
PAVOL JOZEF ŠAFÁRIK UNIVERSITY IN KOŠICE

FACULTY OF SCIENCE

BLOCKCHAIN-BASED

ENTERPRISE APPLICATIONS

MASTER THESIS

Field of Study: Informatics

Institute: Institute of Computer Science

Supervisor: doc. RNDr. Jozef Jirásek, PhD.

Košice 2022

Bc. Matúš Revický

Acknowledgments

I would like to express my gratitude towards doc. RNDr. Jozef

Jirásek, PhD., who offered valuable insights and guidance on the

way forward at various points during this research. His insights,

patience and guidance have been second-to-none. I would also like

to thank him for constructive feedback, motivating advice and valu-

able supervision.

Abstrakt

Problémom v oblasti distribúcie tepelnej energie je zabezpeče-

nie spoľahlivého a pravidelného odpočtu. Pri rádiovom zbere dát

o spotrebe pomocou senzorov je potrebné zabezpečiť auditovateľ-

nosť, bezpečnosť a nemennosť dát. Ako jedna z možností rieše-

nia sa ukázal soĄstikovaný monitorovací systém s využitím tech-

nológie blockchainu. V práci sa realizuje analýza aplikovateľnosti

blockchain frameworkov na monitorovanie spotreby. Výsledkom

tejto práce je moderný, progresívny informačný systém založený na

blockchain frameworku Hyperledger Fabric v2.3 v súlade s medzi-

národnými technickými normami. Zameriava sa na bezpečnosť, ne-

mennosť, transparentnosť dát a integráciu technológie blockchain

do komplexných biznisových aplikácií v energetickom sektore. Sú-

časťou práce sú aj merania a vyhodnotenie výkonu implemento-

vaných smart kontraktov pomocou nástroja Hyperledger Caliper.

Experimenty sú zamerané na rýchlosť generovania a posielania po-

žiadaviek v závislosti od počtu lokálnych Caliper klientov a na

minimalizáciu neúspešných transakcií pri zachovaní čo najvyššej

priepustnosti distribuovanej blockchainovej siete.

Kľúčové slová: blockchain, Hyperledger Fabric, biznis riešenia

Abstract

In the energy distribution segment, ensuring safe and regular

heat meter readings remains a challenge. Auditability, security

and data consistency must be ensured when collecting consump-

tion data by smart energy meters. A sophisticated monitoring

system using blockchain technology proved to be one of the possi-

ble solutions. First part of research investigates the applicability

of blockchain frameworks to build energy consumption monitoring

system. This thesis proposes a modern, progressive information

system based on the blockchain framework Hyperledger Fabric v2.3

in accordance with international technical standards. It focuses

on security, consistency, data transparency and the integration of

blockchain technology into complex business applications in the

energy sector. The performance of implemented smart contracts is

measured using the Hyperledger Caliper tool. The experiments are

focused on the speed of generating and sending requests depend-

ing on the number of local Caliper clients and on minimizing failed

transactions while maintaining the highest possible throughput of

the distributed blockchain network.

Keywords: blockchain, Hyperledger Fabric, enterprise solu-

tion

Contents

Abbreviations 10

Introduction 12

1 Blockchain 15

1.1 The history of blockchain and Bitcoin 15

1.2 Overview of Blockchain technology . 16

1.3 Consensus . 17

1.3.1 Consensus in blockchain . 18

1.3.2 Blockchain Consensus Algorithms 18

1.4 Types of Blockchain . 20

1.4.1 Public Blockchains . 20

1.4.2 Consortium Blockchains . 20

1.4.3 Private Blockchains . 21

1.4.4 Summary . 21

1.5 Related Work . 21

2 Enterprise Blockchain 24

2.1 Enterprise solutions and blockchain . 24

2.2 Limiting factors in public blockchain 26

2.3 Enterprise blockchain requirements . 27

2.4 Enterprise blockchain versus public blockchain 28

2.5 Blockchain in the cloud . 29

2.6 Currently available enterprise blockchains 29

2.6.1 Corda . 29

2.6.2 Quorum . 31

2.6.3 Hyperledger Fabric . 32

2.6.4 Comparison of main platforms 34

5

3 Hyperledger Fabric 36

3.1 Transaction Ćow . 36

3.2 Chaincode lifecycle . 38

3.3 Membership services . 40

3.4 The Ordering Service . 40

3.4.1 Raft . 41

4 Business Scenario 44

4.1 Real-world processes . 44

4.2 Shared process workĆow . 45

4.3 Shared assets and data . 47

4.4 Participants’ roles and capabilities . 47

5 System architecture 49

5.1 Functional considerations . 49

5.2 Hyperledger Fabric - tools . 50

5.2.1 Designing a Hyperledger Fabric network 51

5.2.2 Applications for organizations 53

6 Implementation 55

6.1 Implementation overview . 55

6.2 Hyperledger Fabric network . 56

6.2.1 Prerequisites . 56

6.2.2 Preparing the network . 56

6.2.3 Chaincode implementation, testing and deployment 62

6.3 REST server implementation . 65

6.4 Summary . 66

7 Evaluation 67

7.1 Flow validation . 67

7.2 Performance evaluation . 73

7.2.1 Experiment 1 . 75

7.2.2 Experiment 2 . 77

7.3 Security of proposed solution . 79

Conclusion 83

6

Resumé 85

Appendices 95

A CD medium . 96

List of Figures

1.1 Blocks with Merkle tree . 17

2.2 Corda high-level network architecture [5] 31

2.3 Quorum architecture [5] . 32

2.4 Hyperledger Fabric architecture overview [26] 33

3.5 Hyperledger Fabric transaction Ćow [7] 36

3.6 Hyperledger Fabric chaincode lifecycle [20] 39

3.7 Hyperledger Fabric invoke query [25] 40

3.8 Raft state transition [5] . 42

3.9 Log replication mechanism [5] . 42

4.10 Heat consumption metering workĆow 46

5.11 Initial Hyperledger Fabric network design 52

5.12 Property management web application architecture 53

6.13 Full solution architecture . 66

8

List of Tables

1.1 Types of blochchain [46] . 21

2.1 Public and enterprise blockchains comparison [5] 28

2.2 Comparison of blockchain frameworks [5] 35

4.1 Assets with attributes . 47

4.2 Options available to participants in each stage 47

6.1 Contract functions of SensorContract 64

7.1 Measurements using Ąxed-rate rate controller 76

7.2 Reasons for failed transactions summary 77

7.3 Measurements using Ąxed-load rate controller 78

7.4 Reasons for failed transactions summary 79

7.5 Threats [12] . 82

9

Abbreviations

ABAC attribute-based access control

ACL Access Control List

AML antiŰmoney laundering

AMQP Advanced Message Queuing Protocol

API application programming interface

B2B business-to-business

BaaS Blockchain as a Service

BFT Byzantine Fault Tolerance

CA certiĄcate authority

CF Crash faults

CFT Crash Fault Tolerant

CPU Central processing unit

CRUD Create, Read, Update, Delete

DApps Decentralized applications

DHT Distributed Hash Table

DLT Distributed ledger technology

E-CA enrolment certiĄcate authority

E-Certs Enrolment certiĄcates

E-O-V Execute-Order-Validate

ESCC Endorsement System Chaincode

EVM Ethereum Virtual Machine

FBA Federated Byzantine Agreement

HIPAA Health Insurance Portability and Accountability Act

HTML HyperText Markup Language

HTTPS Hypertext Transfer Protocol Secure

IoT Internet of Things

JSON JavaScript Object Notation

10

JVM Java Virtual Machine

KYC know-yourŰcustomer

MSP membership service provider

MVCC Multiversion Concurrency Control

NIST National Institute of Standards and Technology

OS Operating system

P2P peer-to-peer

PBFT Practical Byzantine Fault Tolerance

PC Personal Computer

PKI Public Key Infrastructure

PoA Proof of Authority

PoC Proof of Concept

PoS Proof of Stake

PoW Proof of Work

RAM Random-access memory

RBAC Role-Based Access Control

REST Representational state transfer

RSM replicated state machine

SaaS Software as a Service

SDK Software Development Kit

SMR State machine replication

SoC speed of consensus

SSD Solid-state drive

SSO Single sign-on

SUT System Under Test

T-Certs temporary certiĄcates

TA trust authority

TLS Transport Layer Security

TPS transactions per second

TRXN Transaction

VS Code Visual Studio Code

VSCC Validation System Chaincode

WSL2 Windows Subsystem for Linux 2

11

Introduction

Sophisticated consumption monitoring is a challenge for the energy sector. Due to

lack of reliable consumption data companies may need to over-provision generation

thus increasing the cost of energy. The issues related to the security and privacy of

consumption data present serious challenges.

Consumers, property management companies, heating distributors and heating

companies together form a business network due to their transactive relationships

with one another. Such a business network must be decentralized in order to prevent

decision-making from becoming concentrated in the hands of a single party.

To facilitate transactions among the members, a system that encapsulates this

business network is required. To be trustworthy, such a transaction system must be

transparent, immutable, and allow for provenance tracing of assets transacted on the

network. Business relationships must be encapsulated in mutually agreed upon self

enforcing contracts in order to automate and facilitate transactions.

Blockchain is a decentralized immutable ledger that meets these requirements since

it forbids any member from unilaterally processing transactions or making decisions

on the network. Transactions are kept in blocks, with each block containing the

hash of the previous one, making the ledger veriĄable. Any asset’s provenance may

be easily traced by checking its transaction history on the ledger. Transactions are

transparent to all members since the ledger is replicated at each node of the network.

The ledger is also immutable due to its distributed nature and the cryptographic

linking of blocks, as any unilateral attempts to modify the transactions will produce

inconsistency and hence be rejected by the network. For digital assets that can be

replicated, double spending is an issue, as unscrupulous parties may attempt to spend

the same asset numerous times. The use of a decentralized and immutable ledger that

requires consensus for each transaction mitigates this problem.

Permissioned networks, such as Hyperledger Fabric, allow only authenticated par-

ties to join and participate. Identity-based access control mechanisms, as well as

traceability, can be used to deĄne each node’s privileges in the network, as well as

to establish accountability because the invoker for each transaction is known. To

automate transactions, self-enforcing smart contracts can be written to encapsulate

agreed-upon business logic. Because network participants are identiĄed and authenti-

cated, resource-intensive approaches like Proof of Work (PoW) are no longer required.

The system’s operating costs are thereby decreased, and the need to deploy cryptocur-

rency to motivate nodes to process transactions is eliminated.

This thesis’s main topic is a study of the applicability of enterprise permissioned

blockchains, to the energy sector and, more speciĄcally, to energy consumption moni-

toring. We analyze the following research question: Is blockchain applicable to address

transaction management for consumption monitoring?

In this thesis, we use Hyperledger Fabric 2.3, a distributed ledger technology frame-

work maintained by the Linux Foundation, to design and develop our solution.

Following research activities are related to performance evaluation: (1) Selection of

tool to measure the performance of smart contracts, (2) determination of the highest

possible actual send rate of selected tool (Caliper), (3) estimation of the transaction

throughput of the network while trying to minimize number of failed transactions, (4)

monitoring of hardware resources utilized during experiments.

This thesis is structured as follows:

Chapter 1 provides a comprehensive overview of blockchain technology and im-

portant theoretical concepts. This chapter concludes with related work, that provides

an insight into the current state of the art in the applicability of blockchain to achieve

trust in energy sector.

Chapter 2 explains the use and application of blockchain technology in enterprise

settings, covers comparison of public and enterprise blockchains, and describes dis-

tributed ledger platforms such as Quorum, Corda and Hyperledger Fabric together

with comparison.

Chapter 3 focuses on the architecture and concepts behind the Hyperledger Fabric

network.

Chapter 4 presents use-case focused on energy consumption monitoring. Analysis

of use case is performed which consists of a participants identiĄcation, shared assets

identiĄcation, lifecycle identiĄcation and identiĄcation of capabilities and restrictions

of each role.

Chapter 5 describes the components forming our solution, functional considera-

tions and additional Hyperledger Fabric tools.

13

Chapter 6 describes most important parts of implementation process and dives

into the technical details relevant to implementing the system.

Chapter 7 presents Ćow validation, performance and security analysis.

Full implementation source code and additional measurements are available in

appendix A. The implemented solution consists of following components: (1) Hy-

perledger Fabric network (Appendix A, diploma_thesis_project/fablo-network-

generator/) with chaincodes (Appendix A, diploma_thesis_project/chaincode-

typescript/) and (2) Applications for organizations (Appendix A, diploma_thesis_

project/apps/). Appendix A, diploma_thesis_project/README.md contains in-

formation about additional diploma_thesis_project/README-*.md Ąles, which de-

scribe how the whole system was created and how to run it.

Additional project was created to measure performance (Appendix A,

caliperworkspace/), which requires a running Fabric network and identities gener-

ated by applications for organizations. Caliper requires the deĄnition of network con-

Ągurations (Appendix A, caliperworkspace/networks/networkConfig.json) to

connect to the Fabric network, test conĄgurations (Appendix A, caliperworkspace/

benchmarks), and test Ąles (A, caliperworkspace/workload/) to test performance

of chaincode functions. Logs from each benchmark, which contain error messages,

can be found in appendix A, caliperworkspace/reports in corresponding *.log

Ąles. Individual reports can be found in appendix A, caliperworkspace/reports in

corresponding *.html Ąles. Resource utilization summary can be found in appendix

A, caliperworkspace/reports/docker_report.xlsx.

14

1 Blockchain

The Ąrst documented blockchain design was in 2008, and the Ąrst open source block-

chain implementation was deployed in 2009 as an important component of Bitcoin, the

Ąrst decentralized digital currency system to distribute bitcoins via the open source

release of the Bitcoin peer-to-peer (P2P) software [46].

1.1 The history of blockchain and Bitcoin

Now, we’ll look at the early history of computers and computer networks, and how

these technologies evolved and contributed to the creation of Bitcoin in 2008. This

can be viewed in chronological order [5]:

• 1970s Ű Cryptographic hash functions.

• 1978 Ű Invention of public key cryptography.

• 1979 Ű Invention of Merkle Trees (hashes in a tree form) by Ralph C. Merkle.

• 1982 Ű The Byzantine Generals Problem (While Bitcoin can be considered a

solution to the Byzantine Generals Problem, the Bitcoin network’s primary aim

was to resolve the previously unsolvable double-spending problem.)

• 2001 Ű Emergence of BitTorrent and Distributed Hash Tables (DHT).

• 2005 Ű Prevention of Sybil attacks by using computation puzzles, due to James

Aspnes et al.

• 2009 Ű Bitcoin (Ąrst blockchain)

Even if the aforementioned technologies did not directly contribute to the devel-

opment of Bitcoin, their work is signiĄcant to the problem that Bitcoin solved. All

prior attempts to build anonymous and decentralized digital currency were partially

successful, but they failed to address the issue of avoiding double spending in a truly

15

trustless or permissionless environment. The Bitcoin blockchain, which launched the

Bitcoin cryptocurrency, was eventually able to solve this difficulty [5].

Other concepts, such as State machine replication (SMR), introduced by Leslie

Lamport in 1978 and formalized by Fred Schneider in 1980, are also addressable

by Bitcoin. Bitcoin (probabilistically) solves the SMR problem by permitting block

replication and assuring consistency through its PoW consensus method [5].

1.2 Overview of Blockchain technology

There are several slightly different deĄnitions of blockchain and some very dogmatic

opinions. We used the following deĄnition for this thesis [45].

Blockchain is a database encompassing a physical chain of Ąxed-length blocks con-

taining 1 to N transactions, where each transaction added to a new block is validated

and then inserted into the block. When the block is completed, it is appended to the

end of the existing chain of blocks. Furthermore, as opposed to traditional CRUD,

the only two operations are add transaction and view transaction. As a result, the

fundamental blockchain processing consists of the steps listed below [3].

1. Add new and undeletable transactions and organize them into blocks.

2. Cryptographically verify each transaction in the block.

3. Append the new block to the end of the existing immutable blockchain.

Each node keeps a replica of an immutable ledger, which is typically implemented

as an append-only Ąle or database. To commit records, blockchain relies on digital

signatures and consensus. Distributed ledger technology (DLT) does not employ con-

sensus; instead, DLTs rely on the presence of digital signatures to commit records. The

records are committed to the immutable ledger, an append-only database in which

each record is ordered in time and each block of records is cryptographically linked

to the previous committed block. The block contains additional metadata along with

the hash code of the prior block and a set of committed records. The records are

typically represented by a hash tree known as a Merkle tree, which is depicted in

Ągure 1.1.

The topmost node of the tree is the root. The nodes at the bottom are known as

leaf nodes. Each node is simply a cryptographic hash of a transaction. The Merkle

tree is not a list of all transactions, but rather a hash of all transactions in the form

16

of a tree structure. The most signiĄcant advantage is that determining whether a

certain transaction has been included within a block is easy and efficient [3].

Figure 1.1: Blocks with Merkle tree

1.3 Consensus

The choice of the consensus algorithm to utilize is governed by the type of blockchain in

use; that is, not all consensus mechanisms are appropriate for all types of blockchains.

Consensus is the process of achieving agreement on the Ąnal state of data between

distrusting nodes. Different algorithms are employed to reach a consensus. It is easy

to obtain an agreement between two nodes (e.g., in client-server systems). But

when several nodes are participating in a distributed system and they need to

agree on a single value, it becomes a difficult task to achieve consensus. This process

of reaching agreement on a common state or value among several nodes despite the

failure of some nodes is known as distributed consensus.

All consensus algorithms are designed to deal with faults in a distributed system

and to allow distributed systems to reach a Ąnal state of agreement. Replication

is used to achieve fault tolerance. This is a commonly used method to achieve fault

tolerance. In general, there are two types of faults that a node can encounter [5]:

1. Crash faults (CF): This type of fault occurs when a node merely has crashed.

CF are the easier ones to deal with of the two fault types. To cope with this

sort of failure, Paxos or the Raft protocol are typically utilized.

17

2. Byzantine faults: The second type of fault is one where the malfunctioning

node acts maliciously or inconsistently at random. This type is difficult to

handle since it can create confusion due to misleading information. This could

be the consequence of an adversary attack, a software error, or data corruption.

SMR protocols such as Practical Byzantine Fault Tolerance (PBFT) was

developed to address this type of faults.

1.3.1 Consensus in blockchain

The two main categories of consensus mechanisms are roughly described as follows:

1. Proof-based, leader-election lottery-based, or the Nakamoto consen-

sus whereby a leader is elected at random (through an algorithm) and pro-

poses a Ąnal value. This category of consensus mechanism is also known as

totally decentralized or permissionless. This type is employed in the Bitcoin

and Ethereum blockchain in the form of a PoW mechanism.

2. Byzantine Fault Tolerance (BFT)-based is a more traditional method

based on rounds of votes. This category of consensus is also known as the

consortium or permissioned type of consensus mechanism.

When there is a small number of nodes, BFT-based consensus techniques perform

well, but they do not scale very well. Leader-election lottery-based (PoW) consensus

mechanisms, on the other hand, scale very well but perform very slowly. There are

also some additional proposals out there that are attempting to achieve the balance

between scalability and performance (e.g., PBFT) [5].

1.3.2 Blockchain Consensus Algorithms

In this section, we explore consensus algorithms that are widely used in existing

blockchain solutions. The following is not an exhaustive list [5]:

• Proof of Work (PoW). This type of consensus mechanism relies on proof

that appropriate computational resources have been spent before proposing a

value for acceptance by the network. PoW involves solving a resource-intensive,

difficult-to-solve, yet simple-to-verify cryptographic challenge. The miners need

to Ąnd a nonce value in a way that the hash of the block content and the nonce

has a speciĄc amount of leading zeros. PoW uses a difficulty parameter that

18

adjusts the amount of leading zeros to limit the number of blocks created in the

network to one every 10 minutes. PoW solves the Byzantine generals problem

as long as honest participants control the majority of the network.

