difference between generative and discrim-

inative models.

2.1.2 Language Modeling

A language model (LM) is a mathematical model of a conditional

probability of a next word given all previous words (equation 2.1) [4]. Thanks

to that, one can also compute a probability of a whole text P (X) using the

formula 2.2. Since equation 2.2 meets the definition of a generative model, we

can say that the language models belong to the group of generative models.

P (xi|x1, x2, ..., xi−1) (2.1)

P (X) = P (x1, x2, ..., xn) =
N
∏

i=1

P (xi|x1, x2, ..., xi−1) (2.2)

12



Unlike the simple LM introduced previously, a conditional LM captures

the probability of a sentence given some condition - P (X, Y ). For example,

machine translation can employ a conditional LM to model a probability of

a sentence in a target language given a sentence in a source language. Both

of these LM variants represent a joint base for most of the tasks that involve

some form of text generation. The applications of language modeling and

text generation are further discussed in section 2.1.3.

Simple RNN Language Model

In the paragraphs above, we state the definition of an LM that repres-

ents a general framework rather than a particular realization. Therefore,

we demonstrate how a language model can be built and trained with a re-

current neural network (RNN) [5]. RNNs are special neural networks

designed to work with variable-length sequences [1]. A structure of a lan-

guage model based on an RNN is depicted in figure 2.2.

RNN RNN RNN RNN RNN

w1 w2 w3 w4 w5

w2 w3 w4 w5 w6

Figure 2.2: Visualization of a text generation using an RNN language model.

The figure shows how a language model accepts a token and produces

a probability distribution of a subsequent token at each timestep. The in-

formation about all the preceding tokens is carried through the computation

using a hidden state of the RNN. If we want to use an LM to generate text,

we can greedily choose the most probable token at each timestep and use it

as a subsequent input, as suggested in figure 2.2. More advanced decoding

algorithms are then discussed in section 2.4.

However, following any decoding algorithm would not yield satisfying

results during training. Especially in the early stages of the training, the

output generated by the LM can be extremely noisy. Therefore, the inputs

in later timesteps may not fit into the context. To mitigate this problem,

we can employ a teacher forcing technique [6] that constantly feeds in target

tokens instead of the generated output (figure 2.3).
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RNN RNN RNN RNN RNN

wolf is a carnivorous animal

is insect carnivorous cat .

X X

Figure 2.3: Demonstration of a teacher forcing method for training a lan-

guage model.

2.1.3 Applications of Generative Models

Generally speaking, the generative models have a massive amount of

possible usages, such as speech or image generation. However, in our work,

we are primarily interested in generating text, and therefore, we discuss only

the possible applications of language models, representatives of the group of

generative models.

As stated in the previous section, language modeling forms a joint base

for many tasks that involve some form of text generation. A simple example

of LM usage is an auto-completion function that predicts the rest of the

user’s query (for example, at https://www.google.com). Implementing

such a feature requires only a plain LM without any specific modification.

Besides this simple example, the generative models are essential for more

complicated tasks such as Question Answering, Summarization, Dialogue

Systems, and Machine Translation (MT). In all of the tasks above, we util-

ize a conditional LM. For example, for the MT, we model the probability

P (X|Y ), where X is a sentence in a target language, and Y is a sentence in

a source language.

To demonstrate how good the generative models are when generating

text, we provide a short paragraph about car sharing, generated using GPT-2

model (section 2.2.3) [7]. Firstly, we provide the model with a short textual

prompt (highlighted in bold) to direct it to the intended topic. We then let

the model generate the rest of the text. The example1 can be found below.

1The example was generated using https://transformer.huggingface.co/doc/

gpt2-large.
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The future of car sharing is looking bright with an increase

in car sharing startups and a growing number of new apps like

Zipcar. This year, there were 14 new car sharing apps launched

and the number is increasing rapidly, which is definitely helping

the industry grow. As you can see, car sharing is definitely one of

the hottest trends on the scene.

An example of an AI-generated text

When reading the example, it can be noticed that the GPT-2 men-

tions an application called Zipcar. Surprisingly, the Zipcar application ex-

ists (https://www.zipcar.com), indicating that the model either learned

an extremely complex knowledge about the real world or memorized the

training data. In either case, this example shows how complex knowledge

can be stored in a generative NN.

2.2 Model Architectures

In the previous section, we have introduced the family of generative mod-

els. Furthermore, we discussed the language models that represent their sub-

group. We also indicated that for some tasks, such as machine translation,

we need to use conditional language models. Since generating source codes

based on natural language descriptions can be perceived as a translation

from English to Python, the conditional language models are essential for

this work.

Therefore, in this section, we first present a Seq2Seq architecture, a gen-

eral framework for implementing conditional language models. Afterward,

we present some of the more advanced neural network models that follow

the Seq2Seq architecture and are applicable for generative tasks.

2.2.1 Seq2Seq

A Seq2Seq architecture is utilized in many tasks where it is required to

map one sequence to another [8]. As previously mentioned, an example of

such a task is an MT or summarization. The core idea of this architecture is

to use the first neural network to represent an input sequence using a tensor.

The tensor is subsequently used by a second neural network that generates

15
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an output sequence. The first mentioned NN is called an encoder, and the

second is a decoder. A general Seq2Seq architecture is depicted in figure 2.4.

The architecture of a Seq2Seq model is general and does not prescribe

any specific realization. An implementation of a Seq2Seq model can build

both the encoder and decoder, for example, using a vanilla RNN [5] or its

improved variants such as long short-term memory (LSTM) [9] or gated

recurrent unit (GRU) [10]. Furthermore, the encoder can utilize any neural

network model dealing with variable-length sequences. This enables the

usage of convolution neural networks (CNN) [11]. However, in the rest

of this section, we focus on more advanced architectures discussed in the

subsequent sections.

Encoder Decoder

w1 w2 wN
...................... <start>

It

It

is ...........

is ............

<end>

contextual representation

of an input sequence

Figure 2.4: Architecture of a Seq2Seq model.

2.2.2 Transformer

A Transformer is an encoder-decoder model based exclusively on an

attention mechanism [12]. After being published in 2017, it revolutionized

the NLP field by serving as a joint base for numerous improved variants of

the original architecture. A visualization of the whole architecture can be

found in figure 2.5.

As indicated before, the model consists of two parts - an encoder and

a decoder. The aim of the encoder (on the left-hand side of the figure) is

to process an input sequence and produce its contextual representation [13].

Afterward, the contextual encoding is utilized by a decoder (on the right-

hand side of the figure) that generates an output. The interaction between

the encoder and decoder is realized using the attention mechanism, which

is described in the following paragraphs alongside descriptions of the rest of

the Transformer ’s building blocks.
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Figure 2.5: A visualization of a Transformer ’s architecture.

Image source: [12].

Multi-Head Attention

Generally speaking, an attention mechanism is a way of expressing a

measure of relevance. It can measure, for example, the relevance of different

parts of an input to the task being solved. Alternatively, in the Seq2Seq

architectures, it can express how relevant each part of an input is to each

part of an output. There are numerous possibilities for implementing the

attention [14]. However, we focus on scaled dot-product attention computed

using equation 2.3 [12].

Attention(Q, K, V ) = softmax(
QKT

√
dk

)V (2.3)
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As one can see, the attention function used in the Transformer has three

inputs. These are keys, queries (K, Q ∈ R
dk×N), and values (V ∈ R

dv×M).

The dot-product between keys (K) and queries (Q) is used to compute

the relevance of keys (K) to the individual queries (Q). The result of the

dot-product is then scaled by the square of the keys’ dimension (dk) and

transformed using a softmax function. The resulting attention scores (or-

ganized into a matrix) are used to compute the weighted sum of values (V )

for each element in the query.

Although this mechanism is very efficient and helpful in its simple form,

the Transformer goes beyond and introduces multi-head attention. The idea

behind the multi-head attention is to compute the previously introduced at-

tention multiple times with keys, queries, and values transformed by different

linear layers [12]. Each calculation of the attention is done by an attention

head. Finally, the outputs of all the attention heads are concatenated to-

gether and transformed using another linear layer. The whole mechanism is

depicted in figure 2.6.

Figure 2.6: Visualization of a multi-head attention mechanism. Image

source: [12].

It is also worth mentioning that the Transformer uses two different types

of attention. The first type employed is called an intra-attention (or self-

attention). It relates different parts of input to other tokens in the same

sequence, producing context-aware representations of the tokens. The intra-

attention is used in the encoder and the decoder, where it is applied im-
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mediately after the positional encoding. The second attention layer in the

decoder utilizes an inter-attention (also called a cross-attention) that relates

different parts of the sequence processed by the decoder to different tokens

processed by the encoder. For example, the cross-attention in a machine

translation context expresses which parts of the source sentence are relevant

to different parts of the translation.

Other Building Blocks of the Transformer

Starting at the bottom of figure 2.5, the first employed layer in the Trans-

former is an embedding layer. The embedding layer assigns a trainable vec-

tor to every token in the vocabulary, transforming the 1-D input sequence

xi ∈ R
N into a matrix xe ∈ R

N×E, where N represents the length of the input

and E denotes the dimensionality of the embeddings. The embedding layer

is followed by adding a positional encoding to preserve positional information

otherwise brushed off by the attention mechanism, which is non-positional

[12].

Besides the multi-head attention, the Transformer encoder and decoder

blocks employ a position-wise feed-forward network, defined by equation 2.4

[12]. Last but not least, the Transformer employs an add & norm layer. It

firstly applies a residual connection [15] around the attention layer, improv-

ing information and gradient flow through the model. Afterward, the layer

applies layer normalization [16], an important regularization technique.

FFN(x) = max(0, xW1, +b1)W2 + b2 (2.4)

2.2.3 GPT

A Generative Pre-trained Transformer (GPT) is a family of large neural

network models whose architecture is based mainly on the Transformer ’s

decoder stack. The first published version of the model, called GPT-1 [17],

utilizes 12 layers of the decoder, resulting in 117M trainable parameters.

Using a language modeling task, the authors first train the model on a large

corpus of unlabeled text. Afterward, they fine-tune the pre-trained model on

a final supervised task where the model can leverage the knowledge gained

during the pre-training.

After establishing a few new state-of-the-art results on various tasks, the

authors publish a new GPT-2 [7] model with ten times more parameters than
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the first version. More specifically, the GPT-2 model has 1.5B parameters

and has a decoder of 48 layers. Their paper also shows that such a large

model can solve various tasks without any specific fine-tuning, which is called

zero-shot learning. In the zero-shot setup, it is sufficient only to specify the

desired objective in an input. For example, for French to English translation,

one can write the following prompt and let the GPT-2 generate the rest [7]:

“As-tu aller au cinema?”, translated to English:

The ability to solve new tasks with no examples provided (zero-shot

learning) or with only few examples present in the input (few-shot learning)

is further amplified by GPT-3 model [18]. With 175B parameters (which is

100 times more than its predecessor), it can solve tasks such as summing up

numbers or generating SQL queries out of a description in natural language

(without any fine-tuning). A demonstration2 of the GPT-3 can be found

below:

SQL select all records from table users:

SELECT * FROM users

An example of GPT-3’s ability to generate an SQL

2.2.4 BART

Rather than a completely new architecture, the BART model brings up

a new approach to pre-training Seq2Seq models using a denoising objective

[19]. Except for slight modifications, the model follows the architecture of

the Transformer. With the denoising objective, the encoder part reads a cor-

rupted sequence and creates its contextualized representation. The decoder

then tries to autoregressively reconstruct the original sequence. To construct

a dataset of corrupted text, one can employ the following transformations

that can be arbitrarily combined [19]:

• token masking - replace random tokens with [MASK] token

• token deletion - delete random tokens from the input

2Generated using https://beta.openai.com/playground on the first attempt. Our

NL prompt is marked in bold font.
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• text infilling - replace a span of tokens with [MASK] (span length is

sampled from a Poisson distribution) or insert an extra [MASK] token

to a random position

• sentence permutation - randomly shuffle the sentence order (ap-

plicable only if the input is a natural language text that consists of

multiple sentences)

• document rotation - choose a random pivot position in the input

and rotate the whole document around the chosen pivot

Using BART for Machine Translation

As explained previously, the BART’s encoder consumes a corrupted text

in the same language (same vocabulary) used by the decoder. Therefore, the

pre-trained BART model cannot be used for MT as is and must be exten-

ded with an additional encoder consuming a sequence in a source language

and producing its contextual representation. The acquired representation is

afterward used as an input for the pre-trained BART model that generates

a sequence in a target language [19]. This can be perceived as predicting a

very noisy candidate translation in the additional encoder and polishing it

in the pre-trained BART.

2.2.5 T5

In the paper "Exploring the Limits of Transfer Learning with a Uni-

fied Text-to-Text Transformer" (T5) [20], the authors extensively study

pre-training objectives and architectures. Furthermore, they introduce a

framework for converting every text-based task to a text-to-text problem,

as shown in figure 2.7.

In the experiments, Raffel et al. [20] use a neural network architecture

that follows the Transformer model except for slight modifications in layer

normalization [16]. Furthermore, they also introduce a new dataset called

Colossal Clean Crawled Corpus that comprises approximately 750 GB

of text, which they use for pre-training experiments on the denoising learning

objective. The denoising objective is slightly different from the one used in

the BART model. Instead of reconstructing the whole sentence, the T5 is

trained to predict only the tokens replaced by masking tokens.
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T5

"translate English to German: That is good."

"Das ist gut"

"cola sentence: The

course is jumping well."
"not acceptable"

"stsb sentence1: The rhino grazed

on the grass. sentence2: A rhino

is grazing in a field."
"3.8"

"summarize: state authorities

dispatched emergency crews tuesday to

survey the damage after an onslaught

of severe weather in mississippi..."

"six people hospitalized after

a storm in attala county."

1

2

3

4

1 machine translation task
2 The Corpus of Linguistic Acceptability
3 Semantic Textual Similarity Benchmark
4 summarization task

Figure 2.7: Example of conversion of text-based tasks into text-to-text prob-

lems using the approach introduced by Raffel et al. [20].

