
Technical University of Košice
Faculty of Electrical Engineering and Informatics

Metamodel-based Parser Generator for

Python

Master thesis

2022 Bc. Sharoon Ilyas

Technical University of Košice
Faculty of Electrical Engineering and Informatics

Metamodel-based Parser Generator for

Python

Master thesis

Study Programme: Informatika

Field of Study: 9.2.1. Informatika

Department: Department of Computers and Informatics (DCI)

Supervisor: Sergej Chodarev

Košice 2022 Bc. Sharoon Ilyas

Abstract

There are various tools available which can be used to develop parsers. The fact

is, most of these tools are only concentrated on contrete syntax and does not focus

on abstract syntax. In this thesis a metamodel based paraser generator in Python

(PyCo) is created. The tool uses object-oriented approach to define a model-

centered Domain Specific Language (DSL) in Python. Inspired by another sim-

ilar tool in Java known as YAJCo, abstract syntax of the DSL can be expressed

using object-oriented model and concrete syntax for the DSL can be expressed

using decorators and field function of dataclasses Python library. Along with the

construction of PyCo, this thesis fully describes the metamodel analysis, gram-

mar generation and the creation of class instances using PyCo. The thesis also

provides various DSL examples to learn about the use of PyCo.

Keywords in English

metamodel, programming, parser, Lark, Python, dataclasses

Abstract in Slovak

Existujú rôzne nástroje pre vývoj syntaktických analyzátorov. Väčšina z nich sa

však sústreďuje iba na konkrétnu syntax a nezameriava sa na abstraktnú syntax.

V tejto práci je vytvorený generator syntaktických analyzátorov pre jazyk Python

založený na metamodeli (PyCo). Nástroj využíva objektovo-orientovaný prístup

v Pythone k definícii doménovo-špecifických jazykov (DSL) pomocou modelu.

Na základe inšpirácie podobným nástrojom pre jazyk Java, známym ako YAJCo,

abstraktnú syntax DSL je možné vyjadriť pomocou objektovo-orientovanéhomo-

delu a konkrétnú syntax pomocou dekoratorov a funkcie field z knižnice data-

classes. Spolu s implementáciou nástroja PyCo, táto práca plne popisuje analýzu

metamodelu, generovanie gramatiky a vytváranie inštancií tried pomocou PyCo.

Práca tiež poskytuje príklady rôznych DSL, demonštrujúce použitie PyCo.

Keywords in Slovak

metamodel, programovanie, syntaktický analyzátor, Lark, Python, dataclasses

Bibliographic Citation

ILYAS, Sharoon. Metamodel-based Parser Generator for Python. Košice: Technical

University of Košice, Faculty of Electrical Engineering and Informatics, 2022. 70s.

Supervisor: Sergej Chodarev

iv

Declaration

I hereby declare that this thesis is my own work and effort. Where other sources

of information have been used, they have been acknowledged.

Košice, 22.4.2022 .

Signature

Acknowledgement

At this point, I would like to thank my supervisor for his time and professional

guidance during the solution of my final work.

I would also like to thank my parents and friends for their support and en-

couragement throughout my studies.

Last but not least, I would like to thank the gentlemen Donaldovi E. Knuthovi

and Leslie Lamportovifor the typographic system LaTeX, with which I spent a

number of unforgettable evenings.

Contents

Introduction 3

1 YAJCo Tool 5

1.1 YAJCo specifications . 5

1.2 How Language is defined in YAJCo tool 7

1.3 Why JAYCo taken as inspiration . 11

2 Overview of existing parsing tools for the Python language 13

2.1 ANTLR . 14

2.2 pyParsing . 17

2.3 Parsimonious . 18

2.4 LARK . 20

2.5 Comparison of existing parsing tools 22

2.5.1 Grammar definition & syntax of the parser library 23

2.5.2 Speed and Memory Comparison 23

2.5.3 Feature Comparison . 24

2.6 Selected Parsing Tool . 25

3 Design of Parser tool 26

3.1 Conceptual Overview and Design decisions 26

3.2 Python dataclasses and type annotations 28

3.2.1 dataclasses[24] . 28

3.2.2 Python type annotations [26] 29

3.3 How to use PyCo . 30

3.3.1 PyCo Class Decorators . 31

3.3.2 PyCo field metadata . 31

3.3.3 PyCo token definition . 32

3.3.4 Types applicable to fields of a class in PyCo 33

3.3.5 Methods available in PyCO 34

viii

Contents

4 Implementation of PyCo 36

4.1 The internal language model . 36

4.2 The grammar generator . 40

4.3 The class instance generator . 42

4.4 Python package structure of PyCo 45

5 Evaluation 47

5.1 JSON language . 47

5.1.1 JSON metamodel classes . 48

5.1.2 JSON language grammar . 49

5.1.3 JSON lang input tests . 50

5.2 Function language . 51

5.2.1 Function metamodel classes 52

5.2.2 Function language grammar 53

5.2.3 Function language input tests 54

5.3 Robot language . 55

5.3.1 Robot metamodel classes . 56

5.3.2 Robot language grammar . 57

5.3.3 Robot language input tests . 57

5.4 Robot Complex language . 58

5.4.1 Robot Complex metamodel classes 58

5.4.2 Robot Complex language grammar 60

5.4.3 Robot Complex language input tests 61

5.5 Conclusion of tested DSL metamodels 62

5.6 Limitations of PyCo library . 62

5.7 PyCo and YAJCo Comparison . 63

5.7.1 Abstract Syntax Definition . 63

5.7.2 Composition multiplicity . 63

5.7.3 Referencing(aggregation) . 63

5.7.4 Keywords and symbols . 63

5.7.5 Operator definition . 64

5.7.6 Tokens with value . 64

5.7.7 Additional annotations in YAJCo 65

5.8 Future improvements of PyCo . 65

6 Conclusion 67

Bibliography 68

ix

Contents

List of Appendixes 71

A User Manual 72

A.1 Requirements of PyCo library . 72

A.2 Installing dependencies . 72

A.3 How to use the library . 72

A.3.1 Define metamodel . 72

A.3.2 Initialize pyCo and create class instances 73

A.4 Class decorators in PyCo . 73

A.5 Metadata field keys in PyCo . 73

A.6 Methods available in PyCo . 74

A.7 Testing PyCo . 74

A.8 Generating Diagram of PyCo Structure 74

A.9 Limitations of PyCo Library . 75

B Systems Manual 76

B.1 Conditions to be fulfilled for PyCo initialization 76

B.2 PyCo instance initialization . 77

B.2.1 Implementation of PyCo methods 78

B.2.2 PyCo class helper functions 83

B.3 Grammar generator . 84

B.3.1 Grammar class methods . 85

B.3.2 Grammar class helper function 88

B.4 Internal language model . 93

B.4.1 Class structures for InternalLanguageModel 99

B.4.2 Internal language model helper functions 103

B.4.3 Common helper functions . 105

x

List of Figures

1.1 YAJCo architecture [2] . 6

1.2 Simple Robot [11] . 11

2.1 ANTLR architecture [14] . 15

2.2 Graphical representation of ANTLR grammar [15] 17

2.3 Runtime Comparison [7] . 24

2.4 Memory Comparison [7] . 24

4.1 InternalLanguageModel & MetaDataClass Diagram 37

4.2 AbInheritanceClass(class) . 38

4.3 ClassMetaData(class) . 38

4.4 FieldsMetaData(class) . 39

4.5 ClassInstanceMeta (class) . 39

4.6 Field(class) . 40

4.7 PyCo(Stage One)-Processing(internal language model) 40

4.8 PyCo Grammar class . 41

4.9 PyCo(Stage Two)-Processing(grammar generator) 41

4.10 PyCo class diagram . 43

4.11 PyCo architecture(classes) . 44

4.12 PyCo(Stage Three)-Processing(class instance generator) 45

4.13 PyCo package structure . 46

xi

Listings

1.1 YAJCo SimpleIdentifier example . 7

1.2 YAJCo runnning SimpleIdentifier example 8

1.3 YAJCo Robot example . 9

1.4 YAJCo robot control language sentence 11

2.1 ANTLR Grammar . 15

2.2 PyParsing example . 17

2.3 Parsimonious example . 18

2.4 Lark grammar definition and example 20

2.5 Lark language sentence processing 22

3.1 Typing annotation example . 30

3.2 PyCO decorator example . 31

3.3 PyCO field metadata example . 31

3.4 PyCO field types example . 33

5.1 JSONMetamodel Classes . 48

5.2 JSON language grammar . 49

5.3 Funtion Metamodel Classes . 52

5.4 Function language grammar . 53

5.5 Robot Metamodel Classes . 56

5.6 Robotlanguage grammar . 57

5.7 Robot Complex Metamodel Classes 58

5.8 Robot Complex language grammar 60

B.1 PyCO DSL(ExampleLang) metamodel 76

B.2 PyCo defining token . 77

B.3 PyCo class initialization structure . 77

B.4 PyCo parse_to_tree method . 78

B.5 PyCo create_instances method . 79

B.6 find_values_in_tree helper function 82

B.7 str_to_bool function . 83

B.8 create_dict function . 83

1

Listings

B.9 find_value_in_tree function . 84

B.10 Grammar class structure . 84

B.11 generate_grammar method of Grammar class 85

B.12 get_result_string helper function . 88

B.13 wrap_in_double_quote function . 90

B.14 space function . 91

B.15 apply_decorators function . 91

B.16 get_or_name_list function . 91

B.17 add_imports_to_grammar function 92

B.18 add_tokens_to_grammar function 93

B.19 internal language model . 93

B.20 MetaDataClass for internal language model 98

B.21 Type of classes for MetaDataClass attributes 100

B.22 get_class_type function . 103

B.23 get_all_subclasses_instance function 104

B.24 find_type function . 104

B.25 find_inner function . 104

B.26 find_type_name function . 105

B.27 contains function . 105

B.28 is_optional function . 106

B.29 unique_set_list function . 106

B.30 syntax decorator function . 106

2

Introduction

Developing a computer language andparser is an extremely important and exten-

sively researched topic. Already there are many tools available to help us create

domain specific languages and parsers, still this has been a rather difficult task

and takes a lot of experience and effort [1]. This is one of the biggest reasons that

some DSLs(domain specific language) are written based on existing languages

and tools. [2]

There are many ways to define a domain specific languages, two of them are

BNF (Backus Naur Formalism) and EBNF (Extended Backus Naur Formalism).

Using BNF, we can define a set of rules for a language grammar. These rules can

be used to find out if a language sentence is valid for that language grammar or

not [3]. EBNF is just an extension of BNF for much simpler representation of the

BNF. All context-free languages definition can be defined using BNF and EBNF.

Understanding the concept of metamodel is another crucial concept for this

thesis. Although we can create a DSL using BNF and EBNF, creating a language

using metamodel is yet another way of doing it [4]. By defining the DSL using

metamodel, it is easier to specify the language syntax and semantics and is easier

to understand.

To address the problem of creating complex domain specific languages, the

metamodel approach [5]was used by awell developed tool name YAJCo(Yet An-

other Java Compiler compiler)[2].YAJCo tool handled the problem of language

generation by using the object oriented programming approach of Java language.

Instead of writing a parser from scratch and getting into deep complexity, lan-

guage definitions could be defined in the form of classes in Java using YAJCo.

This greatly helped to focus mainly on the language domain model.

In YAJCo, to specify abstract syntax of the language model, object oriented

class implementation is enough, but to define the concrete syntax and semantics

for the language, annotations of Java are used.[2]

Inspired by the fact that YAJCo tool is only limited to Java, the main goal of

this thesis originated to build a library in Python which is similar to YAJCo and

3

Introduction

also use object oriented approach. Similar to YAJCo tool’s approach of using an-

notations, in Python, decorators will be used to help define the concrete syntax

and semantics for the language.

Along with the implementation of decorators in Python, we can define the

metadata in the fields of the Python classes. Thus, similar to YAJCo, the Python

library will also be based upon metamodel structure to define the language.

The Python library will have the feature to generate class instances by pro-

cessing the provided language sentence, same as YAJCo tool.

Implementation of such a tool in Python is going to be very beneficial, as a

lot of complex applications are written in Python. This tool can help the devel-

opers to write domain specific language easily and perform complex tasks more

efficiently.

To build and analyze this library, various already present parsing tools[6],

books and research papers will be researched and evaluated to find what ap-

proaches the existing parsing tools are using and what improvement we can add

to our Python library by examining them.

AsYAJCo is also based upon an existing parser, the research into existing pars-

ing tools is very important for the selection of the most appropriate parser for the

Python library development.

The main objectives on which this thesis will be based up are:

1. Giving user the ability to define metamodel for DSL using Python classes.

2. Creating internal language model structure, which will store the metadata

of classes and its fields.

3. Generating grammar from the internal language model.

4. Generating parse tree using provided language sentence and the existing

parser LARK [7](parsing tool used for this thesis)

5. Creating class instances from generated parse tree with the help of internal

language model.

4

1 YAJCo Tool

This section only focuses on the analysis of YAJCo tool and its specifications. The

primary objective of this section is to explore the most common functionalities of

JAJCo and find out how it is used and work.

1.1 YAJCo specifications

The core concept of YAJCo is very simple, YAJCo generate a language processor

directly from the language metamodel. The language model of YAYCo is written

in annotated Java classes. The general metamodel of DSL can be defined using

just object oriented classes, but the concrete syntax and semantics are defined

using annotations of Java language.[8]

As mentioned by the authors of [9], YAJCo uses annotations during the com-

pilation to generate the parser related to the defined language. The parser would

then analyze the language sentence according to the set of specified rules and re-

sults in instantiating abstract syntax classeswhich are used to produce a complete

object model of the sentence which is being processed.

Specified by the authors Chodarev and Porubän in the research paper [2], YA-

JCo tool contains a Java annotation processor which is responsible for collecting

annotations, that are attached to classes and their elements. YAJCo uses this lan-

guage processor to create an internal model of the defined language and from it

generate a parser. YAJCo has the tendency to find relationship between classes

of the language model and can deduce the language syntax based upon this in-

formation. YAJCo deduce the missing information from the class annotations

Figure 1.1 taken from [2] to show a generic overview of YAJCo architecture.

5

Chapter 1. YAJCo Tool

Figure 1.1: YAJCo architecture [2]

Figure 1.1 shows the complete architecture of YAJCo tool. It can be seen from

the image, same as described earlier in this thesis, that YAJCo annotation pro-

cessor takes annotated classes and creates specifications for Parser generator and

YAJCo language processor. These then generate the parser which can be used to

parse the language sentence.

YAJCo also supports other tools[2] beside just parsing. It has a pretty-printer

feature which generates textual representation of the model, converting it back to

the language sentence. This helps the tool to be capable of both serialization and

de-serialization of the objects, if the objects have been provided in textual form.

Along with this another tool of YAJCo is the visitor class, which helps to sim-

plify the traversing of the object graph.

The ability of YAJCo to incorporate the concepts from other languages makes

it an extremely powerful tool. The language can be extended by incorporating

concepts and ideas from other languages and connecting them through some re-

lations.

6

Chapter 1. YAJCo Tool

1.2 How Language is defined in YAJCo tool

Defining a language model in YAJCo is very easy, this sub-section will specify

briefly, how a simple YAJCo language metamodel can be created using object

oriented classes along with class annotations in Java.

The main function of the language in listing 1.1 is to start with the id keyword

which is then followed by small latin characters. The example below is taken from

[10]

Suppose the language consist of concept known as SimpleIdentifier. A Java

class is created with the same name. For specifying the root class, we will mark

this class with annotation of @Parser. There are also other annotations in YAJCo

tool, e.g @Before , @After. @Before is used to specify something that need to be

before the identifier and language element. @After is used to specify something

that needs to be after the identifier and language element. @TokenDef annotation

is defined inside the @Parser annotation. In YAJCo, the name of the parameter is

automatically mapped on the the relevant TokenDef

The method getIdentifier() is defined to act as an accessor of the identifier

field.

Assuming that the language sentence that we wish to parse is ’id game’. The

language model that will be used to parse this language sentence is described in

listing 1.1.

Example 1 (taken from [10])

1

2 package mylang;

3

4 import yajco.annotation.*;

5 import yajco.annotation.config.*;

6

7 @Parser(tokens = @TokenDef(name = "ident", regexp = "[a-z]+"))

8 public class SimpleIdentifier {

9

10 private String identifier;

11

12 @Before("id")

13 public SimpleIdentifier(String ident) {

14 identifier = ident;

15 }

16

7

Chapter 1. YAJCo Tool

17 public String getIdentifier() {

18 return identifier;

19 }

20 }

Listing 1.1: YAJCo SimpleIdentifier example

If we now runmvn package, parser for our specified language will be created.

However to run the parser, we need to create the instance of LALRSimpleIdenti-

fierParser and import the defined class SimpleIdentifier and pass on the input to

the parse method.

1 import mylang.SimpleIdentifier;

2 import mylang.parser.*;

3

4 public class MainClass {

5

6 public static void main(String[] args) throws ParseException {

7 String input = "id superman";

8 System.out.println("Going to parse: ’"+input+"’");

9

10 LALRSimpleIdentifierParser parser =

11 new LALRSimpleIdentifierParser();

12 SimpleIdentifier simpleIdentifier = parser.parse(input);

13

14 System.out.println(

15 "identifier: "+simpleIdentifier.getIdentifier());

16 }

17 }

Listing 1.2: YAJCo runnning SimpleIdentifier example

When we parse our language sentence ’id game’, the output of the program

would be:

1 Going to parse: ’id game’

2 Parsed identifier: game

For example 2 in listing 1.3, we wish to create a language for controlling a

robot, which takes a list commands of move or turn-left. To implement such kind

of languagewewould have to design ametamodel inwhich, bothMove andTurn-

Left classes inherit from the Command interface. In the interface, we can define

a method, which the inheriting classes can override.

According to example 2 in the listing 1.3, the language sentence should start

with language element ’begin’ and take a list of commands and then ends with

language element ’end’

8

Chapter 1. YAJCo Tool

Listing 1.3 shows the definition of themetamodel to this Robot language spec-

ifications.

