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MOTIVATION AND GOALS

Fact-checking reports are frequently too long for a
casual reader, and contain auxiliary parts not directly
relevant for judging the claim veracity. Automated
creation of fact check report summaries is thus a
topical task.

Goals:

□ Review modern approaches to automated text sum-
marization and identify methods suitable for gener-
ating a summary of a fact check report as a particular
kind of document.

□ Gather data from fact-checking sites, in particular,
demagog.cz for Czech and politifact.com for En-
glish (scraped).

□ Propose hybrid summarization model to be compa-
rable with state-of-the-art summarizing models in
the fact-checking domain.

RELATED WORKS

Our proposed method was compared to the following
works in terms of the ROUGE metric (or ROUGE
RAW – a language independent metric):

On the Politifact dataset:

□ Atanasova et al. [1] explored a supervised BERT-
based technique for jointly predicting the truth of a
claim and extracting supporting explanations from
fact-checked claims.

□ Kazemi et al. [2] utilized GPT-2 for abstractive
summarization and Biased TextRank for extractive
summarization as alternative approaches.

On the SumeCzech dataset (not fact-checking fo-

cused, but the only summarization dataset available

for Czech):

□ Straka et al. [3] applied different extractive tech-
niques and proposed the ROUGE RAW metric for
the Czech language.

□ Marek et al. [4] came up with named entities sum-
marization, even improving results of [3].

PROPOSED HYBRID METHOD

The core contribution of our hybrid approach is extractive summa-
rization based on Local outlier factor (LOF) and sentence represen-
tation by fine-tuned Sentence-BERT. The input pair consists in a
fact check report and a justification (as its manually created sum-
mary). Sentence-splitting is applied to the report, and embeddings
of separated sentences are created using alternative methods such as
TF-IDF, DOC2VEC or Sentence-BERT; it was fine-tuned Sentence-
BERT that returned the best vector representation. We then compute
the normalized LOF. Sentences above a certain LOF threshold (opti-
mized during the experiments) are removed, and the remaining ones
become an extractive summary of the report, which together with
its corresponding justification enters the T5 transformer to generate
abstractive summaries.
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EVALUATION RESULTS

Source System ROUGE 1 ROUGE 2 ROUGE L

Atanasova 2020
(University of Copenhagen)

Explain-Extractive 35.7 13.51 31.58

Explain-MT 35.13 12.9 30.93

Kazemi 2021
(University of Michigan)

TextRank 27.74 7.42 23.24

GPT-2 24.01 5.78 21.15

Biased TextRank 30.90 10.39 26.22

Present work

T5 Baseline 38.12 18.90 35.71

SBERT+ LOF+T5 (13 % of sentences removed) 38.35 18.88 35.88

Claim + T5 Baseline 39.19 20.56 36.92

CLAIM + SBERT+LOF+T5 (13 % of sentences removed) 39.45 21.08 37.27

CLAIM + SBERT+LOF+T5 (11 % of sentences removed) 39.76 21.37 37.54

CLAIM + SBERT fine-tuned +LOF+T5 (13 % of sentences removed) 40.76 22.00 38.36

CLAIM + SBERT fine-tuned +LOF+T5 (11 % of sentences removed) 39.55 20.69 37.11

CLAIM + Morphodita + TF-IDF+LOF+T5 (13 % of sentences removed) 39.91 20.62 37.40

CLAIM +Morphodita + TF-IDF+LOF+T5 (11 % of sentences removed) 39.86 20.59 37.30

CLAIM + Morphodita + DOC2VEC+LOF+T5 (13 % of sentences removed) 38.58 19.62 36.20

CLAIM + Morphodita + DOC2VEC+LOF+T5 (11 % of sentences removed) 39.04 20.65 36.70

Table 1: Politifact results

System
Test set
ROUGE RAW 1 ROUGE RAW 2 ROUGE RAW L

P R F P R F P R F
T5 Baseline 31.10 17.84 21.53 11.38 6.54 7.83 24.78 14.42 17.29
Claim + T5 Baseline 31.16 18.35 22.08 11.80 6.79 8.23 24.80 14.86 17.73
Claim + SBERT + LOF + T5 (24 % of sentences removed) 31.95 17.33 21.43 12.01 6.31 7.82 25.30 13.85 17.04
Claim + SBERT fine-tuned + LOF + T5 (24 % of sentences removed) 32.73 18.75 22.66 12.97 7.23 8.82 26.29 15.11 18.25

Claim + TF-IDF + LOF + T5 (24 % of sentences removed) 30.58 19.92 23.08 11.70 7.51 8.74 24.03 15.82 18.24
Claim + DOC2VEC + LOF + T5 (24 % of sentences removed) 31.41 16.89 20.82 11.50 6.06 7.49 25.29 13.78 16.89

Table 2: Demagog results (all for variants of present work)

Text → Headline

Source System
Test set Out-of-domain test set
ROUGE RAW 1 ROUGE RAW 2 ROUGE RAW L ROUGE RAW 1 ROUGE RAW 2 ROUGE RAW L

P R F P R F P R F P R F P R F P R F

SumeCzech [3]

first 7.4 13.5 8.9 1.1 2.2 1.3 6.5 11.7 7.7 6.7 13.6 8.3 1.3 2.8 1.6 5.9 12.0 7.4
random 5.9 10.3 6.9 0.5 1.0 0.6 5.2 8.9 6.0 5.2 10.0 6.3 0.6 1.4 0.8 4.6 8.9 5.6
textrank 6.0 16.5 8.3 0.8 2.3 1.1 5.0 13.8 6.9 5.8 16.9 8.1 1.1 3.4 1.5 5.0 14.5 6.9
tensor2tensor 8.8 7.0 7.5 0.8 0.6 0.7 8.1 6.5 7.0 6.3 5.1 5.5 0.5 0.4 0.4 5.9 4.8 5.1

Named entities [4]
Seq2Seq 16.1 14.1 14.6 2.5 2.1 2.2 14.6 12.8 13.2 13.1 11.8 12 2 1.7 1.8 12.1 11 11.2
Seq2Seq–NER 16.2 14.1 14.7 2.5 2.1 2.2 14.7 12.8 13.3 13.7 11.9 12.4 2 1.7 1.8 12.6 11.1 11.4

Present work (only 10 % of training data)
T5 15.4 11.0 12.5 3.2 2.3 2.6 14.2 10.1 11.5 15.9 11.9 13.2 4.4 3.2 3.6 14.9 11.2 12.4
T5-SBERT-LOF (16 % of sentences removed) 15.8 11.4 12.9 3.5 2.5 2.8 14.6 10.6 11.9 16.5 12.4 13.7 4.8 3.5 3.9 15.4 11.6 12.9

Table 3: SumeCzech results

CONCLUSION

□ On the ROUGE metrics, results for the proposed hy-
brid summarization approach outperform previous
studies [1, 2, 3, 4] on all three data sets (see Tables
1, 2 and 3).

□ We plan to extend the experiments to other domains
and datasets (different from fact-checking) and aim
to improve the ranking of input sentences by apply-
ing other features beyond the LOF score.
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