• Proof of Stake (PoS). To mine blocks using this algorithm, miners must lock

certain assets. The mining power of each node is determined by the number of

locked assets. The miner who has the most locked assets has a greater weight

in mining blocks. PoS is based on the assumption that the nodes that proĄt

the most from the blockchain, i.e., those with the greatest assets invested in it,

are less inclined to attack the blockchain (i.e., avoid self-harm). Big businesses,

such as Google, can acquire a large share of assets in Internet of Things (IoT),

and so PoS may eventually lead to centralization.

• Proof of Authority (PoA) is a consensus algorithm that can be thought of

as a type of PoS in which each miner’s mining power is determined based on

its identity in the network rather than the quantity of locked assets. A pre-

approved group of nodes act as miner and their identity is known to all network

members. The miner with higher reputation have higher chance in mining new

blocks.

• Practical Byzantine Fault Tolerance (PBFT): This mechanism achieves

SMR, which provides tolerance against Byzantine nodes. Other protocols, in-

cluding as PBFT, Paxos, Raft, and Federated Byzantine Agreement (FBA), are

also utilized or have been suggested for use in a variety of distributed system

and blockchain implementations. PBFT provides immediate and deterministic

transaction Ąnality. In contrast, the PoW protocol requires a number of con-

Ąrmations to Ąnalize a transaction with a high probability. PBFT is also more

energy efficient than PoW, which uses a lot of electricity.

PBFT is not very scalable. That’s why it is better suited to consortium networks

rather than public blockchains. It is considerably faster than PoW protocols.

Sybil attacks can be carried out on a PBFT network, where a single entity

can control multiple identities in order to inĆuence voting and, subsequently,

decision. However, the Ąx is straightforward, and in fact, this is not particularly

practical in consortium networks when all identities are known on the network.

This issue can easily be solved by increasing the number of network nodes.

19

1.4 Types of Blockchain

Based on how blockchain has evolved over the last few years, it can be divided into

multiple categories with different, although somewhat overlapping characteristics. In

this section, we will examine the different types of blockchains from a technical and

business use perspective [5].

1.4.1 Public Blockchains

A public blockchain is one that its creators intended for everyone to be able to

access and transact with; a blockchain where transactions are included if and only if

they are valid; a blockchain where everyone can contribute to the consensus process.

As previously stated, the consensus mechanism determines which blocks get added

to the chain and what the current state is. Instead of relying on a central server,

the public blockchain is secured by cryptographic veriĄcation, which is supported

by incentives for miners. Anyone can be a miner to aggregate and publish those

transactions. In the public blockchain, because no user is implicitly trusted to verify

transactions, all users follow an algorithm that veriĄes transactions by committing

software and hardware resources to solving a problem by brute force (i.e., by solving

the cryptographic puzzle). The miner who Ąnds the solution Ąrst gets rewarded, and

each new solution, together with the transactions necessary to verify it, serves as the

foundation for the next challenge to be solved. The veriĄcation concepts are PoW or

PoS [3].

1.4.2 Consortium Blockchains

A consortium blockchain, such as R3 [41], is a distributed ledger in which the consensus

process is controlled by a predeĄned set of nodes, such as a consortium of nine

Ąnancial institutions, each of which operates a node, and of which Ąve (such as the

US Supreme Court) must sign every block in order for the block to be valid. The

right to read the blockchain can be open to the public or restricted to participants,

and there are also hybrid options, such as making the root hashes of the blocks public

while also providing an application programming interface (API) that allows members

of the public to make a limited number of queries and receive cryptographic proofs

of some parts of the blockchain state. These blockchains are distributed ledgers that

may be described as "partially decentralized" [3].

20

1.4.3 Private Blockchains

A fully private blockchain is one in which write permissions are centralized to a sin-

gle organization. Read permissions can be public or restricted to any level. Likely

applications include database management and auditing internal to a single company,

so public readability may not be necessary in many cases at all, though in other cases

public auditability is desired. Private blockchains might give answers to Ąnancial en-

terprise problems, such as compliance agents for regulations like the Health Insurance

Portability and Accountability Act (HIPAA), antiŰmoney laundering (AML), and

know-yourŰcustomer (KYC) laws. The Linux Foundation’s Hyperledger project and

the Gem Health network are both private blockchain projects under development [3].

1.4.4 Summary

Although they differ in terms of security and performance in terms of the speed of

consensus (SoC), if any trust authority (TA) is used, and how many TAs are neces-

sary, as detailed in table 1.1, these three blockchain categories have several common

properties [46]:

(1) they all employ decentralized peer-to-peer networks for transactions,

(2) they all demand that each transaction be digitally signed and appended only to

the blockchain,

(3) they all rely on consensus to synchronize the replicas across the network.

Types Description
Trust

authorities
Speed of

consensus
Scenarios

Public
Anyone can participate and is

accessible worldwide
0 Slow

Global decentralized
scenarios

Consortium
Controlled by pre-selected nodes

within the consortium
>=1 Normal

Businesses among
selected organizations

Private
Write rights are controlled by an

organization
1 Fast

Information sharing and
management in an organization

Table 1.1: Types of blochchain [46]

1.5 Related Work

The use of blockchain in the energy sector has attracted the interest of academic

researchers, utility corporations, and energy decision makers. This section brieĆy

21

discusses related work.

Kieron O’Hara [36] demonstrates the essential functions of data trust. He iden-

tiĄes eight technical criteria that are required for trustworthy data sharing: discovery,

provenance, access controls, access, identity management, usage auditing, account-

ability, and impact. His work is focused on theoretical properties of data trust and is

not blockchain speciĄc. Blockchain and its innovative features supply several of these

necessary properties, such as provenance and auditing. Access control restrictions and

data impact calculations, for example, are two more desirable features for data trust

that can be written into blockchain as smart contracts.

Gür et al. [13] propose a scalable and energy efficient energy tracking system

with blockchain and IoT devices. In their solution Raspberry Pi is used to simulate

metering, Hyperledger Fabric 1.3 is selected as a blockchain system. Authors explain

the need for a system where all users have access to the current usage levels, all users

trust the system and the privacy of their personal data is preserved. Their work

brieĆy points out beneĄts of smart sensors in consumption metering. Their Proof of

Concept (PoC) solution is implemented using Hyperledger Composer (deprecated on

Aug 29th 2019), which dramatically simpliĄed blockchain application development.

Their solution was tested on single computer inside Virtualbox. No performance

analysis was performed.

Yue Qi et al. [39] examines the use of blockchain technology to build an en-

ergy consumption monitoring system for key energy-consuming units, analyzes the Ąt

between business needs and blockchain technology, designs high-level blockchain plat-

form architecture, and discusses the issues of energy consumption monitoring, block-

chain terminal equipment authentication and collection of trusted data. Research

focuses mostly on comparison with the existing energy consumption monitoring sys-

tem for energy-consuming units in China. Proposed solution is not implemented and

it is not known which technologies should be used.

Claudia Pop et al. [38] are dealing with real-time energy data collected by smart

energy meters. They propose a scalable second tier solution which combines the block-

chain ledger with distributed queuing systems and NoSQL databases to allow for less

frequent registration of energy transactions on the chain while retaining the tamper-

evident features of blockchain technology. Authors also propose a solution for tamper-

evident registration of smartmeter’ energy data and related energy transactions using

digital Ąngerprinting that allows the energy transaction to be linked hashed-back on-

chain while the sensor data is stored off-chain. For the on-chain components, authors

22

used Ethereum and smart contracts, while for the off-chain components, authors used

Cassandra database and RabbitMQ messaging broker.

Esther Mengelkamp et al. [33] propose a blockchain-based microgrid energy

market without the need for central intermediaries. Common blockchain use in the

energy industry is to transform the power grid into a peer-to-peer network allowing

prosumers to trade electricity with one another (e.g., purchase and/or sell energy

generating excess to neighbors). In general, smart meters are used to identify energy

surplus, which is then transformed into equivalent energy tokens that may be swapped

in a local grid-level marketplace. Proposed solution was implemented using Ethereum

and project is available at [34].

Based on the academic articles reviewed, we can conclude that trustworthy energy

consumption monitoring systems are possible to implement and would provide clear

added value. The key beneĄts of these implementations include traceability, security,

and auditability.

23

2 Enterprise Blockchain

In this chapter, we will look into enterprise blockchains. We will also attempt to

answer the major issue of why existing public blockchains are not always a suitable

candidate for enterprise use cases. We will also present a number of enterprise block-

chain platforms. We’ll cover the following topics along the way:

• enterprise solutions and blockchain,

• limiting factors,

• requirements,

• enterprise blockchain versus public blockchain,

• blockchain in the cloud,

• currently available enterprise blockchains.

Enterprise blockchains are a form of permissioned consortium chain that

primarily addresses enterprise needs. Enterprise blockchains are typically private and

permissioned, and are run among consortium members. While public blockchains

offer integrity, consistency, immutability, and security, they lack certain features, mak-

ing them less appropriate for enterprise use [5].

2.1 Enterprise solutions and blockchain

Enterprise solutions integrate several aspects of a business and enable it to meet

its goal by providing stakeholders with business-critical information. Therefore, an

enterprise blockchain system should be capable of achieving this result.

We can ask certain questions to determine whether or not a blockchain is suitable

for an enterprise. The following are a few of these questions:

• Does my use case require data to be shared among participants?

24

• Does my use case have people from other organizations that aren’t always trust-

worthy and have conĆicting interests?

• Does my use case require strict auditing? A blockchain can help with this since

it is an immutable, tamper-proof chain of records that can offer a clear audit

trail of all transactions made on the chain (enterprise system).

• Does my use case need to keep transactions conĄdential?

• Is it necessary for my use case to maintain participant anonymity?

• Does my use case require restricted but transparent ledger updates?

• No need for a single trusted authority in my use case; instead, network decisions

(ledger updates) should be made by consortium members and agreed upon by

them?

In addition to the questions outlined here, we need to additionally address the

following questions when introducing an enterprise blockchain solution:

• What is the proposed blockchain solution’s overall goal? Is it in accordance

with the enterprise’s business goals? Is it a Proof of Concept (PoC) solution

to just illustrate a concept, or a production project with real-world commercial

deliverables?

• Where would it be hosted Ű in the cloud or on-premises? Who will be in charge

of the blockchain solution once it is deployed?

• Risk management concerns Ű does the solution follow any known risk man-

agement guidelines? National Institute of Standards and Technology (NIST)

800-37, for example, is a risk management framework that provides a strategy

for managing security and privacy risk in information technology systems and

organizations.

• Is there any other enterprise blockchain project that this organization has al-

ready implemented? Can we learn from previous experiences and apply some of

the tools and best practices that have already been developed?

The challenge now is how to design blockchain solutions that provide actual busi-

ness value.

The major advantage of enterprise blockchains is in its ability to serve as a sharable,

replicable, permissioned ledger amongst organizations, resulting in immediate cost

25

savings by removing the requirement for data exchange. In doing so, we also eliminate

the requirement for infrastructure and tools to facilitate such exchanges. Furthermore,

because a blockchain provides inherent security, immutability, and auditing, there is

no need to invest individually for these requirements [5].

2.2 Limiting factors in public blockchain

These limitations in public blockchains, as well as special requirements in any

organization, have sparked interest in enterprise blockchain. Next, we’ll go through

some of the most typical problems.

• Slow performance. Public blockchains are slow, with just a few transactions

per second being processed. Bitcoin is capable of processing 3-4 transactions

per second.

• Lack of access governance. All participants in an enterprise must be identi-

Ąed so that everyone knows who they are dealing with. Because public block-

chains lack an identiĄcation and access control system, they are inappropriate

for business use.

• Lack of privacy. Public blockchains are inherently transparent, with every-

one able to see everything on the ledger. This implies that anyone can access

transaction data and participants involved in a transaction.

• Probabilistic consensus. Public blockchains often employ a PoW consensus

algorithm, which is inherently a probabilistic protocol with probabilistic Ąnality.

Enterprise blockchains solve this limitation by employing deterministic consen-

sus algorithms that guarantee immediate Ąnality.

• Transaction fees. For each transaction executed on Ethereum or other similar

blockchain, a transaction fee is charged in the native cryptocurrency. While this

technique offers incentives for miners and guards against spam, it is not required

in enterprise blockchains.

The issues raised here are considered limitations in public blockchains, but they can

also be viewed as requirements in enterprise blockchains [5].

26

2.3 Enterprise blockchain requirements

In certain circumstances, enterprise blockchains have stricter requirements than pub-

lic blockchains. In public blockchains, for example, eventual consistency is permitted.

However, in enterprise blockchains, once a transaction is committed, it should imme-

diately Ąnalize and irrevocably become part of the global record (state).

Now, we’ll go through three key requirements that a blockchain must meet in order

to be suitable for enterprise use. These requirements are for privacy, performance,

and access governance.

• Privacy. In enterprise blockchains, privacy is of the utmost signiĄcance. Pri-

vacy has two aspects: conĄdentiality and anonymity.

• Performance. Enterprise blockchains must be able to execute transactions at

a fast rate due to the high-speed requirements of businesses.

• Access governance. From another perspective, because enterprise blockchains

are permissioned, enterprise-grade access control (in the form of either a new

mechanism on the chain or control driven by an enterprise Single sign-on (SSO)

already in place) is a fundamental requirement. Since all members on a consor-

tium chain must be identiĄed, it is critical to design an access control system

that enables that process. This capability is achievable through the use of

enterprise-grade access control techniques such as Role-Based Access Control

(RBAC).

We’ll go through several additional requirements that can improve the suitabili-

ty/efficacy of corporate blockchain systems [5]:

• Ease of use. Enterprise system deployment is a well-studied, known, and

mature Ąeld. Enterprise deployment has gotten simple over the years thanks to

enterprise orchestration technologies and established techniques. Blockchains,

on the other hand, are not as simple to deploy as other enterprise systems. This

is changing with the adoption of Blockchain as a Service (BaaS) and deployment

automation tools. There is still some work to be done.

• Better tools. Typically, various supporting tools and utilities are supplied

with the main product to operate the software in enterprise systems. Adminis-

tration tools, deployment tools, developer utilities, visualization tools, manage-

ment tools, and end user tools are examples of these. Blockchain platforms with

27

better tooling are considerably more desirable because of better user support.

Tools such as block explorers, user administration modules, and Decentralized

applications (DApps) to manage smart contracts are quite beneĄcial. They are

gradually becoming more mature as the blockchain ecosystem is growing.

2.4 Enterprise blockchain versus public blockchain

This section will present a comparison between public and enterprise blockchains.

Consider the table 2.1, which compares various aspects of the two blockchain types [5].

Aspect Public chains Enterprise chains

Confidentiality No Yes

Anonymity No Yes

Membership Permissionless

Permissioned via voting,

KYC, usually under an

enterprise blockchain.

Identity Anonymous Known users

Consensus PoW/PoS BFT

Finality Mostly probabilistic Requires immediate/instant finality.

Transaction speed Slower Faster (usually, should be).

Scalability Better

Not very scalable, mainly due

to consensus choice. Usually a

much smaller number of nodes

compared to public chains.

Regulatory compliance Not usually required Required at times.

Trust Fully decentralized

Semi-centralized and managed

via consortium and voting

mechanisms.

Smart contracts

Not strictly required;

for example, in the

Bitcoin chain

Strictly required to support

arbitrary business functions.

Table 2.1: Public and enterprise blockchains comparison [5]

28

Evidently, enterprise blockchains have a wide range of applications, including but

not limited to payments, insurance, KYC, and supply chain monitoring [5]. It is,

however, important to note that these solutions lack details about implementation.

2.5 Blockchain in the cloud

Cloud computing offers numerous advantages to businesses, including increased effi-

ciency, cost savings, scalability, high availability, and security.

Blockchain as a Service, or BaaS, is an extension of Software as a Service (SaaS)

in which an organization’s blockchain platform is implemented in the cloud. The

organization maintains its applications on the blockchain, while the cloud provider

manages the rest of the software, infrastructure, and other aspects such as security

and operating systems. This means that the cloud provider provides and maintains the

blockchain’s software and infrastructure. The customer or enterprise can concentrate

on their business applications without having to worry about infrastructure issues.

There are many BaaS providers. A few of them are listed as follows [5]:

• AWS [6]

• Azure [2]

• Oracle [37]

• IBM [27]

2.6 Currently available enterprise blockchains

As this is a very rapidly growing Ąeld for research, and the market is quite active in

this domain, several enterprise blockchain solutions have been developed and made

available in the previous few years. Notably, 2019 has been labeled "the year of

the enterprise blockchain" due to the emergence of several startups and enterprises

focusing on this area.

In this chapter, we will provide a brief description of Corda and Quorum. Hyper-

ledger Fabric is described in more detail as our solution leverages a mix of Hyperledger

technologies.

2.6.1 Corda

Corda, by deĄnition, is not a blockchain because it does not use blocks to batch

transactions. Nonetheless, it is a distributed ledger that gives all of the beneĄts that

29

a blockchain can. Traditional blockchain systems use the concept of transactions

being grouped together in a block, with each block cryptographically linked back to

its parent block, creating an immutable record of transactions. Corda, on the other

hand, is not like this.

Corda was developed from ground up with a unique approach for giving all block-

chain beneĄts without the need for a traditional blockchain with blocks. It was Ąrst

designed for the Ąnancial industry to address issues that arose as a result of each

organization maintaining its own local ledgers. This means that each organization

has its own "view of truth". This situation frequently results in inconsistencies and

operational risk. Furthermore, data is duplicated at each organization, resulting in

increased costs and complexity in managing individual infrastructures. These are the

kinds of issues in the Ąnancial industry that Corda set out to solve by developing a de-

centralized database platform. Corda initially focused solely on Ąnancial applications,

but now has extended into other sectors such as government, healthcare, insurance,

and supply chains.

Corda is available in two implementations: Corda enterprise and Corda open

source. Corda enterprise and Corda open source are both interoperable and com-

patible, with the same functionality. The enterprise edition, on the other hand, is

more focused on enterprise requirements. It is a commercial version of the Corda

platform that focuses on business needs such as privacy, security, and performance. It

also contains the Corda Ąrewall, high availability nodes and notaries, and hardware

security module support. It offers an enterprise-grade platform for business use.

The Corda platform, on the other hand, enables direct business-to-business (B2B)

transactions. This network delivers beneĄts such as privacy and easy data sharing,

which reduces complexity and costs.

Corda’s source code can be found at [9]. It is written in Kotlin, which is a statically

typed language that targets the Java Virtual Machine (JVM).

The Corda platform’s core components are the Corda network, state objects (con-

tract code and legal prose), transactions, consensus, and Ćows.

The Corda network is deĄned as a fully connected graph. It is a permissioned

network that provides direct P2P communication on a "need to know" basis. There

is no global broadcast or gossip mechanism, unlike other traditional blockchains/dis-

tributed ledgers. Communication takes place directly between interested parties on

a point-to-point basis. The Advanced Message Queuing Protocol (AMQP) serializa-

tion protocol is used for communication between peers or nodes. A service known as

30

Figure 2.2: Corda high-level network architecture [5]

network map service is in charge of publishing a list of peers [5].

Figure 2.2 depicts a high-level architectural design of the Corda network.

2.6.2 Quorum

Quorum [40] is an open source enterprise blockchain platform. It is a lightweight

Ethereum fork. Quorum not only beneĄts from the upstream public Ethereum (Geth)

project’s innovation and research, but it has also offered numerous great enterprise

features. These enterprise features are mainly concerned with delivering enterprise-

level privacy, performance, and permissioning (access control).