Example 2 (taken from [11])

1 import java.util.List;

2 import yajco.annotation.After;

3 import yajco.annotation.Before;

4

5 public interface Command {

6 public void execute();

7

8 }

9

10 public class Move implements Command{

11 @Before("move")

12 public Move() {

13 }

14

15 @Override

16 public void execute() {

17 System.out.println("going straight");

18 }

19 }

20

21 public class TurnLeft implements Command{

22 @Before("turn-left")

23 public TurnLeft() {

24 }

25

26 @Override

27 public void execute() {

28 System.out.println("turning left");

29 }

30 }

31

32 public class Robot {

33 List<Command> commands;

34

35 @Before("begin")

36 @After("end")

37 public Robot(List<Command> commands) {

38 this.commands = commands;

39 }

9

Chapter 1. YAJCo Tool

40

41 public List<Command> getCommands() {

42 return commands;

43 }

44

45 public void run() {

46 for (Command command : commands) {

47 command.execute();

48 }

49 }

50

51 }

52

53 public class Main {

54 public static void main(String[] args) throws Exception {

55 Parser parser = new Parser();

56 Robot robot =

57 parser.parse(begin move turn-left move end);

58 robot.run();

59 }

60

61 }

Listing 1.3: YAJCo Robot example

The example 2 in listing 1.3 is a bit more complicated as compared to example

1 in listing 1.1,

The thing to understand in the example 2 is that there is inheritance being

used in the defined class metamodel, both Move and TurnLeft classes are inher-

iting from the Command interface, thus it creates a relation between Command

interface, Move class and TurnLeft class. In both the Move class and the TurnLeft

class, the execute method of the command interface is being overridden. Also

both the Move and TurnLeft classes are defining @Before annotation specifying

what these class expect before the language element.

In the Robot class, we are specifying a type List for commands variable. This

variable will be used to store the commands list. The important thing to notice

here is that the Robot class is implementing @Before and @After annotations to

specify, what they actually expect before and after the list of commands.

By reviewing this much information of the class definitions and annotations,

it can be inferred that the language sentence which is going to be valid for such a

DSL have to start with "begin" and have to end with "end". In between there are

only two types of inputs that can be entered, either turn-left or move.

10

Chapter 1. YAJCo Tool

Language sentence to be parsed

1 begin move turn-left move turn-left end

Listing 1.4: YAJCo robot control language sentence

Finally we see in our Main class, that we are calling the method called run of

Robot instance. By examining the method we can see that it is calling the execute

method of each command which can be either move or turn-left. When we go to

the overridden execute method in the Move and TurnLeft classes, we see that in

the Move class it will print "going straight" and in the TurnLeft class, it will print

"turning left".

To represent the above relation, an overview diagram of the above description

has been taken from [11].

Figure 1.2: Simple Robot [11]

When the language sentence mentioned in listing 1.4 is parsed and the run

method is executed.

The system output is:

1 goings straight

2 turning left

3 goings straight

4 turning left

1.3 Why JAYCo taken as inspiration

As specified above, YAJCo uses class based metamodel specification to generate

a domain specific language, this is very similar to what we wish to achieve in

Python. The way YAJCo create an internal language model to generate a parser

11

Chapter 1. YAJCo Tool

is another very interesting thing to implement in the Python library. This inter-

nal language model can help save a lot of metadata of the classes, relationships

between classes and general information of the defined languagemetamodel. YA-

JCo is mainly taken as an inspiration because most of the desired steps are very

similar to the main goal of this thesis.

Steps that will be similar to YAJCo.

1. define classes in Python.

2. create internal language model to generate grammar and class instances.

3. process generated grammarwith pre-existing parsing tool (e.g LARK in our

case).

4. generate parsing tree from parsing tool (e.g LARK in our case).

5. generate class instances using the parsing tree and internal language model

generated in the second step.

Other features of YAJCo like pretty printer, inheritance and class relationship

inference are also very interesting to research and experiment with. There are

many different examples and research papers available related to this tool which

makes it a primary choice to be taken as an inspiration.

12

2 Overview of existing parsing tools

for the Python language

This section focuses mainly on the analysis of existing parsing libraries and tools

for Python. Selecting an existing parser library for Python is one of the most

crucial requirements of this thesis, as writing the parser for Python is not the

main objective. By the analysis of various parsing tools for Python, a conclusive

judgement can be driven in choosing the most appropriate parser for our needs.

There are various parsing tools already available in the market, that can be

used to create a domain specific language. Studying and analyzing various li-

braries will not only help us to form a better judgement in choosing parser li-

brary, but it will also help to understand and have more new ideas that can be

implemented in the Python parsing tool this theses is focusing upon.

The main goal of this process is to find a pre-existing parser in which:

1. Defining the grammar rules and syntax should be easy to read and under-

stand(e.g EBNF).

2. There should option to view the parsed tree in graphical form.

3. Generating the parse tree is fast and consumes less memory.

4. There are multiple options to traverse the nodes of the tree.

5. There are filters available in the parser to filter out certain nodes of the tree,

based on criteria.

6. There is good error reporting and handling available in the parser.

These requirements are considered in the selection of existing parser because

it is much easier and efficient when a defined grammar is easy to read and un-

derstand(e.g EBNF).

With the availability of parse tree in a readable form, the analyzing and de-

veloping algorithms to create class instances takes less time.

13

Chapter 2. Overview of existing parsing tools for the Python language

Another major thing, which is considered, is the processing speed and mem-

ory consumption of the library. With the modern day technologies and trends,

everything is related to speed and efficiency. If the parsing librarywill be fast and

efficient, the metamodel based parser tool will also be fast and efficient.

Havingmultiple options to traverse the tree, opens upmuchmore possibilities

to improve or extend the features of the library in later stages.

Same as having multiple options to parse the tree, having filters available to

find the desired results opens upmore possibilities to improve and extend library

features.

Having good error reporting and handling will help to debug and find solu-

tions to reported errors more efficiently.

2.1 ANTLR

As mentioned by Parr & Quong in [12], ANTLR is a widely used parser and

has been ported to the popular systems of UNIX, Macintosh and PC. ANTLR is

developed with many industrial level collaborations.

ANTLR is strong and popular parsing tool which is good for reading, process-

ing and executing the structured text. It also has a feature of translating struc-

tured text or binary files [13].

With ANTLR we can build many useful tools, such as configuration file read-

ers, some kind of wiki markup reader, some JSON parser etc. Almost all forms of

grammars can be processed with ANTLR except the indirect left recursion which

indicate that the defined rules which reference to themselves must be direct [13].

With just the grammar ANTLR can generate the program, which is capable of

confirming if the language sentence is valid for the defined language. ANTLRhas

a very sophisticated error reporting and recovery system. ANTLR also provides

the compiler with the support for lexer, tree parser stages and a parser [14].

ANTLR has the capability to always recognize the valid input regardless of

the complications of the defined grammar. ANTLR generates the parse trees au-

tomatically along with the tree walkers.

The Syntax text file in the figure 2.1 is used to write grammar syntax analysis

rules and our custom lexical analysis. The Lexer generated by ANTLR is used for

lexical analysis, which means the language sentence is decomposed into single

words and processed by ANTLR. The Parser class is responsible to process vari-

ous form of defined statements in EBNF format. The TreeParser class generates

the parse tree.

14

Chapter 2. Overview of existing parsing tools for the Python language

Figure 2.1: ANTLR architecture [14]

ANTLRhas the capability to generate parsing code in Java, C++, PythonRuby

etc 1

Example below describe How ANTLR grammar is defined [15]

1

2 #ANTLR GRAMMAR DEFINITION

3

4 /*

5 * Lexer Rules

6 */

7

8 fragment A : (’A’|’a’) ;

9 fragment S : (’S’|’s’) ;

10 fragment Y : (’Y’|’y’) ;

11 fragment H : (’H’|’h’) ;

12 fragment O : (’O’|’o’) ;

13 fragment U : (’U’|’u’) ;

14 fragment T : (’T’|’t’) ;

15

16 fragment LOWERCASE : [a-z] ;

17 fragment UPPERCASE : [A-Z] ;

18

19 SAYS : S A Y S ;

20 SHOUTS : S H O U T S;

21 WORD : (LOWERCASE | UPPERCASE | ’_’)+ ;

22 WHITESPACE : (’ ’ | ’\t’) ;

23 NEWLINE : (’\r’? ’\n’ | ’\r’)+ ;

1https://github.com/antlr/antlr4/blob/master/doc/getting-started.md

15

https://github.com/antlr/antlr4/blob/master/doc/getting-started.md

Chapter 2. Overview of existing parsing tools for the Python language

24 WHITESPACE : ’ ’ -> skip ;

25

26 chat : line+ EOF ;

27 line : name command message NEWLINE;

28 message : (emoticon | link | color | mention | WORD

29 | WHITESPACE)+;

30 name : WORD WHITESPACE;

31 command : (SAYS | SHOUTS) ’:’ WHITESPACE ;

32 emoticon : ’:’ ’-’? ’)’| ’:’ ’-’? ’(’;

33 link : TEXT TEXT ;

34 TEXT : (’[’|’(’) ~[\])]+ (’]’|’)’);

35 color : ’/’ WORD ’/’ message ’/’;

36 mention : ’@’ WORD ;

Listing 2.1: ANTLR Grammar

Command to run ANTLR

1 antlr4 -Dlanguage=Python3 Chat.g4

When this command is run in the project directory where Chat.g4 file is located,

additional files are generated i.e newly generated parser and a lexer files. These

files can be used to parse the expressions.

How the Grammar is interpreted

The grammar create rules that accepts a line. If we check the line representation,

we can clearly see that the line should contain a name, a command with either

SAYS literal or SHOUT literal, a ":" symbol, a message and end with new line.

The message, which is used, can be of anything , an emoticon, a link , color,

and mention, The structure of all these rules are defined in the grammar.

Parsing language sentence in ANTLR

1 john SAYS: hello @michael this will not work

If we try to parse the above line with gui option of ANTLR [15], ANTLR tree

will be produced (figure 2.2).

16

Chapter 2. Overview of existing parsing tools for the Python language

Figure 2.2: Graphical representation of ANTLR grammar [15]

2.2 pyParsing

pyParsing is a pure Python module that can be added to Python applications

very easily. This library provides a set of classes to build up a parser from indi-

vidual expression elements or complex variable syntax based expressions. These

expressions can be combinedwith various operators such as + for combining one

expression with another. To represent replication of expressions some pre-build

classes of pyParsing library are used, such as OneOrMore, ZeroOrMore and Op-

tional [16].

The basic form of steps that can be used for pyParsing are:

1. We can import names from pyParsing module.

2. Grammar can be defined using pyParsing helper method and pyParsing

classes.

3. We can use the grammar to parse the input text.

4. We can process the results by parsing the input text.

Example of pyParsing [17]

1 import pyparsing as pp

2

3 greet = pp.Word(pp.alphas) + "," + pp.Word(pp.alphas) + "!"

4 for greeting_str in [

5 "Hello, World!",

6 "Bonjour, Monde!",

7 "Hola, Mundo!",

8 "Hallo, Welt!",

9]:

17

Chapter 2. Overview of existing parsing tools for the Python language

10 greeting = greet.parse_string(greeting_str)

11 print(greeting)

Listing 2.2: PyParsing example

In the above example, we are separating token by "," and in the end of the

input the token "!" must be present, in order to make it a valid language sentence.

When the above list is parsed using the for loop, the result returned will be

1 [’Hello’, ’,’, ’World’, ’!’]

2 [’Bonjour’, ’,’, ’Monde’, ’!’]

3 [’Hola’, ’,’, ’Mundo’, ’!’]

4 [’Hallo’, ’,’, ’Welt’, ’!’]

The class OneOrMore of pyParsing is used to define the multiplicity for the

expressions. The class ZeroOrMore of pyParsing is used to define the multiplic-

ity with a combination of the expression being optional. The class Optional of

pyParsing is simple used to specify that the expression can be optional.

1 a= OneOrMore(expression)

2 b= ZeroOrMore(expression)

3 c= Optional(expression)

2.3 Parsimonious

Another parser written in Python is Parsimonious. Based upon the parsing ex-

pression grammar(PEGs), it takes simplified form of EBNF notation. Distinction

between parsing and lexing is not drawn in PEG parsers and all the things are

processed at once. This results in no lookahead limit, as there is in Yacc. Due

to this, It is easier to write PEG grammars. With the help of caching, PEG take

O(grammar size * text length) [18]. It has good error reporting and handling

mechanism and use a very minimal and understandable Python code.

Example of Parsimonious [19]

1 from parsimonious.grammar import Grammar

2 from parsimonious.nodes import NodeVisitor

3

4 grammar = """\

5 entry = name sep gender? (sep age)?

6 sep = ws "," ws

7 ws = " "*

8 name = ~"[A-z]*"

18

Chapter 2. Overview of existing parsing tools for the Python language

9 gender = "male" / "female"

10 age = ~"[0-9]*"

11 """

12

13

14 class EntryParser(NodeVisitor):

15 def __init__(self, grammar, text):

16 self.entry = {}

17 ast = Grammar(grammar).parse(text)

18 self.visit(ast)

19 def visit_name(self, n, vc):

20 self.entry[’name’] = n.text

21 def visit_gender(self, n, vc):

22 self.entry[’gender’] = n.text

23 def visit_age(self, n, vc):

24 self.entry[’age’] = n.text

25 def generic_visit(self, n, vc):

26 pass

27

28

29

30 text = """\

31 Bob, male, 26

32 Kim,female ,30

33 Joe,male

34 """

35

36 for line in text.splitlines():

37 print EntryParser(grammar, line).entry

Listing 2.3: Parsimonious example

The example of Parsimonious mentioned above is very straight forward.

In the definition of the grammar string, we define entry which must contain a

name and separator, gender which is optional or separator with age, which is also

optional. WS represent space and can be as many spaces as possible. Multiple

spaces are defined with the sign "*".

"name" is of the form of a regular expression which can be capital or small let-

ters combination. "gender" only has two possible options , either male or female.

"age" can be composed of any combination of numbers between 0 and 9.

From Parsimonious, NodeVisitor and Grammar is imported because we need

to inherit fromNodeVisitor class to implement our own custom node visitor. The

EntryParser class which is inheriting from the NodeVisitor class takes two pa-

rameters to initialize, grammar and the text to be parsed. In the __init__ method

19

Chapter 2. Overview of existing parsing tools for the Python language

we call the Grammar class object from parsimonious and pass the grammar to it.

This results in the internal parser generation for the specified grammar. Further-

more parse method is called with the text that needs to be parsed as a parameter.

A parse tree in generated internally, of which, the nodes are visited by calling the

visit method of the class. We also create the other methods called, visit_name ,

visit_gender , visit_age and generic_visit in the class. These methods are used to

match the text entry at each node and store it in the dictionary.

We then use a for loop to call the EntryParser on each line in the language

sentence text input. Finally when the text is parsed, the parsed dictionary object

is returned with proper assigning of the relevant text.

The result of the above mentioned code would be.

1 {’gender ’: ’male’, ’age’: ’26’, ’name’: ’Bob’}

2 {’gender ’: ’female’, ’age’: ’30’, ’name’: ’Kim’}

3 {’gender ’: ’male’, ’name’: ’Joe’}

2.4 LARK

Lark is amodern Python parsing library, which can parse any form of text defined

by the grammar provided to the Lark. It supports EBNF grammar syntax which

makes it extremely easy to use. Lark provide a very flexible error handling and

error messaging features which are extremely useful to debug the code. It has

automated column and line tracking which can be used on both matched rules

and tokens. Lark supports Python 2 and 3 completely and has its own standard

library of terminals (numbers, strings, names, etc)

Lark hasmainly tree types of parsing algorithmswhichwe can choose, LALR,

EARley, and CYK. LR syntax analysis method is a very useful technique for pars-

ing a deterministic context free grammar [20]. With the use of LALRparser, num-

ber of states in the LR parser are tried to be reduced by merging of similar states

[21]. EARley parser is able to parse any context-free grammar and is a general

algorithm [22]. For CYK parsing algorithmwe need the grammar to be in Chom-

sky Normal Form to proceed. CYK use algorithms with dynamic programming

to find out if a string is valid for the language of the grammar.

Example of LARK

A simple example taken from LARK official documentation [23]

1 #Json Language Parsing

2 from lark import Lark

20

Chapter 2. Overview of existing parsing tools for the Python language

3 json_parser = Lark(r"""

4 value: dict

5 | list

6 | ESCAPED_STRING

7 | SIGNED_NUMBER

8 | "true" | "false" | "null"

9

10 list : "[" [value ("," value)*] "]"

11

12 dict : "{" [pair ("," pair)*] "}"

13 pair : ESCAPED_STRING ":" value

14

15 %import common.ESCAPED_STRING

16 %import common.SIGNED_NUMBER

17 %import common.WS

18 %ignore WS

19

20 """, start=’value’)

21

Listing 2.4: Lark grammar definition and example

The example above, which is defining the grammar for json language is very

interesting to look at. We are providing Lark library, a grammar in the form of a

string. The string contains the grammar in EBNF form. The value can either be a

dict, list, some ESCAPED_STRING , some SIGNED_NUMBER, "true" , "false" or

"null".

Both SIGNED_NUMBER and ESCAPED_STRING are predefined regex to be

used in LARK. It can be seen that at the end of the string SIGNED_NUMBER and

ESCAPED_STRING are being imported.

We also imported WS (white space), which is also defined in the Lark parser.

The%ignoreWS indicates that thewhite space between or at the end of the tokens

of the language sentence will be ignored.

For the definition of the the list, we are defining in the grammar, that the list

should start with "[" and end with "]" and the list can have multiple value types

in it, separated by ",".

"*" indicates, that multiple values can be inserted.

For the definition of the dictionary, a dictionary should start with "{" and end

with "}". Inside the dictionary we are referencing pair, which is also defined in

the grammar. A pair can have a some string and value (which can be of any type

defined above) separated by ":". It can be seen that dictionary can have at least a

single key-value pair or a list of key-value pairs.

21

Chapter 2. Overview of existing parsing tools for the Python language

Once this grammar string is passed as a parameter to Lark, Lark will create a

language model from it, and store syntax and semantics related to grammar in it.

If there will be wrong referencing in the grammar, or the structure of grammar

would be bad, Lark has a very strong error handling approach available, which

can let us know, what is wrong or missing in the grammar or the language sen-

tence.

Parsing the language sentence

Continuing from the listing 2.4

1 ’{"key": ["item0", "item1", 3.14]}’

1 text = ’{"key": ["item0", "item1", 3.14]}’

2 tree=json_parser.parse(text)

3 print(tree.pretty())

4 value

5 dict

6 pair

7 "key"

8 value

9 list

10 value "item0"

11 value "item1"

12 value 3.14

Listing 2.5: Lark language sentence processing

It can be seen in the output of the tree.pretty() that the parse tree of dictio-

nary is generated, which has a key named as "key" and value as a list of three

values("item0", "item1", 3.14).

2.5 Comparison of existing parsing tools

This section focuses on the comparison of the parser tools and libraries that we

analyzed and studied. As the final goal of writing the metamodel based parser

library is going to be written in Python, so more focus and preference will be

given to that librarywhich is easier to implement in Python andworks as a Python

module by default.

Many different aspects of the parser libraries will be taken into consideration.

1. What type of grammar syntax the parser library process

2. What type of parsing algorithms are available in the parser library

22

Chapter 2. Overview of existing parsing tools for the Python language

3. How fast is the parser library in processing the grammar and generating the

parse tree.

