
FACULTY OF INFORMATICS

Detection of Malicious Network

Traffic Behavior

Master’s Thesis

BC. PAVEL NOVÁK

Brno, Spring 2022

FACULTY OF INFORMATICS

Detection of Malicious Network

Traffic Behavior

Master’s Thesis

BC. PAVEL NOVÁK

Advisor: Ing. Václav Oujezský, Ph.D.

Department of Computer Systems and Communications

Brno, Spring 2022

Declaration

Hereby I declare that this paper is my original authorial work, which
I have worked out on my own. All sources, references, and literature
used or excerpted during elaboration of this work are properly cited
and listed in complete reference to the due source.

Bc. Pavel Novák

Advisor: Ing. Václav Oujezský, Ph.D.

iii

Acknowledgements

I am very grateful to my supervisor, Ing. Václav Oujezský, Ph.D, for
sharing his expertise and sincere and valuable guidance. I am also
thankful to my family and everyone who supported me in my study.

iv

Abstract

Encrypted traffic in today’s networks is an indispensable attribute.
It is a valuable tool to protect users’ data against eavesdropping or
modiĄcation. However, encryption also opened new opportunities for
malware developers because it makes hiding malicious communica-
tion more effortless. This problem has become much more important
nowadays because the portion of encrypted communication gener-
ated by the malware was around 45% last year, and the number is
increasing every year.

Encrypted traffic is much harder to analyze because of privacy
issues and performance demands. This inevitably leads to massive
research in this area and the development of techniques to classify
encrypted traffic without decrypting it.

This thesis improves the JA3 Ąngerprinting method to detect un-
known network traffic. The new method uses clustering of JA3 Ąnger-
prints to recognize malicious traffic.

Keywords

behavior analysis, cybersecurity, data analysis, JA3, malware analysis

v

Contents

1 Introduction 3

1.1 Scope and Goals . 4
1.2 Structure of the Thesis 5

2 Network Security 6

2.1 SSL/ TLS . 6
2.1.1 TLS Handshake 8
2.1.2 TLS CertiĄcate 10
2.1.3 Differences Between TLS 1.2 and TLS 1.3 12

2.2 Application Protocols Using TLS/SSL 13

3 Malware and Encrypted Traffic 14

3.1 Current State . 15
3.2 Examples of TLS-based Malware 16

3.2.1 Dridex . 16
3.2.2 Cobalt Strike . 18

4 Encrypted Traffic Classification Methods 19

4.1 Deep Packet Inspection and Behavior-based Methods . 20
4.2 Fingerprinting Methods 21

4.2.1 JA3, JA3s and JARM 22
4.2.2 Mercury . 23

5 Design 25

5.1 Fingerprints Cluster Comparison Method 25
5.1.1 Use Case . 26

5.2 Clustering . 27
5.2.1 CD-HIT . 28
5.2.2 K-Medians . 28
5.2.3 OPTICS . 29

5.3 Metric Space . 30
5.3.1 Common Similarity 32

5.4 ClassiĄcation . 32

6 Implementation 33

vi

6.1 High-Level Design . 33
6.2 Data Loader Engine . 33
6.3 Clustering Engine . 35

6.3.1 Implementation of the CD-HIT 37
6.3.2 Implementation of the K-Medians 38
6.3.3 Implementation of the OPTICS 39
6.3.4 Implemented Metrics 40

6.4 ClassiĄcation Engine . 41

7 Testing and Results 43

7.1 Dataset . 43
7.2 Performance . 43
7.3 Accuracy . 46

8 Conclusion 50

9 Discussion 52

A Attached files 53

Bibliography 54

vii

List of Tables

3.1 Top Issuing CAs [28]. 17

7.1 Runtime of Clustering Algorithms comparison between
Number of Samples (NoS) and Used Algorithm (Algo). . 44

viii

List of Figures

2.1 Supported TLS Versions by Webservers (2021 vs 2022). . 7
2.2 TLS 1.2 Handshake. 9
2.3 TLS 1.3 Handshake. 10
2.4 TLS CertiĄcate Structure. 11