Quorum addresses three main concerns with public blockchains, making it an ideal

alternative for corporate use cases:

• Privacy

• Performance

• Enterprise governance

At a high level, the Quorum architecture is composed of nodes and associated

privacy managers. The Quorum node is a modiĄed and improved version of public

geth that enables private transactions. Quorum nodes communicate with privacy

managers via Hypertext Transfer Protocol Secure (HTTPS), and privacy managers

31

Figure 2.3: Quorum architecture [5]

are responsible for providing privacy by storing the payload in encrypted format in

their local storage. These Quorum nodes separate the public and private states.

The Ągure 2.3 illustrates the Quorum architecture [5].

2.6.3 Hyperledger Fabric

Hyperledger Foundation has published a white paper [26] that presents a reference

architecture model that can serve as a guideline to build permissioned distributed

ledgers. These high-level components are shown in Ągure 2.4.

We have Ąve top-level components that deliver different services. The Ąrst is

identity, which offers membership services such as authorization, identiĄcation, and

authentication. Then there’s the policy component. Following that, we have block-

chain and transactions, which include the Consensus Manager, Distributed Ledger,

network P2P protocol, and Ledger Storage services. Finally, there is the smart con-

tracts layer, which offers chaincode services in Hyperledger and hosts smart contracts

using Secure Container technology.

Fabric [19] is a well-known open-source permissioned blockchain technology devel-

oped by the Linux Foundation [30]. It is the Ąrst blockchain technology to enable

the generation of smart contracts in general-purpose programming languages. Fabric

allows clients to submit transactions to a blockchain system that provides decentral-

ized control of a shared, distributed state, i.e., there is no single trusted authority

that decides on the system’s current state. A smart contract, also known as chain-

32

Figure 2.4: Hyperledger Fabric architecture overview [26]

code in Fabric terminology, deĄnes all possible functions that may be invoked by a

transaction.

The distributed state, known as the world state, is stored as a versioned key-value

store - Hyperledger Fabric natively supports LevelDB [29], as well as CouchDB [1].

Each key has a version number that is changed with each write. The distributed

ledger stores the whole history of all transactions (both successful and failed) on the

network, which are organized into blocks. Both the distributed ledger and the world

state are replicated on a set of distributed nodes, called peers, that are registered on

the Fabric network.

Peers retrieve blocks of transactions from an ordering service, which ensures that

transactions are delivered in correct order; more speciĄcally, all peers receive all trans-

actions in the same order. They independently validate each transaction and update

their copy of the world state and the ledger accordingly. The ordering service can be

replicated for fault tolerance and employs a consensus technique (e.g., Raft) to agree

on the order of all transactions.

The ordering service manages numerous channels, which are private communica-

tion paths between Fabric components. Endorsers are a subset of peers who have the

extra task of endorsing transactions submitted by clients, i.e., they simulate trans-

action execution to create read and write sets depending on the current world state.

The ordering service manages numerous channels, which are private communication

paths between Fabric components.

33

Endorsers are a subset of peers who have the extra task of endorsing transactions

submitted by clients, i.e., they simulate transaction execution to create read and write

sets depending on the current world state. An endorsement policy speciĄes the amount

of endorsements necessary for a transaction to be considered legitimate. Finally, peers

are organized into organizations that often correlate to real organizations. These

organizations tend to play a major role in the endorsement policy [7].

2.6.4 Comparison of main platforms

In table 2.2, we will present a brief comparison of the most popular enterprise block-

chain platforms. We’ll go through the majority of the intriguing features of enterprise

blockchains. This can be used as a quick reference for comparing these platforms.

However, because this is a quickly changing area, certain features may alter over

time, or new features may be implemented or improved [5].

Feature Quorum Fabric Corda

Target industry Cross-industry Cross-industry Cross-industry

Performance (ap-

proximate trans-

actions per second)

700 560 600

Consensus

mechanism

Pluggable multiple Raft,

IBFT, PoA

Pluggable Raft,

unofficial SmartBFT
Pluggable, notarybased

Tooling
Rich enterprise

tooling
SDK

Rich enterprise

tooling

Smart contract

language
Solidity

Golang/Java/Javascript/

Typescript
Kotlin/Java

Finality Immediate Immediate Immediate

Privacy

Yes (restricted

private

transactions)

Yes (restricted

private

transactions)

Yes (restricted

private

transactions)

Access control

Enterprise-grade

permissioning

mechanism

Membership service

provides/certificate based

Doorman service/ KYC.

Certificate based

Implementation

language
Golang, Java Golang Kotlin

Node

membership

Smart contract

and node software

managed

Via membership service

provider

Node software managed using

configuration files,

certificate authority controlled

Member

identification

Public keys/

addresses

PKI-based via membership

service provider, supports

organization identity

PKI-based, support

organization

identity

34

Table 2.2 continued from previous page

Feature Quorum Fabric Corda

Cryptography

used

SECP256K1, AES,

CURVE25519 +

XSALSA20 +

POLY13050, PBKDF2,

SCRYPT

SECP256R1

ED255519

SECP256R1

RSA – PKCS1

Smart contract

runtime
EVM

Sandboxed in Docker

containers
Deterministic JVM

Upgradeable

smart contract

Possible with some

patterns, not inherently

supported

Allowed via upgrade

transactions

Allowed via administrator priv-

ileges and auto update allowed

under administrative checks

Tokenization

support

Flexible - inherited from

public Ethereum standards
Programmable Corda token SDK

Table 2.2: Comparison of blockchain frameworks [5]

This comparison may also be used to quickly assess the feasibility of different

platforms for an enterprise use case.

35

3 Hyperledger Fabric

We chose Hyperledger Fabric as the underlying blockchain platform. For this reason

we provide a more detailed overview of Hyperledger Fabric. We have covered the

fundamentals of Hyperledger Fabric in the section 2.6.3. The following factors were

used to make the decision: functional extent, support, cost, smart contract language,

and interfaces.

3.1 Transaction Ćow

Fabric’s transaction Ćow is divided into three stages: execution, ordering, and valida-

tion. This is known as the Execute-Order-Validate (E-O-V) model, and it is depicted

in Ągure 3.5. Each phase is described in more detail below [7].

Figure 3.5: Hyperledger Fabric transaction Ćow [7]

1) Execution phase

Step 1: The client sends a transaction to every endorser. The transaction can

include multiple reads and writes to one or more keys in the world state.

Step 2: The endorsing peers simulate execution of the transaction on the world

state and generate a read/write set that corresponds to the current world state

36

of each key in the transaction. Then, the endorsing peers send a response back

to the client that contains their own signature as well as the read/write set.

This distributed execution of transactions on the endorsing peers contributes to

maintaining trust without a centralized authority.

Step 3: The client collects the responses from endorsing peers and sends them

to the ordering service nodes. The client may optionally validate the signatures

of the endorsing peers and the consistency of the read/write set received from

different peers. Later in the validation phase, these must be checked. By per-

forming this check, the client can assist in detecting transaction failures early

in the transaction Ćow, hence reducing overhead.

2) Ordering phase

Step 4: The ordering service uses a consensus protocol to order the transactions

received from the client. A transaction block is generated when one of three

conditions is met: a Ąxed amount of time has elapsed (block timeout), a Ąxed

number of transactions has been received (block size), or the overall size of

transactions has reached a Ąxed limit (block max bytes).

Step 5: The block of transactions is subsequently distributed to all peers.

3) Validation phase

Step 6: When a peer receives a block of transactions from the ordering ser-

vice, each transaction in the block is validated separately. A peer veriĄes that

a sufficient number of valid endorsing peer signatures have been obtained in ac-

cordance with the endorsement policy (Validation System Chaincode (VSCC)

validation). The peer then validates whether the version of every key in the read

set of each transaction is the same as the version of the same key in the current

world state (Multiversion Concurrency Control (MVCC) validation). MVCC

mechanism ensures consistency in the ledger and prevents double spending.

Step 7: If the VSCC and MVCC validation checks succeed, the transaction

write sets are applied to the world state. If any of the validation tests fails,

the client is notiĄed that the transaction has been aborted, and the world state

remains unchanged.

Step 8: The validated block, which includes both aborted and committed trans-

actions, is appended to the ledger. Every transaction’s commit or abort status

is logged.

37

3.2 Chaincode lifecycle

Chaincode represents the executable logic associated with ledger, that serves as stor-

age. Fabric offers domain-independent system chaincode that provide low-level func-

tionality for interacting with the ledger.

The Fabric chaincode lifecycle, illustrated in Ągure 3.6, is a process that allows

organizations to agree on how a chaincode will be operated before it can be used

on a channel. Before chaincode can be used it is required to perform the following

tasks [24]:

1) Package the chaincode. Chaincode needs to be packaged in a tar Ąle, which

contains chaincode Ąles and metadata which specify the chaincode language,

code path, and package label.

2) Install the chaincode on peers. Chaincode package needs to be installed on

every peer that will execute and endorse transactions using peer administrator.

Install command will return a chaincode package identiĄer, which is the package

label combined with a hash of the package.

3) Approve chaincode deĄnition. The approval of chaincode deĄnition acts

as a vote by an organization on the chaincode parameters it accepts. Every

organization needs to approve chaincode deĄnition. The chaincode deĄnition

includes the following parameters:

• Package identiĄer, which is required for organizations that wants to use

the chaincode. An organization can approve a chaincode deĄnition without

installing a chaincode package or including the identiĄer in the deĄnition.

• Name

• Version number assigned to the package

• Sequence, which indicates how many time was chaincode has been up-

graded.

• Endorsement policy specifying which organizations need to execute and

validate the transaction output. By default, the endorsement policy re-

quires that a majority of organizations in the channel endorse a transac-

tion.

• Collection conĄguration Ąle, which contains private data collection def-

inition Ąle associated with chaincode.

38

• Endorsement System Chaincode (ESCC)/VSCC Plugins. Option-

ally a custom endorsement or validation plugin can be used in this chain-

code.

• Initialization, which indicates if it is required to call init function.

4) Commit the chaincode deĄnition to the channel. Once a sufficient number

of channel members have approved a chaincode deĄnition, it can be committed

to the channel by one organization. Before the deĄnition is sent to the ordering

service, it is sent to the channel’s peers, who endorse it based on whether or

not their organization endorsed it. The number of organizations that need to

approve a deĄnition is governed by the LifecycleEndorsement policy, which

is separate from the chaincode endorsement policy. After the commit of the

chaincode deĄnition to the channel, the chaincode container will launch on all

peers where the chaincode has been installed, allowing channel members to start

using the chaincode.

Figure 3.6: Hyperledger Fabric chaincode lifecycle [20]

Applications interact with peers in order to access the ledger. In order to do so,

application have to use Fabric SDK. Ledger-query interactions are as easy as a three-

step communication between an application and a peer; ledger-update interactions

are a little more complicated, requiring two more steps [25].

In Ągure 3.7 application A connects to P1 and invokes chaincode S1 to query

or update the ledger L1. P1 invokes S1 to generate a proposal response containing

either a query result or a proposed ledger update. Application A receives the proposal

response and, for queries, the process is now complete. For updates, A creates a

transaction out of all of the responses and sends it to O1 for ordering. O1 collects

transactions from across the network into blocks, and distributes these to all peers,

including P1. P1 validates the transaction before committing to L1. Once L1 is

updated, P1 generates an event, received by A, to signify completion [25].

39

Figure 3.7: Hyperledger Fabric invoke query [25]

3.3 Membership services

These services are used to give access control functionality to Fabric network users.

The following functions are carried out via the membership services [5]:

• User identity veriĄcation

• User registration

• Assign appropriate permissions to the users depending on their roles

A certiĄcate authority (CA) is used by membership services to provide identity

management and authorization operations. This CA might be internal (such as Fab-

ric CA, which is the default interface in Hyperledger Fabric) or external (such as a

certiĄcate authority). Enrolment certiĄcates (E-Certs) are issued by Fabric CA and

are produced by an enrolment certiĄcate authority (E-CA). Peers are permitted to

join the blockchain network once they have been assigned an identity. Temporary

certiĄcates (T-Certs) are also issued and are used for one-time transactions [5].

3.4 The Ordering Service

There are several ways for reaching agreement on the strict ordering of transactions

between ordering service nodes. Orderers also enforce basic channel access control,

limiting who can read and write data to them and who can conĄgure them. Hyper-

ledger Fabric 2.3 ordering services [22]:

40

• Raft (recommended) - CFT, described in more detail in section 3.4.1. Used in

proposed solution.

• Kafka (deprecated in v2.x) - CFT, similar to Raft with additional administra-

tive overhead of managing a Kafka cluster. It will not be described any further

because it is deprecated.

• Solo (deprecated in v2.x) - for test only and consists only of a single ordering

node. It has been deprecated and may be removed entirely in a future release.

It will not be described any further.

• BFT-SMART - is not part of official Hyperledger Fabric v2.3 release. Barger

et al. describe in their paper [4] efforts to transform Fabric into a end-to-end

BFT system. They created a (1) stand-alone Byzantine fault-tolerant consen-

sus library, based on BFT-SMART, (2) a full integration of the library with

Hyperledger Fabric, which addresses BFT concerns of all its components pub-

licly available at [43], with an accompanying SDK [44].

3.4.1 Raft

The Raft protocol is a Crash Fault Tolerant (CFT) consensus mechanism. In Raft,

the leader is always assumed to be honest. At the most basic level, it is a replicated

log for a replicated state machine (RSM) in which a unique leader is elected every

"term" (time division) and whose log is replicated to all follower nodes [5].

Raft is comprised of three sub-problems:

• Leader election (a new leader election in case the existing one fails)

• Log replication (leader to follower log synch)

• Safety (no conĆicting log entries (index) between servers)

Election safety, leader append only, log matching, leader completeness, and state

machine safety are all guaranteed by the Raft protocol. Each server in Raft can have

either a follower, leader, or candidate state. The protocol ensures election safety (i.e.,

just one winner every election term) as well as liveness (that is, some candidate must

eventually win) [5].

The Raft protocol is described in the following steps. At a fundamental level, the

protocol is fairly straightforward and may be expressed in the following sequence:

Node starts up Ű> Leader election Ű> Log replication

41

1. The node starts up.

2. The leader election process starts. Once a node is elected as leader, all changes

go through that leader.

3. Each change is entered into the node’s log.

4. Log entry remains uncommitted until the entry is replicated to follower nodes

and the leader receives write conĄrmation votes from a majority of the nodes,

then it is committed locally.

5. The leader notiĄes the followers regarding the committed entry.

6. Once this process ends, agreement is achieved.

The state transition of the Raft algorithm can be visualized in Ągure 3.8.

Figure 3.8: Raft state transition [5]

Raft eventually replicates the log (data) across all nodes. The goal of log replica-

tion is to keep nodes in sync with one another. Log replication logic can be visualized

in Ągure 3.9.

Figure 3.9: Log replication mechanism [5]

Log replication is a straightforward mechanism. The leader is in charge of log

replication. Once the leader has a new entry in its log, it sends replication requests

42

to the follower nodes. When the leader receives enough conĄrmation votes from the

followers showing that the replicate request was accepted and processed, the leader

commits that entry to its local state machine. The entry is considered committed at

this point [5].

The proposed method utilizes Hyperledger Fabric as a blockchain framework, with

a Raft-based CFT ordering service.

43

4 Business Scenario

This chapter is dedicated to the main aim of this thesis, which is to develop a trust-

worthy energy consumption monitoring solution to enable accurate billing, already

mentioned in Introduction. We present a use-case, which considers consumption data

sharing between multiple organizations and Ąnal consumer. As the underlying block-

chain platform, we propose to use Hyperledger Fabric 2.3.

4.1 Real-world processes

Due to lack of publicly available information of processes regarding heat meters in-

stallation and monitoring, the following situation does not necessarily mimic reality.

Our prototype will work with the following situation.

There is only one heat meter installed by the heat distributor for the entire

building. The device readings are taken and based on these measurements the bill

for the entire building is calculated. Heat distributor’s consumer is the property

management company, which needs to calculate heat bill for all registered tenants

of the apartment building in a fair way. To do so property management company

installs heat meters in all apartments.

Manual read is carried out by a meter reader (usually a person working in the

property management company) who visits each apartment and takes the read. If it

is not possible to take a read (when apartment owner is not present) they will leave

a skipped read card explaining why and the read may be estimated. Once the read is

taken, the meter reader will upload the reading to their database. Information about

consumption reaches apartment owner usually only in annual statement.

Currently, property management companies are switching to advanced wireless

technologies as there is no need to manually submit meter readings, it protects the

privacy of apartment owner, it eliminates errors in meter readings and tampering

with meters, allows meter readings at any time, owner can monitor current data via

44

application. Based on available consumption, apartment owners can better regulate

their consumer behavior, thereby optimizing housing costs.

Thanks to smart heat meters, malfunctions can be detected in time and unpleasant

surprises in the annual bill can be avoided. More frequent monitoring and notiĄca-

tions allow apartment owners and property management company to take immediate

measures.

When implementing a smart meter solution data security and personal data pro-

tection must also be taken into account. Directive 2012/27/EU on energy efficiency

aims to provide Ąnal customers with information on heat and hot water consumption

at shorter intervals, so that they can react more quickly to that consumption and,

if necessary, regulate it. Meters installed in accordance with Directives 2009/72/EC

and 2009/73/EC shall enable accurate billing information based on actual consump-

tion. Member States shall ensure that Ąnal customers have the possibility of easy

access to complementary information on historical consumption allowing detailed self-

checks [10].

Device identity and security will be a key factor in maintaining overall security

of buildings and their systems against cyber attacks. Blockchains can be utilized

to authenticate device identity, protect and supply data, handle access to facilities,

and process transactions in the operations of facilities, all in a distributed way. For

example, the IBM Watson IoT platform can include a private blockchain integration

that enables IoT devices to send data to private blockchains for inclusion in shared

transactions with tamper-resistant records. Distributed replication of the blockchain

allows customers and business partners to access and supply IoT data without the

need for central control and management. The blockchain can also be used to release

payment for services or use of facilities once certain agreed upon conditions are met

and tracked [31].

4.2 Shared process workĆow

The development of our prototype will initially focus on the communication between:

• Property management company with a certain amount of properties to admin-

ister.

• Heating distributor distributes heat to those properties.

• Final heat consumer

45

Every participant is looking for ways to secure low cost opportunities to cut their

bills, save on maintenance, and reduce their environmental impacts.

In this use case we can see that there is need for shared data, strict auditing

(billing), need to ensure the conĄdentiality of transactions (cannot be public), partic-

ipants have to be known (know who to bill). And this is where blockchain comes in.

Blockchain can also handle non-trusting participants, non-trusted intermediary. This

technology may be used to make system more resilient to tampering. By processing

data from meters using blockchain and smart contracts trust between all parties would

be established as we would have single source of truth.

In current process trust issues occurs as Ąnal heat consumer has to trust property

management company to read the current value from heat meter correctly and prop-

erty management company has to trust heating distribution company to read correct

value from main heat meter.

To demonstrate the value of blockchain, we will use a simpliĄed version of the

preceding process with certain modiĄcations. In this series of events, we assume a

straight, linear narrative in which all participants are in agreement and nothing out

of the ordinary occurs; guards are built into the process merely to catch errors. The

following are the transactions in our workĆow which is depicted in in Ągure 4.10.

Figure 4.10: Heat consumption metering workĆow

1. The property manager requests registration of main heat meter for the whole

building from the heating distributor.