2.3 Tokenization

Tokenization is an integral part of a data input pipeline for most NLP

systems. It takes care of breaking down a whole bunch of text into smaller

pieces, such as words that can be represented using numerical indices point-

ing into a vocabulary. The process of tokenization itself is pretty simple.

The difficult part thereof is constructing a vocabulary suitable for a given

problem.

One possible approach for building a vocabulary is to tokenize the text

on white spaces and build a vocabulary containing all the words that occur

in a corpus more than, for example, five times. The problem with this

approach is that we might get vocabularies of millions of tokens which results

in exhausting GPU memory consumption only for storing word embeddings.

For example, Google’s pre-trained Word2Vec [21] embeddings are trained

with a vocabulary of 3M words3.

In addition to the memory consumption problem, one must deal with

tokens that are not part of the vocabulary. Such tokens are often referred to

as out of vocabulary (OOV) tokens. We can either decide to entirely ignore

the OOVs or create a unique [OOV] token representing all the OOV words

3https://code.google.com/archive/p/word2vec/
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in an input. However, nowadays, other approaches can significantly reduce

a vocabulary size and mitigate the OOVs completely. These techniques

are called subword tokenization (example in figure 2.8) and are further

described in the subsequent sections.

Honorificabilitudinitatibus

Honor #ific #abilit #ud #init #ati #bus

Figure 2.8: Example of subword tokenization of the longest word appearing

in Shakespear’s plays - Honorificabilitudinitatibus.

2.3.1 Byte Pair Encoding

Byte Pair Encoding (BPE) was initially a compression technique [22].

Nowadays, it is often applied for building vocabularies for subword tokenizers

in the NLP. The BPE starts with a small vocabulary of all allowed characters

and special tokens when building the vocabulary. In each step, it builds

a co-occurrence statistic for all possible pairs of tokens from the current

vocabulary and merges the two most common tokens into a new one. This

simple process is applied in a loop until the desired vocabulary size is not

reached. The BPE by design requires the input to be already pre-tokenized

(for example, on whitespaces) to ensure that no token in the vocabulary

spans over multiple words. It means that the input of the BPE algorithm is

a list of all words from a corpus for which we build a vocabulary.

2.3.2 Word Piece

Another subword tokenization technique is the Word Piece encoding.

It is, to some extent, identical to the BPE. The most significant difference

between these two techniques lies in the merging step. Instead of combining

the two most often co-occurring tokens, the Word Piece merges two tokens

that would increase a likelihood of a training corpus the most if added to

the vocabulary [23]. The likelihood of a training set (X ) can be computed

using the formula 2.5, where P (xi|x1, x2, ..., xi−1) can be obtained using a
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trained language model.

P (X ) =
∑

x∈X

N
∏

i=1

P (xi|x1, x2, ..., xi−1) (2.5)

The merging criterion may seem too complicated to be used in a real-

world scenario. That is because a naive approach would require, for each

merging step, to train a language model with many different vocabular-

ies corresponding to every possible pair of tokens added to the vocabulary.

However, we can employ several optimizations that significantly reduce the

number of trained language models. For example, we can prune all pairs of

tokens that do not occur in the corpus or apply a heuristic to test only the

pairs with a high chance of being embraced in the vocabulary [24].

2.3.3 Sentence Piece

Both approaches mentioned above suffer from a common drawback - they

do not, by design, treat a text that is not pre-tokenized. This represents a

significant obstacle, for example, when working with languages that do not

separate words using spaces (for example, Japanese or Chinese language). To

mitigate this problem, Kudo and Richardson [25] proposed a novel approach

called the Sentence Piece.

The Sentence Piece algorithm takes whole sentences as input and treats

the space character as a special symbol in the vocabulary. Internally, it

uses either a BPE or Unigram model [26] to build the vocabulary of a given

size. Thanks to that modification of the original approaches, the resulting

vocabulary can contain multi-word utterances such as New_York, represented

with a single token.

2.4 Decoding Algorithms

As we know from the previous sections, a language model estimates

P (xt|x0, x1, ..., xt−1), which is the probability of the next word in a sentence

being xt given the previous words. If we calculate the probability for each

word in the vocabulary, we get a probability distribution that can be used to

decide about the next generated word. The way of choosing the next word

given the computed probability distribution is a crucial parameter affecting

the quality of a generated text. This section describes the most common
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decoding algorithms for generating text. These involve a greedy approach,

and a more sophisticated beam search. Lastly, we discuss how the decoding

can be further adjusted using a straightforward yet powerful sampling.

2.4.1 Greedy Decoding

The most straightforward decoding algorithm is greedy decoding. It

chooses the most probable word in each decoding step, as captured in equa-

tion 2.6. Although effortless and computationally efficient, it is not con-

sidered a good choice for generating high-quality text. That is because it

often generates very noisy outcomes with many grammatical errors due to

the lack of possibility to backtrack and re-evaluate previous decisions. In

other words, it always chooses a local optimum without trying to converge

to a global optimum [3].

xt = arg max
x

P (x|x0, x1, ..., xt−1) (2.6)

2.4.2 Beam Search

A more sophisticated approach that tries to find a sufficient approxima-

tion of a global optimum is called a beam search. Instead of choosing the

most probable token at each time step, the beam search keeps track of the k

most probable hypothesis and expands all of them [27]. The number k is a

hyperparameter of this method and is often called beam size or beam width.

The approach is visualized in figure 2.9.

The choice of beam size is crucial when choosing this decoding method.

If we choose k = 1, the beam search degrades into the simple greedy decoding.

On the other hand, if we set k to a high number, the computation is way

too expensive.

Last but not least, we would like to elaborate on the statement that

the beam search provides only an approximation of a global optimum. If

one wants to find an exact global optimum, the computation complexity

would be O(|V |N), where |V | is a size of a vocabulary and N is a maximum

length of a generated sequence. In the real world, the vocabulary can have

50K tokens, and we could want to generate sequences of 64 tokens. Although

this example is somewhat optimistic, we need to explore 5.42×10300 possible

decoded sequences to find the global optimum. On the other hand, the beam
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Figure 2.9: Visualization of the beam search algorithm with beam size k = 2.

search’s complexity is O(k×N), which significantly reduces the computation

time if we preserve k in reasonable values k ∈ 5, 6, ..., 10.

2.4.3 Adjusting the Generated Output

The previous decoding methods considering the k most probable tokens

for expanding candidate hypotheses can be modified with a non-deterministic

random sampling. An advantage is that such a modification is computa-

tionally cheap, and it produces more variable output, which may be desired

in some applications. However, its significant disadvantage is that it might

produce many words that do not make any sense in a given context due to

the randomness of the choice. However, there are two additional options for

better control over the quality of the output. The Top-K Sampling and

Softmax Temperature are discussed in the subsequent paragraphs.

Top-K Sampling

A Top-K is a simple extension of the basic sampling method that al-

lows the decoding algorithm to sample from k most probable words only.

This significantly mitigates the occurrence of all the words with a very low

probability that would make no sense if they appear in a given context.

This minor enhancement can have a non-negligible impact on the achieved

results.

26



Softmax Temperature

Unlike the Top-K Sampling, the Softmax Temperature technique [28] does

not reduce a decision space. Instead, it enables us to regulate the variability

of the output by either smoothing or roughening the distribution.

pi =
ezi

∑

j(e
zj )

(2.7)

The probability distribution of the next token in a sequence is usually

computed using a softmax function that can be found in the equation 2.7. To

use the softmax temperature method, we slightly adjust the original equation

by adding a temperature term T as shown in equation 2.8. The setting of

the T parameter affects the distribution in the following way:

• T = 1⇒ normal softmax

• T > 1⇒ softens the distribution - more diverse output that tends to

be less correct

• T < 1 ⇒ prefers more probable words - the output tends to make

more sense and be grammatically correct

pi =
ezi/T

∑

j(e
zj/T )

(2.8)

2.5 Evaluation Metrics

In the previous sections, we presented a text generation framework based

on neural networks. So far, we have discussed model architectures, tokeniza-

tion techniques, and generating algorithms. This section focuses on evaluat-

ing the quality of a text generated using the previously mentioned methods.

2.5.1 Cross-entropy and Perplexity

Suppose we want to train a language model and evaluate it without

applying it to an end task. In that case, we can use an intrinsic evaluation

metric such as cross-entropy or perplexity. The cross-entropy can be

perceived as an average number of bits needed to encode data originating

from probability distribution p while encoding them using an approximate
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probability q [29]. The cross-entropy of a language model on a test set Y of

length N can be computed using equation 2.9.

H(Y ) = − 1

N
log2P (Y ) (2.9)

The perplexity can be directly derived from the cross-entropy and is

defined as an average number of words encoded by H(Y ) bits (equation

2.10) [30]. Another way of thinking about the perplexity is to perceive it as

a weighted branching factor or an average number of possibilities, between

which the language model decides when predicting the next word.

PP (Y ) = 2H(Y ) = 2−
1

N
log2P (Y ) (2.10)

Furthermore, the perplexity has an alternative definition using which

we can compute the perplexity as an inverse probability of a test corpus,

normalized by its length (equation 2.11) [3]. When measuring both the

cross-entropy and perplexity, we aim to minimize it, which corresponds to

maximizing the predicted probability of the corpus.

PP (Y ) = (
N
∏

i=0

P (yi|y0, y1, ..., yi−1))
−

1

N (2.11)

2.5.2 BLEU

BLEU, which stands for bilingual evaluation understudy [31], is gener-

ally a metric that evaluates the quality of a generated text given a known

target. It is widely used for machine translation tasks (MT) since it has

been shown that it correlates well with human judgments.

The core idea behind the metric is to compute a ratio of n-grams from

a generated text that also appears in the target sequence (in other words,

precision). The n-gram overlap (equation 2.14) is computed for n-grams of

different lengths (n ∈ 1, 2, ...k) and is combined via product (equation 2.12).

Additionally, the metric employs a brevity penalty β (equation 2.13) that

penalizes a model for generating too short translations [31]. Without the

penalty, it would be possible to generate only a single word matching at

least one word in the target while receiving the highest possible score. This
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is caused by the fact that the BLEU is a precision-based metric.

BLEU = β
k

∏

i=1

pn (2.12)

β = e
min(0,1−

lenref

lentrans
)

(2.13)

pn =
|translation n-grams ∩ target n-grams|

|translation n-grams| (2.14)

2.5.3 ROUGE

ROUGE, which stands for Recall-Oriented Understudy for Gisting Eval-

uation [32], does not provide a single number that measures how good a

model is. Instead, it forms a set of metrics suitable for evaluating sequence

generation tasks. Unlike the BLEU score, ROUGE is recall-oriented and,

therefore, more suitable for tasks such as summarization. Below we state

some of the metrics that are available in the ROUGE evaluation set:

• ROUGE-N - n-gram recall computed between a generated and target

sequence (equation 2.15)

• ROUGE-L - longest common subsequence (LCS) [33] between a can-

didate and target sequence

• ROGUE-W - weighted version of LCS that scores consecutive matches

higher than more distant ones

• ROGUE-S - skip-gram overlap between generated and target sequence

[32]

• ...

ROUGEn =
|translation n-grams ∩ target n-grams|

|target n-grams| (2.15)

2.5.4 BERT Score

A BERT Score is a novel technique for evaluating text generation tasks,

based on an F1 score (equation 2.18). However, the BERT Score employs
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adjusted version of a recall (equation 2.16) and precision (equation 2.17),

calculated from contextual embeddings of candidate (x) and reference se-

quence (x̂) [34]. Although the name indicates the usage of the BERT model

[35], the metric can be used in combination with any other model capable

of producing contextual embeddings.

RBERT =
1

|x|
∑

xi∈x

max
x̂j∈x̂

xT
i x̂j (2.16)

PBERT =
1

|x̂|
∑

x̂j∈x̂

max
xi∈x

xT
i x̂j (2.17)

FBERT = 2
PBERT RBERT

PBERT + RBERT

(2.18)

The equations above show the adjusted calculation of recall and precision.

The recall (equation 2.16) is a sum of dot-products between each token from

the candidate sequence with the most similar token from the target sequence.

On the other hand, the precision (equation 2.17) is a sum of dot-products

between each token from the target sequence with its most similar token

from the generated sequence.

One can see that the significant benefit of this metric is that it can

consider synonyms. For example, imagine a candidate sequence "He’s got

black hair" and a target sequence "He’s got dark hair". Unlike BERT Score,

all the metrics mentioned earlier would penalize the model for generating the

word "black" instead of "dark" as if they are entirely dissimilar. However, it

shall be noted that utilizing the BERT Score requires having a well-trained

model for contextual representations in the target language. If no such model

is available, it might be time-consuming to train a new one just for a metric

calculation. In such a case, it might be better to utilize some of the previous

metrics.
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3 Source Code Processing

using Machine Learning

3.1 Motivation and Relation to NLP

Machine learning (ML) techniques can be applied to a wide range of

sophisticated problems. The tasks that work with some kind of text are

focused by natural language processing (NLP), which is a hot research field

with innovative approaches being introduced every month. The NLP meth-

ods benefit from the repetitiveness and predictability of utterances produced

by humans. This raises the question of whether the source code has similar

properties, allowing natural language processing techniques to be applied to

source codes.

Suppose the presumption of source code having similar properties as nat-

ural language is valid. In that case, it will enable us to build or improve

software development tools helping software developers with their job. The

impact of such tooling is not-negligible since software is becoming an essen-

tial part of almost everything in the modern world. Moreover, developing

reliable software is highly time-consuming and very expensive. It means that

every improvement speeding up the whole development process is expected

to be appreciated by the software community.

The research question about source code having similar properties as

natural language is examined in the paper by Hindle et al. [36]. The au-

thors build multiple n-gram language models [3] on different natural text and

source code corpora and compare the naturalness of the individual corpora

using the perplexity (section 2.5.1). The conducted experiments conclus-

ively show that language models can benefit from the same properties as in

the case of the natural language. Therefore, applying NLP techniques to

various tasks related to source code processing might work very well. The

possible applications of the NLP techniques alongside existing datasets and

approaches are discussed in the rest of this chapter.
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3.2 ML Applications in Software

In this section, we briefly present some of the tasks where artificial in-

telligence can be helpful in terms of improving the software development

toolkit. For each of the mentioned tasks, we state an example of how it can

be integrated into real life and reference papers aiming to solve the task.