3.1 Malware C2 Communication Protocols. 15
3.2 TLS Versions Used by Malware. 16
3.3 Dridex Client Hello Message. 17
3.4 Dridex Server Hello Message. 18
3.5 Cobalt Strike Client Hello Message. 19
3.6 Cobalt Strike Server Hello Message. 19

4.1 JA3 Fingerprint Creation Process. 23

5.1 Clusters of Clean Traffic (Illustration). 26
5.2 Clusters of Mixed Traffic (Illustration). 26

6.1 Design Overview. 34
6.2 DataLoader Classes. 34
6.3 SampleStorage Classes. 35
6.4 ClusterMethod Classes. 36
6.5 Cluster Data Storage Classes. 36

7.1 Number of Clusters. 45
7.2 Average Cluster Size. 45
7.3 Number of Cluster / Cluster Size Trade-off. 46
7.4 Average Inter-Cluster Distance Computation Time. 47
7.5 Number of Created Clusters. 47
7.6 Average Inter-Cluster Distance. 48
7.7 Distance Between Outermost Clusters. 49
7.8 Minimal Similarity. 49

ix

Abbreviations

C2 Command and Control 3

CA CertiĄcate Authority 11

CRL CertiĄcate Revocation List 12

DBSCAN Density-based Spatial Clustering of Applications with Noise
29

DNS Domain Name System 18

DoH DNS over HTTPS 13

DPI Deep Packet Inspection 3

FTP File Transfer Protocol 6

HTTP HyperText Transfer Protocol 6

IDP Intrusion Detection and Prevention System 4

IP Internet Protocol 6

IPSec Internet Protocol Security 3, 6

MAC Message Authentication Code 8

OPTICS Ordering Points To Identify the Clustering Structure 29

PGP Pretty Good Privacy 3

PKI Public Key Infrastructure 11

RAT Remote Access Trojan 18

RSA Rivest Ű Shamir Ű Adleman Algorithm 6

RTT Round Trip Time 8

1

Abbreviations

SMB Server Message Block 18

SMTP Simple Mail Transfer Protocol 6

SNI Server Name IdentiĄer 13

SSH Secure Shell 3

SSL Secure Socket Layer 3, 6

TCP Transmission Control Protocol 6

TLS Transport Layer Security 3, 6

URI Uniform Resource IdentiĄer 13

VPN Virtual Private Network 6

2

1 Introduction

Detection of malicious network traffic has been the subject of research
for quite a long time. In the early phases of developing the Internet and
networks, detecting undesirable traffic was relatively easy. The root
cause of this easiness was that traffic was mainly unencrypted in those
days. Networks were dedicated only to a few companies and academic
institutions. Over time, however, the situation has changed due to the
massive increase in users. Privacy has become an important issue, and
communication have started to be encrypted before sending over the
network. Encryption has become a double-edged weapon. On the one
hand, it helps ordinary users protect their privacy, andwithout the use
of encryption protocols, we cannot imagine a secure Internet today. On
the other hand, it also helps hide malware-generated communication
with Command and Control (C2) servers.

Over time, several encrypted communication protocols have been
developed. Examples could be Secure Shell (SSH), Internet Protocol Se-
curity (IPSec), Pretty Good Privacy (PGP) and many others protocols.
This thesis only deals with the Secure Socket Layer (SSL)\Transport
Layer Security (TLS) protocol. The reason is that the vast majority of
malware that uses encrypted communication on the Internet uses this
protocol to communicate. Other protocols will not be considered.

The analysis of encrypted traffic becomes more and more topical.
On average more than 95% of traffic to services used by Google was
encrypted, according to a Google Transparency Report [1]. In some
countries, such as Belgium or India, it was almost 100%. In the case
of malware, the portion is not yet that high. According to the Sophos
research last year, the share of encrypted communications generated
by the malware was around 45% [2]. Nevertheless, compared to the
same research in 2020, this number has almost doubled, and this trend
is likely to continue in upcoming years as well [3].