4. What are the methods available in the library to traverse the parse tree.

5. Does the parser handle ambiguity in the defined grammar rules.

6. Does the parser process Context Free Grammar (CFG)

7. Does the parser keep record of lines and columns in the generated parse

tree.

8. What types of outputs are available for parse tree (e.g pretty print).

2.5.1 Grammar definition & syntax of the parser library

If the language processing tools mentioned above in (ANTLR, Lark , PyParsing

and Parsimonious) are compared together, it can be seen that defining the gram-

mar rules are easier in ANTLR, LARK and Parsimonious. ANTLR, Lark and Par-

simonious use EBNF, to specify grammar and syntax of the language. PyParsing

on the other hand use combinator to define the language grammar.

2.5.2 Speed and Memory Comparison

If we compare the speed of ANTLR , Parsimonious and LARK, it can easily be

concluded that LARK is the fastest of all. This can be demonstrated by the graph

in figure 2.3 taken from the Lark’s github repository. As demonstrated by the

figure 2.4 taken from the Lark’s github repository, Lark shows the least memory

consumption as compared to other parser tools.

23

Chapter 2. Overview of existing parsing tools for the Python language

Figure 2.3: Runtime Comparison [7]

Figure 2.4: Memory Comparison [7]

2.5.3 Feature Comparison

A table taken from the git repository of Lark shows the features of Lark in com-

parison with the other Python parsing libraries.

24

Chapter 2. Overview of existing parsing tools for the Python language

Feature Comparison[7]

Library Algorithm Grammar Ambiguity CFG line/col(ref)

Lark EARley/LALR(1) EBNF YES YES YES

PyParsing PEG Combinators NO NO NO

Parsimonious PEG EBNF YES NO NO

ANTLR LL(*) EBNF YES NO YES

2.6 Selected Parsing Tool

If we see the comparison of the toolsmentioned above, it can be clearly concluded

the choosing Lark is the most appropriate choice, as it is not only fast but it has

so many other features, which opens up the possibilities of creating more feature

in the metamodel based Python parsing library, which this thesis is focusing to

build.

Lark provide automatic line and column tracking in the generated parse tree,

that can be of use if needed for future extension of features.

It has flexible error handling and have good error responses with the indica-

tion of line where the error occurred to help debug the code faster.

One of the major features, for which LARK is selected for this thesis is that it

is a pure Python module. This makes the integration and installation of Lark in

existing Python code very easy.

Lark has many filter function to filter our the nodes of the parsed tree. It has

many options by which we can traverse the nodes of the tree(i.e from top to bot-

tom or from bottom to top).

The pretty print feature of Lark is also very beneficial, as the generated parse

tree can be visualized in much more readable and understandable structure.

25

3 Design of Parser tool

3.1 Conceptual Overview and Design decisions

This sections explains the overall concepts that are going to be implemented in

the creation of metamodel based parser named PyCo. Similar to YAJCo, themain

idea is to generate a model of the language using Python classes with decorators

to specify the the concrete syntax and specifications for the language. In PyCo ad-

ditional metadata related to fields inside the class can be definedwith dataclasses

library function field. This provide a very cleaner way to specify the language

model with concrete syntax and semantics.

Another major aspect which has been taken into consideration for PyCo is

the declaration of classes, there is a lot of boilerplate code needed in Python to

write classes. In order to deal with the boilerplate code, dataclasses library from

Python is considered as a solution. With the implementation of dataclasses li-

brary, classes can bewrittenwith a lot of ease, in less lines of code andwith simple

syntax.

The use of dataclasses library enabled, an easierway for defining themetadata

for fields defined in the classes. To assignmetadata to the class field, all we have to

do is use field function of dataclasses library and provide dictionary of metadata,

to the metadata parameter.

Type checking in PyCo is another feature, which going to be in the library.

When fields are defined inside a class, we can assign a field type to every defined

field. To implement the type checking, typings library of Python is used.

User created classes can also become the types of the fields. This will make

up the relationship between the classes much deeper. Concept of inheritance is

another major feature which is going to be in the library. If abstract classes are

used, all the classes which inherit from that abstract class forms a relationship.

PyCo can find this relationship between classes and subclasses and process the

structure accordingly.

When a language is defined using object-oriented and metamodel in PyCo,

26

Chapter 3. Design of Parser tool

PyCo first find the relationship between the abstract classes and subclasses that

inherit from the abstract classes. During this process, PyCo go through each sub-

class and iterate over the fields of that class. While iterating, PyCo checks if the

type of field is another user defined class or its one of the common types (list,

dict, str, int, float).

PyCo process classes differently in these two scenarios. If the type is one of

the common types, then it saves the metadata defined for each field accordingly.

On the other hand, if the type of a field is user defined class, PyCo will check

the user defined class and follow the same process in recursive way to collect

metadata. This metadata is converted into internal language metadata class in-

stances and stored in internal language model. The internal language model is

then used to create the grammar and class instances from the parse tree in the

later stages of the PyCo.

PyCo will have the capability of creating class instance from the internal lan-

guage metamodel and the generated parse tree. As mentioned earlier, after pro-

cessing the classes, relationships between the classes and creating internal lan-

guage model, PyCo is going to create a relevant grammar for the Lark parser.

Larkwill process the grammar and Lark instancewill be created to process the

language sentence related to that grammar. When this Lark instance will parse a

valid language sentence which satisfies the syntax and semantics of the defined

grammar, Lark will produce a parse tree.

PyCo library deeply rely on Lark as a parser in order to process the grammar

and generate parse tree from it.

With the help of internal languagemodel and the generated parse tree by Lark,

PyCo will be able to create the class instances.

The processes of internal language model generation and class instance gen-

eration are done in recursive way, which make PyCo very strong and powerful

tool in processing deep level of inheritance and relationships between classes.

Easy to understand decorators have been defined in PyCo, whichwill help the

user write complex language syntax in relatively easier and comprehensive way.

To write the code for this library, object-oriented approach is used. The main

PyCo classwhen initializeswith the parameters of starting base class and the user

defined tokens dictionary, PyCo instance is created with pre-initialized language

parser. Various methods can be called from this PyCo instance which will be

discussed in detail in the coming sections.

27

Chapter 3. Design of Parser tool

3.2 Python dataclasses and type annotations

This sections explains about the dataclasses library and typing library of Python.

Both of these libraries are extremely important in the usage of metamodel based

parsing tool as metadata for the classes has to be defined by the use of these li-

braries.

3.2.1 dataclasses[24]

Python dataclasses library helps you to write less amount of code and gives ad-

ditional features to define the metadata for individual class fields. Simply put, it

helps to define classes with more functionality available out of the box [25].

If we wish to create a class, we would have to create a __init__ method and

assign the constructor parameters to attributes.

1 class Game:

2 def __init__(self, name, rating):

3 self.name = name

4 self.rating = rating

With the use of dataclasses, we don’t need to create __init__ method. The

@dataclass decorator will take care of everything.

The above example of class declaration can be written using dataclasses li-

brary as:

1 from dataclasses import dataclass

2

3 @dataclass

4 class Game:

5 name: str

6 rating: int

We can also assign the default values directly using dataclasses:

1 from dataclasses import dataclass

2

3 @dataclass

4 class Game:

5 name: str

6 rating: int =78

7

Use of dataclasses helps you skip all the repeating methods declarations like

__str__ , __eq__ , __repr__

Instances of dataclass can be represented as dictionaries and tuples

28

Chapter 3. Design of Parser tool

1 from dataclasses import dataclass , astuple, asdict

2 @dataclass

3 class Game:

4 name: str

5 rating: int

6

7 g = Person(’Tomb Raider’, 9)

8

9 print(astuple(g))

10 print(asdict(g)

1 (’Tomb Raider’, 9)

2 {’name’: ’Tomb Raider’, ’rating’: 9}

Assign metadata to fields

To assign metadata to fields we can use the field function of dataclasses library.

1 from dataclasses import dataclass , field

2 @dataclass

3 class Game:

4 name: str

5 rating: int = field(metadata={"key":"value"})

3.2.2 Python type annotations [26]

The typing library for Python is used to give type hints and declare datatypes of

variables, input functions andmethods as well as output functions andmethods.

Although declaring types makes the code understandable and precise, but in

the case of PyCo type annotations are needed to assign relevantmetadata to fields

and create the corresponding class instances.

There are various types of type annotations that we are using from the typings

library.

1. List

2. Dict

3. Optional

There are also general types available, like int, str , bool and float. These types

are also used to define the datatype of the field of a class in PyCo.

29

Chapter 3. Design of Parser tool

Example of type annotation

suppose we need to create a class with the following attributes:

• name (store string value)

• age: (store integer value)

• height: (store float value)

• slovak: (store boolean value)

• subjects: (list of subject names)

• subject_scores: (dictionary of subject name in string and score in integer)

• over_all_grade: (optional field which stores a float value)

1 from dataclasses import dataclass

2 from typing import List, Dict, Optional

3

4 @dataclass

5 class Student:

6 name: str

7 age: int

8 height:float

9 slovak:bool

10 subjects: List[str]

11 subject_scores: Dict(str, int)

12 over_all_grade: Optional[float]

Listing 3.1: Typing annotation example

The listing 3.1 shows, how the types are assigned to fields of a class.

3.3 How to use PyCo

This sections explains all the features and usage of PyCo library in depth. With

the help of code snippets the usage and features of PyCo will be demonstrated.

By going through the content of this section, anyonewhowishes to use PyCowill

easily be able to use the library.

30

Chapter 3. Design of Parser tool

3.3.1 PyCo Class Decorators

At the current development phase of the PyCo library, there has been only one

decorator created called syntax In the @syntax decorator two parameters can be

passed, before and after.

Parameter before is used to specify the literal that must be present before the

defined grammar for the class onto which the decorator is applied.

Parameter After is used to specify the literal that must be present after the

defined grammar for the class onto which the decorator is applied.

1 @dataclass

2 @syntax(before="[", after="]")

3 class Function():

4 number: float=field(metadata={’token’:’NUMBER_REGULAR_EXP)’})

Listing 3.2: PyCO decorator example

In the code snippet shown, the language sentence that can be parsed into parse

tree will look like [x] , where x is some float number.

3.3.2 PyCo field metadata

For the metadata to be defined for the fields, a dictionary of key value pair is pro-

vided that can be applied. keys defined in the metadata dictionary are applicable

according to the type annotation of the field.

Example

For the type of str, separator dictionary key is not going to be applicable and thus

ignored.

1 @dataclass

2 class MetaExample():

3 number: float=field(metadata={’token’:’REGULAR_EXP_FOR_NUMBER)’})

4 class String:

5 string: str=field(metadata={’token’:’REGULAR_EXP_FOR_STRING)’})

6

7 @dataclass

8 class DictionaryExample():

9 elements_dict: Dict[Sting, MetaExample] = field(

10 metadata={’separator’: ’:’,

11 ’element_separator’: ’,’,

12 ’before’: ’{’, ’after’: ’}’})

13

Listing 3.3: PyCO field metadata example

31

Chapter 3. Design of Parser tool

In the listing 3.3, the implementation of metadata related to each field can

be seen. A parameter of metadata is passed to the field function of dataclasses

library. The metadata parameter takes a dictionary key value pair.

Below is the list of dictionary keys that can be applied.

1. token (to define the regular expression of the input value)

2. separator (to define the list and dictionary separator)

3. element_separator(for dictionary to separate two key:value pairs)

4. before (to specify what should come before the language element)

5. after (to specify what should come after the language element)

There are numerous types that can be given to the fields in a class. Based on

these types we can pass the relevant dictionary to the metadata parameter of the

field function.

• For types int , float , str, bool token dictionary key in metadata of the field

must be present. The keys before , after are also available, but they are

optional.

• For types List separator dictionary key in metadata of the field must be

present. before , after keys are optional.

• For typesDict separator, element_separator dictionary keys in metadata of

the field must be present. before , after keys are optional.

If the type of some field is another user defined class, then the keys before ,

after are also available, but they are optional.

3.3.3 PyCo token definition

Tokens can be defined in a dictionary in Python, with key representing the name

of the token and value representing the regular expression of the token.

1 from pyco.pyco_meta_parser import NUMBER_REG , STRING_REG

2 token = {

3 "STRING_TOKEN": STRING_REG ,

4 "NUMBER_TOKEN": NUMBER_REG ,

5 "BOOLEAN_TOKEN": ’"true" -> true|"false" -> false’

6 }

32

Chapter 3. Design of Parser tool

Both STRING_REG andNUMBER_REG are tokenswhich are defined in PyCo

library. STRING_REG is used to represent all strings and NUMBER_REG is used

to represent all signed numbers.

If we wish, we can also define our own regular expressions.

For the token BOOLEAN_TOKEN the value seems to be defined in a different

way. It is important to know that if we wish to represent the boolean expression

"true", we need to map it to true and respectively "false to false.

Example

If we wish to represent True as T and False as F

1 token = {"BOOLEAN_TOKEN": ’"T" -> true | "F" -> false’}

In the language sentence then we must pass T to represent True in PyCo.

3.3.4 Types applicable to fields of a class in PyCo

PyCo parser expects the types to be defined for all the fields in a class. Types

are very important as PyCo use these either to make relations with other related

classes or to generate internal language model to later generate grammar and

class instances.

There are various types available from the typing module in Python.

1. int

2. float

3. str

4. bool

5. Dict

6. List

7. User defined Classes

We will discus these types with code snippets example.

1 #Starting base class

2 @dataclass()

3 class JsonValue(ABC):

4 pass

5

6

33

Chapter 3. Design of Parser tool

7 @dataclass

8 class JsonNumber(JsonValue):

9 number: float = field(metadata={’token’: ’REGULAR_EXP_FOR_NUM’})

10

11

12 @dataclass

13 class JsonString(JsonValue):

14 string_value: str = field(metadata={’token’: "

REGULAR_EXP_FOR_STRINGS"})

15

16 def __hash__(self):

17 return hash(self.string_value)

18

19

20

21 @dataclass

22 class FieldExample(JsonValue):

23 dict: Dict[JsonString , JsonValue] = field(

24 metadata={’separator’: ’:’,

25 ’element_separator’: ’,’,

26 ’before’: ’{’, ’after’: ’}’})

27

28

29

Listing 3.4: PyCO field types example

In the dict field of the class FieldExample, the type is Dict. As we know dictio-

nary has a key value pair structure, so inside we define the types of the dictionary

key and value by giving reference to other user defined classes JsonValue and

JsonString. The class JsonString has a field which has a type str, which is one of

types (str, int, float) and processed accordingly. On the other hand the class Json-

Value is an abstract class, from which all other classes are inheriting, so the class

JsonNumber and JsonString can be represented as a value for the dictionary.This

means that the parsed tree and the class instances of this FieldExample can go to

n
th depth.

3.3.5 Methods available in PyCO

There are three methods available in PyCo class instance.

1. parse_to_tree

2. create_instances

34

Chapter 3. Design of Parser tool

3. parse

The parse_to_tree method takes the language sentence as a parameter, first

it passes the grammar string(generated during PyCo initialization) to Lark class

instance. If Lark does not produce any error, then it passes the language sentence

to the Lark parser’s parsemethod. If the language sentence is valid, parsemethod

returns a parse tree.

The create_instances method of PyCo just take the parse tree generated by

parse_to_tree method and create instances of the class by using parsed tree and

the internal language model(generated in the initialization of PyCo).

The last method parse takes language sentence as an input and returns the

instance of the class by automatically performing the parse_to_tree method and

create_instancesmethod.

35

4 Implementation of PyCo

This chapter explains how the solution of PyCo has been implemented explaining

all the structural code and algorithms that had been used. PyCo internal structure

can be divided into tree main stages.

1. The internal language model(section 4.1)

2. The grammar generator(section 4.2)

3. The class instance generator(section 4.3)

Object oriented approach has been used in the structure of PyCo’s internal

algorithms and configurations. With object-oriented approach, PyCo has well

organized and concise code. PyCo instance is created by passing the root class of

the DSL and custom token dictionary.

4.1 The internal language model

The first and the foremost important stage of PyCo tool is the internal language

model. When the metamodel of the DSL is defined and PyCo instance is initial-

ized(details in appendix B.2), PyCo first start analyzing the classes and gather all

their relationships and metadata. This metadata is converted into class instances

and stored in a list based upon the types (details in appendix B.4).

Creation of internal language model is the most important task of PyCo be-

cause based upon this, the grammar and class instances are going to be created

in the later stages.

This model stores all the information of classes and subclasses that are linked

together through inheritance. When different types are defined, appropriate in-

formation is deduced by the helper functions to form the correct structure with

correct data to be stored in the internal language model.

Figure 4.1, shows the class structure of internal language model and the class

that is associated with it.

36

Chapter 4. Implementation of PyCo

Figure 4.1: InternalLanguageModel & MetaDataClass Diagram

The figure 4.1 shows that the internal language model is dependent on the

MetaDataClass. This is the main class which holds all the metadata information

about the processed classes and fields.

Besides having the information about classes and fields, MetaDataClass is

also responsible for holding the information about the relationships between the

classes.

The attribute of MetaDataClass called AbInheritanceClassList, is one of the

most important attribute as it stores the list of AbInheritanceClass(figure 4.2) in-

stances.

TheAbInheritanceClass hold the information about each class relationships(inheritance

relationship).

37

Chapter 4. Implementation of PyCo

Figure 4.2: AbInheritanceClass(class)

AbInheritanceClass has an attribute called class_names_list, which stores a

list of ClassMetaData instances.

Figure 4.3: ClassMetaData(class)

The ClassMetaData class only stores the name of the class and an instance of

the class.

The secondmost important attribute ofMetaDataClass is FieldsMetaDataList,

this attribute is responsible for storing a list of FieldsMetaData class instances.

Each FieldsMetaData class instance contains the information about the fields de-

fined in the classes, their metadata, the default value(if any) etc.

Figure 4.4 shows the structure of FieldsMetaData class.

38

Chapter 4. Implementation of PyCo

Figure 4.4: FieldsMetaData(class)

Last but the most important class is ClassInstanceMeta(figure 4.5). This class

holds the combined information from the AbInheritanceClass and FieldsMeta-

Data class. The MetaDataClass has an attribute called ClassInstanceMetaList.

This attribute stores a list of ClassInstanceMeta instances. The ClassInstanceMet-

aList is used in the process of creating the instances of classes defined in the DSL

metamodel.

Figure 4.5: ClassInstanceMeta (class)

EachClassInstanceMeta class has an attribute called fields, this attribute stores

a list of Field(figure 4.6) class instances.

39

Chapter 4. Implementation of PyCo

Figure 4.6: Field(class)

The Field Class instance stores the the useful information for the generation

of class instances from the parse tree.

Figure 4.7: PyCo(Stage One)-Processing(internal language model)

The figure 4.7 shows the first stage of PyCo library. Creating internal language

model is the first stage of the whole process and this internal language model is

generated with the help of all the classes discussed in this section.