2. The heating distributor accepts registration request of the main heat meter.

3. The property manager regularly updates main meter value.

4. The Ąnal consumer requests registration of local heat meter.

5. The property manager accepts registration of local heat meter.

6. The Ąnal consumer regularly updates own local meter value.

46

4.3 Shared assets and data

Participants in our workĆow must share some information that allows them to see the

consumption monitoring process and its status at any given time.

By evaluating the aforementioned simpliĄed workĆow, we can deĄne one asset

possessed by each participant and shared with one another to drive the process from

one step to the next. Recognized assets, along with their attributes are depicted in

table 4.1.

Asset type Asset attributes

Sensor sensorID, consumer, consumerMSP, approver, approverMSP, value, status

Table 4.1: Assets with attributes

Table 4.2 depicts data elements that circumscribe the options available to partic-

ipants in each stage.

Data type Data attributes

Sensor Request and acceptance status:
by heating distributor and property manager company respectively
by final consumer and property manager respectively

Current value(energy consumed): by final consumer and property manager

Table 4.2: Options available to participants in each stage

4.4 Participants’ roles and capabilities

There are 3 categories of participants in our scenario: heating distributor, property

management company, Ąnal heat consumer. The terms in this set refer to the roles an

entity can assume in a deal. Each role’s capabilities and restrictions are also deĄned

in the following list:

• Only property manager may request main heat meter registration for the entire

apartment building.

• Only heating distributor may accept main heat meter registration request.

• Only property manager may update main heat meter value and only if main

heat meter registration was accepted.

• Only Ąnal heat consumer may request personal meter registration for owned

apartment.

47

• Only property manager may accept personal heat meter registration request.

• Only Ąnal consumer may update main heat meter value and only if main heat

meter registration was accepted.

• Heating distributor may see all registered main meters with history.

• Property manager may see all registered personal heat meters with history and

main heat meter on the entire building with history.

• Final consumer may see only his own meter with history.

The following chapters will go into greater detail about the development of a

solution based on Hyperledger Fabric that will allow for a reliable energy consumption

monitoring solution.

48

5 System architecture

The designed trustworthy energy consumption monitoring solution consists of the

following components.

• Hyperledger Fabric network responsible for business logic and providing

desired characteristics such as immutability, security, and traceability.

• Applications for organizations responsible for exposing the blockchain com-

ponent functionalities.

5.1 Functional considerations

Considering the preliminary considerations, limiting factors, and requirements, which

we’ve discussed in chapter 2, we have decided to employ an permissioned enterprise

blockchain in our already discussed use case from section 4.2:

At the beginning of the development 2021, the options for an enterprise block-

chain that would meet our requirements were restricted to a few providers, including

Hyperledger, Corda, and Quorum. Choice was made based on the following criteria:

functional extent, support, cost and interfaces. We Ąnally chose Hyperledger Fab-

ric, which is part of the Hyperledger Project founded by the Linux Foundation and is

intended to develop enterprise applications based on a permissioned blockchain. It is

built on a modular architecture that provides various components such as membership

and ordering services.

It should be noted that for our Ąrst working prototype there is no need for external

storage because document based database CouchDB, which is already implemented

in Hyperledger Fabric, supports rich queries and works well with JavaScript Object

Notation (JSON) format.

Another issue arises when we realize that we need some distributed testing envi-

ronment. For development purposes we plan to use simple testing network, provided

by Hyperledger. Setting up hyperledger test network, which is based on multiple

49

Docker images, is not trivial and is described in official documentation [21]. On the

other hand, production deployment is described only roughly.

The process for deploying a Fabric network is complex and presumes an un-

derstanding of Public Key Infrastructure (PKI) and managing distributed

systems. We need to be aware of how networks are deployed in order to develop

effective smart contracts and applications. It will be required for evaluating the per-

formance of our solution.

5.2 Hyperledger Fabric - tools

Hyperledger also incubates and promotes a range of business blockchain technologies

that can be used with various distributed ledger frameworks. The main tools in

Hyperledger project which are of interest in this research are:

• Hyperledger Caliper [15]. Hyperledger Caliper is a blockchain benchmark

tool, which allows users to measure the performance of a speciĄc blockchain

implementation with a set of predeĄned use cases. Hyperledger Caliper is a

benchmark tool for blockchain frameworks and relies on a functioning blockchain

implementation as the benchmarking target. There are different performance

indicators supported in the framework. These include success rate, transaction

read rate, throughput, latency, and hardware resource consumption, such as

CPU, memory, and I/O.

• Hyperledger Composer [17]. Hyperledger Composer is an extensive, open

development toolset and framework to make developing blockchain applications

easier. The major purpose of Hyperledger Composer was to reduce time to

value and make it easier to integrate blockchain applications with existing busi-

ness systems. However, on August 29th 2019 Hyperledger Composer project

was officially deprecated. The toolset became too difficult to maintain as the

architecture grew and the underlying distributed ledger technology frameworks

were updated on a regular basis.

• Hyperledger Explorer [18]. Hyperledger Explorer is a user-friendly Web

application tool used to view, invoke, deploy or query blocks, transactions and

associated data, network information (name, status, list of nodes), chain codes

and transaction families, as well as any other relevant information stored in the

ledger.

50

• Fablo [11]. Fablo is a simple tool to generate the Hyperledger Fabric blockchain

network and run it on Docker. It supports Raft and solo consensus protocols,

multiple organizations and channels, chaincode installation and upgrade. On

September 21st, 2021, the Hyperledger Foundation posted a video highlighting

Fablo in version 0.2, which brought this tool to our notice.

5.2.1 Designing a Hyperledger Fabric network

To design and run a blockchain application, the Ąrst step is to determine how many

channels are required. For our application we will use one channel, which will main-

tain the history of meter operations among the different participants. To install an

application and run transactions on our smart contract, we will describe how to create

and launch a network on which the application will be installed.

The process of building a Hyperledger Fabric network for an application begins

with a list of participating organizations. An organization is a security domain as well

as a unit of identity and credentials. It governs one or more network peers and relies

on a membership service provider (MSP) to provide identities and certiĄcates to peers

and clients for smart contract access privileges. Since an MSP instance serves as a CA,

it must host a root CA and one or more intermediate CAs within an organization. The

ordering service, which acts as a foundation of a Fabric network, is usually assigned

its own set of organizations.

Our sample network will consist of two organizations, representing the property

manager and heating distributor, and one individual participant, which is heat con-

sumer. The heating distributor represents the heating distributor entity. The property

management organization, however, represents both the property management entity

and Ąnal consumers. An organization represents both a security domain and a busi-

ness entity; in other words, it provides a trust boundary around a set of entities using

an MSP and attests to the veracity of transactions submitted by it.

Running a Fabric peer is a heavy and costly business. Hyperledger fabric focuses

on B2B communication and as we can see a Ąnal consumer entity represents consumer

not a business. So there is a need to group those two in a single organization. A Ąnal

consumer entity obtains the right to submit transactions or read the ledger state from

property management organization in the role of a client.

A single peer within an organization is sufficient to maintain a ledger replica and

execute smart contracts, therefore that is how we will create our initial network. For

51

redundancy, more peers can be added. Aside from the peers, our network includes

one root CA, two intermediate CA (one for Org1 and one for Org2 acting as MSP)

and an ordering service. The ordering service runs in a single organization. The

three organizations with MSPs, peers, and clients of our network are illustrated in

Ągure 5.11.

Figure 5.11: Initial Hyperledger Fabric network design

Since the Ąnal consumer and property manager are now part of the same organi-

zation, the application can distinguish between the two for the purpose of controlling

access to the smart contract and ledger. The access control mechanism is implemented

as follows:

• Having an organization’s MSP, operating as a CA server, distinguishing at-

tributes can be embedded within the certiĄcates it issues to its members. The

access control logic is implemented in the contract to parse the attributes and

permit or disallow an operation based on business logic requirements.

• Additional access control mechanisms are built into application layers interact-

ing with the contract.

A key feature of a secure and permissioned blockchain is access control. The access

control mechanism is typically implemented within the contract and thus enforced

52

during transaction processing on multiple endorsing peers, and the result validated

through transaction consensus.

5.2.2 Applications for organizations

Each service-layer application must implement the operations that are expected to

be done at the runtime stage, namely submitting transactions to and querying smart

contracts.

Application runtime life cycle is often started by registering and enrolling a user

in an organization’s MSP (Fabric CA server). As a result, credentials are obtained,

which can be stored in wallets on the disk or in a database. A user can submit service

requests to a gateway, along with the proper wallet credentials, and the gateway will

transform the requests into contract transactions or queries and synchronously return

responses. We chose to describe the PropertyManagementOrg application because,

in addition to implementing enrollment and contract invocation features, it also dis-

tinguishes users based on their roles within the organization. Our contracts’ Access

Control List (ACL) rules require these different roles to be speciĄed in certiĄcate

attributes.

Figure 5.12: Property management web application architecture

This property management application, depicted on Ągure 5.12, is written in

JavaScript and developed using NodeJs framework. It maintains a wallet for the

53

identities of property management workers and Ąnal consumers, obtained through

communication with the PropertyManagementMSP. All users have access to the same

Representational state transfer (REST) API on the web server, which includes func-

tions for registration, login, and smart contract operations. The User Authentication

and Session Manager module restricts access to various REST API functions and

manages the creation of user identities and roles. This module also maintains sessions

using JSON web tokens, allowing a logged-in authenticated user to perform multiple

operations with a dynamically generated token.

As we were not able to Ąnd any existing solution, this part had to be implemented

from scratch.

54

6 Implementation

In this chapter, we will discuss the designed system from the standpoint of implemen-

tation. The Ąrst section will discuss how the Fabric network was created, the chain-

code development process, and the obstacles encountered throughout this process.

Then there will be some technical information on the REST server implementation

and chaincode integration into applications.

It is vital to note that this was the most time-consuming area of the thesis. Due

to the complexity of Hyperledger Fabric the implementation process was slow. This

becomes even more problematic because the framework is still in its early stages and

the release of version 2.x that brings breaking changes. We decided not to discuss all

of the encountered errors.

6.1 Implementation overview

The following tasks were involved in the overall system’s implementation:

• Hyperledger Fabric network implementation - began by deploying a Fab-

ric test network capable of deploying and invoking chaincodes. Access control

in Hyperledger Fabric depends on network architecture. The created network

was then modiĄed to achieve the desired network topology and Ąt the design.

Following the network’s deployment, the chaincode’s development began with

the implementation of the designed system speciĄcation. While functionalities

were being built, they were being tested using unit tests. When all of the action

Ćows deĄned in our use-case could be completed via transaction invocation, the

procedure was considered complete.

• REST server implementation - smart contracts that operate on data shared

by many organizations are sensitive bits of code that should only be accessed

over secure channels with built-in protections against misuse. As a result, it’s

55

important to add applications on top of contracts, exposing the contracts’ ca-

pabilities in secure ways. Unlike smart contracts, these apps may be developed

as traditional enterprise applications utilizing well-known technology stacks.

6.2 Hyperledger Fabric network

We’ll be developing on a Lenovo ThinkPad W541 with Windows 10 pro as the operat-

ing system. Only Unix-based operating systems can run Hyperledger Fabric. For this

reason, we have installed Ubuntu 20.04 in Windows Subsystem for Linux 2 (WSL2),

which allows developers to run a Linux environment as a subsystem on a Windows PC.

6.2.1 Prerequisites

Following the test network setup guide from the Hyperledger Fabric 2.3 documen-

tation [21], the test network was set up. Once a network has been started using

shell scripts, we will use VS Code to connect to it and begin writing contracts and

applications. A number of requirements must be installed in order to do so, including:

• Git

• cURL

• Docker and Docker Compose

• NodeJS and NPM

As indicated in section 5.2, a tool known as Fablo became available after the majority

of the solution had already been implemented. However, analyzing the inĆuence of

Fabric network architecture on performance was still ahead of us, so we chose to use

Fablo for network building.

6.2.2 Preparing the network

The entire network will be deployed on a single physical machine, with the various

network components operating in appropriately conĄgured Docker containers.

The process of setting up a Fabric network may be summarized in the stages below,

which will be detailed later in this chapter.

1. Generating network cryptographic material - for peers, orderers, TLS

based communication...

56

2. Generating channel artifacts - including genesis block and conĄguration

update transactions.

3. Bringing up network components (orderers, peers, ...) - using docker-

compose.yaml.

After completing these steps, we’ll have a Fabric network up and running, allowing us

to focus on the chaincode. After chaincode implementation, the chaincode lifecycle

must be followed, as stated in section 3.2.

ConĄguration

Several conĄguration Ąles are essential to the network setup. These are the most

signiĄcant, and we’ll go over them in detail later in this chapter:

• configtx.yaml (appendix A, diploma_thesis_project/fablo-network-

generator/fablo-target/fabric-config/configtx.yaml) - used during

generating channel artifacts

• crypto-config-*.yaml (appendix A, diploma_thesis_project/fablo-

network-generator/fablo-target/fabric-config/) - heavily utilized

during generating network cryptographic material

• docker-compose.yaml (appendix A, diploma_thesis_project/fablo-

network-generator/fablo-target/fabric-docker/docker-compose.yaml)

- responsible for bringing up network components

The Fabric network is created and deployed using the fabric-docker.sh (ap-

pendix A, diploma_thesis_project/fablo-network-generator/fablo-target/

fabric-docker.sh) script’s commands. The appendix A, diploma_thesis_

project/README_fablo_development_deployment.md explains how to start a Fabric

network.

Generating network cryptographic material

The generation of X.509 certiĄcates and signing keys for the MSP of each peer and

orderer organization, as well as for TLS-based communication, is the initial stage

in network conĄguration. We’ll also need to make certiĄcates for each peer and

orderer node, which will be signed by their respective MSPs. Finally, we’ll need to

generate additional certiĄcates and keys, as well as TLS root certiĄcates, enabling

57

TLS-based communication among these peers, orderers, and MSPs. File crypto-

config-org1.yaml contains the conĄguration needed to build these cryptographic

artifacts. The structure of the organization, the number of peers in each organization,

and the default number of users (admin user is created additionally by default) for

whom certiĄcates and keys must be issued are all contained in URL.

1 PeerOrgs:
2 - Name: Org1
3 Domain: org1.com
4 Specs:
5 Template:
6 Count: 1
7 Users:
8 Count: 1

Listing 6.1: Contents of crypto-conĄg-org1.yaml

According to the conĄguration 6.1 of the heating distributor’s (Org1) organization,

Org1 will have one peer (Template section) and one non-admin user (Users section).

The peer’s organization domain name and its CA are also speciĄed.

Appendix A, diploma_thesis_project/fablo-network-generator/fablo-

target/fabric-config/ contains similar crypto-config-* Ąles for the orderer

organization and the other peer organization.

We want to clarify that ordinary and administrator users may be created dynam-

ically by submitting requests to the MSPs of organizations.

Generating channel artifacts

To build a network based on an organization’s structure and bootstrap a channel,

we’ll need to provide the following artifacts:

• A genesis block that contains consortium speciĄcations and organization-speciĄc

certiĄcates that deĄne who can create and manage network channels. This block

will act as the initial block of the orderer system channel, which is maintained by

the ordering service nodes to track multiple application channels created inside

the network.

• A channel conĄguration transaction.

• Anchor peer conĄguration transactions for each organization. An anchor peer

acts as a fulcrum inside an organization enabling Fabric gossip-based cross-

organization ledger synchronization.

The configtxgen tool from Fabric binaries was used to perform the actions in

this section. This phase is dependent on the configtx.yaml conĄguration Ąle, which

58

will be described more below. The following are the most important sections of

configtx.yaml:

• Channel proĄles - The proĄles section 6.2 describes the organizational struc-

ture of our sensor network.

1 Profiles:
2 # Profile used to create Genesis block for group group1 #
3 Group1Genesis:
4 <<: *ChannelDefaults
5 Orderer:
6 <<: *Group1Defaults
7 Organizations:
8 - *Orderer
9 Capabilities:

10 <<: *OrdererCapabilities
11 Consortiums:
12 SampleConsortium:
13 Organizations:
14 - *Orderer
15 - *Org1
16 - *Org2
17

18 # Profile used to create channeltx for my-channel1 #
19 MyChannel1:
20 <<: *ChannelDefaults
21 Orderer:
22 <<: *Group1Defaults
23 Organizations:
24 - *Orderer
25 Capabilities:
26 <<: *ApplicationCapabilities
27 Consortium: SampleConsortium
28 Consortiums:
29 SampleConsortium:
30 Organizations:
31 - *Org1
32 - *Org2
33 Application:
34 <<: *ApplicationDefaults
35 Organizations:
36 - *Org1
37 - *Org2

Listing 6.2: ProĄle section of conĄgtx.yaml

The conĄguration of the genesis block is provided in the Group1Genesis sec-

tion, which speciĄes one consortium, SampleConsortium. This consortium is

made up of a group of organizations that work together to maintain a channel.

SampleConsortium is comprised of Org1, Org2, and Orderer, each of which is

speciĄed in its own subsection in the Organizations section of the Ąle. The or-

derer is a member of its own organization named Orderer. MyChannel1 section

describes the channel settings for our distributed application. This channel is

associated with SampleConsortium.

• Organization conĄgurations - Each organization section includes informa-

tion about its MSP, hostname and port information for its anchor peers.

59

1 Organizations:
2 - &Org1
3 Name: Org1MSP
4 ID: Org1MSP
5 MSPDir: crypto-config/peerOrganizations/org1.com/msp
6

7 Policies:
8 Readers:
9 Type: Signature

10 Rule: "OR(’Org1MSP.member’)"
11 Writers:
12 Type: Signature
13 Rule: "OR(’Org1MSP.member’)"
14 Admins:
15 Type: Signature
16 Rule: "OR(’Org1MSP.admin’)"
17 Endorsement:
18 Type: Signature
19 Rule: "OR(’Org1MSP.member’)"
20

21 AnchorPeers:
22 - Host: peer0.org1.com
23 Port: 7041

Listing 6.3: Organizations section of conĄgtx.yaml

Listing 6.3 depicts the conĄguration of Org1. The names of the organization is

Org1 and it’s MSP is Org1MSP. The MSPDir variable refers to the location of

this organization’s cryptographic material, which we produced previously using

the cryptogen command. Policies for reading, writing, and administering the

channel are described in the Policies section (privileges are proven by certiĄcates

given by the Org1 organization’s MSP). The organization’s policy for endorsing

(signing) a smart contract transaction is also deĄned.

• Ordering service conĄguration - Orderer conĄguration is in listing 6.4.

1 Orderer: &Group1Defaults
2 OrdererType: etcdraft
3 Addresses:
4 - orderer0.group1.orderer.com:7030
5 EtcdRaft:
6 Consenters:
7 - Host: orderer0.group1.orderer.com
8 Port: 7030
9 ClientTLSCert: crypto-config/peerOrganizations/orderer.com/

peers/orderer0.group1.orderer.com/tls/server.crt
10 ServerTLSCert: crypto-config/peerOrganizations/orderer.com/

peers/orderer0.group1.orderer.com/tls/server.crt
11

12 BatchTimeout: 2s
13 BatchSize:
14 MaxMessageCount: 10
15 AbsoluteMaxBytes: 99 MB
16 PreferredMaxBytes: 512 KB
17 Organizations:
18 # Policies defines the set of policies at this level of the config tree
19 # For Orderer policies, their canonical path is
20 # /Channel/Orderer/<PolicyName>
21 Policies:
22 Readers:

60

23 Type: ImplicitMeta
24 Rule: "ANY Readers"
25 Writers:
26 Type: ImplicitMeta
27 Rule: "ANY Writers"
28 Admins:
29 Type: ImplicitMeta
30 Rule: "MAJORITY Admins"
31 # BlockValidation specifies what signatures must be included in the

block
32 # from the orderer for the peer to validate it.
33 BlockValidation:
34 Type: ImplicitMeta
35 Rule: "ANY Writers"
36 Capabilities:
37 <<: *OrdererCapabilities

Listing 6.4: Orderer section of conĄgtx.yaml

The Addresses section lists the orderer nodes, along with their hostnames and

listening ports. The BatchTimeout and BatchSize parameters control the pro-

duction of blocks. The maximum number of messages included inside a block

is speciĄed by MaxMessageCount, while the maximum length of time to wait

for new transactions before forming a block is speciĄed by BatchTimeout. The

Policies section is similar to the Organizations section. To avoid explicit calling

out of signatories, we describe ImplicitMeta policies, which are compositions

of simpler (Signature) policies. "ANYWriters," for example, speciĄes that ev-

ery member of the orderer organizations has write access for block creation.