For a more detailed survey of ML applications in the source code processing

domain, see the work by Allamanis et al. [37].

3.2.1 Documentation

The first task we present is automated code documentation. An objective

of this task is to generate documentation in the natural language given a

source code. A system that can provide us with such functionality can serve

to better understand legacy parts of old software systems that often lack

documentation. The lack of documentation makes it difficult for a developer

to orient himself in the code base and make changes without introducing

new errors. Several research papers [38, 39] already target the task of code

documentation generation. Furthermore, there are also available datasets

[40] for training such documentation generators.

3.2.2 Code Migration

A code migration aims to convert a source code written in one program-

ming language into another. The two languages can be, for example, only

different versions of the same programming language, such as Python 2 and

Python 3 [41]. Or the migration might be done between entirely different

languages [42]. Either way, the ability to convert the source code between

two languages is beneficial, for example, if a software company wants to

keep up with software development trends. The tricky part of this task is

collecting training data since one needs a parallel corpus of source codes do-

ing the same thing in two different languages. To avoid the complex dataset

collection process, one can use an existing dataset such as CodeXGLUE [43].

3.2.3 Code Completion

Another valuable application of ML techniques in the software develop-

ment domain is code completion, which is already included in every modern
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integrated development environment (IDE). The code completion system

aims to finish a piece of code that a developer started to type. Traditionally,

these systems try to predict just the unfinished token, which can often be

done only based on the information obtained using syntactical and semantic

analysis of a surrounding context. The newer approaches employ modern

neural network models [44] and go further by predicting longer pieces of code

that may span over multiple lines. A real-world example of using a neural

code completion system in an IDE is, for example, the Codota1 plugin for

the IntelliJ IDEA2.

3.2.4 Code Repair

To improve the reliability of a source code, automatic repair [45, 46]

systems are attempting to autonomously detect and fix buggy code. Such a

task is very complex because fixing a detected syntactical or semantic error

may induce a logical error in the system or break another function working

correctly for a long time. This is probably why such tools are not yet present

in our software development tool-chains.

3.2.5 Code Generation / Program Synthesis

Last but not least, we present the code generation (sometimes also called

program synthesis) task that is the main subject of this work. This task

aims to generate source code in a target programming language based on a

specification. For example, the specification can be an English text describ-

ing the desired functionality or several input-output examples. In the rest

of this work, we will focus only on program generation based on a natural

language description since it reflects the way how a developer can use it

when working in an IDE.

Generating source code using a neural network might first seem a little

bit unreal. However, it shall be noted that at the moment, we do not expect

the neural network to generate a whole codebase of a large-scale project from

the customer’s description only. Instead, a generative model can generate

shorter pieces of code, solving a problem that the developer would otherwise

have to search for on the internet [47].

To give an example of such usage, imagine displaying current weather

1https://www.codota.com
2https://www.jetbrains.com/idea/
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on a webpage. Since probably no one remembers the URL to an API that

provides such information, we use Google to search for something like "stack-

overflow get current weather using API". The first link we find is probably a

StackOverflow (section 6.2.1) thread3 with the desired solution (listing 3.1).

With the program generation plugin in our IDE, we could write a similar

query directly in the source code and use a command to trigger the gener-

ation process. The plugin can then allow the developer to select between

multiple feasible solutions, which reduces all the time required for searching

the topic on the internet, improving the developer’s workflow.

1 var jsonData ;

2

3 $( document ).ready( function ()

4 {

5 $. getJSON (’http :// api. openweathermap .org/data /2.5/ weather ?q

→֒ =London ,uk ’, function (data) {

6 jsonData = data;

7 $(’.city ’).text( jsonData .name);

8 // etc

9 });

10 });

Listing 3.1: JavaScript solution for querying current weather at the given

location.

3.3 Existing Code Generation Datasets

In this section, we describe existing datasets related to source code pro-

cessing using machine learning methods. Most of the presented datasets are

directly applicable for source code generation tasks. The description starts

with more extensive collections such as CodeNet, CodeSearchNet, or CoN-

aLa. The smaller-sized datasets are then described in the latter part of this

section.

3.3.1 CodeNet

The CodeNet dataset represents a collection of 14M source files acquired

from programming challenge platforms with automatic judgment systems

3https://stackoverflow.com/questions/27639668/open-weather-api
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like AIZU4 or AtCoder5 [48]. Each data example from the dataset represents

a single submission for one of the 4053 problems. For each submission, the

dataset also provides additional metadata such as programming language,

judgment result, and computation resources used during execution.

This dataset can be utilized for various tasks such as classifying a pro-

gramming language, computing code similarity, or predicting resource con-

sumption. Furthermore, one can also acquire a definition of the individual

problems using a RestAPI of the judgment platforms. It makes it possible to

use the dataset for a generation. However, the definitions of programming

challenge problems are usually overly complex. Therefore, the dataset does

not seem to be a good fit for generating a source code.

3.3.2 CodeSearchNet

Another dataset providing a large set of source code-related examples is

a CodeSearchNet [49]. The dataset is designated for training information

retrieval systems and contains a test set with human-annotated relevance

judgments. However, since the dataset contains both a source code and its

description, it can be utilized for other tasks such as code generation. To-

gether, the dataset comprises 2.3M examples from 6 different programming

languages. Detailed information about the dataset’s size can be found in

table 3.1.

CodeSearchNet Dataset Size

Language # Examples

Go 347 789

Java 542 991

JavaScript 157 988

PHP 717 313

Python 503 502

Ruby 57 393

Table 3.1: Number of examples in the CodeSearchNet[49] dataset depending

on a programming language

Unlike the previous dataset, the CodeSearchNet is automatically collec-

4https://judge.u-aizu.ac.jp/onlinejudge/
5https://atcoder.jp
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ted from public GitHub6 repositories. Each example from the dataset repres-

ents a single function whose documentation comment is used to extract the

corresponding description. However, a naive approach to the extraction can

produce a noisy outcome, and therefore, the authors employ several filtering

criteria to clean up the dataset. Those criteria involve, for example, filtering

out the functions whose implementation is shorter than three lines, filtering

out functions whose name contains "test", et. cetera [49].

3.3.3 CoNaLa

The next dataset designated directly for generating source code snippets

from a natural language query is a CoNaLa dataset [50]. It represents a

collection of approximately 600K examples acquired from the StackOverflow

(section 6.2.1) platform. To produce a clean dataset, the authors introduce

a filtering method that selects only high-quality pairs of source code and its

natural language (NL) description.

As a first step in collecting the dataset, the authors have collected 527

human annotations of Python-related StackOverflow question-answer pairs.

For each presented question-answer pair, the annotators were asked to write

a curated description of the source code’s intent. Afterward, the human an-

notations were combined with a set of hand-crafted features to train a clas-

sifier predicting the quality of the NL-PL (natural language-programming

language) pair. The following listing states a few examples of the utilized

hand-crafted features [50]:

• contains import - a flag indicating whether a code snippet contains

an import statement

• starts with assignment - a flag indicating whether a source code

starts with an assignment statement (for example, a = [1, 2])

• accepted answer - a flag indicating whether a source code originates

from an accepted answer

• number of lines - number of lines of a source code

• ...

Afterward, the trained classified is used to predict the quality of each

NL-PL pair when crawling the StackOverflow content. During the dataset

6https://github.com
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assembling procedure, the script crawls all question-answer pairs from which

a set of NL-PL pairs is generated. The NL description in each pair is made

up of a question’s title. The corresponding programming language snippets

are then extracted from related answers considering possible code snippet

lengths are considered. For example, if a code contains three lines, six

candidate snippets will be generated - lines 1, 2, 3, 1-2, 2-3, 1-3 [50]. Finally,

the one with the highest relevance score determined by a neural network

classifier is selected from all the possible candidate pairs. As a result, most

of the examples present in the dataset contain a target code consisting of a

single line only.

3.3.4 Django

A Django dataset [51] is a collection of 18 805 lines from a web ap-

plication written in a Python framework called Django7. For each line in

the source code, a human-written pseudo code is available. Initially, the

dataset was created for Python to pseudo-code translation to provide an

understandable description of what a Python source code does. However,

the dataset can be used the other way to train a generative model capable

of generating source code out of a pseudo code.

3.3.5 NAPS

The next dataset we discuss in our work is a NAPS [52] dataset that

collects problem statements with correct solutions from the programming

contest website http://codeforces.com. The dataset provides 19 126 ex-

amples of problem statements with the corresponding Java solution. Most of

the examples are automatically acquired from the aforementioned website,

whereas nearly 500 contain a high-level description of the problem collected

using crowd-sourcing.

3.3.6 Hearthstone

A Hearthstone dataset introduced in a paper by Ling et al. [53] is ex-

tracted from a Python simulation of a well-known game called Hearthstone8.

Each data example represents a game card that matches a single Python

7https://www.djangoproject.com
8https://github.com/danielyule/hearthbreaker
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class. The dataset provides 665 examples split into train, evaluation, and

test parts. The dataset is designated for the source code generation task,

so each example contains an English description of a card. Furthermore,

each example contains additional information such as card type, power, or

health.

3.4 Existing Models and Approaches

Previously, we have presented several source code processing tasks and

datasets. Following this, we present existing neural network models and

approaches dealing with source codes. Firstly, we present two source code

encoders, and afterward, we describe Transformer-based (section 2.2.2) ap-

proaches that generate source codes from natural language descriptions. In

the end, we also discuss other relevant research papers with a completely dif-

ferent approach, which should give the reader a broader view of the problem

domain.

3.4.1 CodeBERT

A CodeBERT is a pre-trained bi-modal neural network capable of pro-

cessing both source code and natural language simultaneously [39]. The

architecture of the CodeBERT employs a stack of twelve Transformer’s en-

coder (section 2.2.2) layers whose weights are initialized using the weights

from the RoBERTa model [54].

During a pre-training phase, the CodeBERT learns two objectives on

a CodeSearchNet dataset (section 6.2.4). The first learning objective is a

masked language modeling (MLM), in which the model predicts original

tokens that were replaced by [MASK] token in the input. As a second object-

ive, the CodeBERT chooses a replaced token detection (RTD). The RTD

objective replaces some of the tokens in input with another token from the

model’s dictionary. The model then attempts to predict whether each token

is replaced or not. However, this would be very simple for the model to decide

if the replacement is chosen randomly. Therefore, the CodeBERT employs

an additional generator model, whose aim is to produce as trustworthy re-

placement tokens as possible to fool the CodeBERT model (discriminator).

Such a setup is depicted in figure 3.1.

The resulting model can produce contextual representations [13] of the
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Figure 3.1: Generator-discriminator architecture used when pre-training the

CodeBERT model.

input, encompassing both a natural language and source code. The rep-

resentations can be directly applied to various tasks such as programming

language classification or source code retrieval from a large base of queries

and code snippets (for example, StackOverflow9).

3.4.2 MQDD

Like the CodeBERT, MQDD [55] represents a bi-modal pre-trained

model for both natural and programming languages. The model is built on

a Longformer architecture [56], which modifies the utilized attention scheme

to scale linearly with the growing input sequence length. Therefore, MQDD

is more suitable for processing longer pieces of source code.

Another significant difference from the CodeBERT is the pre-training

objective. In addition to the MLM, the MQDD employs two other tasks

specific to the StackOverflow Dataset introduced in the work [55]. The

first dataset-specific task is called Question-Answer, and its target is to

predict whether an input pair represents a question-answer relationship. The

second learning objective, Same Post, aims to predict whether the input pair

originates from the same post (either from the same question or the same

answer).

The aforementioned pre-training objectives are designed to force the

model to build a deep understanding of the source code’s meaning to resolve

the relationship between the input pair. Therefore, the proposed learning

objectives are especially beneficial for tasks such as automatic detection of

9https://stackoverflow.com
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duplicate questions from the StackOverflow. However, the paper [55] shows

that the resulting model has limited generalization abilities, and if applied

to different tasks, a negative transfer [57] effect might be observed.

3.4.3 Codex & GitHub Copilot

Unlike the two models above, a Codex [58] is a generative model for

source code generation. Its architecture follows the GPT discussed in section

2.2.3. The model has 12B parameters trained on 159GB of Python source

code acquired from GitHub. The resulting model can solve 37.7% of 164

programming problems available in the HumanEval dataset introduced in

the same paper [58]. Additionally, by sampling 100 candidate solutions for

each problem, the model can solve 77.5% of the problems. Although this

is an imposing result, we must keep in mind that no developer is willing to

examine 100 candidate solutions before choosing the right one.

A bit different version of the Codex model is already integrated into

GitHub Copilot10, providing code snippet suggestions as you write source

code. However, neither the Codex model nor the GitHub Copilot is publicly

available. The Codex is even provided through a paid API, which raises

an ethical question in the development community of whether it is fair to

use public source codes produced by thousands of developers to train a

neural network model and sell it afterward to the same developers [59].

Furthermore, there are concerns that the Codex may reproduce memorized

source code licensed under GPL license11, which may potentially induce

many legal obstacles when using it in a commercial environment.

3.4.4 CodeT5

Another generative model for source code and natural language is called

CodeT5 [60]. The model uses the same architecture as the original T5

(section 2.2.5) but employs a re-designed pre-training strategy. The new

pre-training objectives leverage code-specific aspects. More specifically, the

pre-training objectives used in the work are the following [60]:

• Masked Span Prediction - same denoising objective as in the case

of the original T5, where the model predicts the original content of a

span of text replaced by [MASK]

10https://copilot.github.com
11https://www.gnu.org/licenses/gpl-3.0.html
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• Masked Identifier Prediction - all input tokens that represent an

identifier are replaced with [MASK], and the neural network tries to

recover the original identifiers

• Identifier Tagging - the neural network predicts whether each token

represents an identifier or not

• Bimodal Dual Generation - for each of the NL-PL pairs in the

dataset, the model tries to generate PL out of NL and vice versa

Since the model copies the T5’s framework of converting every task to

a sequence to sequence problem, the model can solve a wide range of tasks,

including code summarization, code generation, or code migration. Fur-

thermore, the model was pre-trained on the CodeSearchNet dataset (section

6.2.4) extended with C and C# code. Therefore, it can handle eight differ-

ent programming languages. This makes the model a universal choice for

various real-world applications.