4.2 The grammar generator

The second important stage of the PyCo library is the grammar generator. This

section is responsible of forming grammar strings by iterating through the list of

metadata classes generated by internal language model 4.1

The generate_grammar method of the grammar generator takes the metadata

list from the internal language model and generates the grammar in EBNF form.

40

Chapter 4. Implementation of PyCo

FieldsMetaDataList is filtered in this method to find the metadata related to

the fields for which the grammar string is being generated for.

This metadata is used to create the appropiate grammar string and is concate-

nated to the attribute of generated_grammmar of the Grammar class.

AbInheritanceClassList is also iterated in this method to generate grammar

string, which represent inheritance relation between the classes.

When the grammar is fully generated, then we call two functions to finalize

the grammar. Using first function, we concatenate the tokens that we passed dur-

ing PyCo initialization to the generated grammar string. Using second function,

we concatenate some Lark specific imports to ignore white space and add Lark’s

predefined regular expressions.

Figure 4.8: PyCo Grammar class

Figure 4.9: PyCo(Stage Two)-Processing(grammar generator)

Figure 4.9 shows the stage 2 of PyCo library, showing how internal language

model is used to generate the grammar for the Lark to process.

41

Chapter 4. Implementation of PyCo

4.3 The class instance generator

The class instance generator is the final main section in PyCo tool. The class in-

stance generator is responsible of creating the class instance of the starting base

class(the class which was provided to PyCo for processing while initialization).

The generated class instance can also have the other class instances inside, if

they were specified in the language sentence and in the language metamodel.

To create the class instance, PyCo tool need two things, the internal language

model (explained in section 4.1) and the parse tree.

Internal languagemodel is already available from the first step of PyCo initial-

ization. To get the parse tree, themethod parse_to_tree of PyCo instance is called.

In this method, PyCo uses the generated grammar from step two(explained in

section 4.2) and pass it to Lark, which creates a Lark instance.

The initialized Lark instance have the definition and syntax of the grammar

defined by the DSL metamodel. The function parse_to_tree then call the parse

method of Lark instance to generate the tree.

To create the instances of the class, another method of PyCo instance named

create_instance is calledwhich takes the tree as an input use the internal language

model stored in the attribute of PyCo instance. PyCo instance use both of these

to create class instances recursively.

There are couple of things which we check while parsing the tree. If the tree

has no attribute named ’data’ then we know that the tree is already at the value

of the node. In this case we take the value and return it to create the related class

instance from it.

In case if the value of tree node has the attribute ’data’ in it. Then this attribute

contains the name of one of the classes that we defined in our metamodel. We

use the name of this class and filter the matching class instance from the internal

language model.

In case, the filter could not find the related metadata class in the internal lan-

guage model, the next course of action would be to call the create_instance func-

tion recursively on the first child of the tree.

Assuming that at this point we have the metadata class instance related to the

name of class in the data attribute. We check the type of the class, whether it

belong to an abstract class or not, if it does, we perform the same operation and

recursively call the create_instance method on the first child of the tree.

There is another attribute of this internal languagemodel class instance called

’fields’. This attribute contains the names of all the fields related to a class.

42

Chapter 4. Implementation of PyCo

We check if it contains at least one element in it. If the ’fields’ attribute does not

contain at least one element, we just simply create the instance of the class. On the

other hand if ’fields’ list contains at least one element, we iterate through all these

elements and based upon certain criteria and find values from the parse tree,

which corresponds to these fields. After find the value, we create class instance.

In the processing of these individual fields, we check if the field was optional

or not. If the field was optional, we try to find the value for the field. If no value

if found we assign a default value to it, which had been stored in the internal

language model class.

After iterating through all the values in ’fields’ attribute, we create the instance

of the class, to which all these fields belonged.

Figure 4.10 shows the full structure of PyCo Class.

Figure 4.10: PyCo class diagram

There are also two very important types that we check during this process. If

the type of field is List or Dict, we find all the children of the tree, either by using

Lark find_data filter, or using tree.children and call the function create_instances

recursively on each child.

To simplify the parsing and class instance generation, there is another method

available in PyCo known as ’parse’. This method combines the functionalities

of both parse_to_tree and create_instance and produce the final result(class in-

stances).

Full PyCo library class structure would look like in figure 4.11.

43

Chapter 4. Implementation of PyCo

Figure 4.11: PyCo architecture(classes)

By examining the three stages, we can come to the conclusion of final struc-

tural diagram of PyCo showing all the processes and interactions of all the stages,

metamodel and language sentences. The final diagramwould look like the struc-

ture in the figure 4.12.

44

Chapter 4. Implementation of PyCo

Figure 4.12: PyCo(Stage Three)-Processing(class instance generator)

4.4 Python package structure of PyCo

After going through each internal processing stage of PyCo and learning about

its structure and relationships. An overall image can be concluded about its im-

plementation. However there are also othermodules and structural relationships

that cannot be concluded without examining the flow of the code.

Figure 4.13 shows the whole package structure of PyCo.

45

Chapter 4. Implementation of PyCo

Figure 4.13: PyCo package structure

46

5 Evaluation

This chapter focuses on the implementation and evaluation of different DSL lan-

guages. Requirements for the DSL will be described, based on which the meta-

models using object-oriented programming will be created.

We will test these metamodels by running them through PyCo tool and pass-

ing the desired language sentence.

Throughout whole this process, PyCo will be analyzed and evaluated for cre-

ating these DSLs and parsing the language sentences.

5.1 JSON language

JSON language is one of the most important structure of language in the modern

era. The language is capable of handling string, integer, float , boolean and dic-

tionary. Any of the string, integer, float , boolean and dictionary is a valid input.

For the purpose of evaluation, we are going to use different types of language

sentences defined below.

• a simple string input: "a string"

• a number input: 10

• a null input : null

• a list input: ["a",10]

• a dictionary input {"a":10}

• a boolean input ’false’ (false will represent False and true will represent

True)

• a complex list within a dictionary input: {"a":["b",1,2,false]}

47

Chapter 5. Evaluation

5.1.1 JSON metamodel classes

Metamodel of JSON language using PyCo is described in listing 5.1

1 from abc import ABC

2 from dataclasses import dataclass , field

3 from typing import List, Dict

4 from pyco.utils.decorators import syntax

5

6

7 @dataclass()

8 class JsonValue(ABC):

9 pass

10

11

12 @dataclass

13 class JsonNumber(JsonValue):

14 number: float = field(metadata={’token’: ’NUMBER_TOKEN’})

15

16

17 @dataclass

18 class JsonString(JsonValue):

19 string_value: str = field(metadata={’token’: "STRING_TOKEN"})

20

21 def __hash__(self):

22 return hash(self.string_value)

23

24

25 @dataclass

26 class JsonBoolean(JsonValue):

27 boolean: bool = field(metadata={’token’: "BOOLEAN_TOKEN"})

28

29

30 @dataclass

31 class JsonArray(JsonValue):

32 elements: List[JsonValue] = field(metadata={’separator’: ’,’, ’

before’: ’[’, ’after’: ’]’})

33

34

35 @dataclass

36 @syntax(before=’null’)

37 class JsonNull(JsonValue):

38 pass

39

40

41 @dataclass

48

Chapter 5. Evaluation

42 class JsonDictionary(JsonValue):

43 elements_dict: Dict[JsonString , JsonValue] = field(

44 metadata={’separator’: ’:’, ’element_separator’: ’,’, ’before’

: ’{’, ’after’: ’}’})

Listing 5.1: JSON Metamodel Classes

Token used in JSON language

1 from pyco.pyco_meta_parser import STRING_REG , NUMBER_REG

2 token = {

3 "STRING_TOKEN": STRING_REG ,

4 "NUMBER_TOKEN": NUMBER_REG ,

5 "BOOLEAN_TOKEN": ’"true" -> true| "false" -> false’

6 }

5.1.2 JSON language grammar

Grammar generated by PyCo is shown in the listing 5.2 below.

1 jsonnumber : number_token

2 jsonstring : string_token

3 jsonboolean : boolean_token

4 jsonarray : "[" [jsonvalue ("," jsonvalue)*] "]"

5 jsondictionary : "{" [jsonstring":"jsonvalue ("," jsonstring

6 ":" jsonvalue)*] "}"

7 jsonvalue : jsonnumber | jsonstring | jsonboolean | jsonarray

8 | jsonnull | jsondictionary

9 jsonnull : "null"

10

11 string_token : ESCAPED_STRING

12 number_token : SIGNED_NUMBER

13 boolean_token : "true" -> true| "false" -> false

14

15 %import common.ESCAPED_STRING

16 %import common.SIGNED_NUMBER

17 %import common.WS

18 %ignore WS

Listing 5.2: JSON language grammar

49

Chapter 5. Evaluation

5.1.3 JSON lang input tests

language sentence input "a"

Class instance result is:

1 JsonString(string_value=’"a"’)

language sentence input: 10

Class instance result is:

1 JsonNumber(number=10.0)

language sentence input: null

Class instance result is:

1 JsonNull()

language sentence input ["a", 10]

Class instance result is:

1 JsonArray(elements=[JsonString(string_value=’"a"’), JsonNumber(number

=10.0)])

language sentence input: {"a": 10}

Class instance result is:

1 JsonDictionary(elements_dict={JsonString(string_value=’"a"’):

JsonNumber(number=10.0)})

language sentence input: false

Class instance result is:

1 JsonBoolean(boolean=False)

language sentence input: {"a":["b",1,2,false,null]}

Parse tree is:

50

Chapter 5. Evaluation

1 jsonvalue

2 jsondictionary

3 jsonstring

4 token_1 "a"

5 jsonvalue

6 jsonarray

7 jsonvalue

8 jsonstring

9 token_1 "b"

10 jsonvalue

11 jsonnumber

12 token_2 1

13 jsonvalue

14 jsonnumber

15 token_2 2

16 jsonvalue

17 jsonboolean

18 false

19 jsonvalue

20 jsonnull

Class instance result is:

1 JsonDictionary(elements_dict={JsonString(string_value=’"a"’):

JsonArray(elements=[JsonString(string_value=’"b"’), JsonNumber(

number=1.0), JsonNumber(number=2.0), JsonBoolean(boolean=False),

JsonNull()])})

By evaluating some of the possible input language sentences, it can be con-

cluded the described language metamodel and PyCo are creating class instances

the way it is supposed to be created. Thus JSON language implementation was

fully successful.

5.2 Function language

If there is a requirement to process a language sentence in away that it depicts the

syntax of a function then PyCo is more than capable enough to handle such kind

of task too. In this example of function definition language, we are not only going

to design a metamodel of the function language but will also do some testing of

Optional field type implementation.

The language sentence that we wish to parse and process will have the struc-

ture like:

1 fun: "function_name" ("y"=2 , "x"=6){"y"= 8, "z"=30}

51

Chapter 5. Evaluation

For the purpose of evaluation, we are going to use different types of language

sentences defined below.

• fun: "function_name" ("y"=2 , "x"=6){"y"= 8, "z"=30}

• fun: ("y"=2 , "x"=6){"y"= 8}’ (to test Optional type of class field)

To test the Optional type of the field in a class implementation we are going

to be make the function_name field in the metamodel Optional.

5.2.1 Function metamodel classes

Metamodel of Function language using PyCo is described in listing 5.3

1 from abc import ABC

2 from dataclasses import dataclass , field

3 from typing import Optional , List

4 from pyco.utils.decorators import syntax

5

6

7 @dataclass()

8 class FunctionAbstractClass(ABC):

9 pass

10

11

12 @dataclass

13 class NumberClass(FunctionAbstractClass):

14 number: float = field(metadata={’token’: ’NUMBER_TOKEN’})

15

16

17 @dataclass

18 class StringClass(FunctionAbstractClass):

19 string_value: str = field(metadata={’token’: "STRING_TOKEN"})

20

21 def __hash__(self):

22 return hash(self.string_value)

23

24

25 @dataclass

26 class Statement:

27 name_statement: StringClass = field(metadata={’after’: "="})

28 value_statement: NumberClass

29

30 @dataclass

31 class parameters:

32 name_parameter: StringClass = field(metadata={’after’: "="})

52

Chapter 5. Evaluation

33 value_parameter: NumberClass

34

35

36

37 @dataclass

38 @syntax(before="fun:")

39 class function(FunctionAbstractClass):

40 function_name: Optional[str] = field(metadata={’token’: "

STRING_TOKEN", ’default’: ’DEFAULT NAME’})

41 parameter_list: List[parameters] = field(metadata={’separator’: ’,

’, ’before’: ’(’, ’after’: ’)’})

42 body: List[Statement] = field(metadata={’before’: ’{’, ’after’: ’}

’, ’separator’: ’,’})

43

44 def get_parameters(self):

45 return self.parameter_list

Listing 5.3: Funtion Metamodel Classes

Token used in Function language

1 token = {

2 "STRING_TOKEN": STRING_REG ,

3 "NUMBER_TOKEN": NUMBER_REG ,

4 }

5.2.2 Function language grammar

Grammar generated by PyCo is shown in the listing 5.4 below.

1 numberclass : number_token

2 stringclass : string_token

3 function : "fun:" [string_token]

4 "(" [parameters ("," parameters)*] ")"

5 "{" [statement ("," statement)*] "}"

6 parameters : stringclass "=" numberclass

7 statement : stringclass "=" numberclass

8 functionabstractclass : numberclass | stringclass | function

9

10 string_token : ESCAPED_STRING

11 number_token : SIGNED_NUMBER

12

13 %import common.ESCAPED_STRING

14 %import common.SIGNED_NUMBER

15 %import common.WS

53

Chapter 5. Evaluation

16 %ignore WS

Listing 5.4: Function language grammar

5.2.3 Function language input tests

language sentence input fun: "function_name" ("y"=2 , "x"=6){"y"= 8 , "Z"=30}’

Parse tree is:

1 functionabstractclass

2 function

3 string_token "function_name"

4 parameters

5 stringclass

6 string_token "y"

7 numberclass

8 number_token 2

9 parameters

10 stringclass

11 string_token "x"

12 numberclass

13 number_token 6

14 statement

15 stringclass

16 string_token "y"

17 numberclass

18 number_token 8

19 statement

20 stringclass

21 string_token "z"

22 numberclass

23 number_token 30

Class instance result is:

1 function(function_name=’"function_name"’, parameter_list=[parameters(

name_parameter=StringClass(string_value=’"y"’), value_parameter=

NumberClass(number=2.0)), parameters(name_parameter=StringClass(

string_value=’"x"’), value_parameter=NumberClass(number=6.0))],

body=[Statement(name_statement=StringClass(string_value=’"y"’),

value_statement=NumberClass(number=8.0)), Statement(name_statement=

StringClass(string_value=’"z"’), value_statement=NumberClass(number

=30.0))])

54

Chapter 5. Evaluation

language sentence input ’fun: ("y"=2 , "x"=6){"y"= 8}’

Parse tree is:

1 functionabstractclass

2 function

3 None

4 parameters

5 stringclass

6 string_token "y"

7 numberclass

8 number_token 2

9 parameters

10 stringclass

11 string_token "x"

12 numberclass

13 number_token 6

14 statement

15 stringclass

16 string_token "y"

17 numberclass

18 number_token 8

Class instance result is:

1 function(function_name=’DEFAULT NAME’,

2 parameter_list=[parameters(name_parameter=StringClass(string_value=’"y

"’), value_parameter=NumberClass(number=2.0)), parameters(

name_parameter=StringClass(string_value=’"x"’), value_parameter=

NumberClass(number=6.0))], body=[Statement(name_statement=

StringClass(string_value=’"y"’), value_statement=NumberClass(number

=8.0))])

By evaluating some possible input language sentences, it can be concluded the

described language metamodel and PyCo are creating class instances the way it

is supposed to be created. Optional type for class field, has also been tested as in

the second language sentence where we did not mention the function_name. The

default value was automatically used. Thus Function language implementation

was fully successful.

5.3 Robot language

Robot language is yet another DSL language that can be created using PyCo. This

language has also been defined in YAJCo tool(listing 1.3). The language imple-

mented in this section is similar to YAJCo’s example but with one additional field

55

Chapter 5. Evaluation

called speed. In PyCo example of the Robot language, the language sentence also

contains the turning speed of the robot.

The language sentence that we wish to parse and process will have the struc-

ture like:

1 begin move , turn right 5, turn left 2, move end

For the purpose of evaluation, we are going to use language sentence defined

below.

1 begin move , turn right 5, turn left 2, move end

5.3.1 Robot metamodel classes

Metamodel of Robot language using PyCo is described in listing 5.5

1 from abc import ABC

2 from dataclasses import dataclass , field

3 from typing import List

4 from pyco.utils.decorators import syntax

5

6

7 class Commands(ABC):

8 def move(self):

9 pass

10

11

12 @dataclass

13 @syntax(before="move")

14 class Move(Commands):

15 def move(self):

16 print(’move forward’)

17

18

19 @dataclass

20 @syntax(before="turn")

21 class Turn(Commands):

22 directions: str = field(metadata={’token’: ’DIRECTION_TOKEN’})

23 speed: float = field(metadata={’token’: ’SPEED_TOKEN’})

24

25 def move(self):

26 print(’turn’, self.directions)

27

28

29 @dataclass

30 @syntax(before="begin", after=’end’)

56

Chapter 5. Evaluation

31 class Robot:

32 body: List[Commands] = field(metadata={’separator’: ’,’})

33

34 def start_moving(self):

35 for step in self.body:

36 step.move()

Listing 5.5: Robot Metamodel Classes

Token used in Robot language

1 token = {

2 "DIRECTION_TOKEN": ’"back" ->back|"right" -> right|"left" ->left’,

3 "SPEED_TOKEN": NUMBER_REG ,

4 }

5.3.2 Robot language grammar

Grammar generated by PyCo is shown in the listing 5.6 below.

1 robot : "begin" [commands ("," commands)*] "end"

2 turn : "turn" direction_token speed_token

3 commands : move | turn

4 move : "move"

5

6 direction_token : "back" -> back|"right" -> right|"left" ->left

7 speed_token : SIGNED_NUMBER

8

9 %import common.ESCAPED_STRING

10 %import common.SIGNED_NUMBER

11 %import common.WS

12 %ignore WS

Listing 5.6: Robotlanguage grammar

5.3.3 Robot language input tests

language sentence input ’begin move , turn right 5, turn left 2, move end’

Parse tree is:

1 robot

2 commands

3 move

4 commands

57

Chapter 5. Evaluation

5 turn

6 right

7 speed_token 5

8 commands

9 turn

10 left

11 speed_token 2

12 commands

13 move

Class instance result is:

1 Robot(body=[Move(), Turn(directions=’right’, speed=5.0), Turn(

directions=’left’, speed=2.0), Move()])

By evaluating some of the possible input language sentences, it can be con-

cluded the described language metamodel and PyCo are creating class instances

the way it is supposed to be created. Thus Function language implementation

was fully successful.