BlockValidation is a policy rule that allows ordering nodes to sign blocks. Fi-

nally, the OrdererType option speciĄes how our ordering service is conĄgured.

It is set to etcdraft in this case, which gives fault-tolerance guarantees.

• Other parts of the configtx.yaml Ąle, such as Channel and Application, are

used to deĄne channel- and application-speciĄc rules. The Capabilities section

outlines version compatibility criteria. We will not go into speciĄcs regarding

these options.

Bringing up network components

The docker-compose.yaml network conĄguration Ąle is used to start the network as

a group of Docker containers. This Ąle deĄnes peers, peer databases, orderers, and

CAs as services and sets of attributes, allowing us to deploy them as interconnected

Docker containers all at once rather than manually running instances of these services

on one or more machines.

The services we need to correspond to our sensor network’s nodes are:

• Two instances of a Fabric peer, one for each organization.

61

• One instance of a Fabric orderer running in Raft mode

• Three instances of a Fabric CA, corresponding to the MSPs of Org1, Org2 and

Orderer.

Full content of docker-compose.yaml is available in appendix A. Any Fabric peer

conĄguration parameter can be set in this Ąle using environment variables. It is out of

scope of this thesis to describe this Ąle. ConĄguration Ąles core.yaml, orderer.yaml

are described in [23].

6.2.3 Chaincode implementation, testing and deployment

The data structure and its Ąelds are implemented in accordance with the speciĄcations

provided in chapter 4. The sensorContract is characterized by the data structure

shown in table 4.1. This contract is primarily in charge of tracking the states of smart

meters. This is accomplished by retaining state and speciĄed rules that determine

whether or not a state change is possible. In our use case, the sensor begins with

the status REQUESTED and progresses to ACCEPTED. Only after the status is

ACCEPTED may the value that deĄnes the quantity of consumed energy be updated.

The access control mechanism is implemented into the smart contract and hence

enforced throughout transaction processing on several endorsing peers, with the out-

come certiĄed via transaction consensus. It is implemented using ACLs in compliance

with the requirements speciĄed in section 4.4. One example is visualized in listing

6.5. ACLs deĄne which roles from which organizations may execute speciĄc functions.

Additional access control mechanisms are inbuilt into application layers interacting

with the contract.

1 this.aclRules[SensorContract.getAclSubject('Org1MSP', 'finalConsumer')] = ['init'

, 'exists', 'requestSensor', 'uploadDataSensor', 'getSensor', '

getSensorStatus', 'deleteSensor', 'listSensor', 'getSensorHistory'];

Listing 6.5: Example of ACLs

The beforeTransaction function, in listing 6.6, includes the enforcement of our

policy which uses an aclRules to verify authorization of the transaction invoking

identity.

1 public async beforeTransaction(ctx: Context) {
2 const id = ctx.clientIdentity.getID();
3 const mspId = ctx.clientIdentity.getMSPID();
4 const role = this.getUserRole(ctx);
5 const tx = ctx.stub.getFunctionAndParameters().fcn;
6 const aclSubject = SensorContract.getAclSubject(mspId, role);
7 if (!this.aclRules.hasOwnProperty(aclSubject)) {

62

8 throw new Error(`The participant with id: ${id} belonging to MSP: ${mspId
} and role: ${role} is not recognized`);

9 }
10 if (!this.aclRules[aclSubject].includes(tx)) {
11 throw new Error(`The participant with id: ${id} belonging to MSP: ${mspId

} and role: ${role} cannot invoke transaction ${tx}`);
12 }
13 }

Listing 6.6: Implementation of beforeTransaction

E-Certs are issued by the Fabric CA to network users. When a user submits to

Fabric, the E-Certs represents the user’s identity and is used as a signed transaction.

Before invoking a transaction, the user must Ąrst register and get an E-Certs from

Fabric CA.

Fabric uses attribute-based access control (ABAC). The ABAC enables the con-

tract to make access control decisions based on user identiĄcation attributes. Users

that have an E-Certs have access to a number of additional attributes (key-value

pairs). In this case we used additional attribute BUSINESS_ROLE.

Based on our use case, the table 6.1 describes the collection of functions that record

and retrieve data to and from the ledger to provide the contracts’ business logic. The

table also deĄnes the access control deĄnitions of organization members, which are

required to execute the appropriate functions.

Function Roles permitted to invoke Description

exists

Org1MSP.finalConsumer

Org1MSP.propertyManagementWorker

Org2MSP.heatingDistributorWorker

Checks if a sensor

exists

requestSensor
Org1MSP.finalConsumer

Org1MSP.propertyManagementWorker

Requests sensor

registration.

acceptSensor
Org1MSP.propertyManagementWorker

Org2MSP.heatingDistributorWorker

Accepts sensor

registration request.

uploadDataSensor
Org1MSP.finalConsumer

Org1MSP.propertyManagementWorker

Uploads new value

from sensor.

getSensor

Org1MSP.finalConsumer

Org1MSP.propertyManagementWorker

Org2MSP.heatingDistributorWorker

Gets sensor data.

63

Table 6.1 continued from previous page

Function Roles permitted to invoke Description

getSensorStatus

Org1MSP.finalConsumer

Org1MSP.propertyManagementWorker

Org2MSP.heatingDistributorWorker

Gets sensor status.

listSensor

Org1MSP.finalConsumer

Org1MSP.propertyManagementWorker

Org2MSP.heatingDistributorWorker

Gets list of sensors,

where the requester

is involved.

getSensorHistory

Org1MSP.finalConsumer

Org1MSP.propertyManagementWorker

Org2MSP.heatingDistributorWorker

Gets full history for

sensor.

Table 6.1: Contract functions of SensorContract

All functions from table 6.1 are implemented in appendix A in Ąle diploma_

thesis_project/chaincode-typescript/src/sensor-contract.ts.

Implementation of unit tests for our contract functions is available

in appendix A diploma_thesis_project/chaincode-typescript/src/sensor-

contract.spec.ts. Following technologies were used: the Mocha testing framework

[35] with the Chai assertion library [8], which enables to write unit tests as sentences,

and the Sinon mocking library [42], which allows to create stubs of objects.

Chaincode deployment

After completing the preceding steps, our network is operational, but no channels

exist between the participants. For this, Hyperledger Fabric provides binaries. The

configtx.yaml Ąle is used to deĄne channel creation transaction as well as transac-

tions that update peers to be anchor peers. Then, using peer binary, the channel is

created and the organization’s peers are added as anchor peers.

There is now a channel between the organizations, but no chaincode is deployed on

it. To deploy a chaincode, follow the steps outlined in section 3.2. Binaries provided

by Hyperledger Fabric allowed us to carry out those steps.

64

6.3 REST server implementation

Because the REST server is traditional enterprise application, already discussed in

section 5.2.2, the implementation process was straightforward. The server is built

using NodeJS and ExpressJS. Fabric-network and fabric-ca-client were used to

connect to the Fabric network.

Fabric identity creation is noteworthy. Fabric provides the ability to dynamically

create identities and credentials using the Fabric CA server. To enforce access control

rules, our deployed contract depends on special attributes to be present in callers’

certiĄcates. Such properties are not present in certiĄcates generated statically.

In this use case, each unique finalConsumer, propertyManagementWorker,

and heatingDistributorWorker is assigned a unique Fabric identity and mapped

to it. Appendix A contains the code for Fabric identity creation and mainte-

nance, which can be found in diploma_thesis_project/apps/org2backendapp/

src/models/identityModel.js.

The process of creating a new identity consists of three steps:

1. Enrollment of registrar - When a Fabric CA server is created for each orga-

nization, it includes an administrator account. This administrator user serves

as the CA’s registrar. To do so, it must Ąrst enroll with the CA, which involves

generating a public-private key pair and receiving an X.509 certiĄcate from the

CA by sending the public key along with a certiĄcate signing request. The

certiĄcate, together with other metadata, is saved in the local wallet.

2. Registration of user - The enrolled registrar submits a registration request

for a user to the CA by providing a username. The CA creates an identity

for the user internally and returns a secret to the registrar. In the Property-

ManagementOrg application, we need to separate regular client users into final-

Consumer and propertyManagementWorker. This is accomplished by mapping

the proper role. The registration request is sent to the CA speciĄed in the

connection proĄle.

3. Enrollment of user - The user can now enroll with the CA in the same manner

as the registrar, using its username and the secret obtained in the previous stage

as a password. An identity is formed and saved in a Ąle in the wallet directory.

When a user calls the /register endpoint, the three-step preceding procedure

outlined is initiated.

65

6.4 Summary

Implementing a full blockchain application is an ambitious and difficult task. A wide

variety of skills is required - systems, networking, security, web application develop-

ment, distributed deployment, ...

Figure 6.13: Full solution architecture

Using our consumption monitoring use case, we implemented a distributed appli-

cation over a Fabric network. This proof of concept solution consists of a network of

2 organizations. Both of these are represented by an Hyperledger Fabric organization

holding one peer node, one orderer node and certiĄcate authorities to issue certiĄcates

to its members as depicted in Ągure 6.13.

Our distributed application allows three independent personas from two organiza-

tions to manage consumption monitoring workĆow. The attributes of sensor-related

artifacts, as well as the history of this workĆow, were stored in a tamper-resistant,

shared, replicated ledger. Once the smart contracts were complete, we used REST

APIs to offer their capabilities to different organizations’ members in different ways.

66

7 Evaluation

7.1 Flow validation

Now we’ll complete the whole workĆow depicted in chapter 4.2, changing between

different users to drive the workĆow. Curl commands with different parameters are

used to invoke services. These commands can also be found in appendix A.

Identities creation

The following users have to be registered (passwords are set to password for all users):

• In the PropertyManagementOrg application running on http://localhost:

4000, we create:

a user with username finalconsumer with role finalconsumer

curl -X POST http://localhost:4000/register -H "content-type:application/x-
www-form-urlencoded" -d ’registrarUser=admin®istrarPassword=adminpw&
username=finalconsumer&password=password&role=finalconsumer’

with response

true

a user with username propertymanagementworker with role

propertymanagementworker

curl -X POST http://localhost:4000/register -H "content-type:application/x-
www-form-urlencoded" -d ’registrarUser=admin®istrarPassword=adminpw&
username=propertymanagementworker&password=password&role=
propertymanagementworker’

with response

true

• In the HeatingDistributorOrg application running on http://localhost:

4001, we create:

a user with username heatingdistributorworker with role

heatingdistributorworker

67

curl -X POST http://localhost:4001/register -H "content-type:application/x-
www-form-urlencoded" -d ’registrarUser=admin®istrarPassword=adminpw&
username=heatingdistributorworker&password=password&role=
heatingdistributorworker’

with response

true

This can be run on a newly created network with no users currently registered.

The wallets folder diploma_thesis_project/apps/org1backendapp/org1.

example.com/wallets now contains identities admin.id, finalconsumer.id,

propertymanagementworker.id.

The wallets folder diploma_thesis_project/apps/org2backendapp/

org2.example.com/wallets now contains identities admin.id and

heatingdistributorworker.id.

Those identities are stored as JSON objects and some of their attributes are the

MSP ID of the organization, the client’s private signing key, the certiĄcate issued for

the client by the MSP.

Users logging in

Following the registration of users, we have to log them into their respective applica-

tions and receive tokens for each of them. Because we will be reusing these tokens for

several actions, we decided to save them in environment variables. This step requires

the jq tool [28].

• finalconsumer logging in
JWT_FIN=$(curl -X POST http://localhost:4000/login -H "content-type:

application/x-www-form-urlencoded" -d ’username=finalconsumer&password=
password’ 2>/dev/null | jq .token)

JWT_FIN=${JWT_FIN:1:${#JWT_FIN}-2}
export JWT_FIN

• propertymanagementworker logging in
JWT_PRO=$(curl -X POST http://localhost:4000/login -H "content-type:

application/x-www-form-urlencoded" -d ’username=propertymanagementworker&
password=password’ 2>/dev/null | jq .token)

JWT_PRO=${JWT_PRO:1:${#JWT_PRO}-2}
export JWT_PRO

• heatingdistributorworker logging in
JWT_HEA=$(curl -X POST http://localhost:4001/login -H "content-type:

application/x-www-form-urlencoded" -d ’username=heatingdistributorworker&
password=password’ 2>/dev/null | jq .token)

JWT_HEA=${JWT_HEA:1:${#JWT_HEA}-2}
export JWT_HEA

68

WorkĆow

After logging users into their individual applications and getting tokens for each of

them, we can begin the workĆow described in chapter 4.2.

1. The property manager requests registration of main heat meter for the whole

building from the heating distributor.
curl -X POST http://localhost:4000/sensor/request -H "content-type:

application/x-www-form-urlencoded" -H "authorization: Bearer ${JWT_PRO}"
-d ’sensorId=sensor1&value=0&approverMSP=Org2MSP’

with response
true

verify the existence of sensor
curl -X GET http://localhost:4000/sensor/sensor1 -H "authorization: Bearer ${

JWT_PRO}"

with response
{
"approver": null,
"approverMSP": "Org2MSP",
"consumer": "x509::/OU=client/CN=propertymanagementworker::/C=US/ST=

California/L=San Francisco/O=org1.com/CN=ca.org1.com",
"consumerMSP": "Org1MSP",
"sensorID": "sensor1",
"status": "REQUESTED",
"value": 0

}

2. The heating distributor accepts registration request of the main heat meter.
curl -X GET http://localhost:4001/sensor/sensor1/accept_sensor -H "

authorization: Bearer ${JWT_HEA}"

with response
true

verify the existence of a sensor
curl -X GET http://localhost:4001/sensor/sensor1 -H "authorization: Bearer ${

JWT_HEA}"

with response
{
"approver": "x509::/OU=client/CN=heatingdistributorworker::/C=US/ST=

California/L=San Francisco/O=org2.com/CN=ca.org2.com",
"approverMSP": "Org2MSP",
"consumer": "x509::/OU=client/CN=propertymanagementworker::/C=US/ST=

California/L=San Francisco/O=org1.com/CN=ca.org1.com",
"consumerMSP": "Org1MSP",
"sensorID": "sensor1",
"status": "ACCEPTED",
"value": 0

}

69

3. The property manager regularly updates main meter value.

curl -X POST http://localhost:4000/sensor/upload -H "content-type:
application/x-www-form-urlencoded" -H "authorization: Bearer ${JWT_PRO}"
-d ’sensorId=sensor1&value=15’

with response

true

verify the existence of a sensor

curl -X GET http://localhost:4001/sensor/sensor1 -H "authorization: Bearer ${
JWT_HEA}"

with response

{
"approver": "x509::/OU=client/CN=heatingdistributorworker::/C=US/ST=

California/L=San Francisco/O=org2.com/CN=ca.org2.com",
"approverMSP": "Org2MSP",
"consumer": "x509::/OU=client/CN=propertymanagementworker::/C=US/ST=

California/L=San Francisco/O=org1.com/CN=ca.org1.com",
"consumerMSP": "Org1MSP",
"sensorID": "sensor1",
"status": "ACCEPTED",
"value": 15

}

4. The Ąnal consumer requests registration of local heat meter.

curl -X POST http://localhost:4000/sensor/request -H "content-type:
application/x-www-form-urlencoded" -H "authorization: Bearer ${JWT_FIN}"
-d ’sensorId=sensor2&value=0&approverMSP=Org1MSP’

with response

true

verify the existence of a sensor

curl -X GET http://localhost:4000/sensor/sensor2 -H "authorization: Bearer ${
JWT_FIN}"

with response

{
"approver": null,
"approverMSP": "Org1MSP",
"consumer": "x509::/OU=client/CN=finalconsumer::/C=US/ST=California/L=San

Francisco/O=org1.com/CN=ca.org1.com",
"consumerMSP": "Org1MSP",
"sensorID": "sensor2",
"status": "REQUESTED",
"value": 0

}

5. The property manager accepts registration of local heat meter.

curl -X GET http://localhost:4000/sensor/sensor2/accept_sensor -H "
authorization: Bearer ${JWT_PRO}"

with response

70

true

verify the existence of a sensor

curl -X GET http://localhost:4000/sensor/sensor2 -H "authorization: Bearer ${
JWT_PRO}"

with response

{
"approver": "x509::/OU=client/CN=propertymanagementworker::/C=US/ST=

California/L=San Francisco/O=org1.com/CN=ca.org1.com",
"approverMSP": "Org1MSP",
"consumer": "x509::/OU=client/CN=finalconsumer::/C=US/ST=California/L=San

Francisco/O=org1.com/CN=ca.org1.com",
"consumerMSP": "Org1MSP",
"sensorID": "sensor2",
"status": "ACCEPTED",
"value": 0

}

6. The Ąnal consumer regularly updates own local meter value.

curl -X POST http://localhost:4000/sensor/upload -H "content-type:
application/x-www-form-urlencoded" -H "authorization: Bearer ${JWT_FIN}"
-d ’sensorId=sensor2&value=25’

with response

true

verify the existence of a sensor

curl -X GET http://localhost:4000/sensor/sensor2 -H "authorization: Bearer ${
JWT_FIN}"

with response

{
"approver": "x509::/OU=client/CN=propertymanagementworker::/C=US/ST=

California/L=San Francisco/O=org1.com/CN=ca.org1.com",
"approverMSP": "Org1MSP",
"consumer": "x509::/OU=client/CN=finalconsumer::/C=US/ST=California/L=San

Francisco/O=org1.com/CN=ca.org1.com",
"consumerMSP": "Org1MSP",
"sensorID": "sensor2",
"status": "ACCEPTED",
"value": 25

}

Additional queries

1. Viewing list of sensors that are associated with the user

curl -X GET http://localhost:4000/sensor -H "authorization: Bearer ${JWT_PRO
}"

with response

[
{

71

"approver": "x509::/OU=client/CN=propertymanagementworker::/C=US/ST=
California/L=San Francisco/O=org1.com/CN=ca.org1.com",

"approverMSP": "Org1MSP",
"consumer": "x509::/OU=client/CN=finalconsumer::/C=US/ST=California/L=San

Francisco/O=org1.com/CN=ca.org1.com",
"consumerMSP": "Org1MSP",
"sensorID": "sensor2",
"status": "ACCEPTED",
"value": 25

},
{
"approver": "x509::/OU=client/CN=heatingdistributorworker::/C=US/ST=

California/L=San Francisco/O=org2.com/CN=ca.org2.com",
"approverMSP": "Org2MSP",
"consumer": "x509::/OU=client/CN=propertymanagementworker::/C=US/ST=

California/L=San Francisco/O=org1.com/CN=ca.org1.com",
"consumerMSP": "Org1MSP",
"sensorID": "sensor1",
"status": "ACCEPTED",
"value": 15

}
]

2. Viewing sensor history for auditability reasons

curl -X GET http://localhost:4000/sensor/sensor1/history -H "authorization:
Bearer ${JWT_PRO}"

with response

[
{
"txId": "da7f0c1c6ab8843f2a0958e70a85e04e52e84d44046bf0f4c5676c8e01513747",
"timestamp": "Mon Jan 03 2022 17:24:12 GMT+0000 (Coordinated Universal Time

)",
"isDelete": "false",
"sensorAgreement": {
"approver": "x509::/OU=client/CN=heatingdistributorworker::/C=US/ST=
California/L=San Francisco/O=org2.com/CN=ca.org2.com",

"approverMSP": "Org2MSP",
"consumer": "x509::/OU=client/CN=propertymanagementworker::/C=US/ST=
California/L=San Francisco/O=org1.com/CN=ca.org1.com",

"consumerMSP": "Org1MSP",
"sensorID": "sensor1",
"status": "ACCEPTED",
"value": 15

}
},
{
"txId": "cc54aa005677c91c99ed421e09009243051673f749fe7cbef8547795d67e6508",
"timestamp": "Mon Jan 03 2022 17:24:09 GMT+0000 (Coordinated Universal Time

)",
"isDelete": "false",
"sensorAgreement": {
"approver": "x509::/OU=client/CN=heatingdistributorworker::/C=US/ST=
California/L=San Francisco/O=org2.com/CN=ca.org2.com",

"approverMSP": "Org2MSP",
"consumer": "x509::/OU=client/CN=propertymanagementworker::/C=US/ST=
California/L=San Francisco/O=org1.com/CN=ca.org1.com",

"consumerMSP": "Org1MSP",

72

"sensorID": "sensor1",
"status": "ACCEPTED",
"value": 0

}
},
{
"txId": "9ea756e35984bb10934235caf5e3b609d7895205810f7ceaa602e1ddeb3f2b2a",
"timestamp": "Mon Jan 03 2022 17:24:07 GMT+0000 (Coordinated Universal Time

)",
"isDelete": "false",
"sensorAgreement": {
"sensorID": "sensor1",
"consumerMSP": "Org1MSP",
"consumer": "x509::/OU=client/CN=propertymanagementworker::/C=US/ST=
California/L=San Francisco/O=org1.com/CN=ca.org1.com",

"approverMSP": "Org2MSP",
"approver": null,
"value": 0,
"status": "REQUESTED"

}
}

]

7.2 Performance evaluation

This section focuses on the application’s performance on selected experiments and

evaluation. The tests are run locally with Hyperledger Caliper v0.4.2, which is already

described in section 5.2, and the conĄguration Ąles provided in appendix A.