3.4.5 Other Approaches

Unlike the previously presented approaches, some of the prior works are

trying to leverage available definitions of a programming language grammar

[61–63]. It means that instead of treating the source code as a sequence, these

approaches build a parse tree of the code by expanding non-terminal symbols

until only terminals remain. Such approaches leverage neural networks to

predict which expansion rule from the grammar shall be used.

An attempt to improve the aforementioned parse-tree-based approaches

by extending training data can be seen in the paper by Xu et al. [64].

In their work, they propose to augment the NL description of code snip-

pets using official API documentation of the related method calls. Other

research papers also expand an original PL grammar with additional rules

representing code idioms [65]. A code idiom in the context of the work is an

often-occurring subtree of a valid parse-tree. Adding such higher-level deriv-

ation rules into grammar enables the model to compose the desired source

code using high-level building blocks.

Other PL generation papers also focus on specific languages such as SQL.

For example, Xu et al. [66] introduce a method for generating SQL queries

leveraging structural information about the database. This work is followed

by Zhong et al. [66], who extended the method by employing reinforcement

learning to improve the quality of the generated queries.
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4 Analysis of the Problem

The problem of source code generation from a description in natural

language is a complex task with many possible approaches. Many of these

methods were presented in the preceding chapters, including neural network

architectures, available datasets, and many more. This chapter aims to

outline the key points of our approach to generating Python source codes

from queries in English. Firstly, we describe our approach from a high-

level point of view. Afterward, we discuss our selection of employed neural

network model, and lastly, we analyze whether to use some of the existing

datasets or create a completely new one.

4.1 General Approach

In section 3.4, we have presented several approaches to source code gen-

eration task, including those that leverage programming-language-specific

aspects such as grammar. Despite the attractiveness of these methods, the

approaches based on the Transformer architecture (section 2.2.2) seem to

surpass the source-code-specific approaches. The Transformer-based models

such as CodeT5 (section 3.4.4) or Codex (section 3.4.3) treat the program-

ming language as a sequence of tokens similarly to natural language. Based

on the information stated in section 3.1, the programming language shows an

even lower degree of entropy compared to the natural language. Therefore,

we presume that applying modern machine translation and text generation

methods to our problem without employing programming language grammar

is a reasonable choice.

Since the previous considerations lead us to use a Transformer-based

model, we also need to consider the training strategy. That is because the

Transformer-based models usually contain a massive amount of trainable

parameters, and therefore, they require a large-scale dataset for training.

To the best of our knowledge, there are no available parallel corpora of NL-

PL pairs (further discussed in section 4.3) that would have sufficient size for

training such large models end-to-end. Therefore, we will use the strategy

followed by many Transformer-based models. We will pre-train a model on

a large unsupervised dataset using a learning objective different from our

target task. Afterward, we will use the pre-trained model to fine-tune it on
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the source code generation task. Such an approach is often called transfer

learning.

The transfer learning strategy has more benefits than training large mod-

els without sufficient data for the end task. Another significant advantage

is that the pre-trained model can serve as a base for a much more compre-

hensive range of tasks than a specialized model built and trained just for a

single task.

4.2 Model

The source code generation from natural language can be perceived as a

machine translation task. More specifically, in our work, we focus on trans-

lating English to Python. This fact leads us to employ a Transformer-based

architecture that shows state-of-the-art results on the MT task, restricting

our selection to the original Transformer (section 2.2.2), T5 (section 2.2.5),

GPT (section 2.2.3) or BART (section 2.2.4).

If we choose to use the original Transformer, we would need first to

train an autoregressive decoder using a language modeling task on code.

Afterward, either a randomly initialized or already pre-trained encoder must

be added. Unfortunately, the pre-training phase cannot utilize the encoder-

decoder attention due to the lack of paired NL descriptions to be processed by

an encoder. Therefore, the model can not learn to consider the information

from the encoder during decoding.

Another option is to use a decoder-only architecture, following the GPT

model. However, using such a model will not allow us to use a monolingual

dataset of source codes during the pre-training. That is because the decoder

needs to process both the natural and programming language to understand

and complete prompts such as "translate ’get the last element from a list’

from English to Python". Furthermore, another research paper has already

explored this approach, so we try to find a different method.

Like the GPT model, prior publications have already explored the T5

architecture and its usage for code generation. Furthermore, the strength

of this model is the capability of multitask learning using the unified text-

to-text framework (section 2.2.5). We presume that we can achieve better

results by focusing on code generation tasks only, and therefore, we choose

a different model.

Finally, after considering all the aforementioned possibilities, we choose
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to utilize the BART architecture. We will first pre-train a whole encoder-

decoder model on source code denoising. Afterward, such a model can be

directly used for tasks such as automatic code repair, which is, however,

out of the scope of this work. After the pre-training, an additional encoder,

which replaces the input embeddings of the base model, will be added. The

additional encoder can be either initialized randomly, or we can employ an

encoder pre-trained on a different task. Intuitively, the additional encoder

performs a very noisy translation, afterward cleaned up using the BART

model. This setup shows superior results on multiple MT datasets, support-

ing our choice.

With selecting an additional encoder for the fine-tuning phase, we will

aim to choose an existing pre-trained model that can leverage a lot of previ-

ously gained knowledge. Besides that, we will compare the results achieved

using randomly initialized and pre-trained additional encoders.

4.3 Datasets

So far, our approach involves pre-training a denoising BART model us-

ing a monolingual corpus of source codes and fine-tuning it together with

an additional encoder to generate source code. However, we have not yet

discussed which dataset we use in our experiments. The data selection is,

therefore, analyzed in this section. Firstly, we discuss what data we can use

for pre-training, and afterward, we focus on the fine-tuning datasets.

Dataset # Examples

CodeNet [48] 3 340 048

CodeSearchNet [49] 1 156 085

CoNaLa [50] 600 000

Django [51] 18 805

NAPS [52] 16 000

Hearthstone [53] 665

Table 4.1: Size comparison of datasets for code generation (section 3.3).

4.3.1 Pre-training Dataset

Pre-training a model that consists of millions of parameters requires to

have an extensively large dataset. Otherwise, the model can suffer from
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underfitting. In related works, we see that their training corpora come up

to multiple hundreds of millions of training examples. However, table 4.1

shows that none of the available datasets provide such a huge amount of

data. It means that we will need to prepare a new dataset.

To create a large base of training examples in feasible time, we will need

to focus on data sources that can be automatically crawled without any hu-

man interaction. In other words, we cannot rely on having annotators that

would help us to assemble and curate our dataset. Luckily, several possible

data sources fulfill our criteria. One of these sources is StackOverflow (sec-

tion 6.2.1), which offers a large amount of source code snippets included in

questions and answers. Based on tags associated with the StackOverflow

threads, we know that there are approximately 1.8M threads related to the

Python programming language. From the thread count, we deduce that the

StackOverflow will not yield a dataset of the desired size. Nonetheless, it

may serve as a good source for building a fine-tuning dataset, as discussed

later.

Another promising source of the large unlabeled corpus is the GitHub

platform, which hosts more than 279M repositories1. Since Python is very

popular these days, we expect that the Python repositories make up a large

percentage of the total repository count. Therefore we choose GitHub as the

primary data source for our pre-training phase.

4.3.2 Fine-tuning Datasets

For model fine-tuning, the amount of required training data is signi-

ficantly smaller than in the pre-training, which enables us to use multiple

datasets enlisted in table 4.1. However, we can not use the CodeNet dataset

since it lacks paired natural language descriptions. Despite the possibility

of downloading the corresponding NL descriptions, we conjecture that the

descriptions from programming competitions are too high-level. Therefore,

they may be overly challenging for a neural network model. Another data-

set that we do not employ during fine-tuning is the NAPS, which focuses on

Java rather than Python.

Furthermore, the Django and Hearthstone dataset do not match our

intended goal of generating meaningful Python source codes out of Eng-

lish descriptions. In the case of the Hearthstone, the target source codes

represent game cards; therefore, a resulting model would not be helpful if

1The repository count is declared by GitHub at https://github.com/search
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integrated into an IDE. Furthermore, the Django dataset contains NL-PL

pairs consisting of a single line of code and corresponding pseudo code. This

is, however, not suitable for our work since we want to teach our model to

generate meaningful pieces of source code that are syntactically valid. For

example, teaching the model to do a translation like demonstrated in the

example2 below would produce a source code that is neither syntactically

valid nor meaningful.

PSEUDO CODE -> PYTHON CODE

if KeyError exception is caught -> except KeyError:

In our experiments, we will employ only the CodeSearchNet and CoN-

aLa datasets. Besides, we will build our training data based on StackOver-

flow (section 6.2.1) platform. We will do so despite having one existing

StackOverflow-based dataset enlisted in this work. Our motivation behind

creating our own dataset lies in having more control over selecting the ex-

amples. The CoNaLa dataset assigns text from questions to source code

snippets based on relevance score acquired using a neural network predictor.

In our work, we will pair only questions with the answers marked as accep-

ted. The accepted answer relation can be perceived as a label assigned by

humans, and it expresses that the code snippet solved the author’s prob-

lem. Therefore, we believe that the accepted answer is a significantly better

relevance measure than a neural network prediction used to construct the

CoNaLa dataset.

2The example represents a real training example obtained from https://github.com/

odashi/ase15-django-dataset.
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5 Pre-training a Generative

Model for Source Code

As outlined in the preceding analysis, our approach to generating source

code from a natural language description involves two main stages - pre-

training and fine-tuning. This chapter focuses on the pre-training part aim-

ing to obtain a pre-trained model based on BART architecture capable of

denoising corrupted source code in Python language. We call the resulting

model a CodeFormer.

The whole chapter is structured as follows. In the beginning, we focus

on acquiring a large unlabeled corpus of Python source code for training the

CodeFormer model. Following the dataset construction, we discuss tokeniza-

tion used in the pre-training, which involves several source code-specific steps

such as source code linearization. Subsequently, we present further details

about the exact parametrization and implementation of the utilized BART

model, followed by a description of our pre-processing pipeline. Lastly, we

discuss the setup of our pre-training experiment and present the achieved

results.

5.1 Dataset

Section 4.3 states that training a large pre-trained model requires at

least a few million training examples. However, none of the existing data-

sets presented in section 3.3 provide such an extensive training corpus, and

therefore, we choose to create a new dataset. We appoint GitHub1 to be a

data source for the new dataset, thanks to the fact that it embraces more

than 279M repositories from different languages (section 4.3.1). The rest of

this section discusses how the GitHub data can be obtained using a Rest API

and how the downloaded repositories can be processed to create a training

corpus.

1https://github.com/
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5.1.1 GitHub API

GitHub exposes a comprehensive API 2, providing endpoints for repos-

itory manipulation, issue management, et cetera. Most importantly, it en-

ables a client to search repositories based on criteria provided using a request

parameters. The most important filter options are the number of stars, fork

count, and source code language.

Since the work focuses on generating Python source code, the language

filter can be used to omit repositories containing no Python code. Further-

more, the forks and stars can measure the repository’s quality, hence the

underlying source code. However, we conjecture that favoring the quality

of training examples over the dataset size would not improve the resulting

neural network model. In order to be able to select suitable filter paramet-

ers, thanks to which we get a sufficiently large and high-quality dataset, we

performed a detailed analysis of the individual filter settings presented in

the next paragraph.

Table 5.1 shows a few examples of GitHub API queries with the result-

ing number of matching repositories. One can see that the number of found

repositories decreases rapidly with every slight tightening of the selection

criteria. This work chooses to process all repositories comprising Python

source code marked with at least 1 star based on the analysis. We believe

that even such a soft criterion filters out most not-maintained repositories

containing noisy source code while preserving a sufficient number of repos-

itories for acquiring a massive dataset.

Query # Repositories

language:Python 2 708 833

language:Python stars:>0 1 451 639

language:Python forks:>0 1 018 460

language:Python stars:>1 738 090

language:Python stars:>0 forks:>0 651 445

language:Python forks:>1 480 654

language:Python stars:>1 forks:>1 350 666

Table 5.1: Analysis of the number of repositories found depending on filter-

ing conditions.

2https://docs.github.com/en/rest/reference
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5.1.2 Crawling Repositories

In order to download all the repositories acquired using the previously

mentioned filtering, the query must be split into a series of queries yielding

a lower number of results. That is due to the limitations of the GitHub

API, which allows us to get only the first 1000 results for each posted query.

Besides this limitation, the API returns results in pages with a maximum

of 100 items. Moreover, there is also a request rate constraint that allows

the client to execute 5000 requests per hour (in the case of a user authentic-

ated by an access token). Fortunately, these obstacles can be mitigated by

fetching the results in buckets determined by the creation date filter.

When crawling the repositories, it is also essential to filter out source files

that would impair the ability of the neural network to generate syntactically

correct code. Therefore, source codes with a syntax error shall be excluded

from the training set. To filter out such files, one can use the ast3 library,

which is a part of the Python installation. More specifically, we can use

ast.parse() function. If the function execution ends up with no exception,

the source code can be considered compliant with the language grammar.

Furthermore, we exclude all files with the name __init__.py since such files

are used to structure the source code modules into packages and contain no

functional code. After considering all the constraints and filters discussed

previously, we end up with the crawling Algorithm 1.

5.1.3 Dataset Statistics

The resulting GitHub dataset obtained using the steps described in the

previous section comprises 230M training examples. Compared with existing

datasets (table 4.1), our novel dataset is an order of magnitude larger and,

therefore, more suitable for training a large pre-trained model. For detailed

information about the dataset, see table 5.2.

In addition to comparing the size of our dataset with those mentioned

earlier, we also compare our dataset with the corpus used to train the Codex

model (section 3.4.3), which used a training set of 159GB of source code.

