
UNIVERSITY OF ŽILINA

FACULTY OF MANAGEMENT SCIENCE AND INFORMATICS

DIPLOMA THESIS

MARTIN JANČURA
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Abstrakt

JANČURA MARTIN: Pravidelne aktualizované predikcie doby pripojenia elektrických vozidiel

[Diplomová práca]

Žilinská Univerzita v Žiline, Fakulta riadenia a informatiky, Katedra matematických metód a

operačnej analýzy.

Vedúci: Ing. Milan Straka, PhD.

Stupeň odbornej kvalifikácie: Inžinier v odbore Informatika v Žiline.

FRI ŽU v Žiline, 2022 — 76 s.

Elektrické vozidlá sú sl’ubným riešením na zníženie rastúcich emisií CO2 z dopravy za

predpokladu, že potrebná elektrina bude pochádzat’ z obnovitel’ných zdrojov energie. Náhod-

nost’ obnovitel’ných zdrojov a dopytu po nabíjaní elektrických vozidiel vyžaduje inteligentné

schémy nabíjania. Inteligentné nabíjanie dosahuje lepšie výsledky, ak má prístup k presnej-

ším predpovediam správania sa nabíjania. Z tohto dôvodu by mohlo byt’ prínosné inteligentné

nabíjanie, ktoré dynamicky aktualizuje plán nabíjania. V tejto práci skúmame potenciál zlep-

šenia presnosti predpovede dĺžky pripojenia elektrického vozidla pomocou aktualizácie pred-

povede počas pripojenia elektrického vozidla k nabíjacej stanici. Porovnávame jeden model

a viacnásobný model pre aktualizáciu predpovede pravidelne a nepravidelne distribuovanú v

čase. Viacnásobný model dosahuje najlepšie výsledky, pričom zlepšuje presnost’ predpovede

až do 40 % v porovnaní s konvenčnými prístupmi. Vyššia frekvencia aktualizácie tesne po pri-

pojení je efektívnym riešením na zvýšenie presnosti predpovede. Neskôr postačuje pravidelná

aktualizácia. Vzhl’adom na inteligentné nabíjanie, ktoré pravidelne aktualizuje plán nabíjania,

dosahuje najlepšie výsledky viacnásobný model s nepravidelne distribuovanými časmi aktu-

alizácie, pričom podstatne znižuje spotrebu energie v špičke, a zároveň výrazne nezvyšuje

nenabitú požadovanú energiu.

Kl’účové slová: elektrické vozidlá, inteligentné nabíjanie, aktualizované predpovede, stro-

jové učenie, dátová veda.



Abstract

JANČURA MARTIN: Regularly updated predictions of electric vehicle connection duration.

[Diploma thesis]
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Electric vehicles are promising to alleviate the increasing CO2 emissions from transport,

provided that renewable energy sources generate the demanded electricity. The stochastic-

ity of renewable energy sources and charging demand require intelligent charging schemes.

Smart charging achieves better performance when it is driven by reasonably accurate predic-

tions of charging behaviour. Hence, for smart charging that dynamically updates a charging

schedule, updating the predictions of charging behaviour could be beneficial. In this paper,

we explore the potential to improve the accuracy of prediction models of the connection time

to a charging station by updating the predictions as the charging sessions unfold. We compare

a single model with multiple models for regularly and irregularly spaced updates in time. The

multiple models with irregular updates achieve the best performance while improving the pre-

diction accuracy up to 40 %, compared to conventional approaches. It is efficient to update

the predictions with higher frequency in the very early stages of charging sessions. Later on,

regular updates are sufficient. Moreover, multiple model with updates irregularly spaced in

time performs best, considering the smart charging that dynamically updates a charging sched-

ule, as it importantly mitigates the energy charged in peak periods and does not significantly

increase demanded but not charged energy.

Keywords: electric vehicles, smart charging, updated predictions, machine learning, data

science.
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Chapter 1

Introduction

Recently, the humanity seeks options to decrease anthropogenic CO2 emissions, as they are

correlated with global warming [1]. One of the promising solutions to decrease CO2 emissions

are electric vehicles (EVs), when charged from renewable energy sources. The stochastic na-

ture of the EV charging demand and renewable energy sources asks for a smart charging to

coordinate the charging process as a part of demand response approach. Efficient smart charg-

ing requires estimates of the future developments, e.g., predictions of the charging behaviour.

In the literature, several prediction approaches already exist. However, the predictions are

mostly done at the arrival of an EV to a charging station and remain valid for the whole du-

ration of a charging session. For smart charging schemes that dynamically update a charging

schedule, it would be possible to update also predictions of charging behaviour. Hence, there

is potential to reach higher efficiency of dynamic smart charging, if more accurate predictions

of charging behaviour can be achieved by updates. Moreover, demand for providing the in-

formation about the charging point availability has been emerged, as the limited number of

public chargers has become one of the major impediment for spreading the EVs [2]. The

accurate prediction of EV connection duration may be beneficial in order to announce EV

drivers about future availability.

From upper mentioned reasons, this paper handles prediction of the EV connection dura-

tion using novel update perception. In this chapter, state-of-art prediction approaches of EV

charging behaviour as well as methods coping with updating predictions are inspected. Con-

sequently, main contribution realms are described. Later on, we denote the terminology and

14



FRI UNIZA DIPLOMA THESIS

write up the list of used symbols for lucidity. The first section of Chapter 2 introduces a dataset

on which the experiments are performed. Additionally, we claim some expectations and as-

sumptions along describing main characteristics of the dataset in order to propose appropriate

features. Since feature processing can be computationally expensive, in the last section of

Chapter 2, algorithms and implementation are closely described. Chapter 3 represents the

major point of this paper, as it describes update strategies, metrics and application for smart

charging and charging point availability. Result are shown and analysed in Chapter 4. In the

conclusion, all goals and results are summed up as well as future outlooks are described.

1.1 Literature review

We divide literature into two fields according to the thesis goals. Firstly, we explore the current

studies coping predictions of EV connection duration. Later on, we explore the methods and

studies handling updates in related fields, since in this thesis we try to improve predictions by

updating.

1.1.1 Predictions of EV connection durations.

Among the most popular forecasting techniques in the EV field are the forecast of aggregated

demand [3]. However, for smart charging algorithms, individual forecasts can allow a better

control of individual EVs. The individual predictions arose with public availability of charging

datasets. Several solutions are providing estimations of charging session attributes.

In [4] authors predicted the energy consumption and session duration using data from past

charging sessions. The prediction is made in two steps - the prediction of the connection

duration is used as a feature for the prediction of the energy consumption. In [5] authors

predicted connection duration of EVs, based on past session data. Since users behave in some

generic charging patterns, in [6] user’s behaviour is predicted using clustering technique. The

main contribution of the article is to highlight the advantages for the prediction in smaller

groups containing sessions with similar charging pattern instead of the prediction on the whole

comprehensive dataset, especially for the predictions of EV connection duration. Clustering

engenders more effective learning in smaller groups, confirmed by results published in the

15
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article - the higher cluster count is, the better accuracy is achieved. Additionally, some sensible

patterns of users’ behaviour were identified. Moreover, charging patterns are used also in [7],

where seasonality and periodicity of the users’ behaviour are captured in time series predicting

first daily unplugging. Another strategy to predict duration available for smart charging is to

estimate the time the EV remains parked after charging (called idle time), as in [8], where

three regression algorithms were used.

Although these approaches improve the accuracy compared to benchmark models, none

of them considered updating the predictions in time. Such updates have the potential of im-

proving the predictions.

1.1.2 Prediction update

Incremental learning is the main field handling continuous usage of data stream to extend the

knowledge of a model. This brings the improvement of the prediction accuracy. It is widely

used for model rebuilding and online or large data stream processing.

Authors in [9] applied incremental learning using adaptive boosting for classification with

goal to accumulate and transform the information from online data stream. In [10] authors

realise incremental learning using support vector machines, utilising that support vector ma-

chines algorithm reduces data to support vectors, while comparing it to conventional whole

dataset approach. Prediction of energy consumption in particular day hours is proposed in [11]

using neural networks and mini batch learning to retrain and adapt model to seasonal weather

conditions and daily trends. Online AdaBoost and online bagging algorithms are used for

online learning in [12]. Novel AdaBoost method for online learning was proposed in [13] for

real-time learning, complex background systems learning, visual tracking and image recogni-

tion.

Update of predictions can be beneficial for wide scale of duration predictions, such as du-

ration of system outages [14] or incident duration [15]. In [15] authors justify the use of the

incremental with the fact, that not all information is available at the beginning of the incident

and a lot of information arrives during the incident. Similarly, in [14] authors use incremen-

tal approach, as new information arise during power outage prediction, possibly influencing

16
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the duration of the outage. Many applications of updated predictions are applied to public

transport. Prediction of delays [16, 17], where in both cases Bayesian network is used for

predicting the train delays. In [18], train delays are predicted using timed event graph with

dynamic arc weights.

In the context of individual charging behaviour, we have not identified any paper exploring

the updates of predictions.

1.2 Goals

In the following, we describe the main goals and contributions of the thesis, which can be

divided into tree separate groups:

1. To emphasise the benefit of updating.

2. Direct applications for EVs, e.g., smart charging and charging point availability.

3. To compile the updating methodology, possibly useful for related field.

Since none of current studies among the most popular forecasting techniques in the EV

field updates predictions, in this paper we examine the impact of updating the predictions.