Caliper requires the deĄnition of network conĄgurations (Appendix

A, caliperworkspace/network/), test conĄgurations (Appendix A,

caliperworkspace/benchmarks/), and test Ąles (Appendix A, caliperworkspace/

workload/) in order to function with new chaincodes and existing networks.

To measure blockchain performance with Hyperledger Caliper, the following steps

were performed:

1. Fabric network was created, initialized and chaincode was deployed.

2. Both organizations’ applications are launched, and an identity is created for

each role using /register endpoint. This is required because our chaincode

functions expect speciĄc attributes to be present in the caller certiĄcate.

3. Caliper was conĄgured to connect to Fabric network using the network conĄg-

urations Ąle (Appendix A, caliperworkspace/network/).

4. Test workload modules were written to test performance of following chain-

code functions: requestSensor, uploadDataSensor, getSensor, listSensor,

73

getSensorHistory (Appendix A, caliperworkspace/workload/).

5. Test conĄgurations were written (Appendix A, caliperworkspace/

benchmarks/).

6. Caliper was launched, and the Ąndings were saved in the form of auto-generated

HTML reports.

The following setup was used for development and testing, some information was

already provided in section 6.2:

• Host machine: Notebook Lenovo W541

Ű OS: Windows 10 Pro 64-bit (10.0,

Build 19043)

Ű RAM: 4x8GB DDR3 1600MHz

Processor: 2.8GHz Intel core i7

4810MQ

Ű SSD: SAMSUNG SSD 860 EVO

500 GB Architecture: x86_64

Ű CPU(s): 8

Ű On-line CPU(s) list: 0-7

Ű Core(s) per socket: 4

• Fabric network, REST servers and Caliper

Ű WSL2 with Ubuntu 20.04

Ű Docker desktop 4.3.1

The transaction throughput and latency of the Hyperledger Fabric network is

measured in this section. The throughput is deĄned as follows [14]:

Transaction Throughput =
Total committed transactions

total time in seconds
@ #committed nodes

Transaction throughput is the rate at which valid transactions are committed by

the blockchain System Under Test (SUT) in a deĄned time period. Note that this is

not the rate at a single node, but across the entire SUT, i.e. committed at all nodes

of the network. This rate is expressed as transactions per second (TPS) at a network

size. To get the total committed transactions, total number of invalid transactions

is subtracted from the total number of transactions. Even if two networks have the

same throughput, one will be more effective if it has a greater success rate [14].

74

Transaction Latency is deĄned as follows [14]:

Transaction latency = (Confirmation time @ network treshold) − submit time

Transaction latency is the amount of time it takes for the effect of a transaction to

be usable throughout the network. This includes the propagation time as well as any

settling time produced by the consensus mechanism. All nodes in the SUT should be

used to measure delay. The only meaningful network threshold for non-probabilistic

protocols like Raft is 100% [14].

7.2.1 Experiment 1

The transaction send rate can be conĄgured in Caliper’s benchmark conĄguration Ąle.

This is referred to as the expected send rate, and it is not the same as the actual send

rate. The expected send rate can be set to anything, but Caliper’s resources restrict

the actual send rate.

First experiment determines Caliper’s highest possible actual send rate. The send

rate should be unaffected by the Fabric network architecture and hence should provide

an independent measurement of Caliper’s performance. In this case, when Caliper and

Fabric network run on the same computer, measurement is not completely indepen-

dent.

During this experiment, the Ąxed-rate rate controller is used. It is the most

basic controller. It sends input transactions at the speciĄed TPS interval [16]. Tests

were run with 1, 2, 3, 4, 5 workers. We believe that higher amount of workers should

lead to higher send rate. The table 7.1 contains these measurements.

Observation

As seen from table 7.1, not every chaincode function has the same send rate. Caliper

generates transactions in the test Ąles, and the transaction generation speed is affected

by complexity of tasks. ReadSensor has the highest send rate, because it require

only generation of sensor identiĄcation. GetSensorHistory also requires only gener-

ation of sensor identiĄcation, but its send rate is lower. In the case of readSensor,

updateSensor, getSensorHistory and listSensor, the highest send rate is achieved

when 5 workers are used. Highest send rate for createSensor and is achieved when

employing 4 workers.

75

Name Workers
TRXN

succ
TRXN

Fail
Send Rate

(TPS)
Avg Latency

(s)
Throughput

(TPS)

readSensorFixedRate 1 10000 0 280.9 0.01 280.8
readSensorFixedRate 2 10000 0 398 0.03 397.9
readSensorFixedRate 3 9130 869 485 4.23 461.8
readSensorFixedRate 4 7676 2324 485.1 6.08 463.6
readSensorFixedRate 5 7510 2490 486.1 6.54 447.8

updateSensorFixedRate 1 1635 8365 87.8 2.78 86.1
updateSensorFixedRate 2 460 9540 130.2 21.12 82.7
updateSensorFixedRate 3 257 9742 288.8 31.53 83.7
updateSensorFixedRate 4 241 9759 283.4 41.64 96.5
updateSensorFixedRate 5 263 9737 291.1 41.22 123.6

createSensorFixedRate 1 9999 1 81.2 34.53 60.4
createSensorFixedRate 2 9883 117 204.5 87.78 58.8
createSensorFixedRate 3 6007 3992 217.9 64.45 82.4
createSensorFixedRate 4 4728 5272 232.1 60.37 97.6
createSensorFixedRate 5 3236 6764 209.8 47.81 120.9

listSensorFixedRate 1 56 9944 156.5 17.45 106.5
listSensorFixedRate 2 0 10000 218.3 - 142.6
listSensorFixedRate 3 0 9999 260.9 - 146.8
listSensorFixedRate 4 0 10000 272.9 - 149.9
listSensorFixedRate 5 0 10000 276.9 - 151.1

getSensorHistoryFixedRate 1 9216 784 170.7 13.3 143.2
getSensorHistoryFixedRate 2 5729 4271 241 19.99 185.8
getSensorHistoryFixedRate 3 6273 3726 348.5 11.08 317.1
getSensorHistoryFixedRate 4 5318 4682 345.4 15.19 288.9
getSensorHistoryFixedRate 5 4943 5057 391.3 16.07 291.9

Table 7.1: Measurements using Ąxed-rate rate controller

Caliper creates a new child process for each client, and by increasing the number

of workers the process resource overhead increases. Because Caliper and the Fabric

network are both running on the same machine, they compete for the same resources.

These are probably the reasons for only small increase when adding more than 3

workers. In general, we can see that by increasing amount of workers from 1 to 2

signiĄcantly increases send rate.

Another Ąnding is that having a larger number of workers lowers the transaction

success rate, which was observed in readSensor and createSensor. UpdateSensor

transaction success rate decreased from 16.3% to 4.6% when utilizing 2 workers instead

of 1, by adding more workers the success rate remained roughly the same. The success

rate for getSensorHistory continued to fall from 1 to 2 workers, then increased for

3 workers and continue to decrease for more workers. ListSensor had the lowest

success rate, with just 54 successful transactions while using one worker and none

when using more workers.

The table 7.2 summarizes reasons for failed transactions when using Ąxed-rate

rate controller. Logs from each benchmark, which contain error messages, can be

found in appendix A, caliperworkspace/reports/ in corresponding *.log Ąles.

Docker containers resource utilization was monitored during benchmarking. Indi-

76

Error/Function
readSensor
FixedRate

updateSensor
FixedRate

createSensor
FixedRate

listSensor
FixedRate

getSensorHistory
FixedRate

peer=undeĄned, status=grpc,
message=Peer endorsements do not match

NO YES YES NO NO

peer=undeĄned, status=grpc,
message=Endorsement has failed

NO YES YES NO NO

no endorsement plan available NO NO YES NO NO

timeout expired while executing transaction NO NO YES YES NO

FabricError: Query failed. Errors: ["Error: 2
UNKNOWN: too many requests for /protos.Endorser,
exceeding concurrency limit (2500)"]

YES NO NO YES YES

TransactionError: Commit of transaction failed
on peer peer0.org1.com:7041 with status
MVCC_READ_CONFLICT

NO YES NO NO NO

Table 7.2: Reasons for failed transactions summary

vidual reports can be found in appendix A, caliperworkspace/reports/ in corre-

sponding *.html Ąles. Resource utilization summary can be found in appendix A,

caliperworkspace/reports/docker_report.xlsx

Conclusion

Caliper performance is affected by the number of workers. The highest send rate

wasn’t achieved with the same amount of workers for every chaincode function. How-

ever, we could consider 3 workers to be the optimal number for maximizing the send

rate as there is only small increase in send rate when using more than 3 workers.

Our highest measured send rates for readSensor, updateSensor, createSensor,

listSensor, getSensorHistory were in the same order 486 TPS, 291 TPS, 232

TPS, 276 TPS, 391 TPS. A potential transaction throughput higher than previously

mentioned cannot be measured since Caliper’s host machine is unable to generate

send transactions faster.

7.2.2 Experiment 2

When evaluating the Fabric network, the aim was to obtain a measurable metric for

the Fabric network’s performance. The network’s transaction throughput is one such

metric.

In some cases, the success rate for the Ąrst experiment was relatively low. We

believe that by using another rate controller we can improve our success rate. Trans-

action throughput is affected by the success rate, and we want to look at transaction

throughput when the majority of transactions are successful.

During this experiment, the Ąxed-load rate controller is used to drive the tests

at a target loading (backlog transactions). By changing the driven TPS, this controller

77

will attempt to maintain a deĄned backlog of transactions inside the system. As a

result, the system achieves the highest possible TPS while maintaining the pending

transaction load [16]. Tests were run with 1, 2, 3, 4, 5 workers. The table 7.3 contains

these measurements.

Name Workers
TRXN

succ
TRXN

Fail
Send Rate

(TPS)
Avg Latency

(s)
Throughput

(TPS)

readSensorFixedLoad 1 10000 0 292.9 0.01 292.8
readSensorFixedLoad 2 10000 0 451.3 0.16 449.6
readSensorFixedLoad 3 9999 0 499.1 1.06 487.4
readSensorFixedLoad 4 10000 0 411.1 1.22 408.5
readSensorFixedLoad 5 10000 0 416.9 1.2 416.7

updateSensorFixedLoad 1 1799 8201 94 2.56 92
updateSensorFixedLoad 2 1303 8697 85.8 5.97 84.1
updateSensorFixedLoad 3 1831 8168 82.8 7.73 80.8
updateSensorFixedLoad 4 2126 7874 76.7 7.41 75.5
updateSensorFixedLoad 5 2717 7283 72.2 7.75 71

createSensorFixedLoad 1 10000 0 65.4 9.21 62
createSensorFixedLoad 2 10000 0 63.2 10.22 62.1
createSensorFixedLoad 3 9999 0 59.6 11.24 58.8
createSensorFixedLoad 4 10000 0 55.9 11.33 55.2
createSensorFixedLoad 5 10000 0 58.1 11.07 57.3

listSensorFixedLoad 1 10000 0 81.3 8.71 76.7
listSensorFixedLoad 2 10000 0 28.4 12.49 28.1
listSensorFixedLoad 3 9999 0 27.4 11.63 26.9
listSensorFixedLoad 4 9005 995 19 9.97 18.8
listSensorFixedLoad 5 5 9995 34.7 0.23 31.4

getSensorHistoryFixedLoad 1 10000 0 176.7 2.92 170.3
getSensorHistoryFixedLoad 2 10000 0 157.1 3.82 153.9
getSensorHistoryFixedLoad 3 9999 0 140.2 4.61 138.7
getSensorHistoryFixedLoad 4 10000 0 133.4 4.24 132.3
getSensorHistoryFixedLoad 5 10000 0 131.1 4.08 130.7

Table 7.3: Measurements using Ąxed-load rate controller

Observation

As seen from table 7.3 send rate is in most cases lower when compared to Ąxed-rate

rate controller, except for some situations in readSensor. But transaction success

rate is much higher. When using Ąxed-load rate controller transaction send rate is

very similar to transaction throughput.

Not every chaincode function has the same throughput when using the same

amount of workers. ReadSensor has highest throughput when using 3 work-

ers, updateSensor when using 1 worker, createSensor when using 2 workers,

getSensorHistory when using 1 worker. ListSensor benchmark response size grows

with amount of workers by the size of 50 sensors, which means that when using 1

worker response is array with 50 sensors, but when using 5 workers response is array

with 250 sensors. This probably explains why throughput is the highest for 1 worker

and low success rate for 5 workers.

78

The table 7.4 summarizes reasons for failed transactions when using Ąxed-load

rate controller. MVCC_READ_CONFLICTS cannot be easily removed and would re-

quire structural changes to prevent multiple attempts to update value of the same

key. Logs from each benchmark, which contain error messages, can be found in

appendix A, caliperworkspace/reports/ in corresponding *.log Ąles. Docker

containers resource utilization was monitored during benchmarking. Individual re-

ports can be found in appendix A, caliperworkspace/reports/ in correspond-

ing *.html Ąles. Resource utilization summary can be found in appendix A,

caliperworkspace/reports/docker_report.xlsx

Error/function
readSensor
FixedLoad

updateSensor
FixedLoad

createSensor
FixedLoad

listSensor
FixedLoad

getSensorHistory
FixedLoad

peer=undeĄned, status=grpc,
message=Peer endorsements do not match

NO YES NO NO NO

peer=undeĄned, status=grpc,
message=Endorsement has failed

NO NO NO NO NO

no endorsement plan available NO NO NO NO NO

timeout expired while executing transaction NO NO NO YES NO

FabricError: Query failed. Errors: ["Error: 2
UNKNOWN: too many requests for /protos.Endorser,
exceeding concurrency limit (2500)"]

NO NO NO NO NO

TransactionError: Commit of transaction failed
on peer peer0.org1.com:7041 with status
MVCC_READ_CONFLICT

NO YES NO NO NO

Table 7.4: Reasons for failed transactions summary

Conclusion

The choice of rate controller affects success rate, send rate and throughput. Trans-

action success rate is much higher when using Ąxed-load rate controller and mul-

tiple errors were eliminated. The highest throughput wasn’t achieved with the same

amount of workers for every chaincode function. Our highest measured through-

put for readSensor, updateSensor, createSensor, listSensor, getSensorHistory

were respectively 487 TPS, 92 TPS, 62 TPS, 76 TPS, 170 TPS.

7.3 Security of proposed solution

The suggested design’s security features are derived from two main sources. The

Ąrst is the security features inherited from Hyperledger Fabric. The second layer of

security is provided by design choices made to guarantee privacy, access control, and

data provenance.

79

The system gains following security features by being built on top of the Hyper-

ledger Fabric blockchain network model [32]:

• Immutability - The ordering service must sign blocks before they can be added

to the ledger. After that, transactions are sorted in blocks and sent to peer

nodes, which can validate the blocks by having access to the ordering node’s

CAs. If orderer is compromised, the malicious party will have a different ledger

than other peers and that is not enough to convince other peers that their

version is the right one. Endorsement policy that requires all parties to sign the

endorsement ensures that the states of the participants match.

• Privacy and ConĄdentiality - Privacy aspects such as asymmetric cryptog-

raphy and zero-knowledge proofs serve to separate transaction data from ledger

records. As a result, the data is protected from the underlying algorithm. Thus,

the orderers have no knowledge of the transaction data. To prevent fraudulent

organizations from joining the blockchain and stealing user privacy, all orga-

nizations joining the blockchain must be authenticated at the CA. MSP also

separates roles between different organizations.

• Consensus - Consensus is in charge of checking the correctness of all transac-

tions in a block and agreeing on an order for them. Every node on the channel

is guaranteed to process the transactions in the same manner, and every non-

faulty node on the channel should eventually receive the submitted transactions.

Consensus is a sophisticated process in Hyperledger Fabric, and it is present in

the transaction Ćow mechanism outlined in section 3.1.

The following assumptions are considered when analyzing the security aspects of

the proposed system:

(i) Data measurements performed by smart meters are correct.

(ii) No human errors when entering data are considered as this is out of scope of

this thesis.

(iii) Sufficient amount of honest peers and orderers is present in blockchain network.

(iv) Correct endorsement policy is enforced.

The developed solution achieves, based on the aforementioned assumptions, the

following security features:

80

1. Separation from uninvolved - participants must have a valid certiĄcate issued

by MSP services to access developed system and its data.

2. Asset traceability/auditability/provenance - each activity done on the

ledger is recorded and kept in the asset’s state. This allows to track all changes

up to asset’s creation.

3. Soundness - endorsement policy requires majority of organizations to execute

chaincode and endorse the execution results in order for the transaction to be

considered valid. This is fulĄlled, because we assumed sufficient amount of

honest nodes.

4. States validity - business logic implemented in smart contracts ensures that

meters do not end up in illegal states by performing checks on the validity of

the operations in smart contracts.

5. Restricted data modiĄcation - To alter an asset, it must be part of a valid

transaction that takes access and business requirements into consideration.

6. Accountability - Organizations are not permitted to act on behalf of other

participants. Because Fabric is permissioned, the identity of the caller is checked

and validated for each operation, and the transaction is signed by him. It is

possible to prove that he submitted the corresponding transaction using Fabric’s

PKI.