5.4 Robot Complex language

Robot Complex language is an extension of Robot language. We are referencing

different classes with multiple fields to link together so that instead of only pro-

viding movement, direction and speed, we are able to provide a range of speed

and the information about the movement and its impact on the robot motion.

The language sentence that we wish to parse and process will have the struc-

ture like:

1 begin move , turn right [1 2 , 3 4] ("Damage" 6 ["OnTheEdge" 10,"

Rudder" 11]) move end

For the purpose of evaluation, we are going to use language sentence defined

below.

1 begin move , turn right [1 2 , 3 4] ("Damage" 6 ["OnTheEdge" 10,"

Rudder" 11]) move end

5.4.1 Robot Complex metamodel classes

Metamodel of Robot language using PyCo is described in listing 5.7

1 from abc import ABC

2 from dataclasses import dataclass , field

3 from typing import List

58

Chapter 5. Evaluation

4 from pyco.utils.decorators import syntax

5

6

7 class Commands(ABC):

8 def move(self):

9 pass

10

11

12 @dataclass

13 @syntax(before="move")

14 class Move(Commands):

15 def move(self):

16 print(’move forward’)

17

18

19 @dataclass

20 class RobotSpeed:

21 min_speed: float = field(metadata={’token’: ’MIN_SPEED_TOKEN’})

22 max_speed: float = field(metadata={’token’: ’MAX_SPEED_TOKEN’})

23

24

25 @dataclass

26 class InfoClass:

27 description: str = field(metadata={’token’: ’MIN_STR_TOKEN’})

28 length: int = field(metadata={’token’: ’LENGTH_TOKEN’})

29

30

31 @dataclass

32 class ImpactType:

33 incident: str = field(metadata={’token’: ’MIN_STR_TOKEN’})

34 max_impact: float = field(metadata={’token’: ’MAX_IMPACT_TOKEN’})

35 info: List[InfoClass] = field(metadata={’separator’: ’,’, ’before’

: ’[’, ’after’: ’]’})

36

37

38 @dataclass

39 @syntax(before="turn")

40 class Turn(Commands):

41 direction: str = field(metadata={’token’: ’DIRECTION_TOKEN’})

42 speed: List[RobotSpeed] = field(metadata={’separator’: ’,’, ’

before’: ’[’, ’after’: ’]’})

43 impact: ImpactType = field(metadata={’before’: ’(’, ’after’: ’)’})

44

45 def move(self):

46 print(’turn’, self.directions)

59

Chapter 5. Evaluation

47

48

49 @dataclass

50 @syntax(before="begin", after=’end’)

51 class RobotComplex:

52 body: List[Commands] = field(metadata={’separator’: ’,’})

53

54 def start_moving(self):

55 for step in self.body:

56 step.move()

Listing 5.7: Robot Complex Metamodel Classes

Token used in Robot Complex language

1 from pyco.pyco_meta_parser import NUMBER_REG , STRING_REG

2

3 token = {

4 "DIRECTION_TOKEN" : ’"back" -> back|"right" -> right|"left" ->

left’,

5 "MIN_SPEED_TOKEN" : NUMBER_REG ,

6 "MAX_SPEED_TOKEN" : NUMBER_REG ,

7 "WEIGHT_TOKEN" : NUMBER_REG ,

8 "MIN_STR_TOKEN" : STRING_REG ,

9 "MAX_IMPACT_TOKEN": NUMBER_REG ,

10 "LENGTH_TOKEN" : NUMBER_REG

11 }

5.4.2 Robot Complex language grammar

Grammar generated by PyCo is shown in the listing 5.8 below.

1 robotcomplex : "begin" [commands ("," commands)*] "end"

2 turn : "turn" direction_token

3 "[" [robotspeed ("," robotspeed)*] "]"

4 "(" impacttype ")"

5 robotspeed : min_speed_token max_speed_token

6 impacttype : min_str_token max_impact_token

7 "[" [infoclass ("," infoclass)*] "]"

8 infoclass : min_str_token length_token

9 commands : move | turn

10 move : "move"

11

12 direction_token : "back" -> back|"right" -> right|"left" ->left

13 min_speed_token : SIGNED_NUMBER

60

Chapter 5. Evaluation

14 max_speed_token : SIGNED_NUMBER

15 weight_token : SIGNED_NUMBER

16 min_str_token : ESCAPED_STRING

17 max_impact_token : SIGNED_NUMBER

18 length_token : SIGNED_NUMBER

19

20 %import common.ESCAPED_STRING

21 %import common.SIGNED_NUMBER

22 %import common.WS

23 %ignore WS

Listing 5.8: Robot Complex language grammar

5.4.3 Robot Complex language input tests

language sentence input ’begin move , turn right 5, turn left 2, move end’

Parse tree is:

1 robotcomplex

2 commands

3 move

4 commands

5 turn

6 right

7 robotspeed

8 min_speed_token 1

9 max_speed_token 2

10 robotspeed

11 min_speed_token 3

12 max_speed_token 4

13 impacttype

14 min_str_token "Damage"

15 max_impact_token 6

16 infoclass

17 min_str_token "OnTheEdge"

18 length_token 10

19 infoclass

20 min_str_token "Rudder"

21 length_token 11

22 commands

23 move

Class instance result is:

1 RobotComplex(body=[Move(), Turn(direction=’right’, speed=[RobotSpeed(

min_speed=1.0, max_speed=2.0), RobotSpeed(min_speed=3.0, max_speed

61

Chapter 5. Evaluation

=4.0)], impact=ImpactType(incident=’"Damage"’, max_impact=6.0, info

=[InfoClass(description=’"OnTheEdge"’, length=10), InfoClass(

description=’"Rudder"’, length=11)])), Move()])

By evaluating some of the possible input language sentences, it can be con-

cluded the described robot complex language metamodel and PyCo are creating

class instances the way it is supposed to be created. Thus Robot Complex lan-

guage implementation was fully successful.

5.5 Conclusion of tested DSL metamodels

This section list down the main evaluation results of PyCo library by examining

each example and specifying the functionalities available in PyCo. Through these

examples all the available class decorators along with their available parameters

have been used. The examples also make use of all the possible combination of

field metadata keys available.

Along with the metadata and decorators another important aspect that could

be concluded is that PyCo also has the capability to use user defined classes as

types and metadata can also be attached to these fields too. Thus PyCo was cor-

rectly generating all the class instances from language metamodel and language

sentences.

5.6 Limitations of PyCo library

Like every other library, PyCo also have some limitations and set of rules that

must be kept in mind and followed accordingly.

1. Defined class names should be different from the defined token names as

this will generate ambiguity in the grammar and Lark won’t be able to pro-

cess the grammar.

2. If tokens are referenced in the metadata, those tokens must be passed in the

PyCo class instance initialization.

3. To define boolean True and false, the expressionmustmap the desired value

onto tree or false (If you wish to represent T as true and F as false, then you

would have to define the token like this "BooleanToken": ’"T" -> true|"F" ->

false’).

4. When using dictionary, it is necessary to include a hash method in the class

of field which is going to be used to represent keys for the dictionary.

62

Chapter 5. Evaluation

5. PyCo has no implementation of type Set for field types in a class.

5.7 PyCo and YAJCo Comparison

This section in the evaluation chapter specifies the similarities and differences

between YAJCo and PyCo. As PyCo is build with the example of YAJCo in mind,

there are many common features between both these tools.

Both PyCo and YAJCo are supposed to perform similar task of creating a DSL

based up the metamodel based class definitions. However, even when the fea-

tures result is same, the approach in which these features are represented in the

language metamodel is quite different.

5.7.1 Abstract Syntax Definition

In YAJCo the implementation of abstract syntax of DSL is implemented by the use

of annotations of a class and fields [10]. However, PyCo uses decorators only on

the classes and not on the fields. For fields PyCo uses field function of dataclasses

library to assign the relevant metadata to the field of a class.

Similar to YAJCo, PyCo also uses inheritance to link class and subclasses to-

gether to generate the EBNF grammar.

5.7.2 Composition multiplicity

YAJCo implementsmultiplicity with the use of List and Set in Java. This feature is

implemented in PyCo using List and dictionaries. YAJCo also has and additional

feature to limit the number of elements in the list with @Range annotation.

5.7.3 Referencing(aggregation)

Another concept in YAJCo is to have the ability to have a reference to another lan-

guage model which has been described somewhere else with the use of @Refer-

ences annotation. This relation is an example of aggregation in object model[10].

This feature is not implemented in PyCo yet.

5.7.4 Keywords and symbols

As described earlier in subsection 5.7.1, YAJCo uses annotation to define abstract

syntax of a language.

63

Chapter 5. Evaluation

In PyCo only classes have the ability to have a decorator names @syntaxwhich

can decorate the whole class.

@syntax in PyCo takes two parameters, before and after. This give us the abil-

ity to define the syntax of the overall class, describing what should come before

or after the language elements related to that class.

Similar to this YAJCo’s annotation are @Before and @After, which perform

the same functionality. Along with this YAJCo annotation can also be applied to

fields of a class.

The defining ofmetadata on the fields of a class in PyCo however is done using

fields function of dataclasses library.

For the implementation of composition multiplicity @Separator annotation is

used in YAJCo. However to separate list elements separator key is used in PyCo

field metadata.

In PyCo to define dictionary we also have another metadata key for a class

field known as element_separator. In the case of dictionary, separator key is

used to, separate the key value pair and element_separator is used to separate

elements(one element is key:value pair).

Implementation of dictionary is not available in YAJCo.

5.7.5 Operator definition

In YAJCo @Operator annotation is used to define priority and associativity. This

is very useful for implementation of DSL based upon mathematical rules.

@Operator is often used with @Parentheses annotation to declare priority ex-

plicitly.

This feature is not available in PyCo.

5.7.6 Tokens with value

In YAJCo to define a token, @Token annotation is used and regular expressions

are passed [10]. In YAJCo there are no predefined tokens. We can also define

tokens globally when declaring the main class using @Parser annotation. This

declaration of tokens is know as named tokens.

Tokens are passed when creating the instance of PyCo. PyCo takes a token

dictionary, and these tokens can be referenced anywhere in the grammar.

Similar to YAJCo, we can also explicitly define token for a class field using a

valid regular expression.

64

Chapter 5. Evaluation

There are two predefined tokens(STRING_REG & NUMBER_REG) in PyCo

that can be imported from PyCo library. Unlike PyCo, YAJCo does not have and

predefined tokens available.

5.7.7 Additional annotations in YAJCo

There are other annotation available in YAJCo that helps to perform some ad-

ditional functionalities in YAJCo. These functionalities are not yet available in

PyCo.

The @Identifier annotation is used to reference a class by the identifier. This

annotation helps to set up a unique identifier [10].

@FactoryMethod is an annotation available in YAJCo to specify static meth-

ods, which are used in the creation of parser.

@Exclude annotation is used to mark the constructor to be excluded from the

abstract syntax specification.

@Parser annotation is known to be the main configuration YAJCo tool’s ele-

ment. This annotation is a must requirement to start YAJCo tool. It takes param-

eters to define the root concepts of the DSL. This is not needed in PyCo because

when we create the instance, we specify the root class of the DSL along with to-

kens parameter.

@TokenDef is used to defined named tokens in @Parser annotation. PyCo

takes token dictionary when initializing.

@Skip’ annotation is used to skip the characters defined in the set or regular

expression.

@Option’ annotation is used to define the options for the YAJCo language.

@Newline’ annotation is used to specify the place where there should be a line

gap in the printer output.

@Indent’ annotation is used to define indentation level for printed output.

5.8 Future improvements of PyCo

Based upon the examples evaluations, restrictions and the comparison of PyCo

withYAJCo, this section specifies the possible improvements and additionswhich

are possible to be implemented in PyCo.

• We can create error handling, which indicate if the token names and class

names are same. This is needed because PyCo grammar becomes ambigu-

65

Chapter 5. Evaluation

ous, if the token name and the class names are same. This will greatly help

in handling ambiguity in the grammar.

• Similar to YAJCo, priority andparenthesis decorators can be added to PyCo.

Internally this has change the structure of the grammar to make the appro-

priate parse tree. This will make the library to handle mathematical based

equations.

• Functions can be defined in the library which will generate regular expres-

sions, based upon some parameters.

• Similar to YAJCo @exclude decorator can be created to exclude the class

from abstract syntax

• Further implementations of type Set and type Any can be included in the

library.

• Limit on the elements in the list and dictionary can be implemented using

something similar to @Range annotation of YAJCo.

• A list of more regular expressions can be created to quickly import and use

from the library.

66

6 Conclusion

This thesis presents a research and implementation of a Metamodel-based Parser

Generator for Python. Taking inspiration from YAJCo tool and generating some-

thing similar in Python was the main goal of this thesis. The reason such a tool

in Python is needed because the YAJCo tool is only specific to Java. With the in-

depth study of various parsing tools and analyzing the features of YAJCo, this

thesis specified and laid the foundation of the construction of PyCo(metamodel

based parser tool in Python).

The main objectives on which thesis successfully achieved are:

1. Giving user the ability to define metamodel for DSL using Python classes.

2. Creating internal language model structure, which will store the metadata

of classes and their fields.

3. Generating grammar from the internal language model.

4. Generating parse tree using provided language sentence and the existing

parser LARK [7](parsing tool used for this thesis)

5. Creating class instances from generated parse tree with the help of internal

language model.

With Various examples, the thesis successfully demonstrated all the features

of DSL generation using Metamodel-based Parser Generator for Python.

With the implementation of PyCo, many restrictions and limitations of the

library surfaced, which has been mentioned in this thesis.

This thesis specified all the possible solutions to the restriction of PyCo along

with further improvements suggestion by comparing the PyCo tool with YAJCo.

With the implementation of PyCo, a base foundation structure of a fully dy-

namic tool has been generatedwhich can be easily workedwith or improvedwith

additional features in future.

67

Bibliography

1. PORUBÄN, Jaroslav; FORGÁC,Michal; SABO,Miroslav; BĚHÁLEK,Marek.

Annotation based parser generator.Computer Science and Information Systems.

2010, vol. 7, no. 2, pp. 291–307. Available from doi: 10.2298/csis1002291p.

2. PORUBÄN, Jaroslav; CHODAREV, Sergej. Model-aware language specifica-

tion with Java. In: 2015 13th International Conference on Engineering of Modern

Electric Systems (EMES). 2015, pp. 1–4. Available from doi: 10.1109/EMES.

2015.7158424.

3. MCCRACKEN, Daniel D; REILLY, Edwin D. Backus-naur form (bnf). In:

Encyclopedia of Computer Science. 2003, pp. 129–131.

4. KLEPPE, Anneke. Towards the Generation of a Text-Based IDE from a Lan-

guageMetamodel. In:AKEHURST,DavidH.; VOGEL, Régis; PAIGE, Richard

F. (eds.).Model Driven Architecture- Foundations and Applications. Berlin, Hei-

delberg: Springer BerlinHeidelberg, 2007, pp. 114–129. isbn 978-3-540-72901-

3.

5. CHODAREV, Sergej; HALAMA, Ján. Interconnecting YAJCowith Xtext: Ex-

perience Report. In: 2019 IEEE 15th International Scientific Conference on Infor-

matics. 2019, pp. 000195–000200. Available from doi: 10.1109/Informatics

47936.2019.9119305.

6. Parsing in python: All the tools and libraries you can use. 2022. Available also

from: https://tomassetti.me/parsing-in-python/.

7. LARK-PARSER. Lark-parser/lark: Lark is a parsing toolkit for python, built with

a focus on ergonomics, performance and modularity. [N.d.]. Available also from:

https://github.com/lark-parser/lark.

8. CHODAREV, Sergej; BAČÍKOVÁ, Michaela. Abstract-syntax-driven devel-

opment of oberon-0 using Yajco. Journal of information and organizational sci-

ences. 2019, vol. 43, no. 2, pp. 145–162. Available from doi: 10.31341/jios.

43.2.2.

68

https://doi.org/10.2298/csis1002291p
https://doi.org/10.1109/EMES.2015.7158424
https://doi.org/10.1109/EMES.2015.7158424
https://doi.org/10.1109/Informatics47936.2019.9119305
https://doi.org/10.1109/Informatics47936.2019.9119305
https://tomassetti.me/parsing-in-python/
https://github.com/lark-parser/lark
https://doi.org/10.31341/jios.43.2.2
https://doi.org/10.31341/jios.43.2.2

Bibliography

9. CHODAREV, Sergej; LAKATOŠ, Dominik; PORUBÄN, Jaroslav; KOLLÁR,

Ján. Abstract syntax driven approach for language composition. Open Com-

puter Science. 2014, vol. 4, no. 3, pp. 107–117. Available from doi: doi:10.

2478/s13537-014-0211-8.

10. KPI-TUKE. KPI-Tuke/Yajco: YAJCo (yet another Java compiler compiler) is a lan-

guage parser generator based on annotated model. [N.d.]. Available also from:

https://github.com/kpi-tuke/yajco.

11. KPI-TUKE.Yajco-examples/robot.java at master · KPI-Tuke/yajco-examples. 2017.

Available also from: https://github.com/kpi-tuke/yajco-examples/

blob/master/yajco- example- simpleRobot/src/main/java/yajco/

robot/model/Robot.java.

12. PARR, T. J.; QUONG, R. W. Antlr: A predicated-ll(k) parser generator. Soft-

ware: Practice and Experience. 1995, vol. 25, no. 7, pp. 789–810. Available from

doi: 10.1002/spe.4380250705.

13. PARR, Terence. The definitive antlr 4 reference. Pragmatic Bookshelf, 2014.

14. CAO, Danyang; BAI, Donghui. Design and implementation for SQL parser

based on ANTLR. In: 2010 2nd international Conference on Computer engineer-

ing and technology. 2010, vol. 4, pp. V4–276.

15. The Antlr Mega Tutorial. 2022. Available also from: https://tomassetti.

me/antlr-mega-tutorial/.

16. MCGUIRE, Paul. Getting started with pyparsing. O’Reilly Media, Inc, 2007.

17. Using the pyparsingmodule. [N.d.]. Available also from: https://pyparsing-

docs.readthedocs.io/en/latest/HowToUsePyparsing.html.

18. ERIKROSE.Erikrose/Parsimonious: The fastest pure-python peg parser I canmuster.

[N.d.]. Available also from: https://github.com/erikrose/parsimoniou

s.

19. RIMKO, Jeff. Parsing with parsimonious. [N.d.]. Available also from: https:

//www.jeffcomput.es/posts/2013/05/parsing-with-parsimonious/.

20. AHO,Alfred V; JOHNSON, StephenC. LR parsing.ACMComputing Surveys

(CSUR). 1974, vol. 6, no. 2, pp. 99–124.

21. HANDOUT, CS143. LALR Parsing. [N.d.].

22. AYCOCK, John; HORSPOOL, R. Nigel. Practical Earley Parsing. The Com-

puter Journal. 2002, vol. 45, no. 6, pp. 620–630. Available from doi: 10.1093/

comjnl/45.6.620.