Therefore, we identify the scientific contribution to open new perception in this realm, pos-

sibly engendering novel techniques and studies in the EV’s field or related fields. Besides

that, improved predictions might be used also for smart charging and real-time charging point

availability. The proposed methodology is widely usable for prediction of the generic process

duration.

1.2.1 Smart charging

The ability to minimise peak demand and network congestion allowing usage of cheaper, low

carbon generation, is the key feature of a smarter energy system. To reach zero road emission,

some countries, such as the United Kingdom [19], manage the impact of EVs on the electricity

system using smart charging.
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Smart charging algorithms can be classified into three categories [20]: smart grid oriented,

aggregator oriented and driver-oriented. Review of smart charging algorithms [21] highlights

how possible future directions the development of prediction methods that can deal with un-

certainty in driver mobility behaviour and the development of approaches properly balancing

prediction accuracy, model simplicity, and data requirements. There are many optimisation

objectives that the smart charging follows, such as minimisation of charging cost and peak

power minimisation [22, 23, 24, 25].

The EV charging flexibility refers to charging coordination in the grid [26]. Two strategies,

the peak flattening and the maximisation of renewable energy usage, are analysed in [26] from

the perspective of the EV charging flexibility. Two scenarios’ benefit were estimated in [24],

where authors considered non-residential smart charging. In the first scenario, behind-the-

meter EV aggregations are combined with the time-of-use (ToU) smart charging scheme,

resulting in significant monetary savings. The minimisation of the peak load engendering

peak power decrease in the second scenario.

Another approach to EV charging flexibility concerns the willingness of EV drivers to

change their charging habits. In [27], the authors concerned the willingness of EV drivers

to change their charging habits. In the experiment, EV drivers used a mobile phone app to

cancel or change the speed of charging. Results confirmed drivers adaptation to the system

requirements. However in a few weeks, the usage of this mobile app feature decreased to

2-3% of all sessions.

Zweistra et al. [28] performed a smart charging experiment to decrease the peak load.

In [28], the authors evaluated the number of sessions that were terminated before the charging

was completed, in order to decrease the peak load. They confirmed the potential contribution

of smart charging, since the number of sessions terminated before the charging was completed

was low. Obviously, the acceptance of smart charging can be problematic regarding negative

impact on the users’ mobility [29].

18
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1.2.2 Real-time charging point availability

Nowadays, a lack of chargers could stall the electric-vehicle revolution [30]. Moreover, the

limited count of public charging stations represents the major obstacles for widespread EV

adoption. Thus, the development of the management for charging point is necessary. For

instance, Google will now show EV drivers real-time availability of charging stations directly

inside Google Maps [31].

Additionally, the charging point availability can be provided in advance. Some current

papers try to handle prediction of the charging point availability from macroscopic perception,

as in [32]. The occupation status of charging infrastructure or charging point availability for

the next day is considered in [33, 34]. Since drivers plan the sessions operatively, the critical

point for prediction is close to the end of the currently active sessions. Hence, some studies

aim to forecast electric charging station availability in the near future, such as in [35].

In general, operative information about the current and future availability of the charging

points for drivers, can be provided by systems using predictions of the EV connection dura-

tion. Especially, update approach can bring the improvement of the predictions exactly in the

right time.

1.2.3 Potential usage of the methodology

To emphasise the contribution of this work, in this subsection the potential methodology usage

is described. Since we have not identified any paper exploring the updates of predictions in

the context of individual charging behaviour, we propose novel methodology useful as well

for different fields handling prediction of the process duration, i.e. process finish.

Such prediction of the duration is important component for health sector. The improve-

ment of the accuracy of the prediction using update can be beneficial for both, patient and

hospital management. Prediction of surgery duration, as is predicted in [36], can improve

the surgery scheduling. Nowadays, predicting the hospital length of stay for patients with

COVID-19 infection is essential [37].

Some fields already use the prediction update. Therefore, novel methodology can improve

current state-of-art methods, such as in [14] for prediction of the system outages duration or

19



FRI UNIZA DIPLOMA THESIS

for incident duration of papers mentioned in [15].

Generally, we suppose many other applications and usage of our novel methodology in

related predictions coping with process durations.

1.3 Terminology

For the paper’s needs, we follow terminology stated in [38] and used in [39], where a con-

nector is defined as a physical interface between an EV and charging infrastructure through

which electricity is delivered. A charging point is an energy delivery device consists of one

or more connectors, due to many connectors types exist. Despite that, only one connector can

be active at a time at the charging point. A charging capacity determines maximal charging

power, given in kW, for the charging point. The composition of one or more charging points

is labelled as a charging station, where all charging points are attached to the same charging

station for the ambient environment.

Every charging session k starts with plugging the EV and is determined by arrival of an

EV tarr
k and departure time of an EV t

dep
k . Time difference in between tarr

k and t
dep
k is called

connection duration (in our scenario, response variable yk), composed of a charging duration

tchar
k −tarr

k and an idle time. The graphical illustration of the session is visualized in Figure 1.1.

Figure 1.1: Graphical illustration of the session.

1.3.1 List of symbols

For charging session, we denote the following symbols:

20



FRI UNIZA DIPLOMA THESIS

• tarr
k - observed arrival time of a vehicle k to a charging station,

• t
dep
k - observed departure time of a vehicle k from a charging station,

• tchar
k - time when a charging of the session k was terminated,

• En - demanded but not delivered energy,

• E p - the energy charged in peak period for peak price,

• Eo - the less expensive energy charged in offpeak periods.

Moreover, we use some specific terms and symbols to describe the update of the predic-

tion. Hence, we write up them in the following list:

• N - number of charging sessions,

• M - number of updates of a prediction,

• Mk - number of updates of a prediction of the k-th session,

• x - vector of feature values associated with one observation,

• xk - vector of feature values associated with k-th observation (session),

• t i
k - time offset of the i-th prediction update since the start of k-th session,

• t1 - time offset of the first prediction,

• yk - response variable (connection duration),

• ŷi
k - estimate of the connection duration of k-th charging session resulting from the

prediction update made at the time offset t i
k since the session start.

• δ - length of the time interval between two prediction updates,

• δ i
k - length of the time interval between i-th and i+1-th connection duration prediction

updates of the session k,
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Chapter 2

Data and features

In the first section of this chapter, we introduce the dataset on which we perform our ex-

periments to consider novel proposed features and methodology arising from the updating

approach. Some expectations and assumptions are also claimed, as we try to describe main

characteristics of the dataset itself. In the second section, we use the knowledge from the ex-

ploration of the dataset and try to propose appropriate features. Since feature processing can

be computationally expensive, in the last section, algorithms and implementation are closely

described.

2.1 EVnetNL dataset

We performed our experiments on the EVnetNL dataset collected by the knowledge and inno-

vation centre in the field of smart charging and the charging infrastructure ElaadNL [40]. The

dataset comprises two tables, “Transactions" and “Meterreadings". Each charging session in

the table “Transactions" is described by charging point and connector identifiers, geograph-

ical coordinates, timestamps of initiation and termination, and identifiers of the user RFID

cards used to initiate and terminate charging sessions. Table “Meterreadings" describes the

charging energy consumption with a 15-minute frequency. The subset of data we used spans

from 01/2016 to 07/2018, covers 1731 public and semi-public charging stations (located as

in Figure 2.1), about 65k EV drivers, more than 936k charging sessions, and more than 30M

meter readings.
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Figure 2.1: The location of the charging stations for EVnetNL dataset.

2.1.1 Dataset analysis

Early on, we made a data cleaning. As a part of data cleaning, we found a few sessions with

exceedingly large connection duration, sometimes several days or even weeks. Regarding

smart charging, such long duration is not of high relevance and for this reason, we capped

the connection duration to 24 hours. The distribution of connection duration is shown in

Figure 2.2. The majority of connections take less than five hours. Only a minority of sessions

takes more than 20 hours.

As we mentioned in literature review, charging sessions indicate some main charging pat-

ters in general [6, 7]. Recent studies explored the charging patters similar for both, users and

charging stations. In [41], five distinct clusters of daily plug-in EVs charging profiles (corre-

sponding to behaviour of the users) were observed at the public charging stations using pattern

analysis.
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Figure 2.2: Histogram of the connection duration for charging sessions in the EVnetNL

dataset.

Some studies already analyzed EVnetNL dataset. Both papers [42, 43] create clusters of

charging points, based on parameters of the charging sessions or usage of the charging sta-

tions. In [42] four parameters describing popularity, utilization and temporal usage of charg-

ing stations. Four groups of stations characterized by distinct usage patterns were identified,

resulting in clusters of stations that are not identical. Based on the EV arrival times and the

duration of EV connection to the charging station, in [43] authors identify charging matrices

belonging to each of 10 clusters identified by hierarchical clustering.

In our scenario, we follow related studies and explore similarities of users and stations

separately. According to paper topic, we additionally use connection duration for aggregation

in order to find similar charging patterns for diverse groups of sessions. Figure 2.3 displays

kernel density estimation [44] (KDE) for connection duration. We explore the impact of the

current duration of the sessions on KDE. Panel A shows all sessions from the 2016. Note, that

KDE of the connection duration is similar to the histogram in Figure 2.2. Just session with

connection duration longer than 3 hours are shown in Figure 2.3B. Similarly, we use sessions

lasting more than 5 hours in Figure 2.3C and sessions last more than 10 hours in Figure 2.3D.