7. Dispute validity - it is really hard to open disputes when all interested parties

have access to the same smart meter history, faking a problem with smart meter

becomes increasingly difficult.

The system also mitigates common threats by being built on top of the Hyperledger

Fabric. In the table 7.5, we will brieĆy review the most common security threats and

how to address them.

Threat with description Hyperledger Fabric Network/Node Operator

Spoofing - Using credentials

to impersonate a legitimate

user or compromising

a user’s private key.

Generates X.509 certificates

for its users.

Manages the distribution of certificate

revocation lists across network

participants to guarantee that revoked

users can no longer access the system.

Tampering - Modification of

information.

To make tampering unfeasible,

cryptographic methods are used.
Derived from Fabric.

81

Table 7.5 continued from previous page

Threat with description Hyperledger Fabric Network/Node Operator

Repudiation - It is impossible

for an entity to deny who

did what.

Uses digital signatures to keep

track of who did what.
Derived from Fabric.

Replay attacks - Replaying

transactions to corrupt the

ledger.

To validate the transaction,

read/write sets are used.

A transaction replay will fail

because of to an invalid read set.

Derived from Fabric.

Information disclosure - Data

exposed through intentional

breach or accidental exposure.

Allows for the use of TLS

for in-transit encryption.

The operator’s responsibility is to avoid

information disclosure by adhering to

information security best practices for

Fabric nodes as well as applications that

communicate with the ledger. Organizations

must specify the right Fabric mechanisms

for sharing data as part of data governance,

especially when adding new users or apps.

Denial of service - Making

genuine users’ access to

the system difficult.

The operator’s

responsibility.

The operator’s duty to prevent denial

of service to the system.

Elevation of privileges -

Obtaining high-level

application access.

Without a manual review

of access, issued identities

cannot be upgraded.

It is the network/node operator’s duty

to audit a smart contract, limit access,

and operate smart contract containers

with proper limitations. (Typically Docker

containers in Fabric deployments.)

Ransomware - Using

cryptography or other

methods to block access

to filesystem data.

The compromising of one peer in

a distributed system should not

have an impact on the data

integrity of other peers.

The operator’s duty is to ensure

that ransomware does not prevent

access to a node’s ledger.

Table 7.5: Threats [12]

82

Conclusion

Blockchain technology is a game-changing breakthrough that has the potential to

signiĄcantly enhance many existing systems by making them more transparent, secure,

and efficient.

Throughout this thesis, we described relevant aspects of blockchain technology,

with focus on Hyperledger Fabric. Next, we provided a review on selected academic

papers in the energy sector. More importantly, the focus was put on the applicabil-

ity of enterprise blockchain technology in the energy sector. We present a use-case,

which considers consumption data sharing between multiple organizations and Ąnal

consumer.

We designed and implemented an enterprise blockchain-based system focused on

aforementioned use-case. The designed trustworthy energy consumption monitoring

solution consists of two main components. Hyperledger Fabric network responsible

for business logic and providing desired characteristics such as immutability, secu-

rity, and traceability, with all chaincode functions unit tested. And applications for

organizations responsible for exposing the blockchain component functionalities.

Evaluation consisted of Ćow validation, performance and security analysis. We

conducted several research efforts with the purpose of better understanding blockchain

network performance.

Performance test were developed using framework Hyperledger Caliper while aim

of the Ąrst experiment was to determine Caliper’s highest possible actual send rate.

During this experiment we found out that Caliper performance is affected by amount

of workers and every chaincode function has different highest send rate when using

different amount of workers. During Ąrst experiment when using only basic controller

we also noticed low success rate. We realized that using only TPS as metric is not

enough and we need to consider also success rate.

During the second experiment we measure transaction throughput of blockchain

network, which is affected by the success rate when the majority of transactions are

83

successful. We found that, when using different rate controller we were able to im-

prove success rate. Our highest measured throughput for readSensor, updateSensor,

createSensor, listSensor, getSensorHistory were respectively 487 TPS, 92 TPS,

62 TPS, 76 TPS, 170 TPS.

As for future work, we could perform more complex performance experiments,

provide formal deĄnition of MVCC and explain why MVCC read conĆicts occur.

Redesign solution to eliminate MVCC read conĆicts which would enable realtime

monitoring.

Additional research activities, trials and projects will demonstrate if blockchain

can achieve its full potential, prove economic feasibility, and eventually be embraced

in the mainstream.

84

Resumé

Táto práca sa zaoberá zabezpečením spoľahlivého a pravidelného odpočtu v oblasti

distribúcie tepelnej energie. Problém spočíva v zabezpečení auditovateľnosti, bez-

pečnosti a nemennosti dát pri rádiovom zbere dát o spotrebe pomocou senzorov.

Ako jedno z možných riešení sa ukázal soĄstikovaný monitorovací systém s využitím

blockchain technológie. Výskum sa zaoberá otázkou, či je blockchain aplikovateľný na

riešenie správy transakcií pri monitorovaní spotreby v energetike.

Kapitola 1 poskytuje prehľad technológie blockchain a dôležitých teoretických kon-

ceptov. Túto kapitolu uzatvára pohľad na súčasný stav v oblasti aplikovateľnosti

blockchainu na dosiahnutie dôvery v energetickom sektore.

Kapitola 2 vysvetľuje použitie technológie blockchain v podnikovom prostredí.

Obsahuje porovnanie verejných a podnikových (enterprise) blockchainov. Popisuje a

porovnáva blockchain frameworky Quorum, Corda a Hyperledger Fabric. Kapitola 3

sa zameriava na architektúru a koncepty frameworku Hyperledger Fabric.

Proces v praxi

Vzhľadom na nedostatok verejne dostupných informácií o procesoch inštalácie a moni-

torovania meračov tepla, nasledujúca situácia nemusí nevyhnutne vystihovať realitu.

Merač tepla distribučnej spoločnosti je spoločný pre celú bytovku. Distri-

bučná spoločnosť si účtuje teplo, ktoré prejde fakturačným meradlom na vstupe do

bytovky. Keďže budova sa považuje za jedného spotrebiteľa tepla, zákazníkom dis-

tribučnej spoločnosti je správca, nie jednotlivé domácnosti. Správcovia (správ-

covské spoločnosti, bytové družstvá a spoločenstvá vlastníkov bytov) následne rozúč-

továvajú náklady pre koncových spotrebiteľov podľa ich konkrétnej spotreby. Na

to, aby rozúčtovanie bolo čo najspravodlivejšie, správca nainštaluje pomerové merače

tepla do jednotlivých bytov.

Pri klasickom pochôdzkovom fyzickom odpočte je potrebné, aby užívatelia

85

bytov boli v určitý deň a hodinu doma a čakali na zamestnanca správcovskej spo-

ločnosti, ktorý fyzicky vykoná odpočet spotreby tepla z meračov umiestnených v

byte. Navyše, k informáciám o spotrebe tepla sa väčšina vlastníkov bytov dostane až

v ročnom vyúčtovaní.

V súčasnosti správcovské spoločnosti, bytové družstvá a spoločenstvá

vlastníkov bytov prechádzajú na vyspelé rádiové technológie, kde nie je potrebné

manuálne zadávanie meraní do systému. Zároveň chráni súkromie užívateľov bytov,

eliminuje časť chýb pri odpočtoch a neoprávnenú manipuláciu s meračmi. Umožňuje

realizáciu odpočtov kedykoľvek v priebehu rozúčtovacieho obdobia, pričom vlastník

či správca môže aktuálne údaje sledovať cez internetový portál. Na základe jed-

noduchého prístupu k informáciám o spotrebe, môže užívateľ lepšie regulovať svoje

spotrebiteľské správanie a tým optimalizovať náklady na bývanie.

Nežiaduce stavy možno vďaka rádiovej technológii včas odhaliť a vyhnúť sa ne-

príjemným prekvapeniam v ročnom vyúčtovaní. Kontrola spotreby cez internetový

portál, notiĄkácie a hlásenia umožňujú koncovým užívateľom a správcom vykonať

okamžitú nápravu.

Pri implementácii rádiového riešenia treba zohľadniť aj spôsob zabezpečenia dát

a ochrany osobných údajov. Smernica Európskeho parlamentu a Rady 2012/27/EÚ

o energetickej efektívnosti, ktorej požiadavky sa postupne implementujú do legisla-

tívy Slovenskej republiky, má za cieľ zabezpečiť koncovým odberateľom informácie o

spotrebe tepla a teplej vody v kratších časových intervaloch, aby mohli na uvedenú

spotrebu rýchlejšie reagovať a prípadne ju včas regulovať. Smernica (článok 10 In-

formácie o vyúčtovaní) zaväzuje členské štáty zabezpečiť pre koncových odberateľov,

aby údaje o vyúčtovaní boli presné a založené na skutočnej spotrebe, a umožniť im

jednoduchý prístup k doplňujúcim informáciám o histórii spotreby. [kapitola 4]

Postup zdieľaného procesu

V súčasnom procese dochádza k problémom s dôverou. Koncový odberateľ tepla je

odkázaný dôverovať odpočtom správcovskej spoločnosti. Správcovská spoločnosť je

odkázaná dôverovať odpočtom hlavného merača distribučnej spoločnosti.

Vývoj prototypu sa spočiatku zameriava na komunikáciu medzi nasledujúcimi

účastníkmi:

• Správcovská spoločnosť (Property management company), ktorá spravuje určitý

86

počet nehnuteľností.

• Distribučná spoločnosť (Heating distributor), ktorá distribuuje teplo do daných

nehnuteľností.

• Koncový odberateľ tepla (Final consumer)

V tomto prípade použitia vidíme, že sú potrebné zdieľané údaje, prísny audit

(účtovanie), potreba zabezpečiť dôvernosť transakcií (nemôže byť verejná), účastníci

musia byť známi (vedieť, komu účtovať). Blockchain je použitý na zvýšenie odolnosti

systému voči neoprávnenej manipulácii. Spracovaním údajov z meračov pomocou

blockchainu a smart kontraktov sa vytvorí dôvera medzi jednotlivými účastníkmi,

pretože budú mať prístup k jedinému zdroju dát (single source of truth). Detailne

popísaný proces sa nachádza v sekcii 4.2.

Architektúra a implementácia systému

Kapitola 5 predstavuje navrhnuté riešenie monitorovania spotreby energie, ktoré po-

zostáva z nasledujúcich komponentov.

• Hyperledger Fabric sieť zodpovedná za business logiku a poskytovanie po-

žadovaných vlastnosti, ako je nemennosť, bezpečnosť a vysledovateľnosť.

Naša blockchainová sieť pozostáva z dvoch organizácií reprezentujúcich správ-

covskú spoločnosť a distribučná spoločnosť. Sieť obsahuje aj jedného individu-

álneho účastníka, ktorým je koncový odberateľ tepla. Správcovská spoločnosť

reprezentuje entitu správcovskej spoločnosti aj koncových spotrebiteľov.

Jeden peer v rámci organizácie postačuje na udržiavanie repliky účtovnej knihy

(ledger) a vykonávanie smart kontraktov. Okrem peerov naša sieť obsahuje

jednu koreňovú (root) CA, dve intermediárne CA (jednu pre Org1 a jednu pre

Org2 fungujúce ako MSP) a zoraďovaciu službu (ordering service). Zoraďovacia

služba beží v jednej organizácii. Popísaná blockchainová sieť je znázornená na

obrázku 5.11.

• Aplikácie pre organizácie, ktoré umožňujú používanie funkcií blockchain

komponentu.

Životný cyklus aplikácie sa začína registráciou používateľa na MSP (Fab-

ric CA serveri) organizácie. Tým sa získajú poverenia (credentials), ktoré

87

môžu byť uložené v peňaženkách na disku alebo v databáze. Aplikácia

PropertyManagementOrg tiež rozlišuje používateľov na základe ich rolí v rámci

organizácie. Pravidlá ACL našich smart kontraktov vyžadujú, aby boli tieto

rôzne roly špeciĄkované v atribútoch certiĄkátu.

Používatelia majú prístup k rovnakému REST API na webovom serveri, ktoré

obsahuje funkcie pre registráciu, prihlásenie a funkcie smart kontraktov. Mo-

dul autentiĄkácie používateľov (User Authentication) a manažér relácií (Session

Manager) obmedzuje prístup k rôznym funkciám REST API a riadi vytváranie

identít a rolí používateľov. Tento modul tiež udržiava relácie pomocou webo-

vých tokenov JSON, čo umožňuje prihlásenému používateľovi vykonávať viaceré

operácie s dynamicky generovaným tokenom.

Implementácia Hyperledger Fabric siete a aplikácii pre organizácie je detailne po-

písaná v kapitole 6.

Vyhodnotenie

Vyhodnotenie aplikácie spočíva v nasledujúcich aktivitách:

• Overenie toku dát, ktoré spočíva v kontrole jednotlivých krokov procesu popí-

saného v sekcii 4.2, pričom dochádza k prepínaniu medzi jednotlivými užívateľmi

[kapitola 7.1].

• Vyhodnotenie bezpečnosti kde sa formou diskusie prechádzajú jednotlivé

bezpečnostné aspekty riešenia. Bezpečnostné prvky navrhovaného dizajnu sú

odvodené z dvoch hlavných zdrojov. Prvým sú bezpečnostné prvky zdedené z

Hyperledger-u Fabric. Druhým zdrojom sú architektonické rozhodnutia, ktoré

garantujú súkromie, kontrolu prístupu a pôvod údajov [kapitola 7.3].

• Vyhodnotenie výkonu implementovaného riešenia sa zameriava na nasle-

dujúce výskumné aktivity: (1) výber nástroja na meranie výkonu smart kontrak-

tov, (2) určenie najvyššej možnej skutočnej rýchlosti odosielania (actual send

rate) vybraného nástroja (Caliper), (3) odhad priepustnosti blockchainovej siete,

pričom sa snažíme minimalizovať počet neúspešných transakcií, (4) monitorova-

nie hardvérových prostriedkov využívaných počas experimentov. Experimenty

sú zamerané na rýchlosť generovania a posielania požiadaviek v závislosti od

počtu lokálnych Caliper klientov a na minimalizáciu neúspešných transakcií pri

88

zachovaní čo najvyššej priepustnosti distribuovanej blockchainovej siete [kapi-

tola 7.2].

Výkon bol testovaný pomocou frameworku Hyperledger Caliper, pričom cieľom

prvého experimentu bolo zistiť maximálnu možnú rýchlosť generovania a posielania

požiadaviek (actual send rate). Počas tohto experimentu sme zistili, že výkon Caliper-

u je ovplyvnený počtom lokálnych Caliper klientov. Každá testovaná funkcia smart

kontraktu dosiahne rôznu najvyššiu prenosovú rýchlosť (send rate) pri použití rôzneho

počtu lokálnych Caliper klientov. V prvom experimente pri použití iba základného

ovládača rýchlosti (rate controller) sme tiež zaznamenali nízku úspešnosť (success

rate). Uvedomili sme si, že použitie iba TPS ako metriky nestačí a je potrebné brať

do úvahy aj ďalšiu metriku, úspešnosť (success rate) [kapitola 7.2.1].

Počas druhého experimentu meriame priepustnosť (throughput) distribuovanej

blockchainovej siete, ktorá je ovplyvnená mierou úspešnosti (success rate). Zis-

tili sme, že pri použití iného ovládača rýchlosti (rate controller) sme zlepšili mieru

úspešnosti (success rate). Naša najvyššia nameraná priepustnosť pre readSensor,

updateSensor, createSensor, listSensor, getSensorHistory bola 487 TPS, 92

TPS, 62 TPS, 76 TPS, 170 TPS [kapitola 7.2.2].

Do budúcna je prácu možné rozšíriť o komplexnejšie výkonnostné experimenty,

poskytnutie formálnej deĄnície MVCC a vysvetlenie, prečo dochádza ku konĆiktom

čítania MVCC (MVCC read conĆicts). Upraviť navrhnuté riešenie systému tak, aby

došlo k odstráneniu konĆiktov pri čítaní MVCC, čo by umožnilo monitorovanie v

reálnom čase.

89

Bibliography

[1] Apache CouchDB. url: https : / / couchdb . apache . org/ [visited on

04. 01. 2022].

[2] Azure blockchain solutions. url: https://azure.microsoft.com/en- gb/

solutions/blockchain/ [visited on 04. 01. 2022].

[3] BAMBARA, J. J. et al. Blockchain: A Practical Guide to Developing Business,

Law, and Technology Solutions. McGraw-Hill, February 2018. isbn: 978-1-260-

11586-4.

[4] BARGER, A. et al. A Byzantine Fault-Tolerant Consensus Library for Hyper-

ledger Fabric. url: https://arxiv.org/pdf/2107.06922.pdf [visited on

15. 02. 2022].

[5] BASHIR, I. Mastering Blockchain. A deep dive into distributed ledgers, con-

sensus protocols, smart contracts, DApps, cryptocurrencies, Ethereum, and

more. Third Edition. Birmingham-Mumbai: Packt Publishing, 2020. isbn: 978-

1-83921-319-9.

[6] Blockchain on AWS. url: https://aws.amazon.com/blockchain/ [visited on

04. 01. 2022].

[7] CHACKO, J. A., MAYER, R. and JACOBSEN, H.-A. Why Do My Blockchain

Transactions Fail? A Study of Hyperledger Fabric (Extended version)*. 2021.

url: https://arxiv.org/abs/2103.04681 [visited on 04. 01. 2022].

[8] Chai. url: https://www.chaijs.com/ [visited on 05. 01. 2022].

[9] Corda. url: https://github.com/corda/corda [visited on 04. 01. 2022].

[10] Directive 2012/27/EU of the European parliament and of the council of 25

October 2012. on energy efficiency, amending Directives 2009/125/EC and

2010/30/EU and repealing Directives 2004/8/EC and 2006/32/EC (Text with

90

https://couchdb.apache.org/
https://azure.microsoft.com/en-gb/solutions/blockchain/
https://azure.microsoft.com/en-gb/solutions/blockchain/
https://arxiv.org/pdf/2107.06922.pdf
https://aws.amazon.com/blockchain/
https://arxiv.org/abs/2103.04681
https://www.chaijs.com/
https://github.com/corda/corda

EEA relevance). 2019. url: https://eur-lex.europa.eu/legal-content/

EN/TXT/HTML/?uri=CELEX:32012L0027\&from=EN.

[11] Fablo. Source code. url: https://github.com/hyperledger- labs/fablo

[visited on 05. 01. 2022].

[12] GAUR, N. et al. Blockchain with Hyperledger Fabric. Build decentralized applic-

ations using Hyperledger Fabric 2. Second Edition. BIRMINGHAM - MUMBAI:

Packt Publishing, 2020. isbn: 978-1-83921-875-0.

[13] GUR, A. O., OKSUZER, S. and KARAARSLAN, E. ŞBlockchain Based Meter-

ing and Billing System Proposal with Privacy Protection for the Electric Net-

workŤ. In: 2019 7th International Istanbul Smart Grids and Cities Congress

and Fair (ICSG). IEEE, 2019, pp. 204Ű208. isbn: 978-1-7281-1315-9. doi: 10.

1109/SGCF.2019.8782375. url: https://ieeexplore.ieee.org/document/

8782375/ [visited on 04. 01. 2022].

[14] Hyperledger Blockchain Performance Metrics. url: https : / / www .

hyperledger.org/wp-content/uploads/2018/10/HL_Whitepaper_Metrics_

PDF_V1.01.pdf [visited on 05. 01. 2022].

[15] Hyperledger Caliper. Source code. url: https://github.com/hyperledger/

caliper [visited on 05. 01. 2022].

[16] Hyperledger Caliper. rate controllers. url: https://hyperledger.github.io/

caliper/v0.4.2/rate-controllers [visited on 05. 01. 2022].