69

https://doi.org/doi:10.2478/s13537-014-0211-8
https://doi.org/doi:10.2478/s13537-014-0211-8
https://github.com/kpi-tuke/yajco
https://github.com/kpi-tuke/yajco-examples/blob/master/yajco-example-simpleRobot/src/main/java/yajco/robot/model/Robot.java
https://github.com/kpi-tuke/yajco-examples/blob/master/yajco-example-simpleRobot/src/main/java/yajco/robot/model/Robot.java
https://github.com/kpi-tuke/yajco-examples/blob/master/yajco-example-simpleRobot/src/main/java/yajco/robot/model/Robot.java
https://doi.org/10.1002/spe.4380250705
https://tomassetti.me/antlr-mega-tutorial/
https://tomassetti.me/antlr-mega-tutorial/
https://pyparsing-docs.readthedocs.io/en/latest/HowToUsePyparsing.html
https://pyparsing-docs.readthedocs.io/en/latest/HowToUsePyparsing.html
https://github.com/erikrose/parsimonious
https://github.com/erikrose/parsimonious
https://www.jeffcomput.es/posts/2013/05/parsing-with-parsimonious/
https://www.jeffcomput.es/posts/2013/05/parsing-with-parsimonious/
https://doi.org/10.1093/comjnl/45.6.620
https://doi.org/10.1093/comjnl/45.6.620

Bibliography

23. Welcome to Lark’s documentation! [N.d.]. Available also from: https://lark-

parser.readthedocs.io/en/latest/.

24. Dataclasses - data classes. [N.d.]. Available also from: https://docs.python.

org/3/library/dataclasses.html.

25. Python dataclass. 2021. Available also from: https://www.pythontutorial.

net/python-oop/python-dataclass/.

26. Typing - support for type hints. [N.d.]. Available also from: https://docs.

python.org/3/library/typing.html.

70

https://lark-parser.readthedocs.io/en/latest/
https://lark-parser.readthedocs.io/en/latest/
https://docs.python.org/3/library/dataclasses.html
https://docs.python.org/3/library/dataclasses.html
https://www.pythontutorial.net/python-oop/python-dataclass/
https://www.pythontutorial.net/python-oop/python-dataclass/
https://docs.python.org/3/library/typing.html
https://docs.python.org/3/library/typing.html

List of Appendixes

Appendix A User Manual

Appendix B System Manual

Appendix C CD médium – záverečná práca v elektronickej podobe,

71

A User Manual

A.1 Requirements of PyCo library

Metamodel based parser in python (PyCo) library requirements are.

1. Minimum version of Python required is 3.7

2. The library is based on Lark version 1.1.1

3. Pytest 7.1.1 (if require to run defined test in the tests folder)

4. pylint 2.13.5 (to generate class diagrams and relationship model)

Minimum version of Python is 3.7 because, the use of dataclasses library was

introduced in this version of Python library.

The current version of the PyCo is fully functional with Lark 1.1.1

A.2 Installing dependencies

There is a requirement.txt file in the root folder of the code.

use pip to install the dependencies

1 pip install -r requirements.txt

A.3 How to use the library

A.3.1 Define metamodel

1 from dataclasses import dataclass , field

2

3 @dataclass()

4 class JsonValue(ABC):

72

Appendix A. User Manual

5 pass

6

7 @dataclass

8 class JsonNumber(JsonValue):

9 number: float = field(metadata={’token’: ’NUMBER_TOKEN’})

A.3.2 Initialize pyCo and create class instances

1 from pyco.pyco_meta_parser import PyCo, NUMBER_REG

2 from classes import JsonValue

3

4 token = {

5 "NUMBER_TOKEN": NUMBER_REG ,

6 }

7

8 if __name__ == ’__main__’:

9 pyCo = PyCo(JsonValue , token)

10 tree = pyCo.parse_to_tree(’1’)

11 class_instance=pyCo.create_instances(tree)

A.4 Class decorators in PyCo

There is only one class decorator available in PyCO, with name syntax. @syntax

can take two parameters before and after. These parameters are used to define

the concrete syntax of the DSL.

Below is an example to define the class which represent None in python.

1 @syntax(before=’null’)

2 class Null()):

3 pass

For the case where before is defined the language sentence will process null

as None.

1 @syntax(before=’null’, after=’!’)

2 class Null()):

3 pass

For the case where before and after both are defined the language sentence

should look like null!

A.5 Metadata field keys in PyCo

1. For Strings: before, after, token

73

Appendix A. User Manual

2. For Numbers: before, after, token

3. For List: before, after, separator

4. For Dict: before, after, separator, element_separator

5. For other Class Types: before ,after

6. For Optional Fields: default + all other key fields with respect to type

A.6 Methods available in PyCo

1. parse_to_tree (takes language sentence and return a tree)

2. create_instances (take tree as input and creates the instances of the class)

3. parse (combines bothmethods parse_to_tree and create_instances to return

class instances)

Other features of PyCo.

• After PyCo initialization, PyCo has an attribute called grammar, that can be

printed to visualize generated grammar.

• tree.pretty() can be called to return a tree in pretty form(you can print to

visualize the tree)

A.7 Testing PyCo

To run test PyCo library, run the command pytest in the terminal of the project

directory.

A.8 Generating Diagram of PyCo Structure

The library pylint is used to generate the class relationship and PyCo structure

diagrams.

To generate the diagrams run the command: pyreverse -o png pyco in the

terminal of the project directory.

74

Appendix A. User Manual

A.9 Limitations of PyCo Library

1. An empty dictionary must be supplied to PyCO class instance generation,

even if no tokens are defined.

2. Optional field only work for string, numbers and booleans at this stage.

3. Token names should be different from the class names to avoid grammar

ambiguity.

4. ForDict: separator, element_separator keysmust be present in themetadata

parameter of field function of dataclasses.

5. default value must be defined if the field is set to be Optional

6. separator key must be present in the metadata parameter of field function

of dataclasses.

75

B Systems Manual

It is much easier to understand the structure and workflow of PyCo by breaking

down each category into further little code snippets. We will go in a sequence

from the start to end, along with the internal processing flow of PyCO.

B.1 Conditions to be fulfilled for PyCo initialization

For the purpose of understanding, a simple DSL example will be used. To use the

PyCo, we first create the metamodel structure of the DSL language.

Defining the metamodel: Suppose we wish to create a language which can ei-

ther take a string, a number or a list of both.

1 from abc import ABC

2 from dataclasses import dataclass , field

3 from typing import List,

4

5 @dataclass()

6 class ExampleLang(ABC):

7 pass

8

9 @dataclass

10 class LangNumber(ExampleLang):

11 number: float = field(metadata={’token’: ’NUMBER_TOKEN’})

12

13 @dataclass

14 class LangString(ExampleLang):

15 string_value: str = field(metadata={’token’: "STRING_TOKEN"})

16

17 @dataclass

18 class LangArray(ExampleLang):

19 elements: List[ExampleLang] = field(

20 metadata={’separator’: ’,’,’before’: ’[’, ’after’: ’]’})

Listing B.1: PyCO DSL(ExampleLang) metamodel

76

Appendix B. Systems Manual

When the metamodel of class is defined, we can continue with the initializa-

tion of PyCo. It can be noticed that there is tokenmentioned in the above example,

which is referencing to "STRING_TOKEN" and "NUMBER_TOKEN". Thismeans

that with the initialization of the library, we also need to provide these tokens.

Initialization if PyCo class instance: To initialize the PyCowe are first going to

define those tokenswhich had been referenced in the example and use Lark’s pre-

defined regex variable reference. These regular expressions(STRING_REG,NUMBER_REG)

can be imported fro PyCo library.

1 from pyco.pyco_meta_parser import PyCo, STRING_REG , NUMBER_REG

2

3 token = {

4 "STRING_TOKEN": STRING_REG ,

5 "NUMBER_TOKEN": NUMBER_REG ,

6 }

7

8 #initialization of PyCO

9 pyCo = PyCo(ExampleLang , token)

Listing B.2: PyCo defining token

B.2 PyCo instance initialization

Once instance of PyCo is created. The class PyCO has some internal initialization

attributes which are very important,

1

2 class PyCo:

3 class PyCo:

4 """Main library class PyCo"""

5

6 def __init__(self, a_class, tokens):

7 self.start_symbol = a_class.__name__.lower()

8 self.base_class = a_class

9 self.language_model = InternalLanguageModel(base_class=a_class

, tokens=token)

10 self.field_metadata_data = self.language_model.meta_data_class

11 self.field_metadata_data.generate_meta_for_create_instance()

12 self.grammar = Grammar(tokens=tokens, meta_data_class=self.

field_metadata_data).generate_grammar()

13

14

77

Appendix B. Systems Manual

15

Listing B.3: PyCo class initialization structure

In the listing B.3, it can be seen that when the class initializes, first it sets the

start_symbol attribute to the root class name. The next most important step is to

set the base_class attribute as root class.

Inside the language_model attribute of PyCo we are referencing to internal

language model and initializing it by passing the token dictionary and the root

class.

The language_model attribute which equals to InternalLanguageModel, has

an attribute called meta_data_class.

From meta_data_class attribute, generate_meta_for_create_instance method

is called. This method analyzes the classes metadata and their relationships to

generate the metadata class instances which are needed to further proceed in the

creating of grammar and class instances.

B.2.1 Implementation of PyCo methods

There are three methods available in PyCo class instance.

1 class PyCo:

2 ...

3 def parse_to_tree(self, language_sentence):

4 parser = Lark(self.grammar,

5 start=self.start_symbol ,

6 debug=True,

7 propagate_positions=True)

8 return parser.parse(language_sentence)

9 ...

10

Listing B.4: PyCo parse_to_tree method

PyCo’s method parse_to_tree purpose is to process the EBNF grammar gen-

erated by the grammar generator by passing it to instance of Lark. Lark sets the

rules and syntax with respect to the grammar, so only valid language sentences

can be processed and converted into parse tree.

There are couple of parameters which we provide to Lark class instance ini-

tialization as shown in the listing B.4. First we provide the grammar, which is

stored in the attribute grammar of PyCo class instance. Then we provide the

other parameters like start, which is used to tell Lark instance to take this as a

starting symbol from the defined grammar. Parameter debug is used to enable

78

Appendix B. Systems Manual

the errormessageswith details in Lark, this help PyCo to let Lark handle the error

reporting(related to grammar definition and language sentence) inmore verbose

manner.

The Parameter propagate_positions, is set to True enables Lark to keep track

of rows and columns [23] of the parse tree..

The method Parse_to_tree takes language_sentence as a parameter. When

Lark successfully initializes without any error while processing the grammar. We

can pass this language sentence to Lark. If the language sentence is valid, Lark

instance will generate a parse tree accordingly.

Another important method of PyCo is create_instances. This method use

parse tree and internal languagemodel to generate the class instance according to

the metamodel of DSL. The method use recursion technique and create instance

of each subclass to n
th depth.

1 class PyCo:

2

3 def create_instances(self, tree):

4 """this method uses language metadata model classes and parse tree

to generate class instances"""

5 params_list = []

6

7 if not hasattr(tree, ’data’):

8 return tree

9

10 find_in_meta = self.field_metadata_data.match_and_return_meta(tree

.data)

11

12 if not find_in_meta:

13 if len(tree.children) > 0:

14 return self.create_instances(tree.children[0])

15 return tree.data

16

17 if find_in_meta.type_class == ’abc’:

18 return self.create_instances(tree.children[0])

19

20 if len(find_in_meta.fields) == 0:

21 return find_in_meta.class_instance()

22

23 value = None

24

25 for index, field in enumerate(find_in_meta.fields):

26 if field.field_type == float.__name__:

27 value = find_value_in_tree(tree, index)

79

Appendix B. Systems Manual

28 if value != ’OPTIONAL’:

29 value = float(value)

30 if len(tree.children[index].children) > 0:

31 tree.children[index].children.pop()

32 if field.field_type == int.__name__:

33 value = find_value_in_tree(tree, index)

34 if value != ’OPTIONAL’:

35 value = int(value)

36 if len(tree.children[index].children) > 0:

37 tree.children[index].children.pop()

38

39 if field.field_type == str.__name__:

40 value = find_value_in_tree(tree, index)

41 if value != ’OPTIONAL’:

42 value = str(value)

43 if len(tree.children[index].children) > 0:

44 tree.children[index].children.pop()

45

46 if field.field_type == bool.__name__:

47 value = find_value_in_tree(tree, index)

48 if value != ’OPTIONAL’:

49 value = str_to_bool(value)

50 if len(tree.children[index].children) > 0:

51 tree.children[index].children.pop()

52

53 if field.field_type == dict.__name__:

54 value = create_dict([self.create_instances(child) for

child in tree.children])

55

56 if field.field_type == list.__name__:

57 children_x = [x for x in tree.find_data(field.tree_ref)]

58 if len(children_x) < len(tree.children):

59 value = [self.create_instances(child) for child in

children_x]

60 else:

61 value = [self.create_instances(child) for child in

tree.children]

62

63 class_type = contains(self.field_metadata_data.

FieldsMetaDataList ,

64 lambda x: x.ref_class_name == field.

field_type)

65

66 if class_type:

67 children_x = [x for x in tree.find_data(field.field_type)]

80

Appendix B. Systems Manual

68 for child in children_x:

69 value = self.create_instances(child)

70

71 if value is None:

72 return self.create_instances(tree.children[index])

73 else:

74 if value == ’OPTIONAL’:

75 if field.field_type == ’float’:

76 params_list.append(float(field.default))

77 elif field.field_type == ’int’:

78 params_list.append(int(field.default))

79 elif field.field_type == ’str’:

80 params_list.append(str(field.default))

81 elif field.field_type == ’bool’:

82 params_list.append(str_to_bool(field.default))

83 else:

84 params_list.append(value)

85 if len(params_list) == len(find_in_meta.fields):

86 return find_in_meta.class_instance(*params_list)

87

88 ...

Listing B.5: PyCo create_instances method

From the listing B.5, it can be seen that the create_instances method takes

parsed tree as a parameter.

We initialize an empty list called params_list. This list is responsible to store all

the params needed for the respective class instance that is currently beingworked

upon, along with the current node of the tree.

We check if the tree has a node that has an attribute data, this is important

because sometimes the value comes at the node of the tree. In the case, when it

doesn’t have attribute data, we return the tree itself(because there is value stored

in tree).

From PyCo instance, we call a method field_metadata_data, that is referring

to instance of InternalLanguageModel’s attribute meta_data_class.

The meta_data_class is of the type MetaDataClass. This has a method called

match_and_return_meta. When this method is called using a value of the node

on the tree, the method checks the ClassInstanceMetaList to filter out and return

the ClassInstanceMeta instance. The instance of ClassInstanceMeta is then going

to be processed in the rest of the code of create_instance method of PyCo.

If match_and_return_meta method returns False, and is unable to find the in-

stance of matched ClassInstanceMeta class, and the tree still has more branches

81

Appendix B. Systems Manual

below the current nodewhichwe are processing, we further call the create_instance

method recursively on the first child of the tree.

If match_and_return_meta returns metadata instance, then we check if the

type of the instance is of abstract class. To skip the abstract classes and go in the

further depth of tree, we just recursively call create_instances method again but

now pass the first child of the tree.

If proceeded further than the previous steps, We count the fields of the fields

attribute of ClassInstanceMeta instance. If the number of fields are zero, we just

simply return the class instance.

Furthermorewe define a variable called value and set it to None. This variable

is supposed to store the value at the node of tree.

We then iterate over the fields using enumerate in Python to also enable us to

have index of the iteration. We check if the field_type matches one of the type str,

float, int, dict, list. If the match is found we process it accordingly.

At this point we check if the metadata of the field has Optional attribute set to

true or not, If Optional is not set to tree then call the find_value_in_tree function.

This function takes tree and index of the field as a parameter and return the

value at the node.

1 def find_value_in_tree(tree, index=None):

2 if hasattr(tree, ’children’):

3 if hasattr(tree.children[index], ’value’):

4 return tree.children[index].value

5 if tree.children[index] is None:

6 return ’OPTIONAL’

7

8 if len(tree.children[index].children) != 0:

9 if isinstance(tree.children[index].children , list):

10 return str(tree.children[index].children[0])

11 return find_value_in_tree(tree.children[index].children ,

index)

12 elif hasattr(tree.children[index], "data"):

13 return tree.children[index].data

14 else:

15 return tree

Listing B.6: find_values_in_tree helper function

The helper function find_values_in_tree takes tree and index of the field as

a parameter and try to find the value recursively in the depth of that tree node.

This function checks all the possible cases in which the node can have value.

When find_values_in_tree returns the value at the tree node, we convert this

82

Appendix B. Systems Manual

value into its proper respective type. After storing the valuewe check if the length

of children in the tree is more than 0, and if so we remove that child node from

the tree.

Removing of the child is required because in the cases of nth depth of classes

relationships and inheritance, sometimes a node has extra previous values which

have already been processed and the instance related to them, had already been

created.

There is list and dictionary implementation in the create_instances method,

which generate a list by generating elements recursively. In the list and dictionary

implementation, we also make use of Lark find_data function, which returns a

tree by filtering the tree according to node of tree value.

In the case if that field metadata had optional set to true, we take the default

value defined in the field metadata and assign it to variable value.

Lastly we append this value to params_list and create the instance of the class,

if all the fields have been successfully added to params_list and return it.

B.2.2 PyCo class helper functions

The str_to_bool function

This function is used to represent boolean expressions in Python according to the

parameter passed to it.

1 def str_to_bool(param):

2 if param == ’true’:

3 return True

4 elif param == ’false’:

5 return False

6 else:

7 return False

Listing B.7: str_to_bool function

The create_dict function

This function converts a list into key value pair to form a dictionary and return it.

1 def create_dict(a_list):

2 a_dict = {}

3 if len(a_list) < 2:

4 raise ValueError("Dictionary List Not Valid")

5 for i in range(0, len(a_list), 2):

6 a_dict[a_list[i]] = a_list[i + 1]

83

Appendix B. Systems Manual

7 return a_dict

Listing B.8: create_dict function

The find_value_in_tree function

This function is used to parse the tree and go to depth of the tree branch to find

the value at the node of the tree. The function use recursion to achieve its goal.

1 def find_value_in_tree(tree, index=None):

2 if hasattr(tree, ’children’):

3 if hasattr(tree.children[index], ’value’):

4 return tree.children[index].value

5 if tree.children[index] is None:

6 return ’OPTIONAL’

7

8 if len(tree.children[index].children) != 0:

9 if isinstance(tree.children[index].children , list):

10 return str(tree.children[index].children[0])

11 return find_value_in_tree(tree.children[index].children ,

index)

12 elif hasattr(tree.children[index], "data"):

13 return tree.children[index].data

14 else:

15 return tree

Listing B.9: find_value_in_tree function

B.3 Grammar generator

The Grammar generator(Grammar class) in PyCo is responsible for generating

grammar that is passed onto Lark to set up language syntax and semantics rules

for language sentence processing.