Figures 2.3B- 2.3D refer to situations, when the current duration of the sessions is equal to
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Figure 2.3: Kernel density estimation of the connection duration for different sets of the ses-

sions. Panel A refers to the time offset equals to 0 (all sessions are included). Panel B-D

include just the sessions with connection duration grater than 7, 11 and 16 hours.

a particular time offset, and we predict the connection duration of the appropriate sessions.

Evidently, the connection duration of the sessions is more predictable, as the current duration

is raising.

Since standard deviation of the connection duration (target variable) indicates difficulty

of the prediction, we analyse the standard deviation in various time offsets, i.e. different sets

of active sessions. Thus, all panels in Figure 2.4 show mean standard deviation in various

time offsets. In each time offset, we group sessions by user identification or charging point

and calculate standard deviation for each group separately. Hence, just sessions lasting more

than time offset determine the standard deviation for each group. As a result, we calculate the

mean value from standard deviations of all groups for each time offset t i. Besides that, we
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also plot standard deviation from all active sessions without any aggregation. Panel B takes

just sessions of relevant users into consideration. In our scenario, the relevant user has got

more than 50 sessions in the dataset.

Figure 2.4: Mean standard deviation from active session in time offsets, grouped by users and

charging points and not grouped by. Values in panel A are figured out from all sessions. Panel

B shows values for users with 50 and more sessions.

Standard deviations are smaller for grouped sessions than for not aggregated sessions.

Furthermore, groups of users’ sessions reach lower mean standard deviation compared to

groups of charging points’ sessions. Therefore, the features grouped by users’ identification

are the most promising for prediction of the EV connection duration. Groups of sessions

for charging points also improve the overall standard deviation, thus features aggregation by

charging points would be beneficial as well.

The contribution of the update of the predictions is clearly visible in Figure 2.4B, since

the standard deviation decreases as the sessions unfold. Similarly, in Figure 2.4A standard

deviation decreases with raising time offset for ungrouped sessions and sessions grouped by

charging point. Surprisingly, sessions of users with less than 50 session decrease the standard

deviation for small values of time offset. Since similar trend is not visible also for mean

standard deviation of sessions grouped by charging point and ungrouped sessions, we suspect

many occasional users with small count of sessions in the observed period. In the average,
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these sessions last less than 5 hours. Additionally, we assume that the majority of the sessions

lasting less than 5 hours are sessions of the occasional users.

Figure 2.5: Histogram of the connection duration for charging sessions for two separate

groups of users. Users are divided base on their session count in observed period. Panels

show groups divided by count of session 5, 10, 20 and 50.

All panels in Figure 2.5 show the histogram of the connection duration for charging ses-

sions for two separate groups of users, in order to confirm the mentioned assumptions. Fig-

ure 2.5D shows the situation from Figure 2.4B showing merely sessions of users with more

than 50 sessions. Figures 2.5A- 2.5C show the histogram with lower value of boundary for

sessions’ count of the user. For occasional users, the majority of sessions last less than 4-5

hours, as expected. On the other hand, we assumed this trend just for users with small count

of sessions, while also sessions in Figure 2.5D behave similarly.

At this point, we cannot state the impact of occasional users on the accuracy as well as we
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do not interpret and use this information, since it is not the objective of this work. Possible

future research should also include clustering of the input data from mentioned perception.

To sum up, these are the main points possibly useful to propose the features:

• Aggregation of the features by users’ identification is promising.

• Aggregation of the features by charging point should be beneficial.

• Statistical features proposed for sessions lasting more than time offset most likely im-

prove the prediction accuracy.

2.2 Feature engineering

To characterise a charging session, we compile a set of features that can be organised in four

groups: static features, features describing long-term charging history, features describing

short-term charging history and online features (visible in Figure 2.6). Features included

in the first three groups capture developments taking place before the start of the charging

session upon which the prediction is made, and they are designed by considering previous

studies [4, 8, 5]. The online features capture the progress from the start of the charging session

until the time when the prediction is made.

Figure 2.6: Graphical illustration of the features’ categories.

2.2.1 Static features

These features take a constant value for all sessions associated with a station or a user:
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• first two letters of the station label encoding its type (modelled as a categorical variable),

• longitude and latitude of the station,

• maximum charging power estimated as the minimum of the user maximum power and

station maximum power.

2.2.2 Features describing long-term charging history

Features to capture characteristics of charging sessions in a long-term by aggregated statistics:

• mean, minimal and maximal values of the total charged energy, connection duration and

charge duration (all values are calculated for both, charging sessions previously made

by a user and charging sessions previously taking place at a charging station),

• relative frequency of sessions that lasted more than is the current connection duration

(the value is calculated for both, for a user and for a charging station).

2.2.3 Features describing short-term charging history

Features calculated for n most recent days or n most recent sessions, to capture the short-term

charging history:

• the mean value of the charged energy, the mean value of the connection duration and

the count of sessions considering last day (week) for each station,

• the mean values of the energy consumption and connection duration in the last 1, 5, 10

sessions for each user.

2.2.4 Online updated features

Features that capture the progress of the charging session since it has started:

• current hour of the day, weekday and month (modelled as categorical variables),

• total charged energy since the start of the session,
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• charged energy in the last 15, 30 and 60 minutes,

• connection duration since the beginning of the session.

2.3 Feature processing

In this section, we describe how we obtain the values of upper mentioned features. To avoid

the knowledge from the future sessions, we use the rolling mechanism. The rolling features

are calculated from previous events (in our case, sessions), instead of calculate features from

whole dataset. In the other words, features for the k-th session in the dataset are figured out

from previous k− 1 sessions. Hence, features describing long-term charging history require

historical sessions, denoted as warm-up set, to obtain the features.

Algorithm 1 Pseudocode for feature processing
Require: Swarmup, Sothers

Create static features for Sothers

Create short-term features for Sothers

Create statistics for users from Swarmup

Create statistics for charging points from Swarmup

for all sessions in Sothers do

Create update offsets

for all update offsets do

Create observation

Append observation to the list

end for all

Update users’ statistics

Update charging points’ statistics

end for all

Convert list of observations into dataframe

Return dataframe

To meet the mentioned condition, we have to iterate all sessions and after every iteration
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we have to update the statistics. Moreover, in our scenario, we divide each session into multi-

ple observations. Each observation represents features for the i-th update of the prediction for

k-th session. In practise, update of the statistics during charging process from another session

is possible merely for predictors aggregated by charging point. Obviously, user itself cannot

change the statistics for features used for prediction update in the next time offset. Therefore,

it can happen solely for features grouped by charging point, namely for mean, minimal and

maximal total charged energy, connection duration and charge duration. Hence, the correct

process would divide sessions into observations representing time offsets, order observations

by tarr
k and iterate these observations. This brings increased computational burden. Since in-

fluence of the statistics for observation from another observation is unlikely (it occurs merely

for the charging point containing more than a single connector), we omit this situation to speed

up the whole process. The pseudocode of feature processing is shown in Algorithm 1.

Firstly, the static features are calculated for all sessions. These features have nothing to

do with rolling mechanism. Thus, implementation is vectorised and very effective. The first

two letters from charging point name are subset, referring to the type of the charging station.

Since the maximum charging power is unknown, we estimate it as the minimum of the user

maximum power and station maximum power from the whole dataset. In practise, maximum

power is known at the time of EV arrival.

Short-term predictors are created in two steps:

1. Calculation of the last sessions’ mean energy and connection duration. In our scenario,

we calculate values for last session, last 5 session and last 10 sessions. To optimise the

code, we iterate through the session just once and store current values of the observed

values in a class named LastSessions. When a new session appears, the oldest session

is popped out from the queue of last sessions in the instance of the class. To decrease

computational burden, the sums of energy and connection duration for all sessions are

stored and available. Class updates the sums on a change of stored sessions. Early on

the cycle, empty dictionaries for users’ last sessions and charging points’ last sessions

are available. As the cycle unfolds, new instances of the LastSessions are inserted into

dictionaries, using user identification and charging point name as the keys. This solution

with dictionaries of users’ and charging points’ last sessions we find more efficient
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and faster than parallel iterations for each user’s sessions and for each charging point’s

sessions, since the complexity is linear (we assume complexity = O(1) for insertion into

the dictionary).

2. For calculation of the energy, connection duration and session count from last day and

week for each station, function rolling was used [45]. For sessions grouped by charging

point, we apply this function with frequency one day and one week on the date column,

closed from the left side. Since pandas functions are highly optimised, the performance

is not computationally demanding.

For every user and station, we store historical statistics in the dictionary of lists of pandas

dataframes. Every list represents statistics for user or charging station and contains as many

dataframes as is the count of updates for user or charging point. Each dataframe contains

minimal value, maximal value, the sum of the records and count of the records for connection

duration, charge time and total charged energy, according to Section 2.2. We store sum of

the records, instead of mean value due to computational simplicity. Relative frequency of the

sessions lasting more the time offset for index i can be calculated as number of the records for

time offset with index i divided by time of the records for time offset with index 0.