[17] Hyperledger Composer. Source code. url: https://github.com/hyperledger-

archives/composer [visited on 05. 01. 2022].

[18] Hyperledger Explorer. Source code. url: https://github.com/hyperledger/

blockchain-explorer [visited on 05. 01. 2022].

[19] Hyperledger Fabric. Source code. url: https://github.com/hyperledger/

fabric [visited on 05. 01. 2022].

[20] Hyperledger Fabric v2. lifecycle image. url: https : / / programmer .

help / images / blog / 608a49b858e8d91821b7009d4354ead5 . jpg [visited on

05. 01. 2022].

[21] Hyperledger Fabric v2.2 documentation. Test network. 2021. url: https://

hyperledger-fabric.readthedocs.io/en/release-2.2/test_network.

html [visited on 04. 01. 2022].

91

https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32012L0027\&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32012L0027\&from=EN
https://github.com/hyperledger-labs/fablo
https://doi.org/10.1109/SGCF.2019.8782375
https://doi.org/10.1109/SGCF.2019.8782375
https://ieeexplore.ieee.org/document/8782375/
https://ieeexplore.ieee.org/document/8782375/
https://www.hyperledger.org/wp-content/uploads/2018/10/HL_Whitepaper_Metrics_PDF_V1.01.pdf
https://www.hyperledger.org/wp-content/uploads/2018/10/HL_Whitepaper_Metrics_PDF_V1.01.pdf
https://www.hyperledger.org/wp-content/uploads/2018/10/HL_Whitepaper_Metrics_PDF_V1.01.pdf
https://github.com/hyperledger/caliper
https://github.com/hyperledger/caliper
https://hyperledger.github.io/caliper/v0.4.2/rate-controllers
https://hyperledger.github.io/caliper/v0.4.2/rate-controllers
https://github.com/hyperledger-archives/composer
https://github.com/hyperledger-archives/composer
https://github.com/hyperledger/blockchain-explorer
https://github.com/hyperledger/blockchain-explorer
https://github.com/hyperledger/fabric
https://github.com/hyperledger/fabric
https://programmer.help/images/blog/608a49b858e8d91821b7009d4354ead5.jpg
https://programmer.help/images/blog/608a49b858e8d91821b7009d4354ead5.jpg
https://hyperledger-fabric.readthedocs.io/en/release-2.2/test_network.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/test_network.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/test_network.html

[22] Hyperledger Fabric v2.3. The Ordering Service. url: https://hyperledger-

fabric.readthedocs.io/en/release-2.3/orderer/ordering_service.

html [visited on 15. 02. 2022].

[23] Hyperledger Fabric v2.3. Sample configurations. url: https://github.com/

hyperledger / fabric / tree / release - 2 . 3 / sampleconfig/ [visited on

05. 01. 2022].

[24] Hyperledger Fabric v2.3 documentation. Chaincode lifecycle. url: https : / /

hyperledger - fabric . readthedocs . io / en / release - 2 . 3 / chaincode _

lifecycle.html [visited on 04. 01. 2022].

[25] Hyperledger Fabric v2.3 documentation. Peers. url: https://hyperledger-

fabric.readthedocs.io/en/release-2.3/peers/peers.html [visited on

05. 01. 2022].

[26] Hyperledger Whitepaper. url: https : / / docs . google . com / document / d /

1Z4M _ qwILLRehPbVRUsJ3OF8Iir - gqS - ZYe7W - LE9gnE / edit \ #heading = h .

m6iml6hqrnm2 [visited on 04. 01. 2022].

[27] IBM Blockchain Platform. url: https : / / www . ibm . com / uk - en / cloud /

blockchain-platform [visited on 04. 01. 2022].

[28] Jq. a lightweight and flexible command-line JSON processor. url: https://

stedolan.github.io/jq/ [visited on 05. 01. 2022].

[29] LevelDB. url: https://github.com/google/leveldb [visited on 04. 01. 2022].

[30] Linux Foundation. url: https : / / www . linuxfoundation . org/ [visited on

04. 01. 2022].

[31] LOMBARDO, H. Using Blockchains for IoT in Facilities Management. 2016.

url: https://www.chainofthings.com/news/2016/8/8/blockchains-

ideal-for-iot-in-facilities-management [visited on 05. 01. 2022].

[32] MA, C. et al. ŞThe privacy protection mechanism of Hyperledger Fabric and its

application in supply chain ĄnanceŤ. In: Cybersecurity 2.1 (2019). issn: 2523-

3246. doi: 10.1186/s42400-019-0022-2. url: https://cybersecurity.

springeropen . com / articles / 10 . 1186 / s42400 - 019 - 0022 - 2 [visited on

05. 01. 2022].

92

https://hyperledger-fabric.readthedocs.io/en/release-2.3/orderer/ordering_service.html
https://hyperledger-fabric.readthedocs.io/en/release-2.3/orderer/ordering_service.html
https://hyperledger-fabric.readthedocs.io/en/release-2.3/orderer/ordering_service.html
https://github.com/hyperledger/fabric/tree/release-2.3/sampleconfig/
https://github.com/hyperledger/fabric/tree/release-2.3/sampleconfig/
https://hyperledger-fabric.readthedocs.io/en/release-2.3/chaincode_lifecycle.html
https://hyperledger-fabric.readthedocs.io/en/release-2.3/chaincode_lifecycle.html
https://hyperledger-fabric.readthedocs.io/en/release-2.3/chaincode_lifecycle.html
https://hyperledger-fabric.readthedocs.io/en/release-2.3/peers/peers.html
https://hyperledger-fabric.readthedocs.io/en/release-2.3/peers/peers.html
https://docs.google.com/document/d/1Z4M_qwILLRehPbVRUsJ3OF8Iir-gqS-ZYe7W-LE9gnE/edit\#heading=h.m6iml6hqrnm2
https://docs.google.com/document/d/1Z4M_qwILLRehPbVRUsJ3OF8Iir-gqS-ZYe7W-LE9gnE/edit\#heading=h.m6iml6hqrnm2
https://docs.google.com/document/d/1Z4M_qwILLRehPbVRUsJ3OF8Iir-gqS-ZYe7W-LE9gnE/edit\#heading=h.m6iml6hqrnm2
https://www.ibm.com/uk-en/cloud/blockchain-platform
https://www.ibm.com/uk-en/cloud/blockchain-platform
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/
https://github.com/google/leveldb
https://www.linuxfoundation.org/
https://www.chainofthings.com/news/2016/8/8/blockchains-ideal-for-iot-in-facilities-management
https://www.chainofthings.com/news/2016/8/8/blockchains-ideal-for-iot-in-facilities-management
https://doi.org/10.1186/s42400-019-0022-2
https://cybersecurity.springeropen.com/articles/10.1186/s42400-019-0022-2
https://cybersecurity.springeropen.com/articles/10.1186/s42400-019-0022-2

[33] MENGELKAMP, E. et al. ŞDesigning microgrid energy marketsŤ. In: Applied

Energy 210 (2018), pp. 870Ű880. issn: 0306-2619. doi: 10.1016/j.apenergy.

2017.06.054. url: https://linkinghub.elsevier.com/retrieve/pii/

S030626191730805X [visited on 04. 01. 2022].

[34] Microgrid-Blockchain-Project. url: https : / / github . com / guibvieira /

Microgrid-Blockchain-Project [visited on 04. 01. 2022].

[35] Mocha. url: https://mochajs.org/ [visited on 05. 01. 2022].

[36] O’HARA, K. Data Trusts: Ethics, Architecture and Governance for Trustworthy

Data Stewardship. 2019. url: https://eprints.soton.ac.uk/428276/1/WSI_

White_Paper_1.pdf [visited on 15. 02. 2022].

[37] Oracle Blockchain Platform Cloud Service. url: https://www.oracle.com/

uk / application - development / cloud - services / blockchain - platform/

[visited on 04. 01. 2022].

[38] POP, C. et al. ŞBlockchain-Based Scalable and Tamper-Evident Solution for

Registering Energy DataŤ. In: Sensors 19.14 (2019). issn: 1424-8220. doi: 10.

3390/s19143033. url: https://www.mdpi.com/1424- 8220/19/14/3033

[visited on 04. 01. 2022].

[39] QI, Y. et al. ŞResearch of Energy Consumption Monitoring System Based on IoT

and Blockchain TechnologyŤ. In: Journal of Physics: Conference Series 1757.1

(2021-01-01). issn: 1742-6588. doi: 10.1088/1742-6596/1757/1/012154. url:

https://iopscience.iop.org/article/10.1088/1742- 6596/1757/1/

012154 [visited on 04. 01. 2022].

[40] Quorum. url: https : / / github . com / ConsenSys / quorum [visited on

04. 01. 2022].

[41] R3 trust technology. url: https://www.r3.com/trust-technology/ [visited

on 04. 01. 2022].

[42] Sinon.JS. url: https://sinonjs.org/ [visited on 05. 01. 2022].

[43] SmartBFT. Integration of the BFT consensus library into Fabric. url: https:

//github.com/SmartBFT-Go/fabric [visited on 15. 02. 2022].

[44] SmartBFT. Java SDK for Hyperledger Fabric. url: https://github.com/

SmartBFT-Go/fabric-sdk-java [visited on 15. 02. 2022].

93

https://doi.org/10.1016/j.apenergy.2017.06.054
https://doi.org/10.1016/j.apenergy.2017.06.054
https://linkinghub.elsevier.com/retrieve/pii/S030626191730805X
https://linkinghub.elsevier.com/retrieve/pii/S030626191730805X
https://github.com/guibvieira/Microgrid-Blockchain-Project
https://github.com/guibvieira/Microgrid-Blockchain-Project
https://mochajs.org/
https://eprints.soton.ac.uk/428276/1/WSI_White_Paper_1.pdf
https://eprints.soton.ac.uk/428276/1/WSI_White_Paper_1.pdf
https://www.oracle.com/uk/application-development/cloud-services/blockchain-platform/
https://www.oracle.com/uk/application-development/cloud-services/blockchain-platform/
https://doi.org/10.3390/s19143033
https://doi.org/10.3390/s19143033
https://www.mdpi.com/1424-8220/19/14/3033
https://doi.org/10.1088/1742-6596/1757/1/012154
https://iopscience.iop.org/article/10.1088/1742-6596/1757/1/012154
https://iopscience.iop.org/article/10.1088/1742-6596/1757/1/012154
https://github.com/ConsenSys/quorum
https://www.r3.com/trust-technology/
https://sinonjs.org/
https://github.com/SmartBFT-Go/fabric
https://github.com/SmartBFT-Go/fabric
https://github.com/SmartBFT-Go/fabric-sdk-java
https://github.com/SmartBFT-Go/fabric-sdk-java

[45] ZAND, M., WU, X. and MORRIS, M. A. Hands-On Smart Contract Develop-

ment with Hyperledger Fabric V2. O’Reilly Media, Inc., September 2021. isbn:

978-1-4920-8612-3.

[46] ZHANG, R., XUE, R. and LIU, L. ŞSecurity and Privacy on BlockchainŤ. In:

ACM Computing Surveys 52.3 (2020-05-31), pp. 1Ű34. issn: 0360-0300. doi:

10.1145/3316481. url: https://dl.acm.org/doi/10.1145/3316481 [visited

on 04. 01. 2022].

94

https://doi.org/10.1145/3316481
https://dl.acm.org/doi/10.1145/3316481

Appendices

Appendix A: CD medium - an electronic copy of this thesis, source code of Ąnal

solution together with user manual.

95

A CD medium

CD contents:

blockchain_based_enterprise_applications_revicky.pdf
diploma_thesis_project/

README.md
README_before_fablo_development_deployment.md
README_caliper_benchmark_development.md
README_fablo_development_deployment.md
apps

org1backendapp
package.json
README.md
org1.example.com

connection-org1.json
src

app.js
app.spec.js
controllers

identityController.js
sensorController.js

models
identityModel.js
sensorModel.js

routes
routes.js

org2backendapp
package-lock.json
package.json
README.md
org2.example.com

connection-org2.json
src

app.js
app.spec.js
controllers

identityController.js
sensorController.js

models
identityModel.js
sensorModel.js

routes
routes.js

chaincode-typescript
package-lock.json
package.json
tsconfig.json
tslint.json
META-INF

statedb
couchdb

indexes
approverIndex.json
consumerIndex.json
finalConsumerIndex.json

96

src
emptyObject.ts
index.ts
sensor-contract.spec.ts
sensor-contract.ts
sensorAgreement.ts
sensorAgreementHistory.ts
sensorAgreementStatus.ts

fablo-network-generator
fablo-config.json
fablo-target

fabric-docker.sh
fabric-config

configtx.yaml
crypto-config-orderer.yaml
crypto-config-org1.yaml
crypto-config-org2.yaml

fabric-docker
.env
channel-query-scripts.sh
commands-generated.sh
docker-compose.yaml
scripts

base-functions.sh
base-help.sh
chaincode-functions.sh
channel-query-functions.sh
cli

channel_fns.sh
hooks

post-generate.sh
caliperworkspace/

package-lock.json
package.json
benchmarks

thesis_allSensorOperationsBenchmark.yaml
networks

networkConfig.json
reports

docker_report.xlsx
caliper-createSensorFixedLoad-1-worker.log
caliper-createSensorFixedLoad-2-worker.log
caliper-createSensorFixedLoad-3-worker.log
caliper-createSensorFixedLoad-4-worker.log
caliper-createSensorFixedLoad-5-worker.log
caliper-createSensorFixedRate-1-worker.log
caliper-createSensorFixedRate-2-worker.log
caliper-createSensorFixedRate-3-worker.log
caliper-createSensorFixedRate-4-worker.log
caliper-createSensorFixedRate-5-worker.log
caliper-getSensorHistoryFixedLoad-1-worker.log
caliper-getSensorHistoryFixedLoad-2-worker.log
caliper-getSensorHistoryFixedLoad-3-worker.log
caliper-getSensorHistoryFixedLoad-4-worker.log
caliper-getSensorHistoryFixedLoad-5-worker.log
caliper-getSensorHistoryFixedRate-1-worker.log
caliper-getSensorHistoryFixedRate-2-worker.log
caliper-getSensorHistoryFixedRate-3-worker.log
caliper-getSensorHistoryFixedRate-4-worker.log
caliper-getSensorHistoryFixedRate-5-worker.log
caliper-listSensorFixedLoad-1-worker.log
caliper-listSensorFixedLoad-2-worker.log
caliper-listSensorFixedLoad-3-worker.log
caliper-listSensorFixedLoad-4-worker.log
caliper-listSensorFixedLoad-5-worker.log
caliper-listSensorFixedRate-1-worker.log
caliper-listSensorFixedRate-2-worker.log
caliper-listSensorFixedRate-3-worker.log
caliper-listSensorFixedRate-4-worker.log

97

caliper-listSensorFixedRate-5-worker.log
caliper-readSensorFixedLoad-1-worker.log
caliper-readSensorFixedLoad-2-worker.log
caliper-readSensorFixedLoad-3-worker.log
caliper-readSensorFixedLoad-4-worker.log
caliper-readSensorFixedLoad-5-worker.log
caliper-readSensorFixedRate-1-worker.log
caliper-readSensorFixedRate-2-worker.log
caliper-readSensorFixedRate-3-worker.log
caliper-readSensorFixedRate-4-worker.log
caliper-readSensorFixedRate-5-worker.log
caliper-updateSensorFixedLoad-1-worker.log
caliper-updateSensorFixedLoad-2-worker.log
caliper-updateSensorFixedLoad-3-worker.log
caliper-updateSensorFixedLoad-4-worker.log
caliper-updateSensorFixedLoad-5-worker.log
caliper-updateSensorFixedRate-1-worker.log
caliper-updateSensorFixedRate-2-worker.log
caliper-updateSensorFixedRate-3-worker.log
caliper-updateSensorFixedRate-4-worker.log
caliper-updateSensorFixedRate-5-worker.log
createSensorFixedLoad-1-worker.html
createSensorFixedLoad-2-worker.html
createSensorFixedLoad-3-worker.html
createSensorFixedLoad-4-worker.html
createSensorFixedLoad-5-worker.html
createSensorFixedRate-1-worker.html
createSensorFixedRate-2-worker.html
createSensorFixedRate-3-worker.html
createSensorFixedRate-4-worker.html
createSensorFixedRate-5-worker.html
getSensorHistoryFixedLoad-1-worker.html
getSensorHistoryFixedLoad-2-worker.html
getSensorHistoryFixedLoad-3-worker.html
getSensorHistoryFixedLoad-4-worker.html
getSensorHistoryFixedLoad-5-worker.html
getSensorHistoryFixedRate-1-worker.html
getSensorHistoryFixedRate-2-worker.html
getSensorHistoryFixedRate-3-worker.html
getSensorHistoryFixedRate-4-worker.html
getSensorHistoryFixedRate-5-worker.html
listSensorFixedLoad-1-worker.html
listSensorFixedLoad-2-worker.html
listSensorFixedLoad-3-worker.html
listSensorFixedLoad-4-worker.html
listSensorFixedLoad-5-worker.html
listSensorFixedRate-1-worker.html
listSensorFixedRate-2-worker.html
listSensorFixedRate-3-worker.html
listSensorFixedRate-4-worker.html
listSensorFixedRate-5-worker.html
readSensorFixedLoad-1-worker.html
readSensorFixedLoad-2-worker.html
readSensorFixedLoad-3-worker.html
readSensorFixedLoad-4-worker.html
readSensorFixedLoad-5-worker.html
readSensorFixedRate-1-worker.html
readSensorFixedRate-2-worker.html
readSensorFixedRate-3-worker.html
readSensorFixedRate-4-worker.html
readSensorFixedRate-5-worker.html
updateSensorFixedLoad-1-worker.html
updateSensorFixedLoad-2-worker.html
updateSensorFixedLoad-3-worker.html
updateSensorFixedLoad-4-worker.html
updateSensorFixedLoad-5-worker.html
updateSensorFixedRate-1-worker.html
updateSensorFixedRate-2-worker.html
updateSensorFixedRate-3-worker.html
updateSensorFixedRate-4-worker.html

98

updateSensorFixedRate-5-worker.html
workload

createSensor.js
getSensorHistory.js
listSensor.js
readSensor.js
updateSensor.js

99

	Abbreviations
	Introduction
	Blockchain
	The history of blockchain and Bitcoin
	Overview of Blockchain technology
	Consensus
	Consensus in blockchain
	Blockchain Consensus Algorithms

	Types of Blockchain
	Public Blockchains
	Consortium Blockchains
	Private Blockchains
	Summary

	Related Work

	Enterprise Blockchain
	Enterprise solutions and blockchain
	Limiting factors in public blockchain
	Enterprise blockchain requirements
	Enterprise blockchain versus public blockchain
	Blockchain in the cloud
	Currently available enterprise blockchains
	Corda
	Quorum
	Hyperledger Fabric
	Comparison of main platforms

	Hyperledger Fabric
	Transaction flow
	Chaincode lifecycle
	Membership services
	The Ordering Service
	Raft

	Business Scenario
	Real-world processes
	Shared process workflow
	Shared assets and data
	Participants' roles and capabilities

	System architecture
	Functional considerations
	Hyperledger Fabric - tools
	Designing a Hyperledger Fabric network
	Applications for organizations

	Implementation
	Implementation overview
	Hyperledger Fabric network
	Prerequisites
	Preparing the network
	Chaincode implementation, testing and deployment

	REST server implementation
	Summary

	Evaluation
	Flow validation
	Performance evaluation
	Experiment 1
	Experiment 2

	Security of proposed solution

	Conclusion
	Resumé
	Appendices
	CD medium