The generate_grammar method of the Grammar class takes the metadata list

from the internal languagemodel and generates the grammar in EBNF form. The

method filters out the language model objects for fields metadata of every class

defined in the metamodel and based upon the metadata defined in them gen-

erate a string and concatenate the string appropriately to generated_grammar

attribute.

1 ...

2 class Grammar:

3 """This class is responsible to generate language metadata model

classes and generate grammar

84

Appendix B. Systems Manual

4 for Lark parser"""

5

6 def __init__(self, tokens, meta_data_class):

7 self.tokens = tokens

8 self.meta_data_class = meta_data_class

9 self.meta_ref_list = meta_data_class.meta_ref_list

10 self.generated_grammar = """"""

11 ...

Listing B.10: Grammar class structure

The Grammar class also takes token dictionary as a parameter, if tokens are to

be globally defined for the DSL.

Initial attributes of tokens is set to the parameter tokens and an attribute called

meta_data_class is set to parameter meta_data_class.

An important attribute known as meta_ref_list is also created, which refers to

the meta_ref_list inside the parameter meta_data_class.

Attribute meta_data_class have the structural classes, of the internal language

model of the defined DSL in PyCo.

These classes hold the metadata which will be processed to generate the re-

sultant grammar.

B.3.1 Grammar class methods

There is one method in Grammar class which PyCo uses internally to generate

grammar, when PyCo class is initialized.

1. generate_grammar

In the listing B.3, PyCo instance in its attributes, calls the generate_grammar

method of the Grammar class.

1 ...

2 class Grammar:

3 """This class is responsible to generate language metadata model

classes and generate grammar for Lark parser"""

4

5 def __init__(self, tokens, meta_data_class):

6 self.tokens = tokens

7 self.meta_data_class = meta_data_class

8 self.meta_ref_list = meta_data_class.meta_ref_list

9 self.generated_grammar = """"""

10

11 def generate_grammar(self):

85

Appendix B. Systems Manual

12 """generate_grammar method generates the final grammar from

the generated metadata model"""

13 same_parent_list = []

14 processed_classes = []

15 self.meta_ref_list = unique_set_list(self.meta_ref_list)

16 for ref in self.meta_ref_list:

17 ref_class = None

18 compound_result = ""

19

20 generate_list = list(filter(lambda obj: obj.ref_class_name

== ref, self.meta_data_class.FieldsMetaDataList))

21 for fieldGen1 in generate_list:

22

23 compound_result += get_result_string(fieldGen1.

field_meta , fieldGen1.field_type_name_ref , fieldGen1.of_type,

24 fieldGen1.

field_type , fieldGen1.optional).lower() + ’ ’

25 ref_class = fieldGen1.ref_class

26 if ref_class not in same_parent_list:

27 same_parent_list.append(ref_class)

28

29 if ref not in processed_classes:

30 processed_classes.append(ref)

31 self.generated_grammar += ref + ’ : ’ +

apply_decorators(ref_class , compound_result) + ’\n’

32

33 for fieldGen in self.meta_data_class.AbInheritanceClassList:

34 class_names_list = fieldGen.class_names_list

35 or_list = get_or_name_list(class_names_list) + ’\n’

36 if fieldGen.class_instance_ref_name + ’ : ’ in self.

generated_grammar:

37 self.generated_grammar = self.generated_grammar.

replace(fieldGen.class_instance_ref_name + ’ : ’, ’’)

38 self.generated_grammar += fieldGen.class_instance_ref_name

+ ’ : ’ + or_list

39

40 temp_result = ""

41 for element in class_names_list:

42 if element.ref_class not in same_parent_list:

43 self.generated_grammar += (element.name.lower() +

’ : ’

44 + apply_decorators(

element.ref_class , temp_result) + ’\n’)

45

46 self.generated_grammar = add_tokens_to_grammar(self.

86

Appendix B. Systems Manual

generated_grammar , tokens=self.tokens)

47 self.generated_grammar = add_imports_to_grammar(self.

generated_grammar)

48 return self.generated_grammar

Listing B.11: generate_grammar method of Grammar class

The generate_grammar method declares two empty lists. One of the list is

called same_parent_list and the other is called processed_classes.

Attribute meta_ref_list is converted into in a list of unique values by passing

the attribute value to a helper function called unique_set_list. This meta_ref_list

hold the names of the all the processed classes by the internal language model.

Initially we set the variable ref_calss to None and variable compound_result

to an empty string.

In the variable generate_list we are generating a list of instances which match

the name in the meta_ref_list for the current iteration of the loop. The list is gen-

erated using the FieldsMetaDataList and filter function of Python.

We further iterate the generate_list to process each field of a class.

The function get_result_string is used to generate the string by the use ofmeta-

data to correctly form the grammar. This function takes the metadata of the field,

type of the field, the name of the field, optional and the class type of the class to

which the field belong to in order to process and generate grammar string.

After processing each field and generating the grammar string, we append

name of the class to same_parent_list, if they are not already present there. We

are only adding unique to prevent duplication and avoid ambiguity in the final

generation of grammar. Furthermore we apply the main class decorators meta-

data, if the class have any and generate the final grammar strings.

Once all the iteration are finished, we start a new for loop for the grammar

string generation of class inheritance relationships.

The AbInheritanceClassList contains the information about all the classes and

their related subclasses. We iterate over each instance ot AbInheritanceClass in

the AbInheritanceClassList and generate a string which corresponds to inheri-

tance between the classes.

The grammar is generated very carefully to avoid any type of ambiguity in the

grammar, and the grammar string generated in the first for loop and grammar

string generated in the second for loop are properly combined.

Two functions, add_token_to_grammar, to add the globally defined tokens to

the grammar and add_imports_to_grammar to add the imports of Lark library to

the grammar are called in the end.

87

Appendix B. Systems Manual

The finalized version of the EBNF grammar string is stored and available in

the generated_grammar attribute of Grammar class instance.

B.3.2 Grammar class helper function

The get_result_string function

The get_result_string method is used to generate the grammar strings, by adding

grammar rules to it based upon the metadata defined in the fields. In case of int,

str, float and bool, only the the token, before and after dictionary keys are applied

on, from the metadata defined in the field of the class.

In case of list and dict, there are additional parameters, that can be provided

in order for the grammar to be successfully processed. Both list and dict have

same metadata keys(separator, before and after) but dict have one additional

key(element_separator).

If some class has a field which if referencing to another defined class as a type,

then only the before and after keys are applicable for metadata dictionary.

1 def get_result_string(field_data_meta , type_of, class_name , field_type

, optional):

2 """this function applies the field metadata of each field in a

class to generate relevant

3 grammar string"""

4 keys = field_data_meta.keys()

5 result = ’’

6

7 if type_of == ’str’:

8 if ’token’ in keys:

9 result = field_data_meta[’token’]

10 if ’before’ in keys:

11 result = wrap_in_doubleQuote(field_data_meta[’before’]) +

result

12

13 if ’after’ in keys:

14 result = result + wrap_in_doubleQuote(field_data_meta[’

after’])

15

16 if type_of == ’bool’:

17 if ’token’ in keys:

18 result = field_data_meta[’token’]

19 if ’before’ in keys:

20 result = wrap_in_doubleQuote(field_data_meta[’before’]) +

result

88

Appendix B. Systems Manual

21

22 if ’after’ in keys:

23 result = result + wrap_in_doubleQuote(field_data_meta[’

after’])

24

25 if type_of == ’float’:

26 if ’token’ in keys:

27 result = field_data_meta[’token’]

28

29 if ’before’ in keys:

30 result = wrap_in_doubleQuote(field_data_meta[’before’]) +

result

31

32 if ’after’ in keys:

33 result = result + wrap_in_doubleQuote(field_data_meta[’

after’])

34

35 if type_of == ’int’:

36 if ’token’ in keys:

37 result = field_data_meta[’token’]

38

39 if ’before’ in keys:

40 result = wrap_in_doubleQuote(field_data_meta[’before’]) +

result

41

42 if ’after’ in keys:

43 result = result + wrap_in_doubleQuote(field_data_meta[’

after’])

44

45 if type_of == ’list’:

46 if ’separator’ not in keys:

47 result = class_name + ’*’

48

49 if ’separator’ in keys:

50 result = (’[’ + class_name + ’ (’ + wrap_in_doubleQuote(

51 field_data_meta[’separator’]) + class_name + ’)*]’)

52

53 if ’before’ in keys:

54 result = wrap_in_doubleQuote(field_data_meta[’before’]) +

result

55

56 if ’after’ in keys:

57 result = result + wrap_in_doubleQuote(field_data_meta[’

after’])

58

89

Appendix B. Systems Manual

59 if type_of == ’dict’:

60 key = field_type.__dict__[’__args__’][0].__name__

61 value = field_type.__dict__[’__args__’][1]

62 result = (’[’ + key.lower() + ’":"’ + value.__name__.lower() +

63 ’ (’ + wrap_in_doubleQuote(field_data_meta[’

element_separator’]) + ’ ’

64 + key.lower() + ’ ":" ’ + value.__name__.lower() + ’

)*]’)

65 if ’before’ in keys:

66 result = wrap_in_doubleQuote(field_data_meta[’before’]) +

result

67

68 if ’after’ in keys:

69 result = result + wrap_in_doubleQuote(field_data_meta[’

after’])

70

71 if type_of not in [’int’, ’list’, ’str’, ’float’, ’dict’, ’bool’]:

72 result = class_name.lower()

73 if ’before’ in keys:

74 result = wrap_in_doubleQuote(field_data_meta[’before’]) +

result

75

76 if ’after’ in keys:

77 result = result + wrap_in_doubleQuote(field_data_meta[’

after’])

78 if optional:

79 result = "[" + result + "]"

80 return result

81

82

Listing B.12: get_result_string helper function

The wrap_in_double_quote function

This function is used to make code cleaner and easy to refactor. It wraps a given

parameter value with double quotes and return it.

1 def wrap_in_double_quote(value):

2 """this function wraps the string in quotes"""

3 return ’ "’ + str(value) + ’" ’

Listing B.13: wrap_in_double_quote function

The space function

90

Appendix B. Systems Manual

1 def space():

2 """this function returns a space string"""

3 return ’ ’

Listing B.14: space function

The apply_decorators function

This functions checks if the class has some predefined decorators. If so, the func-

tion finds the value of the decorator and applies onto the grammar string. The

keys this function looks for is before and after.

1 def apply_decorators(ref_class , compound_result: str) -> str:

2 """this function applies the decorators to the final grammar

string of a class"""

3 if hasattr(ref_class , ’decorators’):

4 result_decorated = ""

5 if ’before’ in ref_class.decorators:

6 result_decorated = wrap_in_double_quote(ref_class.

__parser_syntax[’before’]) + space() + compound_result

7 if ’after’ in ref_class.decorators:

8 result_decorated = result_decorated + space() +

wrap_in_double_quote(ref_class.__parser_syntax[’after’])

9

10 return result_decorated

11 return compound_result

Listing B.15: apply_decorators function

The get_or_name_list function

The classes and subclasses which are related through inheritance from the ab-

stract classes, have to be represented in EBNF form in the final grammar. Tomake

this happen the final grammar string is appended with the string containing the

logic for inheritance. This helps to fully validate and implement correct syntax

and semantics of the resultant grammar.

1 def get_or_name_list(or_list) -> str:

2 """this functions generates a grammar string for all inherited

classes and the class

3 from which the subclasses are inheriting from.

4 if b_class and c_class are inheriting from a_class then:

5 result = a_class : b_class | c_class

6 """

7 result_list = ""

91

Appendix B. Systems Manual

8 for index, element in enumerate(or_list):

9 if index < len(or_list) - 1:

10 result_list += element.name.lower() + ’ | ’

11 if index == len(or_list) - 1:

12 result_list += element.name.lower()

13 return result_list

Listing B.16: get_or_name_list function

In the listing B.1 example, When the metamodel of the language is processed,

and the get_or_name_list is called. The result of this function is

1 "examplelang : langnumber | langstring | langarray"

The add_imports_to_grammar function

This function is used to add Lark specific imports and declarations to the gram-

mar string. There imports include

• import common.ESCAPED_STRING(importing predefined regular expres-

sion for string)

• import common.SIGNED_NUMBER(importing predefined regular expres-

sion for numbers)

• import common.WS (importing white space from Lark)

• ignore WS (to ignore white space in the language sentence)

1 def add_imports_to_grammar(grammar):

2 """imports can be added to the grammar string so we can use

builtin Lark functions"""

3 imp_str = """\n%import common.ESCAPED_STRING\n%import common.

SIGNED_NUMBER\n%import common.WS\n%ignore WS\n"""

4 grammar = grammar + imp_str

5 return grammar

Listing B.17: add_imports_to_grammar function

The add_tokens_to_grammar function

This function is used to append the tokens dictionary key values as a string to

grammar string, This token dictionary was passed to PyCo class instance during

initialization.

92

Appendix B. Systems Manual

1 def add_tokens_to_grammar(grammar, tokens):

2 """this function is used to append defined tokens to generated

grammar"""

3 token_str = "\n"

4 for i in tokens:

5 token_str += i.lower() + ’ : ’ + tokens[i] + ’\n’

6 grammar = grammar + token_str

7 return grammar

Listing B.18: add_tokens_to_grammar function

B.4 Internal language model

Creation of internal language model is the most important task of PyCo because

based upon this, the grammar and class instances are going to be created in the

later stages.

This model stores all the information of classes and subclasses that are linked

together through inheritance.

This InternalLanguageModel class only takes two parameter to initialize. The

first parameter base_class is used to find the classes and all the subclasses which

are in relationship and generate class internal class instances structures struc-

tures(FieldsMetaData, AbInheritanceClass) to store metadata.

There is only one method(generate_grammar_meta_data) in this class and

this method is always called during the initialization process. This method is

used to start the process of finding, generating and storing the metadata of class

fields.

The method first finds the list of subclasses, if the base class is being inherited

by some other class.

If there are no subclasses, thanwe try to find if the class has an attribute named

__dataclass_fields__.

If the class does have the attribute __dataclass_fields__, we find the fields of

the class using dataclasses library fields function. We iterate on each of these

fields to find the defined metadata. This metadata is converted into the instances

of appropriate class structures(FieldsMetaData, AbInheritanceClass).

These class instances are further appended to the appropriate list of similar

class structures(AbInheritanceClassList, FieldsMetaDataList).

1 class InternalLanguageModel:

2 """This class is responsible to generate language metadata model

classes and generate grammar for Lark parser"""

93

Appendix B. Systems Manual

3

4 def __init__(self, base_class , tokens):

5 self.base_class = base_class

6 self.tokens = tokens

7 self.meta_data_class = MetaDataClass()

8 self.processed = []

9 self.field_data_type = [’int’, ’float’, ’str’, ’dict’, ’list’,

’bool’, ’custom’]

10 self.generate_grammar_meta_data(start_class=base_class , tokens

=tokens)

11

12 def generate_grammar_meta_data(self, start_class , tokens):

13 """this method generates metadata classes for grammar generate

and class instance generation process"""

14 subclasses_instances = get_all_subclasses_instances(

start_class)

15 if len(subclasses_instances) > 0:

16 for x in subclasses_instances:

17 class_obj = AbInheritanceClass(

18 class_instance=start_class ,

19 class_names_list=[ClassMetaData(class_instance=

class_name) for class_name in subclasses_instances]

20)

21 self.meta_data_class.add_unique_to_ab_inheritance(

abInheritanceClass=class_obj)

22

23 if x not in self.processed:

24 self.processed.append(x)

25 self.generate_grammar_meta_data(x, tokens)

26

27 if hasattr(start_class , ’__dataclass_fields__’):

28 fields_data = dataclasses.fields(start_class)

29

30 for field_data in fields_data:

31 if is_optional(field_data.type):

32 if field_data.type.__args__[0].__class__.__name__

== ’_GenericAlias’:

33 class_type_name = get_class_type(field_data).

__name__.lower()

34 class_field = inspect.getmembers(field_data.

type)[0][1][0]

35 class_field_name = class_field.__name__.lower

()

36 self.meta_data_class.

add_unique_to_field_meta_data_list(

94

Appendix B. Systems Manual

37 FieldsMetaData(

38 ref_class_name=start_class.__name__.

lower(),

39 field_name=field_data.name,

40 field_type=field_data.type.__args__

[0],

41 field_meta=field_data.metadata ,

42 field_names_list=list(start_class.

__annotations__.keys()),

43 ref_class=start_class ,

44 inner_class=class_field ,

45 field_type_name_ref=class_type_name ,

46 optional=True,

47 default=field_data.metadata[’default’

],

48 of_type=class_field_name))

49 if start_class.__name__.lower() not in self.

meta_data_class.meta_ref_list:

50 self.meta_data_class.meta_ref_list.append(

start_class.__name__.lower())

51

52 if class_field not in self.processed:

53 self.processed.append(class_field)

54 self.generate_grammar_meta_data(

class_field , tokens)

55 elif field_data.type.__args__[0].__name__.lower()

in [’int’, ’float’, ’str’, ’dict’, ’list’, ’bool’,

56

’optional’]:

57 self.meta_data_class.

add_unique_to_field_meta_data_list(

58 FieldsMetaData(

59 ref_class_name=start_class.__name__.

lower(),

60 field_name=start_class.__name__.lower

(),

61 field_type=type(start_class),

62 field_meta=field_data.metadata ,

63 field_names_list=list(start_class.

__annotations__.keys()),

64 ref_class=start_class ,

65 inner_class=None,

66 optional=True,

67 default=field_data.metadata[’default’

],

95

Appendix B. Systems Manual

68 field_type_name_ref=field_data.type.

__args__[0].__name__ ,

69 of_type=field_data.type.__args__[0].

__name__))

70

71 if start_class.__name__.lower() not in self.

meta_data_class.meta_ref_list:

72 self.meta_data_class.meta_ref_list.append(

start_class.__name__.lower())

73 elif field_data.type.__args__[0].__name__.lower()

not in [’int’, ’float’, ’str’, ’dict’, ’list’,

74

’bool’]:

75 self.meta_data_class.

add_unique_to_field_meta_data_list(

76 FieldsMetaData(

77 ref_class_name=start_class.__name__.

lower(),

78 field_name=field_data.name,

79 field_type=field_data.type,

80 field_meta=field_data.metadata ,

81 field_names_list=list(start_class.

__annotations__.keys()),

82 ref_class=start_class ,

83 inner_class=None,

84 optional=True,

85 default=field_data.metadata[’default’

],

86 field_type_name_ref=field_data.type.