Our dataset uses 184GB of disk space, which indicates that our dataset is

slightly larger. However, it is not clear how many training examples the

Codex model used. Therefore, the comparison is very rough.

3https://docs.python.org/3/library/ast.html
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Algorithm 1 Algorithm for crawling Python repositories using stars count
Require: nstars ≥ 0

Ensure: Filtered python source code stored on the FS (file system)

date← 2018-01-01

processed← ∅
page← 1

while True do

wait(2) ⊲ wait for 2 seconds due to the request rate limit

repos← get page-th page of repos with stars ≥ nstars created on date

if ‖repos‖ = 0 then

date← date + 1 ⊲ add one calendar day

page← 1

continue

end if

for repo in repos do

if repo not in processed then

dir ← clone repo to a directory on the FS

dir ← filter out all files from the dir with name __init__.py

dir ← filter out all files from the dir that cannot be parsed

processed← processed
⋃

repo

end if

end for

if ‖repos‖ ≥ 100 then ⊲ all repos did not fit to one page

page← page + 1

continue

else

date← date + 1 ⊲ add one calendar day

page← 1

continue

end if

end while

Dataset statistics

number of source files 23.9M

number of training examples 230M

number of tokens 35.8B

average examples per source file 10.4

average tokens per example 155.9

Table 5.2: Statistic of the GitHub pre-training dataset.
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5.2 Tokenizer

For tokenizing and converting the input text into a sequence of numerical

indices, this work uses a WordPiece tokenizer (section 2.3.2) since it is a

usual choice of Transformer-based models (section 2.2.2). The following

subsections describe pre-tokenizing the input, determining the vocabulary

size, and training the tokenizer.

5.2.1 Pre-tokenization

In order to train the tokenizer, we need to feed in the input sequences as

a list of words. In the terminology of a source code, we do not feed in words

but instead tokens produced by a lexical analyzer of the given programming

language. These can be obtained using the tokenize4 library provided by the

standard Python installation. However, the token stream produced by the

tokenize library must be further transformed using the following rules:

• remove all characters that are not printable (not in string.printable)

• replace newline tokens with special [NL] token

• replace indentation tokens with special [IND] token

• replace dedentation (inversion of indentation) tokens with special [DED]

token

• remove the encoding token that is located at the beginning of each

token stream produced by the tokenize library

• remove all docstrings (single-line comments are removed by default)

• return the filtered tokens as a single string, where each token is separ-

ated by a white space (pre-tokenization)

The whole process described above is entirely reversible so that it is

possible to convert a tokenized sequence into a syntactically correct source

code. It can also be noticed that the pre-tokenization pipeline deals with in-

dentation levels. Such information needs to be preserved while working with

Python code since, unlike other programming languages, Python uses indent-

ation as a part of the grammar definition. The importance of indentation

is also reflected in the tokenize library that produces the [IND] and [DED]

4https://docs.python.org/3/library/tokenize.html

51

https://docs.python.org/3/library/tokenize.html


tokens only when the indentation level changes. Otherwise, the tokenized se-

quence would be over-saturated with tabulator characters. All the presented

pre-tokenization steps are implemented by our PythonTokenizer class.

5.2.2 Training the Tokenizer

As soon as the tokenization algorithm and pre-tokenization steps are

defined, it is essential to define a vocabulary. In other words, we need to train

the tokenizer. To do so, we use an existing implementation of the WordPiece

tokenizer (section 2.3.2) from the tokenizers5 library. Thanks to utilizing

the existing implementation, we need to provide only a few configuration

options. These are:

• pre-tokenizer - an algorithm to split the input string into single-word

tokens

• normalizer - normalization procedures to apply to the input text,

including accents handling, text polishing, et cetera.

• decoder - an algorithm to be used for decoding a sequence of tokens

into a string

Since we split the original tokens by a space character during the pre-

tokenization (section 5.2.1), we can use the most simple Whitespace6 pre-

tokenizer. For normalization, we utilize the NFD7 normalizer in conjunction

with the BertNormalizer8. Thanks to that, we acquire tokens with no ac-

cents, all control characters removed, and all Unicode characters decomposed

to a canonical form. It shall be noted that we do not perform lowercasing

since Python is case sensitive language. Last but not least, we use a Word-

PieceDecoder9 to transform the tokenized text into its original form.

5https://huggingface.co/docs/tokenizers/python/latest/api/reference.

html#tokenizers.models.WordPiece
6https://huggingface.co/docs/tokenizers/python/latest/api/reference.

html#tokenizers.pre_tokenizers.Whitespace
7https://huggingface.co/docs/tokenizers/python/latest/api/reference.

html#tokenizers.normalizers.NFD
8https://huggingface.co/docs/tokenizers/python/latest/api/reference.

html#tokenizers.normalizers.BertNormalizer
9https://huggingface.co/docs/tokenizers/python/latest/components.html#

decoders

52

https://huggingface.co/docs/tokenizers/python/latest/api/reference.html#tokenizers.models.WordPiece
https://huggingface.co/docs/tokenizers/python/latest/api/reference.html#tokenizers.models.WordPiece
https://huggingface.co/docs/tokenizers/python/latest/api/reference.html#tokenizers.pre_tokenizers.Whitespace
https://huggingface.co/docs/tokenizers/python/latest/api/reference.html#tokenizers.pre_tokenizers.Whitespace
https://huggingface.co/docs/tokenizers/python/latest/api/reference.html#tokenizers.normalizers.NFD
https://huggingface.co/docs/tokenizers/python/latest/api/reference.html#tokenizers.normalizers.NFD
https://huggingface.co/docs/tokenizers/python/latest/api/reference.html#tokenizers.normalizers.BertNormalizer
https://huggingface.co/docs/tokenizers/python/latest/api/reference.html#tokenizers.normalizers.BertNormalizer
https://huggingface.co/docs/tokenizers/python/latest/components.html#decoders
https://huggingface.co/docs/tokenizers/python/latest/components.html#decoders


5.2.3 Vocabulary Size Selection

Vocabulary size is a crucial hyperparameter that affects the speed of

training and the results achieved using a model. Smaller-sized vocabulary

occupies less space in the GPU ’s memory so that the batch size can be

significantly larger. On the other hand, tiny vocabulary may reduce the

neural network’s ability to understand the language. Thus, the vocabulary

size must be carefully chosen.

Firstly, we analyze how many unique tokens are present in our dataset

and how often they occur. If we work with a natural language text, we

can tokenize the corpus on whitespaces and count the occurrences of all

the individual tokens. However, such an approach to tokenization tends to

yield too long and rare tokens when applied to a source code. Therefore,

we tokenize the corpus using a Python lexical analyzer. The significant

difference between these two approaches can be observed below:

whitespace tokenization:

def test_func(par1): -> def, test_func(par1):

Python’s lexical analyzer:

def test_func(par1): -> def, test_func, (, par1, ), :

After running the token occurrence analysis, we need to filter out rare

tokens. We choose a threshold of five occurrences that yields a vocabulary of

approximately 8.8M tokens. Having such a colossal vocabulary is infeasible

for our experiments since only the embedding matrix would consume an

excessive portion of the GPU’s memory. To get a better baseline, we try to

filter out all the tokens with less than a hundred occurrences, resulting in

a vocabulary of 393K tokens, which seems to be a very high number too.

Therefore, we need to choose a different approach to choosing the vocabulary

size.

To determine a suitable vocabulary size, we calculate several statistics for

different tokenizers with vocabularies of 2K, 6K, 11K, and 25K tokens (table

5.3). Based on the statistics, we can understand how many whole-word

tokens occur in the vocabulary and how many must be split into multiple

subword tokens. Based on the presented experiment, we choose to work with

a vocabulary of 25K tokens, which splits only less than 40% of the original

tokens into multiple subword tokens.
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vocab. size # tokens word starts [%] word continuations [%]

25K 2.1B 62.5 37.5

11K 2.4B 55.0 45.0

6K 2.7B 48.9 51.1

2K 3.5B 37.1 62.9

Table 5.3: Statistics of tokenizers trained with different vocabulary sizes.

The statistics were computed on a reduced dataset of 34K repositories. The

third and fourth columns show how many tokens occurring in the dataset

represent word starts and continuations. Word continuation is a token that

starts with ’##’.

5.3 Model

As stated in section 4.2, we use the BART model (section 2.2.4) as a base

for our CodeFormer. In our version of the model, we use 12 Transformer

layers with 16 attention heads in both an encoder and decoder. We also keep

the original hidden size of 1024, and the same value is used for the number

of positional embeddings. Such setup leads to a neural network model with

380M parameters.

To implement the model, we utilize HuggingFace’s library called trans-

formers10. The library provides an implementation of many models derived

from the Transformer (section 2.2.2) architecture. The provided models are

available for both Tensorflow11 and Pytorch12, from which we decided to

use the latter one. Out of all the BART model implementations from the

transformers library, we use BartForConditionalGeneration13, which comes

with an in-built language modeling head suitable for our pre-training task.

5.4 Pre-processing

In the previous sections, we described the choice of the data, tokenizer,

and model. Based on those design choices, we can define how to pre-process

10https://huggingface.co/transformers/
11https://pytorch.org/
12https://www.tensorflow.org/
13https://huggingface.co/transformers/model_doc/bart.html#transformers.

BartForConditionalGeneration
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the data before being processed by the CodeFormer. Our pre-processing

involves extracting code units representing training examples, tokenization,

and efficient data storage. Furthermore, the input pipeline needs to add noise

and pad or trim the sequences to the same length. The lastly mentioned steps

are done on the fly during training, enabling us to change hyperparameters

(for example, maximum sequence length) after generating a pre-processed

training set. The whole pre-processing pipeline is depicted in figure 5.1. The

most important steps - code unit selection and noise generation, are further

described in the subsequent sections.

crawl data
extract

code units tokenize

store in *.dat files

add
noise

trim
or

padtrain

Figure 5.1: Visualization of data pre-processing steps. The area marked with

blue color represents a pre-processing that is done before pre-training. The

yellow part of the figure represents transformations done on the fly during

pre-training.

5.4.1 Code Unit Selection

Since some source files can be very long, we need to split them into mul-

tiple shorter training examples - code units. In the context of our work, we

consider each function to be a code unit and hence a self-standing training

example. Furthermore, we also extract and treat methods as code units.

However, unlike functions, methods need to be extracted with a class de-

claration. Otherwise, it will not be possible to distinguish between them,

and the neutral network will not learn the syntactical difference (self as a

first positional parameter).

For code unit extraction (depicted in figure 5.2), we employ Python’s

ast library, which can parse a source code and build an abstract syntax
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tree (AST). Afterward, we iterate over all nodes in the AST and search for

ast.ClassDef and ast.FunctionDef nodes. In the case of the latter one,

the whole subtree of the selected node is extracted, converted back into a

source code, and added to the training dataset. In the case of the class defin-

ition node, the algorithm searches for underlying ast.FunctionDef nodes.

Each such node is then extended with the class header, unparsed, and ap-

pended to the training set.

Figure 5.2: Extraction of code units from a class (left-hand side) or a source

file with plain functions (right-hand side).

5.4.2 Noise Generation

In order to generate a noisy input for the encoder part of the model, we

follow the approach laid out in the original BART paper (see section 2.2.4

for more details). Namely, we choose Text Infilling and Document Rotation

transformations. For the Text Infilling, we use Poisson distribution with

λ = 3 to sample the length of a masked span. During this step, we replace

24% of tokens with [MASK] token and 6% of the tokens with a replacement,

randomly chosen from the vocabulary. The Document Rotation (section

2.2.4) is applied to 50% of input sequences.

In addition to the transformations described above, we extend the noising

scheme with a Token Swap, injecting additional syntactic or semantic errors

into the input. We apply the Token Swap transformation to 5% of the tokens

by randomly selecting two tokens and swapping their positions.
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5.5 Pre-training Procedure

This section discusses the pre-training-related implementation and pro-

cedure. Firstly, the experimental setup section includes information about

the data input pipeline, progress logging, checkpointing, and hyperpara-

meter setup. In the next part, we discuss the obtained results.

5.5.1 Experimental Setup

Our pre-training procedure is implemented in Python using the PyTorch

library. Furthermore, we employ the HuggingFace Transformers library that

provides a verified implementation of the BART (section 2.2.4) model that

we train using a training script described in the following paragraphs.

We conduct the whole experiment on a node of MetaCentrum (MC)14

grid computing infrastructure. More specifically, we choose a computation

node from a cluster zia, where we use two cores of AMD EPYC 7662 (64

Core) 2.00 GHz CPU and two Nvidia A100 GPUs. The MC uses a PBS15

task scheduler that allows us to acquire the aforementioned resources for a

maximum of 24 hours. Afterward, a new job needs to be scheduled, and the

training procedure has to be resumed.

Data Input Pipeline

In order to retrieve the pre-processed training data from a file sys-

tem, we implement the GithubDataset class. The dataset implementa-

tion can obtain an example of the data based on a provided index via the

__getitem__() method. Since the training data are chunked into multiple

files, the dataset provider must determine where the requested example is

located. Furthermore, the GithubDataset buffers the last accessed data file

in memory so that the subsequent reads that fall into the same data file

are served from the buffer directly. The buffering mechanism is a crucial

feature for the speed of the whole data input pipeline. However, it heavily

depends on a sequential sampling presumption. Therefore, the data must

be pre-shuffled during the pre-processing.

The sequential training data sampling is realized by our implementation

of RestartableSequentialSampler class inspired by PyTorch’s implement-

14https://metavo.metacentrum.cz/en/
15https://www.altair.com/pbs-professional/
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ation of SequentialSampler. Unlike the implementation provided by the

PyTorch, our custom sampler can continue sampling from a point where it

left off. Resuming the sampling seamlessly is a crucial requirement since

each pre-training job can last up to 24 hours. Afterward, a new training job

needs to be scheduled in the MetaCentrum, and the training shall continue

from the latest checkpoint (for more details, see section 5.5.1).

Except for retrieving the training examples from a file system, the imple-

mentation of GithubDataset is also responsible for the pre-processing steps

highlighted in yellow color in figure 5.1. More specifically, the dataset imple-

mentation alters the data with noise (by using BARTNoiseGenerator class).