For each user or charging station, we get the statistics from the dictionary. If a record does

not exist, a list with empty statistics is created and inserted into the dictionary. Index of update

i is also an index into the list of dataframes. In dataframe, column name refers to required

value. These statistics are updated after every iteration as we consider rolling features. While

the connection duration of the current session is lower than the time offset of update i, we

update all statistics for dataframe on the index i in the list.

The inner cycle in Algorithm 1 creates multiple observations for every session correspond-

ing to given time offsets. For each observation, we update online updated features according

to time offset. The time of the arrival of the EV tarr is incremented by the time offset in order

to obtain current day, weekday and month. Connection duration since the beginning of the

session equals to the actual time offset. Charging rate is assessed to the total charged energy

divided by charge duration, since we model uniform charging rate throughout the session.

Thus, the charged energy since the beginning of the session is calculated as charging rate
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multiplied by actual time offset. Note, that time offset can be higher than charge duration, en-

gendering higher value of charged energy since the beginning of the session than total charged

energy. Therefore, we have to cap the value of charged energy to the total charged energy. Fi-

nally, charge energy in last 15, 30 and 60 minutes is calculated by the separate function. This

function is generic and requires interval in hours (in our case, 0.25, 0.5, 1 hour), actual time

offset, total charge duration and assumed charging rate. There are multiple cases to consider:

• Current time offset is lower or equal to total charge duration and interval is lower or

equal to actual time offset (Figure 2.7A). The function returns interval multiplied by

charging rate.

• Current time offset is lower or equal to total charge duration and interval is higher than

actual time offset (Figure 2.7B). The function returns time offset multiplied by charging

rate, i.e. total charged energy since the beginning of the session.

• Current time offset is higher than total charge duration. Variable start takes the value

of time offset retracted by interval. If start is lower than total charge duration (Fig-

ure 2.7C), we recalculate an interval to total charge duration retracted by start variable

and function returns this interval multiplied by charging rate; otherwise charge energy

in interval is zero (Figure 2.7D).

The described procedure provides features’ creation with linear complexity, thus without

significant computational burden. Despite that, duration of the whole process increase with

raising number of time offsets, i.e. number of updates. The biggest disadvantage is that the

dataset is created priorly and thus with change of any time offset, the recalculation of the

whole dataset is required. To handle this, dataset with very low value of δ can be created and

then just observations corresponding required time offsets are subset.
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Figure 2.7: Graphical illustration of the cases for calculation of charged energy in interval.

Panel A shows situation, when the interval is higher than actual time offsets. Panel B shows

the case of the whole interval within the session charge duration. Both, idle time and charge

time, are included in the interval in panel C. Panel D shows, when no energy is charged in the

interval.
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Chapter 3

Methods and model construction

The following chapter is divided into three main logical parts. The first part introduces used

methods and update strategies. The second part handles the construction of proposed models

and describes implementation details. Finally, we describe how we evaluate the accuracy of

the predictions in order to applications, such as smart charging and charging point availability.

3.1 Methods

In this section, we introduce methods used for predictions of EV connection duration. Firstly,

naive methods are described, providing fair benchmark for LightGBM (LGBM) method. We

also introduce Bayesian optimisation used for hyperparameters tuning.

3.1.1 Naive models

Two naive models are applied to assess the performance of the proposed prediction models.

First is the mean connection duration of a given user as a static prediction approach (mean-

static). To provide a fair benchmark for the updated models, we calculate the mean connection

duration of all the user’s sessions lasting longer than the considered session (mean-updated).

For both, mean static and mean updated we can use prepared statistics from predictors

processing, since for every session they are figured out solely from prior sessions stored in

the features’ values of the observation. Therefore, mean-static and mean-updated predict
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connection duration using upper mentioned mean connection duration for a user of sessions

lasting more than connection duration since the beginning of the current session. The only

difference is that mean-static is considered just in time of arrival of the EV and mean-updated

is considered in every defined time offset.

3.1.2 LightGBM

We use LGBM [46] as the prediction method, which is a state-of-the-art Gradient Boosted

Regression Trees (GBRT) [47, p. 359–361] implementation. LGBM coping with time con-

sumption during estimating gain throughout all possible split points by two novel techniques:

Gradient-based One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB), engen-

dering that LGBM speeds up the training process of conventional GBRT by up to over 20

times while achieving almost the same accuracy. In our scenario this is a large advantage as

we re-train the model several times.

Python Scikit-learn application interface for LGBM [48] provides python implementation

of the algorithm, with conventional functions, such as fit and predict. Implementation of-

fers good accuracy with integer-encoded categorical features [49], since applies Fisher [50]

in order to find the optimal split over categories. Thus, LGBM often performs better with

categorical features than one-hot encoding. Our features meet integer-encoded categorical

features, except the first two letters of the charging point name. Hence, we transform the first

two letters of the charging point name to a contiguous range of integers started from zero, as

recommended.

3.1.3 Bayesian optimisation

Bayesian optimisation is an iterative algorithm, based on a probabilistic surrogate model and

an acquisition function. To decide which point to evaluate next, the expected improvement

E[I(λ )] = E[max( fmin − y,0)] (3.1)

is mainly used, since it can be computed in closed form if the model prediction y at con-

figuration λ follows a normal distribution [51, p. 9]. For paper needs, we use Tree-structured
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Parzen Estimator Approach (TPE) modelling conditional probability by transforming configu-

ration space, described by a graph-structured generative process, replacing the distributions of

the configuration prior with non-parametric densities to facilitate the optimization of expected

improvement [52].

GetBestParamsBayesian function implements general case of Bayesian optimisation using

hyperopt package, namely fmin function, space_eval and hp (containing TPE approach). Fmin

function requires:

• Objective function returning score for configuration of the hyperparameters (black box

function).

• A dictionary with name of the parameter and possible discrete values or interval called

space.

• Algorithm for searching within the space of hyperparameters. As we mentioned upper,

we use TPE approach.

• Upper bound for count of iterations, called max_evals. The count of iterations means

how many times is the model built and evaluated, i.e. how many times the objective

function is called.

In our scenario, the objective function uses the current configuration of the hyperparam-

eters and creates the model. To figure out the score of the model, cross validation from

sklearn.model_selection package is used. Due to rolling features, we have to use evaluation

on rolling features origin instead of conventional cross validation because the origin on which

the features are based roll forward in time [53]. To split data, we use a variation of k-fold

validation TimeSeriesSplit from Scikit-learn package [54], which returns the first k folds as

a training set and the k+ 1-th fold as a test set. Figure 3.1 shows how evaluation on rolling

predictors origin works.

Finally, the objective function returns a negative score value, since fmin function tries to

minimise the objective value.
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Figure 3.1: Evaluation on rolling features origin using k-fold cross validation with time series

split (k = 6).

3.2 Update strategies

To increase the overall model accuracy, we update the predictions discretely in time, as in [16].

We propose two basic approaches to handle the prediction updates. The first we, denote as

synchronous approach and it updates all the sessions in the same time. The second handles

each session’s updates individually and we denote it as asynchronous approach.

Synchronous approach regularly updates the predictions based on a global clock, inde-

pendently of EV arrivals Figure 3.2 (A). On the contrary, asynchronous approach updates

every session individually based on the arrival time of the EV (figure 3.2, panel B). From the

perspective of training the prediction models, asynchronous approach brings an advantage of

updating the predictions of each session within the same periods from the session’s start time.

This allows us to reshape the data into a more convenient format. We aggregate the features

by the times of updates and hence generate more advanced features. Moreover, we group the

observations by the prediction update time. All these transformations bring additional benefit

in speeding up the computations in model training.

For instance, let use two sessions. Session A starts at 8:15 and lasts 4.5 hours, i.e. finishes

at 12:45. Session B starts at 8:45 and lasts 2 hours, i.e. finishes at 10:45. Let suppose regular
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Figure 3.2: Panel A: Synchronous updated predictions. Panel B: Asynchronous updated pre-

dictions. Each panel contains two separate sessions for EV1 and EV2. Arrival of EV means

start of the session and departure of the EV means end of the session. Each session k contains

several times of update t i
k.

update with δ = 1 hour. System based on synchronous approach ticks regularly at a time

0:00, 1:00, ..., 23:00, 0:00, 1:00 and so on. Therefore, time offsets for session A are in time

offsets 0.75, 1.75, 2.75 and 3.75 corresponding to the global ticks 9:00, 10:00, 11:00 and

12:00. Similarly, session B updates prediction in time offsets 0.25 and 1.25 corresponding to

global ticks at 9:00 and 10:00 hours. On the contrary, system based on asynchronous approach

works differently. Both sessions start with prediction on arrival and then use regular δ = 1 to

calculate time offsets of the prediction update. Thus, session A has got time offsets equal to

0, 1, 2, 3 and 4 corresponding to times 8:15, 9:15, 10:15, 11:15 and 12:15. Session B updates

prediction with time offsets 0, 1, 2 corresponding to times 8:45, 9:45 and 10:45.

System based on synchronous updates can be centralised into a single point of the charging

infrastructure. An obvious disadvantage is that all information simultaneously flow to the

central point, instantly rising load to the communication network. System with asynchronous

updates loads the network more uniformly, since each session is updated based on the EV

arrival time, i.e. in different times.