__name__ ,

87 of_type=field_data.type.__name__))

88 if field_data.type.__args__[0].__name__.lower

() not in [’int’, ’float’, ’str’, ’dict’, ’list’,

89

’bool’]:

90 self.meta_data_class.meta_ref_list.append(

field_data.type.__args__[0].__name__.lower())

91 self.generate_grammar_meta_data(field_data.

type, tokens)

92

93 elif field_data.type.__class__.__name__ == ’

_GenericAlias’:

94 class_type_name = get_class_type(field_data).

__name__.lower()

95 class_field = inspect.getmembers(field_data.type)

96

Appendix B. Systems Manual

[0][1][0]

96 class_field_name = class_field.__name__.lower()

97 self.meta_data_class.

add_unique_to_field_meta_data_list(

98 FieldsMetaData(

99 ref_class_name=start_class.__name__.lower

(),

100 field_name=field_data.name,

101 field_type=field_data.type,

102 field_meta=field_data.metadata ,

103 field_names_list=list(start_class.

__annotations__.keys()),

104 ref_class=start_class ,

105 inner_class=class_field ,

106 field_type_name_ref=class_type_name ,

107 optional=False,

108 default=’OPTIONAL_DEFAULT’,

109 of_type=class_field_name))

110 if start_class.__name__.lower() not in self.

meta_data_class.meta_ref_list:

111 self.meta_data_class.meta_ref_list.append(

start_class.__name__.lower())

112

113 if class_field not in self.processed:

114 self.processed.append(class_field)

115 self.generate_grammar_meta_data(class_field ,

tokens)

116 elif field_data.type.__name__.lower() in self.

field_data_type:

117 self.meta_data_class.

add_unique_to_field_meta_data_list(

118 FieldsMetaData(

119 ref_class_name=start_class.__name__.lower

(),

120 field_name=start_class.__name__.lower(),

121 field_type=type(start_class),

122 field_meta=field_data.metadata ,

123 field_names_list=list(start_class.

__annotations__.keys()),

124 ref_class=start_class ,

125 inner_class=None,

126 optional=False,

127 default=’OPTIONAL_DEFAULT’,

128 field_type_name_ref=field_data.type.

__name__ ,

97

Appendix B. Systems Manual

129 of_type=field_data.type.__name__))

130

131 self.field_data_type.append(start_class.__name__.

lower())

132 if start_class.__name__.lower() not in self.

meta_data_class.meta_ref_list:

133 self.meta_data_class.meta_ref_list.append(

start_class.__name__.lower())

134 elif field_data.type.__name__.lower() not in self.

field_data_type:

135 self.meta_data_class.

add_unique_to_field_meta_data_list(

136 FieldsMetaData(

137 ref_class_name=start_class.__name__.lower

(),

138 field_name=field_data.name,

139 field_type=field_data.type,

140 field_meta=field_data.metadata ,

141 field_names_list=list(start_class.

__annotations__.keys()),

142 ref_class=start_class ,

143 inner_class=None,

144 optional=False,

145 default=’OPTIONAL_DEFAULT’,

146 field_type_name_ref=field_data.type.

__name__ ,

147 of_type=field_data.type.__name__)

148)

149

150 if field_data.type.__name__.lower() not in self.

field_data_type:

151 self.meta_data_class.meta_ref_list.append(

field_data.type.__name__.lower())

152 self.generate_grammar_meta_data(field_data.type,

tokens)

Listing B.19: internal language model

1 ...

2 @dataclasses.dataclass

3 class MetaDataClass:

4 AbInheritanceClassList: List[AbInheritanceClass]

5 FieldsMetaDataList: List[FieldsMetaData]

6 ClassInstanceMetaList: List[ClassInstanceMeta]

7

8 def __init__(self):

98

Appendix B. Systems Manual

9 self.AbInheritanceClassList: List[AbInheritanceClass] = []

10 self.FieldsMetaDataList: List[FieldsMetaData] = []

11 self.ClassInstanceMetaList: List[ClassInstanceMeta] = []

12 ...

Listing B.20: MetaDataClass for internal language model

B.4.1 Class structures for InternalLanguageModel

The AbInheritanceClass has the structure to store the metadata of classes which

forms an inheritance relationship with other classes. It store the structural meta-

data of the class in its attributes. It takes class_instance and class_names_list as a

parameter.

The class_names_list is an attribute of AbInheritanceClass which has a type

List[ClassMetaData]. The ClassMetaData stores in its attribute, the name of class

and its class instance.

The next important class is FieldsMetaData class. This class is used to store

the information about the class individual fields and relationships. When fields

are being processed by the InternalLanguageModel class, all of the metadata re-

lated to individual fields gets stored using this class instances. The class takes

a numbers of parameters to get initialized. All the parameters provided to this

class are attributes of this class instance.

There is another class named ClassInstanceMeta. This class has an attribute

fields which is a list of type Field class. The Field class has a structure to store the

name of the class, the type of the class provided and the tree_ref attributes. This

class keeps the count of the fields in an attribute called field_count.

There is a very important method in ClassInstanceMeta class called set_fields.

If the class has an attribute known as __annotations__, then it is possible to get

information about the fields of that class. This method checks if that attribute is

present and based on its presence can filter out the fields in the class. The function

find_type is used to find the exact type name of the class. Similar to this function

the find_inner checks the field element, to find the type of the class in the case

of both generic class and non generic class. The find_inner function use inspect

library to find the correct type.

The MetaDataClass uses both the AbInheritanceClass and FieldsMetaData

classes to combine them into one common structure to be used in the creating of

main DSL class instances.

There are four methods available in MetaDataClass.

1. add_unique_to_ab_inheritance

99

Appendix B. Systems Manual

2. add_unique_to_field_meta_data_list

3. generate_meta_for_create_instance

4. match_and_return_meta

The method add_unique_to_ab_inheritance is simply a method that checks if

the AbInheritanceClassList attribute already contains the class with the type of

AbInheritanceClass. It also checks if the reference class type (attribute of AbIn-

heritanceClass) is not in any of the basic types like, list, str, int, dict and float. If

both conditions returns true, an instance of AbInheritanceClass is added to AbIn-

heritanceClassList.

The method add_unique_to_field_meta_data_list simply add the provided

FieldsMetaData class instance to the FieldsMetaDataList attribute.

The method generate_meta_for_create_instance is the method which makes

use of both AbInheritanceClassList and FieldsMetaDataList. The method iterate

over both of these and lists and create a common structure composed of class in-

stance ofClassInstanceMeta. ThisClassInstanceMeta is then appended toClassIn-

stanceMetaList attribute, in case if ClassInstanceMetaList attribute does not con-

tain the instance of ClassInstanceMeta.

1 ...

2 @dataclasses.dataclass

3 class AbInheritanceClass:

4 def __init__(self, class_instance , class_names_list):

5 self.class_instance_ref_name = class_instance.__name__.lower()

6 self.ref_class = class_instance

7 self.class_names_list: List[ClassMetaData] = class_names_list

8

9 if type(class_instance).__name__ != ’_GenericAlias’:

10 self.class_type_name = ’abc’

11

12

13 @dataclasses.dataclass

14 class ClassMetaData:

15 def __init__(self, class_instance):

16 self.name = class_instance.__name__

17 self.ref_class = class_instance

18

19

20 @dataclasses.dataclass

21 class FieldsMetaData:

22 def __init__(self, ref_class_name , field_name , field_type ,

23 field_meta , field_names_list , ref_class ,

100

Appendix B. Systems Manual

24 inner_class , field_type_name_ref , of_type, optional,

default):

25 self.ref_class_name = ref_class_name

26 self.field_name = field_name

27 self.field_type = field_type

28 self.field_meta = field_meta

29 self.field_names_list = field_names_list

30 self.ref_class = ref_class

31 self.inner_class = inner_class

32 self.field_type_name_ref = field_type_name_ref

33 self.of_type = of_type

34 self.optional = optional

35 self.default = default

36

37 try:

38 self.field_type_name = field_type.__name__

39 except Exception as e:

40 self.field_type_name = field_type.__class__.__name__

41

42 def __hash__(self):

43 return hash(self.field_name)

44

45

46 @dataclasses.dataclass

47 class Field:

48 def __init__(self, field_name: str, field_type: str, tree_ref: str

, default: Any):

49 self.field_name = field_name

50 self.field_type = field_type

51 self.tree_ref = tree_ref

52 self.default = default

53

54

55 @dataclasses.dataclass

56 class ClassInstanceMeta:

57 def __init__(self, class_instance , type_class , of_type):

58 self.class_instance = class_instance

59 self.class_instance_name = class_instance.__name__.lower()

60 self.fields: List[Field] = []

61 self.field_count = len(self.fields)

62 self.set_fields()

63 self.type_class = type_class

64 self.of_type = of_type

65

66 def set_fields(self):

101

Appendix B. Systems Manual

67 if hasattr(self.class_instance , ’__annotations__’):

68 for index, field in enumerate(self.class_instance.

__annotations__):

69 element = self.class_instance.__annotations__[field]

70 default_value = dataclasses.fields(self.class_instance

)[index].metadata.get(’default’)

71 find = find_inner(element)

72 type_element = find_type_name(element)

73

74 field_element = Field(field, type_element , find,

default_value)

75 self.fields.append(field_element)

76

77

78 @dataclasses.dataclass

79 class MetaDataClass:

80 def __init__(self):

81 self.AbInheritanceClassList: List[AbInheritanceClass] = []

82 self.FieldsMetaDataList: List[FieldsMetaData] = []

83 self.ClassInstanceMetaList: List[ClassInstanceMeta] = []

84 self.meta_ref_list: List[str] = []

85

86 def add_unique_to_ab_inheritance(self, abInheritanceClass:

AbInheritanceClass):

87 type_list = [’str’, ’float’, ’int’, ’dict’, ’list’]

88 if not self.AbInheritanceClassList.__contains__(

abInheritanceClass) \

89 and abInheritanceClass.class_instance_ref_name not in

type_list:

90 self.AbInheritanceClassList.append(abInheritanceClass)

91

92 def add_unique_to_field_meta_data_list(self, fieldsMetaData:

FieldsMetaData):

93 contain = contains(self.ClassInstanceMetaList , lambda x: x.

ref_class == fieldsMetaData.field_type)

94 if not contain:

95 self.FieldsMetaDataList.append(fieldsMetaData)

96

97 def generate_meta_for_create_instance(self):

98 field_metadata_set_list = unique_set_list(self.

FieldsMetaDataList)

99 for element in field_metadata_set_list:

100 self.ClassInstanceMetaList.append(

101 ClassInstanceMeta(element.ref_class , element.

field_type_name_ref , element.of_type))

102

Appendix B. Systems Manual

102

103 for element in self.AbInheritanceClassList:

104 contain = contains(self.ClassInstanceMetaList ,

105 lambda x: x.class_instance_name ==

element.ref_class.__name__.lower())

106 if not contain:

107 self.ClassInstanceMetaList.append(

108 ClassInstanceMeta(element.ref_class , element.

class_type_name , None))

109

110 for class_or_instance in element.class_names_list:

111 contain = contains(self.ClassInstanceMetaList ,

112 lambda x: x.class_instance_name ==

class_or_instance.name.lower())

113 if not contain:

114 self.ClassInstanceMetaList.append(

115 ClassInstanceMeta(class_or_instance.ref_class ,

116 type(class_or_instance.

ref_class), None))

117

118 def match_and_return_meta(self, node_data):

119 return contains(self.ClassInstanceMetaList , lambda x: x.

class_instance_name == node_data)

Listing B.21: Type of classes for MetaDataClass attributes

B.4.2 Internal language model helper functions

The get_class_type function

This function returns the type of a class

1 def get_class_type(field_data):

2 """this function returns the type of a class"""

3 if typing.get_origin(field_data.type) is not None:

4 return typing.get_origin(field_data.type)

5 else:

6 return field_data.type

Listing B.22: get_class_type function

The get_all_subclasses_instances function

If we pass a class as a parameter to this function, this function will find all the

subclasses which are inheriting from that class and return the list of it.

103

Appendix B. Systems Manual

1 def get_all_subclasses_instances(class_to_check):

2 """this function finds all the class which inherits from the

class_to_check class"""

3 all_subclasses = []

4 for subclass in class_to_check.__subclasses__():

5 if subclass not in all_subclasses:

6 all_subclasses.append(subclass)

7 get_all_subclasses_instances(subclass)

8

9 return all_subclasses

Listing B.23: get_all_subclasses_instance function

The find_type function

The find_type function can find the type of class instances passed as a parameter

to it. This function is different from function get_class_type as it also processes

generic classes and return the name of the type in lower case letters.

1 def find_type(field_data):

2 if type(field_data).__name__ == ’_GenericAlias’:

3 class_type_name = field_data._name.lower()

4 return class_type_name

5 else:

6 return field_data.__name__.lower()

Listing B.24: find_type function

The find_inner function

This function returns the inner type of the class if the class has a type _Gerneri-

cAlias e.g List, Dict etc. It also finds the type if the class type doesn’t belong to

_GernericAlias type.

1 def find_inner(field_data):

2 """this function returns the inner type of the class if

_GernericAlias

3 type from typing is used e.g List, Dict etc.

4 It also finds the type if the class type doesn’t belong to

_GernericAlias

5 """

6 if type(field_data).__name__ == ’_GenericAlias’:

7 return inspect.getmembers(field_data)[0][1][0].__name__.lower

()

8 else:

104

Appendix B. Systems Manual

9 return type(field_data)

Listing B.25: find_inner function

The find_type_name function

This function returns the name of the field in all possible types of fields, generic

or non generic. The function uses inspect library of Python to find its results.

1 def find_type_name(field_data):

2 """this function returns the class name of the type given to a

field"""

3 if type(field_data).__name__ == ’_GenericAlias’:

4 try:

5 class_type_name = field_data._name.lower()

6 except:

7 class_type_name = inspect.getmembers(field_data)[0][1][0].

__name__.lower()

8 return class_type_name

9 else:

10 if is_optional(field_data):

11 return field_data.__args__[0].__name__.lower()

12 return field_data.__name__.lower()

Listing B.26: find_type_name function

B.4.3 Common helper functions

The contains function

This function takes a list of any type of values and a lambda function and return

the filtered value if matched. If the value is not found then it return False.

1 def contains(list_values , filter_contain):

2 for x in list_values:

3 if filter_contain(x):

4 return x

5 return False

Listing B.27: contains function

The is_optional function

This function checks if the field is of optional type of not and return a boolean

value.

105

Appendix B. Systems Manual

1 def is_optional(field):

2 """this functions return True or False by checking if the field is

Optional or not"""

3 return typing.get_origin(field) is typing.Union and type(None) in

typing.get_args(field)

Listing B.28: is_optional function

The unique_set_list function

This function takes a list and remove the duplicates by using Python set, but it

does it in such a way that the order of the list is persevered and returns back a

list.

1 def unique_set_list(sequence):

2 """this function creates a unique list of elements and remove the

duplicates"""

3 seen = set()

4 return [x for x in sequence if not (x in seen or seen.add(x))]

Listing B.29: unique_set_list function

The syntax decorator function

This function defines a decorator to add before and after token to the class defi-

nition.

1 def syntax(before=None, after=None):

2 """this decorator function takes two input before and after

3 either of the inputs can be provided of none of them.

4 The decorates are appended to the class metadata.

5 """

6 def syntax_decorator(class_to_apply_decorator_on):

7 class_to_apply_decorator_on.__parser_syntax = {’before’:

before, ’after’: after}

8 class_to_apply_decorator_on.decorators = []

9 if before is not None:

10 class_to_apply_decorator_on.decorators.append(’before’)

11 if after is not None:

12 class_to_apply_decorator_on.decorators.append(’after’)

13 return class_to_apply_decorator_on

14 return syntax_decorator

Listing B.30: syntax decorator function

106

	Introduction
	1 YAJCo Tool
	1.1 YAJCo specifications
	1.2 How Language is defined in YAJCo tool
	1.3 Why JAYCo taken as inspiration

	2 Overview of existing parsing tools for the Python language
	2.1 ANTLR
	2.2 pyParsing
	2.3 Parsimonious
	2.4 LARK
	2.5 Comparison of existing parsing tools
	2.5.1 Grammar definition & syntax of the parser library
	2.5.2 Speed and Memory Comparison
	2.5.3 Feature Comparison

	2.6 Selected Parsing Tool

	3 Design of Parser tool
	3.1 Conceptual Overview and Design decisions
	3.2 Python dataclasses and type annotations
	3.2.1 dataclassesdataclasses
	3.2.2 Python type annotations typingannotation

	3.3 How to use PyCo
	3.3.1 PyCo Class Decorators
	3.3.2 PyCo field metadata
	3.3.3 PyCo token definition
	3.3.4 Types applicable to fields of a class in PyCo
	3.3.5 Methods available in PyCO

	4 Implementation of PyCo
	4.1 The internal language model
	4.2 The grammar generator
	4.3 The class instance generator
	4.4 Python package structure of PyCo

	5 Evaluation
	5.1 JSON language
	5.1.1 JSON metamodel classes
	5.1.2 JSON language grammar
	5.1.3 JSON lang input tests

	5.2 Function language
	5.2.1 Function metamodel classes
	5.2.2 Function language grammar
	5.2.3 Function language input tests

	5.3 Robot language
	5.3.1 Robot metamodel classes
	5.3.2 Robot language grammar
	5.3.3 Robot language input tests

	5.4 Robot Complex language
	5.4.1 Robot Complex metamodel classes
	5.4.2 Robot Complex language grammar
	5.4.3 Robot Complex language input tests

	5.5 Conclusion of tested DSL metamodels
	5.6 Limitations of PyCo library
	5.7 PyCo and YAJCo Comparison
	5.7.1 Abstract Syntax Definition
	5.7.2 Composition multiplicity
	5.7.3 Referencing(aggregation)
	5.7.4 Keywords and symbols
	5.7.5 Operator definition
	5.7.6 Tokens with value
	5.7.7 Additional annotations in YAJCo

	5.8 Future improvements of PyCo

	6 Conclusion
	Bibliography
	List of Appendixes
	A User Manual
	A.1 Requirements of PyCo library
	A.2 Installing dependencies
	A.3 How to use the library
	A.3.1 Define metamodel
	A.3.2 Initialize pyCo and create class instances

	A.4 Class decorators in PyCo
	A.5 Metadata field keys in PyCo
	A.6 Methods available in PyCo
	A.7 Testing PyCo
	A.8 Generating Diagram of PyCo Structure
	A.9 Limitations of PyCo Library

	B Systems Manual
	B.1 Conditions to be fulfilled for PyCo initialization
	B.2 PyCo instance initialization
	B.2.1 Implementation of PyCo methods
	B.2.2 PyCo class helper functions

	B.3 Grammar generator
	B.3.1 Grammar class methods
	B.3.2 Grammar class helper function

	B.4 Internal language model
	B.4.1 Class structures for InternalLanguageModel
	B.4.2 Internal language model helper functions
	B.4.3 Common helper functions