Furthermore, it pads or trims the sequences to match the defined sequence

length and generates attention masks for the model. After all these steps,

the GithubDataset yields a data point that can be directly passed to the

model.

Progress Logging & Checkpointing

Besides the data input pipeline, the pre-training procedure requires log-

ging and checkpointing. The logging is essential to monitor whether the

loss decreases continuously, and the neural network learns as expected. On

the other hand, checkpointing allows us to resume the training after the 24

hours long MetaCentrum training session or recover in case of any failure.

In our work, we choose to realize the logging using the Weights & Bi-

ases16 service (wandb library for Python) that provides online visualization of

the logged data. Furthermore, it offers automatic monitoring of parameter

gradients, hyperparameter searches, artifact (models or datasets) version-

ing, et cetera. During the pre-training, we log the current learning rate and

loss each 1024 training examples. Additionally, we store a neural network’s

prediction every 1000 batches to intuitively see how the neural network is

improving in the denoising task.

Alongside the logging, we create a new checkpoint each 200K training

examples. A checkpoint always contains all model parameters, the current

state of an optimizer, and the number of processed training examples. When

we need to restart the training, we find the newest checkpoint stored on the

filesystem, load all the weights into the model, load the optimizer’s state

and continue sampling the training dataset from the step recorded in the

checkpoint.

16https://wandb.ai
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Hyperparameter Setup

To train our model, we use the Adam optimizer with an initial learning

rate λ = 10−5. Additionally, we employ a learning rate warmup for the first

500K steps, and then we apply a linear decay to zero. Such a setup is used

to perform a single iteration (≈ 220M examples) over the training set with

a batch size of 64 and a maximum sequence length of 256 tokens.

Later on, we increase the maximum sequence length to 1024 tokens and

start iterating over the dataset from the beginning to train higher positional

embeddings. Using the increased sequence length, we train the network for

additional 20M examples using a batch size of 8. Furthermore, we need to

increase the learning rate so that the training can impact the embedding

weights. Therefore, we set the learning rate to λ = 9× 10−7 and apply the

linear decay. The resulting learning rate function is depicted in figure 5.3.
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Figure 5.3: Learning rate schedule used for the pre-training. The learning

rate schedule uses a warmup and linear decay.

5.5.2 Pre-training Results

The pre-training procedure in the previously described setup took ap-

proximately 1058 hours (1.5 months) on two NVidia A100 GPUs. To track

the pre-training progress, we monitor the cross-entropy loss during the whole

training (figure 5.4). As one can see, the slope of the loss is steep during

the first 50M steps, whereas it decreases very slowly during the later stages.

59



For a more human-readable evaluation of the model’s output, refer to the

appendix A, which lists a few examples of source code denoising using our

resulting CodeFormer model.
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Figure 5.4: Smoothed progress of the cross-entropy loss during pre-training.

The first 230M steps represent the pre-training with a maximum sequence

length of 256, whereas the last 20M steps represent the training with a

maximum sequence length of 1024 tokens.

In the end, we export the model using model.save_pretrained(), which

results in storing the model’s configuration together with its weights on the

file system. In addition, we upload our resulting model to the Hugging Face’s

model repository17 so that the model is easily accessible to everyone. The

CodeFormer model can be loaded using the Python source code presented

in Snippet 5.1. Following that point, we can load the pre-trained model

and fine-tune it for various tasks such as code correction or generation. The

latter usage is thoroughly discussed in the subsequent chapter.

1 from transformers import AutoTokenizer , AutoModelForSeq2SeqLM

2

3 MODEL_NAME = " janpase97 /codeformer - pretrained "

4 tokenizer = AutoTokenizer . from_pretrained ( MODEL_NAME )

5 model = AutoModelForSeq2SeqLM . from_pretrained ( MODEL_NAME )

Listing 5.1: Python source code used to load our pretrained model using

transformers library.

17https://huggingface.co/janpase97/codeformer-pretrained
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6 Generating Source Code

Based on Natural Language

Descriptions

This chapter focuses on applying the pre-trained CodeFormer model to

the code generation task. Firstly, the chapter discusses the required changes

in the model’s architecture. Subsequently, we describe the datasets used for

fine-tuning, including their pre-processing. At the end of this chapter, we

describe the concluded experiments and discuss the achieved results.

6.1 Model

As discussed in section 4.2, we follow the BART’s machine translation

architecture (section 2.2.4) to adapt the CodeFormer model to the English

to Python translation task. This approach extends the model with an ad-

ditional encoder responsible for translating a text in a source language into

a noisy text in a target language. In our case, we expect the additional en-

coder to consume NL texts and produce boisterous source codes, which are

then denoised by the CodeFormer. Such architecture is visualized in figure

6.1.

Despite not being visualized in the figure, there is an extra linear layer

(torch.nn.Linear) in between the CodeFormer and the additional encoder.

Its purpose is to perform a conversion between dimensions of the two sep-

arate models. This is crucial, especially when using existing pre-trained

models whose dimensionality cannot be changed. In our experiments, we

employ both randomly initialized and pre-trained encoders, whose choice is

further discussed in the next section.

6.1.1 Additional Encoder Selection

We consider two different pre-trained encoders to be employed as addi-

tional encoders for our code generation model. The first one is the Code-

BERT model (section 3.4.1), and the second is the MQDD model (section
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import json

with open('data.json') as f:

 data = json.load(f)

print(data)
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Figure 6.1: Architecture of the CodeFormer model adjusted for conditional

generation task.

3.4.2). Both of these models are pre-trained on a large corpus of bilingual

NL-PL pairs, and therefore, they might significantly reduce the time ne-

cessary for our model to converge. It is difficult to predict which of these

models will give better results. Nevertheless, based on the pre-training data-

sets used by the CodeBERT and MQDD, we presume that the CodeBERT

can improve results when applied to datasets based on GitHub, whereas the

MQDD can show better results on the StackOverflow-based datasets. Be-

sides the pre-trained models, we also experiment with utilizing a randomly

initialized encoder of a smaller size.

6.2 Dataset

Unlike in the case of the pre-training, a monolingual dataset is not suit-

able for generating source code based on an NL description. To train such

a generator, we need a parallel corpus that encompasses pairs of code and

corresponding descriptions. As discussed earlier, there are several suitable

datasets available. In section 4.3, we chose to employ the CodeSearchNet

(section 3.3.2) and CoNaLa (section 3.3.3) datasets accompanied by our own

StackOverflow-based dataset.

The rest of this section is structured as follows. Firstly, we briefly intro-

duce the StackExchange and Stackoverflow platforms, a joint base for two of

the datasets we utilize. Afterward, we describe the whole process of acquir-
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ing and preparing our custom StackOverflow-based dataset. In the end, we

briefly set out the pre-processing strategy for the CoNaLa and CodeSearch-

Net datasets.

6.2.1 StackExchange & StackOverflow

With its 431.8M monthly visits, the StackExchange is probably the

largest community question-answering (Q&A) platform in the world. It

consists of 173 subpages, each designated for a different topic. The sub-

pages are heavily dominated by the StackOverflow that programmers use to

discuss their problems.

Each thread on the StackOverflow consists of a question made up of a title

and body describing the problem to be discussed. Additionally, the author

labels a question with a set of tags, defining the question’s topic. Other users

can then post answers to the stated question and receive upvotes/downvotes

that reflect the quality of the answer. If one of the answers is good enough

to solve the author’s problem, the author marks the question as accepted.

All this information with a lot of additional metadata can be acquired

from www.archive.org/details/stackexchange. Especially for the Stack-

Overflow, one can select from the following data:

• badges (304.6 MB) - user’s honors data

• comments (4.9 GB) - comments to different answers

• post history (30.3 GB) - history of all the posts

• post links (105.6 MB) - links between posts (e.g., duplicates)

• posts (17.2 GB) - set of all questions and answers

• tags (873.1 KB) - set of all available tags

• users (821.9 MB) - registered users and their public data

• votes (1.3 GB) - upvotes and downvotes related to posts

Within each of the files mentioned above, there is an XML structure

described by a readme.txt1 file stored alongside the datafiles.

1https://ia800107.us.archive.org/27/items/stackexchange/readme.txt
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6.2.2 Custom StackOverflow Dataset

As stated previously, we decided to create a novel Stack Overflow

Code Generation Dataset (SOCGD) to complement the existing data-

sets used in our experiments. The rest of this section describes how we can

obtain high-quality NL-PL pairs from StackOverflow questions and accepted

answers obtained from an XML dump downloaded from www.archive.org.

Assembling the Dataset

Since the downloaded data are stored in an XML format, we use the

BeautifulSoup library that parses the XML. Firstly, we need to filter only

the Python-related questions. To do so, we use the PostTypeId and Tags

attributes associated with every post in the StackOverflow data export. The

first mentioned attribute can distinguish between a question and an answer,

whereas the latter is utilized to filter out the questions containing python

or python-3.x tag. The filtered questions are then stored in a MongoDB (a

NoSQL database used to store structured data) in the following format:

__id: <id of the question>

title: <question’s title>

text: <text extracted from the question’s body>

answer_id: <id of the related accepted answer>

tags: <list of all the tags assigned to the question>

Afterward, we apply a similar approach to extract all answers marked as

accepted. To extract the answers, we only consider the posts with the attrib-

ute PostTypeId = 2. Furthermore, we query the MongoDB for the answer’s

parent question based on the identifier stored in the answer’s ParentId field.

If no record is found, the answer can be skipped immediately. Otherwise, an

additional check verifies whether the identifier (attribute Id in the XML rep-

resentation of the answer) matches the parent_question.answer_id from

the database. All answers that pass through such a filter represent accepted

answers and are stored in the MongoDB following the structure described

below:

__id: <id of the answer>

parent_id: <id of the parent question>

code: <source code extracted from the answer’s body>
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In the end, we export each of the question-answer pairs into a simple

text file. We export a title and text of a question, source code extracted

from an answer, and an identifier of the StackOverflow thread, required by

the license conditions. All those fields are separated by a <SPLIT> delimiter.

Pre-processing

In the previous section, we intentionally omitted information related to

data pre-processing. The pre-processing pipeline is split into three distinct

parts. The first part involves a simple pre-processing while assembling the

dataset. In the second phase, we prepare tensors that can be processed by

the neural network and are model-specific (due to the tokenization step).

The last stage is then executed directly during the training and involves

generating attention masks, token type ids, et. cetera. In the following

paragraphs, all those stages (figure 6.2) are described in detail.

As stated above, the first stage of pre-processing is done during the

dataset assembly process, right before creating MongoDB records. Data

transformations vary depending on whether we process a question or an

answer. For each question (both a title and body), we need to strip all new

line characters, remove the HTML markup, and possible code snippets. On

the contrary, we need to extract the code snippets and leave out any natural

language text for the answers. For most of these transformations, we utilize

the BeautifulSoup library.

In the second pre-processing stage, we work with the textual export

of the dataset to tokenize the inputs and store them as tensors in mul-

tiple data files. Firstly, we pre-tokenize the source code using our custom

PythonTokenizer (section 5.2.1) and tokenize the code using a WordPiece

tokenizer (section 5.2.2). Furthermore, we tokenize the textual part (body

and title) using two different tokenizers corresponding to the MQDD (sec-

tion 3.4.2) or CodeBERT model (section 3.4.1). Before the tokenization, we

concatenate both the question’s title and body separated using [SEP] token.

Finally, we wrap the textual part into [CLS]...[SEP] tokens and the code

part into [START]...[END] tokens. Then, we trim or pad the examples to a

length of 256 tokens and store them into multiple *.dat files, 1000 examples

each. Finally, we split the *.dat files into train, dev, and test splits in 90:5:5

ratio.

The last part of the pre-processing happens directly during the training.

From the last pre-processing stage, we acquire a tensor with tokenized NL
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Figure 6.2: Visualization of a pre-processing pipeline used for fine-tuning

datasets.

query (xi) and a tensor with tokenized target source code (yi). From those

two tensors, we need to generate the rest of the necessary inputs using the

following rules:

• encoder input = xi (format: [CLS] <title> [SEP] <body> [SEP])

• encoder attention mask - xmij =







1 if xij = [PAD]

0 if xij 6= [PAD]

(it is allowed to attend to all positions except the padding)

• encoder token type ids - xtii = 0 (additional encoders require the

NL text to have token type id equal to 0, whereas the source code

needs to have 1 ⇒ all zeros, since only NL is present in the query)

• decoder input - yii = yi[: −1] (whole desired source code except the

last [END] token)

• decoder attention mask - ymij =







1 if yiij = [PAD]

0 if yiij 6= [PAD]

(it is allowed to attend to all positions except the padding)

• labels - li = yi[1 :] (whole desired source code except the [START]

token at the beginning)
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Dataset Size

The resulting SOCGD dataset created from StackOverflow questions

and accepted answers contains about 400K examples. Detailed information

about the dataset’s size can be found in table 6.1.

SOCGD Dataset

Split Size

train 364K

dev 20K

test 20K

Table 6.1: Size of different splits of our custom SOCGD dataset.

6.2.3 CoNaLa Dataset

The second dataset we utilize in our work is the CoNaLa dataset (section

3.3.3). The data can be downloaded from the author’s website https://

conala-corpus.github.io in JSON lines format containing the following

information:

• question_id - identifier of the original StackOverflow question

• intent - NL description of the code snippet (extracted from Stack-

Overflow)

• rewritten_intent - the intent rewritten by a human annotator (avail-

able only for the small train split)

• snippet - code snippet corresponding to the intent

Since the dataset is already assembled and shipped in a very user-friendly

way, the preprocessing of the dataset employs only the stages two and three

described in section 6.2.2. It means that we only tokenize the textual export

and convert it to tensors. Afterward, we generate the masks and token type

ids directly during the training. Since the data input pipeline is the same as

in the case of our SOCGD dataset, we can seamlessly choose which of the

dataset is used for the training without the need to write dataset-specific

code. Moreover, we can combine both datasets to create a more extensive

training set. For detailed information about the dataset size see table 6.2.
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CoNaLa Dataset

Split Size

mined 593K

train 2 379

test 500

Table 6.2: Size of different splits of the CoNaLa [50] dataset.

