
Metamodel-based Parser Generator for Python

(PyCo)
Author: Ing. Sharoon Ilyas

Supervisor: Ing. Sergej Chodarev PhD.

Technical University of

Košice
Faculty of Electrical Engineering and

Informatics

Motivation For Creating PyCo

1. A tool that uses object-oriented approach to define a model centred
Domain Specific Language (DSL) in Python.

2. Abstract syntax of the DSL can be expressed using object-oriented
model and concrete syntax for the DSL can be expressed using
decorators and field function of data-classes Python library.

3. Meta-model analysis.

4. EBNF (extended BNF) grammar generation.

5. Class instances generation using PyCo.

internal
language

model

PyCo

grammar
generator

DSL metamodel
classes definitions

language sentence

parse tree Lark
parser

class instance generatorgenerated class
instance

Method And Implementation

1. Classes in Python are defined representing the language abstract

syntax.

2. Concrete syntax is defined using fields function of dataclasses

library.

3. PyCo takes the specified root class and finds the relationships and

inheritance along with the field types and properties recursively and

generate Extended Backus–Naur form (EBNF) grammar and store

metadata related to the domain specific language model.

4. The grammar is taken by the Lark parser resulting in parse tree.

5. Generated parse tree is parsed and metadata which was generated in

the previous steps are used to create the class instances recursively.

Robot Domain Specific Language Model

from abc import ABC

from dataclasses import dataclass, field

from typing import List

from pyco.utils.decorators import syntax

class Commands(ABC):

 pass

@dataclass

@syntax(before="turn")

class Turn(Commands):

 direction: str = field(metadata={'token': 'DIRECTION_TOKEN'})

 speed: float = field(metadata={'token': 'SPEED_TOKEN'})

@dataclass

@syntax(before="begin", after='end')

class Robot:

 body: List[Commands] = field(metadata={'separator': ','})

Robot Domain Specific Language Implementation

from examples.robot.classes import Robot

from pyco.pyco_meta_parser import PyCo, NUMBER_REG

token = {

 "DIRECTION_TOKEN": '"back" -> back|"right" -> right|"left" ->left’,

 "SPEED_TOKEN": NUMBER_REG,

}

if __name__ == '__main__':

 pyco = PyCo(Robot, token)

 instance = pyco.parse('begin turn left 40 , turn right 50 end')

 print(instance)

Result: Robot(body=[Turn(direction='left', speed=40.0), Turn(direction='right', speed=50.0)])

Future Implementations of PyCo

1. Infix operators can be included in PyCo to implement

mathematical based domain specific languages.

2. Lark parser has many filters and search methods to parse the

parse tree, which can be used to increase and implement various

functionalities in PyCo.

3. Strong error handling can be added to PyCo, making it easier to

programmers to debug and write code more efficiently.

4. Other parsing algorithms by Lark can be explored to handle

ambiguous grammars too.

PyCo Component Structure Conclusion

The tool is capable of creating various domain specific language and

can handle unlimited depth of class relationships in the metamodel

of the domain specific language. The tool not only analyse the

metamodel and generate all the metadata required for its needs, but

also infer the needed metadata.

The tool also gives programmer the ability to see the parse tree and

check the generated grammar helping him with in depth insight of

the structure the programmer is trying to build.

With the usage of this tool, the generation of DSL has become very

fast and simple and the programmer saves a lot of time and effort.

Limitations of PyCo

1. To avoid ambiguity in grammar, token names should be different

than the defined class names in Domain Specific language

model.

2. PyCo does not support infix operators with priority levels, thus

domain specific languages related to mathematics are not

possible in the current version of PyCo.

3. PyCo relies on the error handling of Lark library only.

Requirements for PyCo

1. Minimum required Python version is 3.7

2. Required version of Lark Python library is 1.1.1