From the upper mentioned reasons, in this paper we use asynchronous discrete update.
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Asynchronous discrete update allows us to propose more approaches to build the model.

Figure 3.3: Panel A: A schematic illustration of the single model approach with regular update

strategy. Panel B: A schematic illustration of the multimodel approach with irregular strategy.

For every time of update t i
k for i = 1, ..,Mk, the prediction ŷi

k is made using vector of feature

values xi
k. Duration until next planned update or EV departure in i-th time of update is denoted

as δ i
k. In regular update strategy, δ i

k = δ for every i ̸= Mk.

• Static approach - the connection duration is predicted only once, when the EV is plugged

in.

• A single-model - all predictions during the sessions are made by the single model (Fig-

ure 3.3 panel A).

• A multi-model - prediction model is divided into multiple ’sub-models’, where every

model belongs to the appropriate update time. Each of the models can be trained via

different prediction methods (Figure 3.3 panel B). For every time of update, different
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sessions are active, i.e., have longer connection duration than the time offset of the

update.

The static approach uses just observations at the time of arrival tarr of the EV. These ob-

servations contain values for all features as described in Section 2.2, however online features

and features aggregated by current duration are not meaningful. The single-model uses the

whole dataset to train a single model and predict connection duration for each session in every

time offset of prediction update. Current duration helps the model to predict the target vari-

able, since this feature contains information about minimal duration (sessions cannot finish

before observations’ current duration). Finally, the multi-model is similar to static-model in

the usage of the sessions with same time offset, i.e. current duration. Feature current duration

is needless, since it is equal for all sessions in the dataset.

Let use session A with time offsets of update 0,1,2 and 4, session B with time offsets of

update 0,1 and 2 and session 3 with time offsets of update 0,1, ..., 16. For static approach, just

3 observations with time offsets equal to 0 are used. For single-model and multi-model all

24 observations are used. For single-model observations are used at once, while multi-model

creates sub-models for every time offset, thus 17 sub-models with appropriate observations.

At the time of arrival tarr of the EV (time offset equals to 0), multi-model and static approach

use the same set of observations.

In general, synchronous approach predicts at the arrival of the EV. Therefore, we consider

this approach as extension to static approach, since the first prediction (at the arrival of the

EV) would be the same. Later on, predictions are updated in the planned time offsets, that

would improve the former prediction. Hence, we assume that overall accuracy has to be better

or equal to static approach, except the case of worsening of the former predictions in time

offsets. Moreover, for asynchronous approach, we can use regular or irregular updates.

3.2.1 Regular updates

For regular updates is the update step set to the same value during the whole session (figure 3.3

panel A). For the whole system, the general value of δ valid for each session is determined.
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3.2.2 Irregular updates

Within the irregular updates, the length of the update step can decrease or increase through

the session (figure 3.3 panel B). The irregular update adapts the times of update with the goal

to minimise the error of the prediction. For instance, we can utilise shorter steps in the periods

of higher importance and vice versa. However, the risk of overfitting increases. Moreover, for

irregular updates, we have to adjust the traditional prediction accuracy measures.

Let use the upper mentioned example with session A starting at 8:15 and lasting 4.5 hours

and session B starting at 8:45 and lasting 2 hours. Previously, the example describes syn-

chronous and asynchronous system with regular step of update δ = 1 hour. Thus, for asyn-

chronous system, time offsets are 0, 1, 2, 3 and 4 corresponding to times 8:15, 9:15, 10:15,

11:15 and 12:15 for session A. Session B updates prediction with time offsets 0, 1, 2 repre-

senting times 8:45, 9:45 and 10:45. Concerning irregular update strategy, let use time offsets

0, 0.5, 1, 2, 3, 3.5 and 4 for whole system. For both, session A and session B, time offsets

will be the values from determined time offsets until the session finishes. Hence, session A

updates prediction at 8:15, 8:45, 9:15, 10:15, 11:15 11:45 and 12:15. Similarly, session B

updates prediction at 8:45, 9:15, 9:45 and 10:45.

In general, determination of the same time offsets for the whole system is not required.

Therefore, we can use for every user, charging point or session own regular/irregular time

offsets. This allows us to utilise the time offsets for particular day hour, group of users or

charging points or group of session grouped by general patterns, as it was in [6, 7]. At this

point, we omit these possibilities to emphasise the main goals of this paper, even though it

would be beneficial for prediction accuracy.

3.3 Construction of models

To avoid peeking, i.e. using test-set performance to both choose a hypothesis and evaluate

it [55, p. 709], we use the test set as hold out. For evaluating the different configurations of

the proposed models, we use the validation set [56]. Thus, the whole dataset was divided

into training set, validation set and test set. Additionally, the warm-up set was created, since

warm up is required for the feature engineering process to create default statistics for users and
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charging points. To find the appropriate size of warm-up set, we have to consider a trade-off.

On the one hand, we need sufficient size to include as many charging points as possible. On

the other hand, keeping as many sessions as possible for training set and test set is necessary.

Since we have a large dataset (up to a million charging sessions), we can use the sessions in

2016 for warm-up. Session from 2017 are used for training set and the earliest 50k sessions

from 2018 are used for validation set. The rest of the 2018 sessions are used for the test set.

Figure 3.4: Illustration of the warm-up set, training set, validation set and test set on timeline.

The class Predictors stores features and particular datasets as well as provides some basic

functions required to simplify experiments. Data divided into training, validation and test

set enter into constructor as parameters. For regular update, the features’ dataframe contains

observations with very low δ in order to speed up the creation of features’ dataframe as we

mentioned in Section 2.3. Therefore, for large parameter δ , we have to subset just proper

observations, priorly in the constructor. Consequently, datasets are joint into one dataframe

to process the categorical features, since we need to ensure that features created by one-hot

encoding will be in every set. Later on, sessions are divided back to original data sets. The

same practise is used for marking the features’ columns as categorical, necessary for LGBM

algorithm, since it performs well on categorical features without one-hot encoding. Moreover,

static-wise sets are created from observations with current duration equal to 0, representing

dataframes for static approach. Note, that the proportion of size of sets could change, while

origin proportion depends on sessions’ connection duration in dataframes.

3.3.1 Single-model

For training a Single-model, LGBM was used. In practise, we implement single-model class

to simplify code for experiments and figures creation. An instance of single-model contains
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valid columns, i.e. active features for training and prediction, and current method. In our case,

columns correspond to features mentioned in Section 2.2.

3.3.2 Multi-model

Due to simplicity, LGBM was used for every sub-model in Multi-model approach and both,

for regular and irregular strategy.

Construction of the regular Multi-model depends on the δ which is directly proportional

to the count of models. Each of the models is trained separately on its own dataset, containing

just observations from active sessions with target variable yk and updated features xk.

Implementation of the Multi-model class has to afford basic functions, likewise Scikit-

learn methods, as well as some extensions essential for multi-model approach:

• Functions - fit and predict.

• Feature importances dataframe.

• Bayesian hyperparameters tuning.

Alike Single-model, Multi-model instance requires valid columns and method for predic-

tion. In our implementation, multiple types of method for a multi-model are not allowed.

Contrary to Single-model, Multi-model class contains multiple models in an array, each for

a particular time offset. Additionally, Multi-model allows optional parameters for method,

since it clones method multiple times and consequently compiles methods with appropriate

parameters. Concerning regular update strategy, the parameter δ determines the size of the

array with models.

Fit and predict functions work similarly to state-of-art algorithms provided by conven-

tional packages. Dataframe with all observations and all features is an input for these func-

tions. Both, fit and predict, iterate observations grouped by current duration column. Fit

function calculates index in array of models and fit model using group of observation. Pre-

dict function iterates groups with goal to predict connection duration for each observation

within the group and create dataframe with session’s identification number, current duration,
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predicted connection duration, real connection duration (target variable) and residual, i.e. the

difference between predicted connection duration and real connection duration.

Since we use LGBM as a prediction method and this method provides feature importances

already used for feature selection, for instance for environmental data [57], where LGBM

responds well to feature selection. We can use this amenity to create a table with feature

importances for Multi-model. This table consists of all valid columns representing features’

names and all time offsets for update prediction of the connection duration. The main goal is

to compare importance in different time offsets, if any appears.

A function for hyperparameter optimization requires the following parameters:

• Training set - dataframe used for training process.

• Validation set - set for k-fold cross validation.

• Method - prediction method, in our scenario we use just LGBM method.

• Space - dictionary with name of the parameter and possible discrete values or interval.

• Number of splits - number of folds for cross validation.

• Scoring method - scoring method evaluating the performance and accuracy of the pre-

diction.

• maximal count of evaluations - number of iterations for Bayesian optimisation.

Hyperparameters for each model are optimised separately. Therefore, we group observa-

tions in training and validation sets by current duration. For each group, we calculate test size

corresponding to validation subset and append both sets into single dataframe and use it for

k-fold Bayesian hyperparameters’ optimisation. Finally, we train i-th model using the best

parameters from Bayesian hyperparameters’ optimisation.