Thus, massive research has been going on for a long time in the
Ąeld of encrypted traffic classiĄcation. Currently, there are three pri-
mary research directions [4]. The Ąrst is the Deep Packet Inspection
(DPI) method, which decrypts and inspects each packet individu-
ally. Privacy issues and computational complexity severely limit this
method, which prevents its use in large and public networks. The sec-

3

1. Introduction

ond option is based on behavioural analysis. This method measures
Ćow characteristics such as time between packets or the number of
packets sent. Moore et al. proposed a large set of features suitable for
behavior-based analysis [5]. Correct feature selection is critical to the
successful use of this method. This method is less precise, but its main
advantage is that it does not require knowledge of the underlying
protocols. These two methods are out of the scope of this paper. The
last option is Ąngerprinting method. This method uses information
observable in the initial phase of an encrypted connection Ű the hand-
shake. The crucial point is that all the information are unencrypted.
This method is the basis of this thesis.

1.1 Scope and Goals

One method of Ąngerprinting TLS connections is the JA3 Ąngerprint
method [6]. This Ąngerprint comprises the information contained in
the TLS handshake and includes, for example, the TLS version or sup-
ported ciphersuits. This method is currently actively used for detection
and is implemented in the Suricata Intrusion Detection and Preven-
tion System (IDP) [7]. The considerable expansion of this method
in the wild created a relatively large database of JA3 Ąngerprints as-
signed to speciĄc malware families [8, 9]. However, this method has
its drawbacks too. The main one is, that detection is based on a direct
match between the JA3 Ąngerprint in the database and the unknown
captured Ąngerprint. The direct match can be a problem because a
JA3 Ąngerprint not in the database can not be recognized as malware.

The solution proposed, implemented and tested in this work is
trying to solve the problem of unknown Ąngerprints by clustering
them and comparing the cluster set structure with a known clean
traffic. The idea behind is, that set of clusters containing malware
traffic should have different structure caused by the malware clusters.
The goal of this thesis is to provide the following major answers.

• Accuracy and Usability Ű Is it possible to recognize the malware
traffic using the proposed method?

• Efficacy Ű Is this method sufficiently quick to be used in the large
network?

4

1. Introduction

1.2 Structure of the Thesis

The thesis has the following structure:

• Chapters 2 and 3 describe the usage of encrypted traffic in current
networks. Chapter 3 focuses speciĄcally on how malware uses
encrypted traffic to hide its content.

• Chapter 4 describesmethods currently used to classify encrypted
traffic. The main focus here is on Ąngerprinting methods since
they are the basis for this thesis.

• Chapter 5 describes the overall design of the proposed solution
method. The clustering methods used are described here. Also,
the way of measuring the distance between JA3 Ąngerprints is
described in theoretical terms in this chapter.

• Chapter 6 deals with implementation details.

• Chapter 7 summarizes and describes the tests and results ob-
tained.

• Chapters 8 and 9 summarize the results and the possibilities for
further development and research in this area.

5

2 Network Security

Cryptography has been an important part of communication for a
very long time. As a form of cryptography can be considered already
hieroglyphics in ancient Egypt or transposition ciphers used in Greece.
Cryptography has also played an essential role during wars. Perhaps
the most famous example is the Enigma machine used during World
War II. In short, protecting information has been vital to humankind
since ancient times. Therefore, it is not so surprising that cryptography
has inĄltrated the modern form of communication Ű the Internet. The
Internet itself originated in the 1960s as a communication network for
the military and a few select universities. Shortly after that, the issue
of protecting information transmitted over the Internet began to be
addressed. The invention of asymmetric cryptography and protocols
such as Diffie-Hellman or RSA in the 1970s contributed signiĄcantly
to this. The real boom came in the 1990s with the opening of the In-
ternet to the public, though. At the same time, the Ąrst versions of
the application protocols known today as Secure Socket Layer (SSL),
later Transport Layer Security (TLS), Virtual Private Network (VPN)
or Internet Protocol Security (IPSec) were developed. Despite this, it
took a relatively long time for secure traffic to become more massively
embedded in today’s Internet. As recently as 2014, the share of en-
crypted traffic was just under half. However, the situation has already
changed, and unsecured traffic is the exception nowadays [10, 11].