6.2.4 CodeSearchNet Dataset

The last dataset we use in the fine-tuning is the CodeSearchNet (section

3.3.2), which originates from GitHub. Due to its origin, it might seem

that our model should deal with that dataset significantly better than with

StackOverflow-based datasets (the CodeFormer was pre-trained on a similar

GitHub-based dataset). However, we must consider that the NL queries are

extracted from high-level source code docstring, which might not reflect how

users phrase their queries. On the other hand, the source codes from GitHub

usually represent longer pieces of code closer to the model’s desired outcome.

The CodeSearchNet dataset can be obtained via a simple script from

the authors’ GitHub2 repository. The resulting dataset stored on a local FS

consists of multiple *.tar.gz files, each containing the examples in JSON

lines format. All the records consist of the following information:

• *code - source code of a single function,

• code_tokens - tokenized source code,

• *docstring - description of the function extracted from an original

documentation comment,

• docstring_tokens - tokenized docstring,

• func_name - name of the function from which the example is extrac-

ted,

• language - language of the source code,

• original_string - source code including comment from which the

sample was extracted,

• partition - categorization of the example into a train/dev/test split,

2https://github.com/github/CodeSearchNet
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• path - path to a source code file from which the example was extracted

(from the repository’s root),

• repo - repository from which the example was obtained,

• sha - checksum of the example,

• url - URL address that points to the source file at GitHub.

From all the available information, we use only those marked with *.

Namely, we employ the code and docstring, which we pre-process the same

way as the two datasets mentioned previously. Information about the size

of the final CodeSearchNet dataset is present in table 6.3.

CodeSearchNet Dataset

Split Size

train 412K

dev 23K

test 22K

Table 6.3: Size of different splits of the CodeSearchNet [49] dataset.

6.3 Training

In the preceding sections, we have introduced the model and datasets

that we use to generate source codes. In this section, we put this information

together to train the extended CodeFormer model that can produce mean-

ingful source codes based on English prompts. Firstly, we give a through-

out description of the executed experiments, and afterward, we present the

achieved results.

6.3.1 Experimental Setup

The general framework of fine-tuning experiments is quite similar to the

pre-training setup in section 5.5.1. We use the same libraries - HuggingFace’s

Transformers, PyTorch, and even the same hardware - a single MetaCentrum

node from cluster zia with two NVidia A100 GPUs. Due to the significant

similarity with the pre-training, we focus mainly on the differences. Unless

otherwise stated, the setup is identical.
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Data Input Pipeline

Similar to the pre-training, we implement a custom dataset wrapper

that provides access to an example identified by an index (the wrapper im-

plements __getitem__()). The implementation of the dataset wrapper is

realized using CodeGenerationDataset class that takes a list of *.tar files

as inputs. In the constructor, it unpacks the *.tar files into temporary stor-

age and constructs a list of all available *.dat files that contain tensors with

tokenized inputs (see section 6.2.2). Afterward, the data files are shuffled,

and the dataset is ready to be sampled. A significant difference between

the implementation of the pre-training and fine-tuning dataset wrappers is

that the one designated for fine-tuning does not employ any noising scheme.

Otherwise, the basic mechanism of example serving is identical.

Progress Logging & Checkpointing

Similar to the pretraining, we employ the Weights & Biases service to

log training progress every 1024 steps. In addition, we save a checkpoint

of the whole model every 4096 steps to allow the training to be resumed.

Furthermore, we print out a sample prediction produced by the model every

500 batches to intuitively observe the training progress.

Metrics

To assess the results achieved by our model, we utilize two different

metrics - a standard BLEU score (section 2.5.2) and our custom metric that

focuses on producing valid Python source code.

Our custom metric is called Python Validity (PV). It represents a per-

centage of syntactically valid source codes produced by a model. The validity

of a given source code can be effortlessly verified using Python’s built-in lib-

rary function ast.tokenize(). The function either returns a parse tree of

the given source code or throws an exception, indicating an invalid code.

The PV metric can be calculated using equation 6.1, where cv is the num-

ber of valid Python source codes produced by a model and ct is a size of a

test set.

PV =
cv

ct

(6.1)

70



Hyperparameters

In the fine-tuning experiments, we employ the Adam optimizer with an

initial learning rate λ = 10−5. Similar to the pre-training, we employ a

learning rate warmup for the first 10K examples, and then we apply a linear

decay to zero. The resulting learning rate schedule is depicted in figure 6.3.

Furthermore, in all of our experiments, we use the batch size of 32 ex-

amples and L2 normalization with regularization factor set to 0.03. For the

linear layer placed in between the additional encoder and the CodeFormer,

we use a dropout probability of 0.2, and for the rest of the CodeFormer

model, we set the dropouts to 0.12. Additionally, all experiments limit the

maximum sequence length of the inputs and outputs to 256 subword tokens.

Last but not least, for generating outputs, we use an implementation of the

beam search decoding algorithm (section 2.4.2) with the beam width set to

three.
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Figure 6.3: Learning rate schedule used for the fine-tuning. The learning

rate schedule uses a warmup and linear decay.

CodeFormer Experiments

We conduct numerous experiments to determine the best possible ap-

proach to source code generation using our pre-trained CodeFormer model.
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Our initial experiments confirmed the findings of the original study (sec-

tion 2.2.4), which say that the BART architecture for machine translation

is prone to overfitting. More specifically, our experiments have shown that

if we use the pre-trained additional encoder as is, the encoder degrades dur-

ing the first several thousand steps into a state where it produces the same

outputs, not considering the NL prompt.

We presume that the authors of the BART model (section 2.2.4) em-

ployed a randomly initialized additional encoder to mitigate the behavior

we described above. We further investigate this topic by introducing ex-

periments with a pre-trained additional encoder, whose last four layers are

initialized randomly. Such a setup shall enable the pre-trained additional

encoder to preserve a lot of previously gained knowledge and mitigate the

overfitting. Generally, we conduct the following types of experiments:

• using a randomly initialized additional encoder made up of six Trans-

former encoder layers (section 2.2.2)

• using a pre-trained additional encoder with the last four layers initial-

ized randomly

For each of the experiments above, we train a separate model for each

dataset and perform ten training epochs. In all of the experiments, we

freeze all the weights of the base CodeFormer model except for positional

embeddings and projection weights of the first attention layer during the

first half of the training. Freezing the previously mentioned weights helps

to prevent the encoder from degrading. The results of our experiments and

a summary of our findings are presented in the following section.

6.4 Results and Discussion

This section presents the results of the experiments introduced in the

preceding section. In addition to experiments with our CodeFormer model,

we train the CodeT5 (section 3.4.4) model for each dataset to compare our

work with another source code-oriented representative of modern generative

models. Besides, we compare our results with the achievements of other re-

lated papers, whose results we only overtake without replicating them. The

results on the CoNaLa, CodeSearchNet, and SOCGD datasets are summar-

ized in tables 6.4, 6.5, and 6.6, respectively. The results are further discussed

in the subsequent paragraphs.
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6.4.1 CoNaLa Results

The results in table 6.4 suggest that our CodeFormer model does not

surpass the results of other generative models for source code. We presume

that this might be caused by the fact that the CodeFormer model is pre-

trained on GitHub data, where every training example represents a larger

piece of code, including a function or class header. On the contrary, the

CoNaLa examples extracted from Stack Overflow are often as short as one

line of code. This significant discrepancy between the pre-training and fine-

tuning data could lead to an observed impairment in results compared to

competing models.

Model BLEU PV

CodeFormer + random encoder 9.25 96.37

CodeFormer + MQDD 21.51 97.58

CodeFormer + CodeBERT 6.41 99.19

CodeT5 7.89 3.83

Baseline Seq2Seq [50] † 14.26 -

TranX [62] † 24.30 -

TranX + BERT [67] † 34.20 -

Table 6.4: Results of Python source code generation experiments conducted

on the CoNaLa dataset (section 3.3.3). The results are stated in the BLEU

score (section 2.5.2) and PV (section 6.3.1). The PV is not available for the

experiments whose results are overtaken from the referenced literature and

are marked with the † sign.

Nevertheless, an interesting observation in table 6.4 is the significant gap

in results achieved using CodeFormer with MQDD as the additional encoder

over the CodeBERT or random additional encoder variant. We believe that

this is implied by the MQDD’s pre-training on a StackOverflow-based data-

set. Thanks to that, the MQDD can provide the CodeFormer model with

a better understanding of the NL prompts extracted from StackOverflow

questions.

6.4.2 CodeSearchNet Results

Despite a partial failure on the CoNaLa dataset, our CodeFormer model

sets a new state-of-the-art in code generation on the CodeSearchNet data-

set (see table 6.5). Our best model (CodeFormer with CodeBERT ) achieves
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46.12 BLEU score, representing an improvement of ≈13.8 BLEU over the

former state-of-the-art. Furthermore, the source codes produced by the

model are syntactically valid in almost 80%, which is also an excellent result.

Such success is probably a result of a perfect alignment between the

pre-training domain of both the CodeFormer and CodeBERT models with

the resulting task. On the other hand, we see the MQDD variant reporting

significantly worse results. We attribute this phenomenon to the worse gen-

eralization capabilities of the MQDD model, which are also reported in the

original study (section 3.4.2). Despite this, even the use of the MQDD model

brings a significant improvement over the variant that uses a randomly ini-

tialized encoder. It shows that using a pre-trained additional encoder makes

sense, although the model is more prone to encoder erosion (section 6.4.4).

Model BLEU PV

CodeFormer + random encoder 36.35 88.15

CodeFormer + MQDD 39.67 71.47

CodeFormer + CodeBERT 46.12 79.97

CodeBERT [68] † 4.06 -

PLBART [68] † 4.89 -

BM25 + PLBART [68] † 6.99 -

CodeT5 16.74 9.57

GPT-2 (fine-tuned for code) [69] † 22.00 -

REDCODER-EXT [68] † 24.43 -

TranX + API knowledge [64] † 32.26 -

Table 6.5: Results of Python source code generation experiments conducted

on the CodeSearchNet dataset (section 3.3.2). The results are stated in

the BLEU score (section 2.5.2) and PV (section 6.3.1). The PV is not

available for the experiments whose results are overtaken from the referenced

literature and are marked with the † sign.

6.4.3 SOCGD Results Discussion

The results in Python source code generation on our StackOverflow Code

Generation Dataset (SOCGD) are summarized in table 6.6. With our best

model, we achieved a BLEU score of 47.68, which roughly matches our state-

of-the-art result on the CodeSearchNet dataset. Since our SOCGD dataset is

new, we can compare our results only with the CodeT5 that we significantly

outperformed.
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However, like in the case of the CodeSearchNet dataset, we see a sig-

nificant drop in the BLEU score achieved when using the MQDD as an

additional encoder. On the SOCGD dataset, the results of the MQDD vari-

ant are even worse than in the case of the variant with random initialization.

This is surprising, given that MQDD is pre-trained on the StackOverflow.

However, this can also be explained by poor generalization capabilities and

differences in the pre-training dataset. While CodeBERT is pre-trained on

code documentation comments in six programming languages, including Py-

thon, the MQDD model was pre-trained on general questions found on the

StackOverflow. Therefore, CodeBERT might be able to better understand

questions that are closely related to Python. In addition, the authors of the

MQDD model (section 3.4.2) describe that if the model is applied to tasks

other than duplicate question detection, it may suffer from an effect called

negative transfer.

Model BLEU PV

CodeFormer + random encoder 47.16 70.73

CodeFormer + MQDD 21.18 19.35

CodeFormer + CodeBERT 47.68 70.74

CodeT5 8.67 14.21

Table 6.6: Results of Python source code generation experiments conducted

on the Stack Overflow Code Generation dataset (section 6.2.2). The results

are stated in the BLEU score (section 2.5.2) and PV (section 6.3.1).

6.4.4 Encoder Erosion Problem

As stated in section 6.3.1, our experiments have shown that using a pre-

trained additional encoder can lead to an encoder erosion, which results in

producing the same outputs no matter the NL prompt. We speculate that

the authors of the BART (section 2.2.4) faced the same problems when ad-

apting BART for the MT task, and therefore, they chose to train a randomly

initialized encoder instead.

We went a little further in our research and tried to find other ways to

mitigate the problem of encoder erosion. Our experiments suggest that tra-

ditional regularization techniques such as L2 regularization and dropout do

not prevent the encoder from degrading. The strategy of using a pre-trained

additional encoder and freezing most of the BART model parameters in the

first half of the training, as outlined in chapter 6.3.1, was also unsuccessful
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when applied alone.

However, we found out that freezing BART ’s weights for the first half

of the training combined with a pre-trained encoder (such as CodeBERT or

MQDD), whose last N layers are initialized randomly, prevents the addi-

tional encoder from degrading. Moreover, such a configuration significantly

increases the achieved BLEU score compared to using a randomly initialized

encoder.

In future work, our findings need to be verified outside the domain of this

thesis. The verification can be done by applying our approach to machine

translation from Romanian into English, as in the case of the original paper

introducing the BART model. Furthermore, future work can follow our

approach and try to discover other techniques, further improving the usage

of pre-trained additional encoders in the BART ’s MT setup.

6.4.5 Results of the CodeT5 Model

The results presented above show that our CodeFormer model signific-

antly outperforms the CodeT5 (section 3.4.4) on all evaluation datasets.

This outcome is expected since our model, unlike the CodeT5, specializes in

Python programming language and is designed specifically for source code

generation tasks. However, since the original study reported a 41.48 BLEU

score in Java source code generation, we expected the CodeT5 model to have

significantly better results than measured.

We conjecture that the lower BLEU score we observe can be caused by

the CodeT5 struggling to learn the correct indentation rules required by

Python’s grammar. To the best of our knowledge, the original study does

not consider the indentation in the CodeT5 ’s training, which we perceive as

an essential aspect of Python source code generation. For example, if we re-

place tab and newline characters from the following source code snippets, we

acquire the same sequence of tokens despite both source codes are different.