Concerning irregular update strategy, the most suitable values of update times for the

Multi-model are found by adjusted hyperparameter optimisation. There are many ways how

to model time offsets as hyperparameters. The task is to create space for hyperparameters op-

timisation from [0,24] interval, with the goal to construct time offsets from this space. Divide
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the [0,24] interval into more intervals with own δ is the first option. This represents easy way

how to propose hyperparameters tuning and transform configuration of the hyperparameters

to time offsets. On the other hand, proposed option mitigate the flexibility of the time offsets,

since each interval has the same value of δ for every time offset. Moreover, time offsets in

intervals’ boundaries are compulsory. Hence, time offsets are considered as hyperparameters

from the uniform discrete distribution U{0,24}, engendering the maximal flexibility for adjust-

ing the time offsets. Note, that more time offsets can obtain the same value; however, it is

unlikely. The biggest advantage is that we can control the count of updates of the prediction,

while in the case of dividing the whole interval on the multiple subintervals it is not possible.

Many computations with various time offsets for update are considered, and creation of

features for every configuration of time offsets is time-consuming (we would follow to process

described in Section 2.3). Therefore, we omit the statistics describing long-term charging

history and create online features not in advance, but during training process, literally online.

Since to calculate error value for different update times is a computationally expensive black-

box function, Bayesian hyperparameters’ optimisation finds best suited time offsets for update

of the predictions, using reduced dataframe. For final selection of time offsets for update of

the predictions, a comprehensive set of features is created priorly by a conventional process

described in Section 2.3.

VariableStep class implements Multi-model irregular approach. While Multi-model class

uses for both, fit and predict functions, comprehensive training and test set, VariableStep

class extends these functions and updates features after every iteration, i.e. after fitting or

predicting in particular time offset. Firstly, from current observations are selected and copied

just sessions with connection duration higher or equal to current time offset corresponding

to observation of active sessions. The current duration column is updated to the current time

offset. Finally, we have to handle charged energy update. There are many ways how to assess

charged energy, but we have to consider computational demands. Thus, we use vectorisation

provided by pandas dataframe to figure out the charge energy as the column charging rate

multiplied by current duration. The average charging rate for each session is obtained as

the total energy divided by charge time. Since the current duration can be higher than charge

duration, min function figures out the minimum from charged energy and total charged energy.
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Similarly, we adjust the objective function in algorithm for Bayesian hyperparameters’

optimisation from Subsection 3.1.3 and call this function as getBestTimeOffsets. The function

creates time offsets using parameters from the argument to build the VariableStep multi-model

instance. Multi-model fits models on the training set and evaluate the prediction accuracy on

the validation set. In our scenario, the function returns weighted mean (see Section 3.5).

Accordingly, we can illustrate the process as follows. For n updates we need n− 1 time

offsets because the first prediction is made in time offset equal to 0. Hence, we create a

dictionary with n−1 parameters as a hyperparameters’ space. The key of the record is index

of the update and interval of values is created using hp.quniform function from hyperopt

package. Input for the function contains:

• Lower bound of the interval. We recommend using the value of granularity as a lower

bound to avoid the multiple update in time of arrival.

• Upper bound of the interval. In our scenario, the upper bound is 24 representing maxi-

mal duration of the session.

• Granularity of the created space. For this paper needs, we use granularity 0.01 and so 6

minutes as a minimal δ .

In every iteration of Bayesian optimisation, different n−1 values of time offset entry into

objective function, and they are extended by 0 value. Based on ascending ordered time offsets,

an instance of VariableStep is created and evaluated. Best parameters from the Bayesian

optimisation representing the most suitable time offsets.

3.4 LightGBM hyperparameters

LGBM uses the leaf-wise tree growth algorithm, while many other popular tools use depth-

wise tree growth. This brings faster convergence, besides possibility of the over-fitting if not

used with the appropriate parameters [58].

According to the LGBM documentation, we tune some important parameters. Parameter

num_leaves controls the complexity of the tree model, as it determines the maximal number of
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leaves in a single tree. Hence, it can both increase the accuracy and induce over-fitting. Small

values of the number of leaves speeds up the training process. Parameter min_data_in_leaf

significantly prevents over-fitting, while the parameter’s value depends on the number of train-

ing samples and number of leaves. For large dataset, setting it to hundreds or thousands

is sufficient. Since LGBM uses decision trees as the learners, the num_iterations parame-

ter controls the number of trees for boosting. With changing the num_iterations, change of

the learning_rate is recommended. This will not have any impact on training time, but it

would impact the accuracy. In general, reducing of the num_iterations, should be followed

by increase learning_rate. Finally, large max_bin causes better accuracy, but can increase the

computational burden.

3.5 Error measures

Since each session can be updated multiple times depending on the update granularity and

session duration, we propose the following prediction error measures.

The weighted mean absolute error [59] is adapted to our scenario as the average of the

mean weighted absolute error throughout all updates from all sessions

wMAE =
1
N

N

∑
k=1

∑
Mk

i=1 |yk − ŷi
k| ∗δ i

k

∑
Mk

i=1 δ i
k

, (3.2)

where yk is the target variable, ŷi
k is the predicted duration for session k in the update time

t i
k, N is the count of all sessions, Mk is the count of updates for session k and δ i

k is the duration

until next planned update or EV departure in i-th update for session k. For every session,

∑
Mk

i=1 δ i
k equals to target variable yk. For regular update, δ i

k equals to δ for every session k and

i ̸= Mk and for every session k, δ
Mk

k is the minimum of regular updating step and time to the

vehicle departure.

Since, wMAE function is used multiple times (especially for hyperparameters’ optimi-

sation), low computational burden is necessary. To vectorise the function, we modify the

calculation from (3.2) to
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∑
Mk

i=1 |yk − ŷi
k| ∗δ i

k

∑
Mk

i=1 δ i
k

=
1
yk

∗
Mk

∑
i=1

|yk − ŷi
k| ∗δ

i
k =

Mk

∑
i=1

|yk − ŷi
k| ∗δ i

k

yk

(3.3)

for each session, since ∑
Mk

i=1 δ i
k equals to connection duration yk. Hence, for each observa-

tion, we have to calculate

|yk − ŷi
k| ∗δ i

k

yk

=
|r| ∗d

yk

, (3.4)

where r is the residual and yk is the real connection duration, both returned in dataframe

by function predict, as we mentioned in Subsection 3.3.2. Error duration d can be calculated

as the minimum value from δ i
k and remaining duration (yk − t i).

Moreover, according to (3.2), we can consider the benefit of the updating approach as in

the Figure 3.5A-Figure 3.5C. The prediction made by static approach holds during the whole

session. Therefore, we can consider the accuracy enhancement of the update approach as the

difference area in between static and update approach.

Figure 3.5: Geometrical intuition of wMAE measure for session’s predictions using update

(panel A) and static approach (panel B). The comparison of the static and update approach is

in the panel C

To consider and compare performance in particular time of update t i, an additional metric

MAEt i =
1
N

N

∑
k=1

|yk − ŷi
k|. (3.5)
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is proposed. Only the active sessions are considered. To evaluate predictions at the time

of EV arrival, we apply MAE0, i.e. at MAE time t1 = 0. To implement the (3.5), we group

observations by time offset. To calculate conventional MAE from these observations is suffi-

cient.

3.6 Smart charging scheme

According to [60, p. 106] we can optimise the charging session in order to three different

objectives: the time (by postponing the charging), the speed (by increasing or decreasing the

charging power), and the charging direction (by switching between charging and discharging

of an EV throughout the session). In this section, we consider a baseline scheme that repre-

sents business-as-usual (BaU) case of uncontrolled charging and ToU smart charging scheme

optimising the charging time. The schemes are introduced together with main criteria en-

abling the quantification of the consequences of under- and over-estimation of the charging

duration:

• En represents demanded but not delivered energy,

• E p is the energy charged in peak period for peak price,

• Eo is the less expensive energy charged in offpeak periods.

Total charged energy for each session k obtained from the EVnetNL dataset equals to the

sum of upper defined criteria, thus E = En +E p +Eo.

3.6.1 Business-as-usual charging

BaU charging scheme represents the baseline, where no smart charging scheme is employed.

The charging is initiated at the time tarr when the driver plugs in the vehicle to the station and

continues until the time tchar. At this point, the vehicle is fully charged or the driver unplugs

it. In practise, the charging is performed with nearly uniform power. Therefore, we estimate

the charging power uniformly and for computational experiments, it equals to total energy

divided by charge duration. The BaU is shown in Figure 3.6B.
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Figure 3.6: Comparison of the BaU, the UP and the ToU smart charging schemes. Panel A:

Price signal. Panel B: BaU charging scheme. Panel C: ToU charging scheme, where the high

price period is fully avoided. Panel D: ToU charging scheme, where the high price period

is only partially avoided. Panel E: ToU charging scheme, where the high price period is

entirely avoided, but less energy than by the BaU scheme is provided to the vehicle due to the

overestimation of the connection duration.
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Note, that from definition, BaU avoid En, since all demanded energy is charged in charge

time, i.e. E = E p +Eo.

3.6.2 Time-of-use smart charging

The ToU smart charging scheme is based on the price signal that varies over the predetermined

price periods of the day in response to the power grid state [24, 61]. In general, the price grows

together with the load. To simplify, in this paper, we consider only peak price level and off-

peak price level as is visible in Figure 3.6A. Moreover, we assume, that EV can be charged

at maximum possible power represented by the feature denoted as maximal possible power

(see Section 2.2). The ToU scheme requires the connection duration priorly, thus an estimated

value of connection duration is necessary. In order to minimise charging in peak period, the

charging takes place in the peak price period only if the EV cannot be fully charged in the

off-peak price period.