2.1 SSL/ TLS

Transport Layer Security is currently one of the most widely used
protocols to encrypt much of the traffic on the Internet. Its predeces-
sor was the SSL protocol, in development since 1995. SSL/TLS is a
Layer 5 protocol of the TCP/IP model and provides encrypted data
transfer for application protocols such as HyperText Transfer Protocol
(HTTP), File Transfer Protocol (FTP), or Simple Mail Transfer Proto-
col (SMTP). SSL/TLS is also used in several Virtual Private Network
(VPN) implementations [12]. The protocol provides authentication of
communicating parties, conĄdentiality and integrity of messages. SSL
has gradually evolved into three versions but has been already fully

6

2. Network Security

replaced by TLS. TLS has four versions, but only version 1.2 and the
latest 1.3 are commonly used. The currently mostly used TLS version
1.2 is vulnerable to many attacks like the Heartbleed Attack or the
Triple Handshake Attack [13, 14].

This initiated development of the new TLS version 1.3, published
in 2018. This version improved the security as well as speed in terms
of handshake duration [15]. Figure 2.1 shows the evolution of support
for each TLS version between 2021 and 2022.

Figure 2.1: Supported TLS Versions by Webservers (2021 vs 2022).

0.60%

3.80%

49.40%

55.90%

99.20%

42.10%

0.40%
2.80%

39.30%

43%

99.60%

51.40%

0%

20%

40%

60%

80%

100%

SSL 2.0 SSL 3.0 TLS 1.0 TLS 1.1 TLS 1.2 TLS 1.3

%
 O

F
 W

E
B

S
E

R
V

E
R

S

PROTOCOL VERSION

2021 2022

The dominant version is 1.2, supported by 99.6% of all web servers
in January 2022. There is also an evident loss of support for versions
1.0 and 1.1. This is due to the official deprecation of these versions in
March 2021 [16]. In contrast, the latest version, 1.3, is supported in
roughly half of the cases and increases [17].

The main goal of the TLS protocol is to provide three basic proper-
ties [18].

• Authentication Ű Authentication of the server is mandatory, and
authentication of the client is optional. A server and a client can
authenticate using either asymmetric or symmetric methods.

7

2. Network Security

• Confidentiality Ű All data sent over the network is encrypted after
the TLS connection is established and is thus visible only to the
end devices. The actual data transfer is secured by a symmetric
key established during the handshake.

• Data Integrity Ű Data cannot be modiĄed by any means without
being detected. After the handshake is complete, the peers ex-
change the Message Authentication Code (MAC) of the entire
handshake, which prevents the modiĄcation of any part of the
handshake. A message-digest protects all subsequently sent data
as well.

2.1.1 TLS Handshake

A TLS handshake is the initial part of a connection between two
communicating parties. During this phase, the communication part-
ners exchange connection parameters and establish a symmetric key.
The handshake is the only part of a TLS connection that is not en-
crypted and is, therefore, the basis for Ąngerprinting-based detection
mechanisms described in Chapter 4. Figure 2.2 shows a 2 Round Trip
Time (RTT) TLS handshake used in version 1.2. The Ąrst round starts
by sending the initial ClientHello message. Server responds with
ServerHello message, certiĄcate and server part of the key. The sec-
ond round Ąnishes the key establishment protocol and switches to
encrypted communication.

TLS version 1.3 brings, among other things, two faster handshake
mechanisms. The 0-RTT and 1-RTT handshake does not require as
many messages to be exchanged to establish a connection. For this
reason, the establishment of a secured channel is faster. 0-RTT hand-
shake even allows sending data on the Ąrst Ćight (Şearly dataŤ). The
prerequisite for using this method is sharing a common pre-shared
key between peers, for example, from the previous session. Figure 2.3
shows the 1-RTT handshake used in version 1.3. The messages from
the 2-RTT handshake are preserved, but just one round is needed to
exchange them.