1 a = 1

2 for i in range (10):

3 a *= i

4 return a

1 a = 1

2 for i in range (10):

3 a *= i

4 return a
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7 Conclusion

This work aims to train a modern generative neural network model that

can generate source codes based on descriptions in natural language. There-

fore, the first part of the thesis introduces the reader to the field of generative

models and subsequently to the existing methods for applying artificial in-

telligence in the software engineering domain.

Subsequently, the work focuses on training a source code generator based

on the BART architecture. The work first pre-trains the model on a source

code denoising objective, which requires a massive training corpus of source

codes. Therefore, we automatically crawl GitHub repositories, obtaining

230M training examples in Python. After more than 1000 hours of training in

the MetaCentrum cluster, we obtained a CodeFormer model that can repair

artificially noised source codes very reliably. In addition to its intended use

for code generation, such a model can be applied to various other tasks in

the source code processing domain. An example is the use of our model to

fix buggy source codes automatically.

We then further extend the pre-trained CodeFormer model with an ad-

ditional natural language encoder, adapting the BART architecture to the

task of machine translation from English to Python. We then fine-tune

the modified CodeFormer on several datasets, including our novel SOCGD

parallel corpus. The obtained results of 46.1 and 47.7 BLEU on SOCGD

and CodeSearchNet datasets, respectively, are encouraging and show that

we could integrate the resulting model into IDEs, helping the developer find

the right solutions for their problems.

This work can be followed up by further research of other applications of

our pre-trained CodeFormer model, such as code migration or code fixing.

Moreover, it is possible to extend our approach by training a joint source

code generator for multiple programming languages. Last but not least, we

see great potential in building on our findings regarding the prevention of

additional encoder erosion that occurs when using the BART architecture

for machine translation.

All outputs of this work, including trained models and newly created

datasets, can be obtained from our GitHub repository: https://github.

com/janpasek97/CodeFormer.
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List of Abbreviations

AI - artificial intelligence

API - application programming interface

AST - abstract syntax tree

BPE - byte pair encoding

CNN - convolution neural network

FS - file system

GRU - gated recurrent unit

IDE - integrated development environment

LCS - longest common subsequence

LM - language model

LSTM - long short-term memory

MC - MetaCentrum

MLM - masked language modeling

MT - machine translation

NL - natural language

NLP - natural language processing

NN - neural network

OOV - out of vocabulary

PL - programming language

PV - Python Validity

Q&A - question answering

RNN - recurrent neural network

RTD - replaced token detection

SOCGD - Stack Overflow Code Generation Dataset

URL - unified resource locator
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A CodeFormer Denoising

Output Examples

This section presents several examples of denoising intentionally corrup-

ted source code using our CodeFormer model. The presented examples sug-

gest that the model has acquired the necessary knowledge to produce a

denoised source code of high quality. We even speculate that humans would

not be able to produce better outputs than our neural network.

If we assess the mistakes observed in the examples, we can see that

our model produces a redundant class or def keyword at the beginning

of the predicted code snippets. Such a mistake can be corrected using a

simple deterministic rule, and therefore, it does not represent any obstacle

in utilizing our model. Furthermore, in example 3, we can see that the model

confused functions loss() and linear(). However, there are no clues in

the noisy input that would suggest favoring the linear() function. A more

major mistake can be observed in example 4, where our model completely

mismatched both the function name and its body. Nevertheless, if we look

at the context acquired from the noisy input, we can see that it does not

provide enough information to make a correct prediction.

A common feature of all these examples is that they are syntactically

valid and formatted according to Python indentation rules. This is a prom-

ising result, which shows that our model could be easily used, for example,

to correct errors in source code.
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1 class [MASK] not :

2 [MASK] def [MASK] [MASK]

3 dt = as [MASK] dt ). if kwds ) self. onOffset ( = ) ) [

→֒ MASK] dt - self. __class__ ( 1, normalize = self

4 normalize , ** self. ( ) )

5 return dt

1 class class Date DateOffset ( tzinfo ):

2 def rollback (self ,dt):

3 dt= as_timestamp (dt)

4 if (not self. onOffset (dt)):

5 dt=(dt -self. __class__ (1, normalize =self.normalize ,**

→֒ self.kwds))

6 return dt

1 class DateOffset ( BaseOffset ):

2 def rollback (self ,dt):

3 dt= as_timestamp (dt)

4 if (not self. onOffset (dt)):

5 dt=(dt -self. __class__ (1, normalize =self.normalize ,**

→֒ self.kwds))

6 return dt

1. noisy

denoised

label

1 def peak_prominences [MASK] [MASK] [MASK]

→֒ _arg_x_as_expected ( [MASK] rg_peak [MASK]s )

2 wlen = _arg_wlen_as_expected ( wlen )

3 return _peak_prominences ( x, peaks , wlen )

1 def peak_prominences (x,peaks ,wlen=None):

2 x= _arg_x_as_expected (x)

3 peaks= _arg_peaks_as_expected (peaks)

4 wlen= _arg_wlen_as_expected (wlen)

5 return _peak_prominences (x,peaks ,wlen)

1 def peak_prominences (x,peaks ,wlen=None):

2 x= _arg_x_as_expected (x)

3 peaks= _arg_peaks_as_expected (peaks)

4 wlen= _arg_wlen_as_expected (wlen)

5 return _peak_prominences (x,peaks ,wlen)

2. noisy

denoised

label
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1 ) )

2 :class LossTest ( unittest . TestCase ) [MASK] [MASK], x [

→֒ MASK] m, c [MASK]

3 return ( ( m * x c +

1 class class LossTest ( unittest . TestCase ):

2 def loss(self ,x,m,c):

3 return ((m*x)+c)

1 class LossTest ( unittest . TestCase ):

2 def linear (self ,x,m,c):

3 return ((m*x)+c)

3. noisy

denoised

label

1 ModuleRegister . [MASK]Map ( module_map [MASK]Map [MASK] )

→֒ :

1 def def def_init ( module_map : ModuleMap ):

2 ModuleRegister .init ()

1 def registerModuleMap ( module_map ):

2 ModuleRegister . registerModuleMap ( module_map )

4. noisy

denoised

label

1 def ion ( ) :

2 [MASK] ( True [MASK]_repl ding_displayhook ( )

1 def def ion ():

2 matplotlib . interactive (True)

3 install_repl_displayhook ()

1 def ion ():

2 matplotlib . interactive (True)

3 install_repl_displayhook ()

5. noisy

denoised

label
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1 def [MASK] entry ) : [MASK] path. normcase ( entry ) [NL

→֒ ]. ) WINDOWS and ( not os if path. [MASK] ] ) ) :

2 [MASK] = entry. replace ( [MASK] ( self [MASK] ( entry )

→֒ [MASK[MASK] installPthEntries ( object ) :

1 class class UninstallPthEntries ( object ):

2 def add(self ,entry):

3 entry=os.path. normcase (entry)

4 if ( WINDOWS and (not os.path. splitdrive (entry)[0])):

5 entry=entry. replace (’\\’,’/’)

6 self. entries .add(entry)

1 class UninstallPthEntries ( object ):

2 def add(self ,entry):

3 entry=os.path. normcase (entry)

4 if ( WINDOWS and (not os.path. splitdrive (entry)[0])):

5 entry=entry. replace (’\\’,’/’)

6 self. entries .add(entry)

6. noisy

denoised

label
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B Examples of Generated

Code

This appendix lists several examples of source codes generated using our

CodeFormer model with the CodeBERT used as an additional encoder. In

the first part, we present source code generated based on our own prompts.

Examples 1-6 are generated using a model trained on SOCGD, whereas

examples 7 and 8 were obtained using a model trained on CodeSearchNet.

The rest of the examples show source codes generated from NL prompts

obtained from the test split of CodeSearchNet (examples 9-13) and SOCGD

(examples 14-16).

load JSON file and parse it into a dictionary

1 import json

2

3 with open(’data.json ’) as f:

4 data = json.load(f)

5

6 print (data)

1.

send an HTTP post request with a JSON body to a REST API

1 requests .post(url , data = json.dumps(data), headers =

→֒ headers )

2.

execute an OS command from a Python script

1 import subprocess

2 subprocess .call ([’ls’, ’-l’])

3.
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find all files matching given GLOB in a given directory

1 glob.glob(os.path.join(root ,’*. txt ’))

4.

save dictionary into a file using pickle

1 with open (’myfile .txt ’, ’wb’) as f:

2 pickle .dump(dict1 , f)

5.

use argparse to parse commandline arguments

1 import argparse

2

3 parser = argparse . ArgumentParser ()

4 parser . add_argument (’-a’,’--a’,type=int ,help=’a number ’)

5 parser . add_argument (’-b’,’--b’,type=int ,help=’b number ’)

6 args = parser . parse_args ()

6.

find substring matching a provided regex

1 def search (pattern , string , flags =0):

2 return re. search (pattern , string , flags=flags )

7.

read CSV file into a list

1 def csv(self):

2 with open(self.path ,’r’) as csvfile :

3 reader = csv. reader (csvfile , delimiter =’,’, quotechar

→֒ =’"’)

4 for row in reader :

5 yield row

8.
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Returns True if this node has no children, or if all of its children are

ParseNode instances and are empty.

1 def has_children (self) :

2 if not self. children :

3 return False

4 return all( isinstance (child , Node) for child in self.

→֒ children )

1 def is_empty (self):

2 return all( isinstance (c, ParseNode ) and c. is_empty for

→֒ c in self. children )

9. prompt

prediction

label

Queries mysql and returns a cursor to the results.

1 def cursor (self):

2 if self. _cursor is None:

3 self. _cursor = self.conn. cursor ()

4 return self. _cursor

1 def _query_mysql (self):

2 mysql = MySqlHook ( mysql_conn_id =self. mysql_conn_id )

3 conn = mysql. get_conn ()

4 cursor = conn. cursor ()

5 cursor . execute (self.sql)

6 return cursor

10. prompt

prediction

label
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Add a Set-Cookie header to response object. For a description about

cookie attribute values. Arguments: name (str): Name of the cookie

value (str): Value of the cookie attrs (dict): Dicitionary with cookie

attribute keys and values.

1 def add_cookie (self , name , value , domain =None , path=’/’,

→֒ secure =False , httponly =False):

2 cookie = SimpleCookie ()

3 cookie .name = name

4 cookie .value = value

5 cookie . domain = domain

6 cookie .path = path

7 cookie . secure = secure

8 cookie . httponly = httponly

9 cookie .path = path

10 cookie . secure = secure

11 cookie . httponly = httponly

12 return cookie

1 def set_cookie (self , name , value , attrs ={}):

2 cookie = http. cookies . SimpleCookie ()

3 cookie [name] = value

4 for key , value in attrs.items ():

5 cookie [name ][ key] = value

6 self. add_header (’Set - Cookie ’, cookie [name ].

→֒ OutputString ())

11. prompt

prediction

label
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Scans through a string for substrings matched some patterns. Args:

text: A string to be scanned. patterns: a list of regex pattern. Returns:

a list if matched. empty if not.

1 def match(text , patterns ):

2 if not patterns :

3 return []

4 for pattern in patterns :

5 if re. search (pattern , text):

6 return [ pattern ]

7 return []

1 def matchall (text , patterns ):

2 ret = []

3 for pattern in patterns :

4 match = re. findall (pattern , text)

5 ret += match

6 return ret

12. prompt

prediction

label

Write the content into the given file. :param content: The dict to write.

:type content: dict :param file: The file to write. :type file: str

1 def write_file (content , filename ):

2 with open(filename , ’w’) as f:

3 f.write( content )

1 def _write_content (cls , content , file):

2 if not PyFunceble . CONFIGURATION [" no_files "]:

3 if not isinstance (content , dict):

4 content = {}

5 Dict( content ). to_json (file)

13. prompt

prediction

label
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How to replace extracted HTML tags in a text with a blank? I am

extracting text from an html page without all tags (using Python and

BeautifulSoup). However, tags are not replaced with a blank. So, for

example, for "blah blahDIVTAGblah" I get the following text "blah

blahblah". How can I insert a blank between the second and third

blah? I am using the following code. The code is from BeautifulSoup

Grab Visible Webpage Text

1 import re

2

3 text = re.sub(r’ <.*?>’, ’’, text)

4 print (text)

1 for script in soup ([" script ", "style"]):

2 script . replace_with (" ")

14. prompt

prediction

label

how to replace a NaN value in a column in data frame in pandas? i’m a

newbie to pandas library and trying to do some analysis on the Titanic

survival data using pandas. in the data set there are some cells in the

Age column that doesn’t have value so they appear in the data frame

as ’NaN’. so i’m trying to replace these cells with the average of the

male-ages for males and the average of the female ages for females. first

i tried this well it works but doesn’t change the values of the cells in

the data frame when i print it later so i tried this and got this error

message so anyone knows how to do it efficiently?

1 df[’Age ’] = df[’Age ’]. fillna (df[’Age ’])

1 df[’Age ’] = df[’Age ’]. replace (df[(df[’Sex ’] == ’male ’) &

→֒ (df[’Age ’]. isnull ())][’Age ’], df[’Age ’]. mean)

15. prompt
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How to write a pandas dataframe to_json() to s3 in json formatI have

an AWS lambda function which creates a data frame, I need to write

this file to a S3 bucket.

1 import boto3

2

3 s3 = boto3. resource (’s3’)

4 bucket = s3. Bucket (’mybucket ’)

5 key = bucket . Object (’mykey ’)

6 key.put(Body=json.dumps(data))

7 s3. put_object ( Bucket =’mybucket ’, Key=key)

1 import boto3

2 import io

3

4 destination = " output_ " + str( datetime . datetime .now ().

→֒ strftime (’%Y_%m_%d_%H_%M_%S’))+’.json ’

5 json_buffer = io. StringIO ()

6 df. to_json ( json_buffer )

7 s3 = boto3. resource (’s3’)

8 my_bucket = s3. Bucket (’my -bucket -name ’)

9 my_bucket . put_object (Key= destination , Body= json_buffer .

→֒ getvalue ())

16. prompt

prediction

label
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