For ToU both, over-estimation and under-estimation of the connection duration, influence

differently the criteria En, E p and Eo. Estimation of the t̂dep approximately equalled to true

departure tdep may allow avoiding peak price periods completely, as is visible in Figure 3.6C.

On the contrary, panel D in Figure 3.6 displays the underestimation of the connection duration,

hence t̂dep < tdep. This leads to charging in the peak price period, even though it is not

necessary. Despite that, charging is still more beneficial than BaU charging. Finally, when the

vehicle is unplugged significantly earlier than estimated, the charging may be planned as well

after the true departure tdep of the EV. This brings demanded but not charged energy En (see

Figure 3.6E).

3.6.3 Implementation

The whole implementation of smart charging schemes is vectorised, engendering very fast

computations within tenths of seconds also for large data. The critical point to be vectorised

is the calculation of the overlay for charging session and peak periods. For each session, we

can easily figure out the start and end, represented by hour of the day. Since we cupped the

connection duration by 24 hours, the boundary for maximal time of the end of the session is
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48 hours (session start at the very end of the day and last 24 hours). Later on, we calculate the

lower bound and upper bound as the maximum from start of the session and start of the peak

period and minimum from end of the session and end of the peak period. Both operations

are vectorised for data in pandas dataframe. Finally, the difference between upper bound and

lower bound is calculated and clip by zero. Note, that we duplicate the peak period as well for

the next day, i.e. period from 24 hours to 48 hours.

For BaU, we calculate the sum from the overlays for the session’s charge period and for

each peak period. The sum multiplied by charging rate represents energy charged in the peak

period E p. Consequently, Eo = E −E p and En = 0. We consider two cases for ToU smart

charging scheme: for static approach and for updating approach.

Static ToU

Charging is planned at the time of arrival tarr. The overlays are calculated from the tarr and

t̂dep for each session and for each period. The maximal possible charge energy for both,

peak and offpeak period are calculated. Eo is assessed as the minimum from total energy and

maximal possible energy for peak period. Required energy in peak period is equal to the delta

in-between the total energy E and Eo. Not charged energy En is calculated as E −Eo −E p.

Updating ToU

The charging is planned in every time offset of prediction update, considering already charged

energy. Firstly, two types of overlays are calculated:

• The overlays from the tarr and t̂dep for each session and for each peak period.

• The overlays from the tarr and next update or t̂dep for each session and for each peak

period.

Later on, the observations are grouped by current duration. We iterate over groups ordered

by current duration and for each group we calculate the criteria Eo and E p similarly to static

ToU. The calculations consider energy to charge instead of total energy. Energy to charge up-

dated from previous group of observations. En = 0 for session having next update, otherwise

En equals to energy to charge reduce by Eo and E p of current observation.
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3.7 Evaluation of the charging point availability

In Subsection 1.2.2 we claimed the contribution of this paper for charging point availability.

According to [35], we consider the problem as the classification problem, predicting whether

the sessions finish in the next 15 minutes. Additionally, we also consider 30 minutes period.

The four possible scenarios can occur:

• The finish of the session is predicted and the session truly finishes represents a true

positive value (TP).

• The finish of the session is predicted and the session does not finish represents a false

negative value (FN).

• The finish of the session is not predicted and the session does not finish represents a true

negative value (TN).

• The finish of the session is not predicted and the session finishes represents a false

positive value (FP).

To evaluate the prediction, we can construct the confusion matrix and evaluate the sensi-

tivity (known also as TP rate)

Sensitivity =
T P

P
(3.6)

and specificity (known also as FN rate)

Speci f icity =
T N

N
. (3.7)

Since we assume imbalanced dataset (more negative values occur), we use F1 score taking

both FP and FN into account [62]. F1 can be calculated as

F1 =
2×Precision×Recall

Precision+Recall
. (3.8)

where precision = T P
T P+FP

and recall = T P
T P+FN

[62].
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Authors in [35] simulate the times, when the charging point availability is demanded and

evaluate the predictions. To simulate the real demand, we use arrival times from the test set.

We create a dataset with remaining duration and estimated remaining duration using predicted

duration for the session in particular time offset. Moreover, we figure out the period within

the prediction is actual. Later on, we iterate over the arrival times and for each we consider

just active predictions. We use the remaining duration to assess whether the session finishes

within the interval. Analogously, remaining estimated duration is used to estimate whether the

session finishes within the interval. From these inputs we can calculate the state (TP, TN, FP

and FN) of the session in arrival time. Finally, we calculate the sum of all states from active

predictions and update the confusion matrix.
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Chapter 4

Results

In this chapter, we compare prediction methods and evaluate the impact of the proposed update

strategies. Furthermore, we examine their suitability for practical applications, such as smart

charging and charging point availability.

In Section 4.1, we consider just the regular update strategy. Here we compare the perfor-

mance of naive models with advanced models regularly updating predictions, and explore the

influence of update frequency and observe the accuracy of models as a function of the time

offset t i. We examine the benefit of irregular update strategy as well as present the obtained

time offsets t i for the irregular Multi-model in Section 4.2.

While we used default values of hyperparameters for LGBM in Sections 4.1 and 4.2,

we compare the previous results with results obtained using tuned models in Section 4.3.

We do not tune all models, since it is computationally expensive and at the same time, it

increases their accuracy just imperceptibly. Later, we use tuned models to apply the smart

charging scheme as well as charging point availability scheme and evaluate the impact of

proposed models and strategies. Finally, to search for the most relevant features and compare

the importance of the features among the models, we show the most used features for splitting

for LGBM.
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4.1 Regular updates

In Table 4.1, we compare the performance of naive models with advanced models, updating

predictions regularly every hour (δ = 1). The results confirm the superiority of advanced

models. The advantage of updating the predictions is already evident from comparing the

Mean-static and Mean-updated models. On average, the error drops by almost 0.5 hour due

to updated predictions. Similarly, when contrasting the Static-model with Single-model and

Multi-model, the improvement is also about 0.5 hour. Despite the superiority of the Single-

model to Static-model, the simple model is less accurate at the time of EV arrival expressed

by MAE0. This happens because the Single-model is also adapted to latter update times. The

Multi-model does not suffer by this drawback, as it creates a unique model for every time of

update.

Table 4.1: Comparison of the benchmark (static) models with the proposed regular updated

models using prediction error measures.

Methods wMAE MAE0

Mean-static 2.814 2.814

Mean-updated (δ = 1) 2.346 2.814

Static-model 2.279 2.279

Single-model (δ = 1) 1.869 2.387

Multi-model (δ = 1) 1.729 2.279

In Table 4.2, we study the role of the frequency of updates. For Multi-model, the higher

frequency increases the accuracy of predictions. However, the improvements are relatively

minor, suggesting that a few updates are sufficient. It should also be noted that the higher

frequency requires more models and data and thus demands more computational and commu-

nication resources.

In Figure 4.1 panel A, we compare the prediction accuracy of models as a function of the

time offset t i since the begging of charging sessions. Due to how we processed the data, the

maximum connection duration is 24 hours. Therefore, prediction errors significantly decrease
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Table 4.2: Influence of update frequency on wMAE for the updated models.

Models δ = 2 δ = 1 δ = 0.5 δ = 0.25

Mean-updated 2.337 2.346 2.366 2.383

Single-model 1.862 1.869 1.871 1.876

Multi-model 1.752 1.729 1.719 1.714

when the time offset exceeds 16 hours. For better visualisation, we cut off the times of update

higher than 18 hours in Figure 4.1 panel A. Again, as expected, the naive model (Mean-

updated) displays significantly worse performance than advanced models (Single-model and

Mutli-model).However, the overall pattern is similar. Initially, the prediction error grows and

reaches the maximum value around t i = 2 hours. As it can be seen in Figure 2.2, a vast

majority of sessions are shorter than four hours. Hence, for small values of t i a large number

of sessions contribute to the error. When short sessions terminate, the error decreases and it

starts to grow again from t i = 8 hours. For larger values of t i, the difference in performance

between the Single-model and Mutli-model disappears, indicating that Single-model could be

sufficient.

Figure 4.1 panel A, we observed an increase of the prediction error for small and interme-

diate values of t i. We divided the sessions into overlapping subsets based on their duration to

analyse the prediction error. Figure 4.1 panel B, we analysed the values of MAEt i separately

for sessions taking longer than 1, 2, 6 and 10 hours. On average, shorter sessions reach lower

MAEt i values. The error decreases as far as the time of update is lower than the minimal time

of session duration in the subset, i.e. time in condition defining subset. The rises of error,

also seen in Figure 4.1 panel A, are caused by the fact, that sessions with longer duration are

harder to predict. Only such sessions are left when the time offset t i is larger.

4.2 Irregular updates

In Table 4.3 we compare the performance of regular and irregular updates when using the

Multi-model. With the same number of models, irregular updates achieve higher accuracy of
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Figure 4.1: Panel A: MAEt i for different models, δ = 1. Straight horizontal lines show the

wMAE value for every method. Panel B: MAEt i for sessions lasting more than 1, 2, 6 and 10

hours, for the regular Multi-model with δ = 1.

predictions. By comparing the results with Table 4.2, we observe that the regular Multi-model

with 96 models (δ = 0.25) gives a similar level of accuracy as irregular Multi-model just with

M = 6 models.

The obtained time offsets t i for the irregular Multi-models from Table 4.3 are presented in

Figure 4.2. Decline of the active sessions with rising times of update (see Figure 2.2) causes,

that frequency of predictions’ update is higher for lower times of update. Later on, the updates

are approximately uniformly distributed. Since all times of update for multimodel with 12

models are more uniformly distributed and the improvement in Table 4.3 is more significant

for lower count of models, we assume that the improvement declines with increasing count of

the models.

4.3 Parameters tuning

To reach the best performance, we tune the hyperparameters for LGBM. Since we retrain the

model multiple times, we consider just the most relevant models from previous experiments.

We evaluate on rolling predictors origin using 3-fold validation with 50 iterations for Bayesian
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Table 4.3: Comparison of the regular and irregular strategies.

Multi-model regular Multi-model irregular

wMAE (M=4) 1.887 1.796

wMAE (M=6) 1.812 1.713

wMAE (M=8) 1.778 1.728

wMAE (M=12) 1.752 1.704

Figure 4.2: Irregular update times for 4, 6, 8 and 12 models.

optimisation, according to Subsection 3.1.3. The following hyperparameters from allowed

range were tuned:

• number of leaves: from 100 to 300 with granularity = 10,

• minimal data count in leaves: from 10 to 40 with granularity = 1,

• number of iterations: from 100 to 200 with granularity = 10,

• learning rate: from 0.05 to 0.2 with granularity = 0.01,

• maximal bin count: from 200 to 300 with granularity = 5.

As expected, predictions improve for tuned models. The improvement is higher for multi-

model as we tune each model separately, resulting in better performance in summary. More-
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Table 4.4: Comparison of models using default hyperparameters for LGBM and tuned models.

Model wMAE not tuned wMAE tuned

Static-model 2.279 2.245

Single-model (δ = 4) 1.898 1.849

Multi-model regular (δ = 4) 1.812 1.765

Multi-model irregular (M=6) 1.713 1.648

over, irregular approach achieves best results after the hyperparameters’ optimisation as well

as in overall.

4.4 Smart charging evaluation

To assess the usability of the proposed methods and models for smart charging schemes, we

observe three main criteria: En, E p and Eo. The goal is to reduce the E p with minimal En.

We identified two peak periods with a large energy consumption based on charging patterns

from the EVnetNL dataset. The morning peak lasts from 8:00 to 11:00, and the afternoon

peak from 17:00 to 21:00. In the following experiment, we set the peak price periods in the

same way. We select just the most relevant methods obtained by the previous experiments.

Table 4.5 compares BaU, Optimal and ToU using different prediction models. Optimal ap-

proach denotes entire knowledge of the future, thus the charging scheme is optimal in order to

real departure of the vehicle. The optimal approach emphasises the potential of smart charg-

ing, and it can be used as a benchmark for other approaches. Obviously, optimal charging

scheme is superior to all the other models. From ToU schemes, the static-model reaches the

best value of energy charged at peak price. However, the demanded but not delivered energy

is significantly high. All updating models try to cope with this drawback. As expected, the

irregular multi-model performs the best. Surprisingly, the difference in-between the regular

and irregular approach is significant. Moreover, the irregular approach decreases the energy

charged at peak price besides the not delivered energy, while single-model and regular multi-

model decrease merely not delivered energy.
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To sum up, the updating models update the prediction in the way that minimises not de-

livered energy. Additionally, irregular strategy decreases the energy charged in peak period.

Hence, it brings the best results in order to three criteria for assessment of the performance

for smart charging application.

Table 4.5: The performance of the BaU, Optimal and ToU using different prediction models

for charging scheme assessed by three individual criteria (En - demanded but not delivered

energy, E p - energy charged at peak price, Eo - energy charged at off-peak price).

Model En [MWh] Ep [MWh] Eo [MWh]

BaU 0.0 249.7 369.95

Optimal 0.0 102.25 517.4

Static-model 27.24 96.82 495.59

Single-model (δ = 4) 24.25 106.92 487.91

Multi-model regular (δ = 4) 18.9 118.29 481.93

Multi-model irregular (M=6) 16.81 105.56 493.56

4.5 Charging point availability

Tables 4.6 and 4.7 show the results for prediction of charging point availability in next 15 and

30 minutes respectively. For 30 minutes, the sensitivity, specificity and F1 score are superior

to those for 15 minutes. The models reach better specificity than sensitivity. In average,

the true negative case is more likely than the true positive case, e.i. models tend to predict

unavailability of the charging point truthfully. This trend is more visible for update strategies

and may be caused by overestimation of the connection duration in the case of small remaining

duration in particular time offset. On the contrary, static model reaches better sensitivity than

update models. Thus, the F1 score is similar for all proposed models and the benefit of update

of the prediction is not proved.

Note, that we predict connection duration in order to predict categorical target value. Train

and predict categorical target value directly can bring different results and impact of the update
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can be significant.

Table 4.6: Sensitivity, specificity and precision for prediction, whether session finishes in the

next 15 minutes, refers to application for charging point availability.

Model Sensitivity Specificity F1 score

Static-model 0.48 0.78 0.23

Single-model (δ = 4) 0.36 0.91 0.23

Multi-model regular (δ = 4) 0.35 0.92 0.23

Multi-model irregular (M=6) 0.33 0.93 0.24

Table 4.7: Sensitivity, specificity and precision for prediction, whether session finishes in the

next 30 minutes, refers to application for charging point availability.

Model Sensitivity Specificity F1 score

Static-model 0.53 0.77 0.37

Single-model (δ = 4) 0.42 0.90 0.35

Multi-model regular (δ = 4) 0.41 0.91 0.36

Multi-model irregular (M=6) 0.40 0.92 0.37

4.6 Features importance

In Table 4.8, we show the most relevant features. Just the first 15 most relevant features

are displayed. The LGBM provides importance of the features using the usage for splitting.

By dividing that by the total count of splits, we figure out the relative usage of the features.

For Multi-models, the average value from all models is used. The last column in Table 4.8

contains average usage from all models.

From the static features both, latitude and longitude of the charging point are impor-

tant. The majority of the features involve charged energy or statistics of total energy. We
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assume that the sessions are more predictable, when we use information from charged energy,

maximal power of the charging and historical energy demand from last sessions and users’

statistics. Since the charging behaviour of the users follows particular patterns (mentioned in

Subsection 2.1.1), important features imply hour of the day, day of the week and month to re-

flect the macroscopic periodicity in the dataset. Obviously, connection duration and charging

duration for user and charging point are relevant.
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Table 4.8: First 15 the most relevant features and their relative usage in LGBM splitting for

various models.

Feature name
Single-model

(δ = 4)

Multi-model

regular (δ = 4)

Multi-model

irregular (M=6)

Average

Hour of the day 17.88% 4.77% 6.08% 9.58%

Mean c.d. for user 5.85% 4.22% 4.46% 4.84%

Day of the week 6.22% 3.09% 3.27% 4.19%

Energy last 10 sessions 4.80% 3.60% 3.60% 4.00%

Connected time last day 3.94% 3.57% 3.60% 3.70%

Mean c.d. for station 3.14% 3.40% 3.45% 3.33%

Energy last session 2.47% 3.64% 3.15% 3.09%

Charged energy 1.89% 2.88% 4.20% 2.99%

Longitude 2.43% 2.98% 2.83% 2.75%

Month 3.48% 2.56% 2.17% 2.74%

Maximal power 2.20% 2.87% 3.03% 2.70%

Energy last 5 sessions 2.10% 3.13% 2.69% 2.64%

Users’ relative frequency 2.04% 2.88% 2.78% 2.56%

Mean ch.d. for station 1.80% 3.05% 2.82% 2.56%

Latitude 2.15% 2.83% 2.66% 2.55%
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Chapter 5

Conclusion

In this thesis, we explored how the updates of the connection duration predictions can improve

the accuracy. We prepared two naive and three advanced prediction models.

From the comparison of their performance, we derived the following conclusions. Regular

updates significantly improve the accuracy of predictions. The accuracy of predictions varies

when they are done with a different time offset since the beginning of the charging session.

This seems to be linked to the way how the properties of charging sessions change with their

duration. Irregular updates further improve the accuracy of predictions. Higher frequency of

prediction updates is beneficial in the early stages of charging sessions. Later on, approxi-

mately uniformly distributed updates are sufficient. Models updating the prediction are more

sensitive to hyperparameters’ tuning.

Updates of the prediction are beneficial for smart charging. In comparison with BaU

charging, proposed models importantly mitigate the energy charged in peak periods and does

not significantly increase demanded but not charged energy. As expected, updating models

are superior to static-model. for charging point availability, updating models reached better

specificity and worse sensitivity, while the F1 score was similar.

On the contrary, the presented research suffers from several limitations, that we will ad-

dress in future research:

• We used only a single method. By utilising some other methods, e.g., neural networks,

some further improvements could be achieved.
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• We used only a single dataset. The results might be data-dependent to some degree.

• The prediction updates should also be investigated with other characteristics of charging

sessions than the connection duration.

• Since charging point availability is the classification problem, response variable for

model training and predicting should be categorical. This can bring different results

than we achieved in this thesis.
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