The important message regarding TLS connection Ąngerprinting
methods is the initial ClientHello and ServerHello message. These
messages contain the parameters listed below. Sufficient diversity of

8

2. Network Security

Figure 2.2: TLS 1.2 Handshake.

ClientHello

ServerHello

Server Certificate

ServerKeyExchange

(Client Certificate)

ClientKeyExchange

Finished

ChangeCipherSpec

Finished

Data

Client Server

these parameters is an essential prerequisite for Ąngerprinting-based
methods.

• ClientHello Message

– TLS Version Ű 1.1, 1.2 or 1.3.

– Client Random Number Ű Can be used to generate a symmet-
ric session key.

– Session ID Ű It can speed up the handshake process by refer-
ence to the algorithms and keys agreed upon in the previous
session.

– Cipher Suites List Ű A list of supported ciphers ordered by
preference.

– Supported Compression Methods Ű List of supported com-
pression methods.

– List of Extensions Ű Additional attributes, e.g. Server Name
or the signature algorithm.

9

2. Network Security

Figure 2.3: TLS 1.3 Handshake.

ClientHello

ClientKeyExchange

ServerHello

Server Certificate

ServerKeyExchange

Data

Client Server

– List of Public Keys Ű A server may use them during the key
exchange process.

• ServerHello Message

– Negotiated TLS Version Ű Usually the highest offered by a
client.

– Chosen Cipher Suit Ű Selected cipher suit.

– Session ID Ű Newly created ID of the session.

– Compression Method Ű Selected compression method.

– Server Random Number Ű The second part of the symmetric
shared key.

2.1.2 TLS Certificate

Another valuable piece of information that can be observed during a
handshake is a certiĄcate verifying the identity of a server or client. The

10

2. Network Security

certiĄcate is always sent by the server during the handshake. Thanks
to this, it is possible to deduce more about the nature of communi-
cation. There exist typical features, like self-signed certiĄcates and a
strange issuer or subject names, in the case of malware-related traffic
(characteristics of malware encrypted communication are described in
Chapter 3). The TLS protocol uses the X.509 Public Key Infrastructure
(PKI) standard. Figure 2.4 shows the format of an X.509 certiĄcate
[19].

Figure 2.4: TLS CertiĄcate Structure.

• Version Ű CertiĄcate version number (v1, v2 or v3).

• Serial Number Ű Unique ID for every certiĄcate issued by the same
CertiĄcate Authority (CA).

• Signature Algorithm ID Ű The algorithm used to sign the certiĄcate.

• Issuer Ű IdentiĄcation of the certiĄcate issuer. Typically one of
the trusted CA, but this Ąeld may contain any value.

• Validity Ű Limits the duration of the certiĄcate. Standard is one
year, typically no more than 13 months [20].

• Subject Ű IdentiĄcation of the owner of the certiĄcate.

11

2. Network Security

• Subject Public Key Info Ű Public key of the subject.

• Extensions Ű Optional extensions like CertiĄcate Policies or Cer-
tiĄcate Revocation List (CRL) Distribution Points.

The certiĄcate is either self signed or digitally signed by the issuing
CA. The information contained in the certiĄcate is practically usable
only in the case of TLS version 1.2 and lower. Handshake in version
1.3 is entirely encrypted except for the initial Hello messages, i.e. the
certiĄcate is encrypted as well. This poses a severe challenge to Ąnger-
printing the certiĄcate. However, this could be solved by proactively
querying the server for the certiĄcate for further inspection.

2.1.3 Differences Between TLS 1.2 and TLS 1.3

The introduction of the new TLS 1.3 standard brought a shift in both
performance and security compared to the previous version. Of course,
there are many changes, and only the most important ones are listed
below.

• Stronger Ciphersuits Ű There has been a signiĄcant improvement
in security in the new version. This is due to the deprecation of
old and not very secure ciphersuits and hash algorithms such
as SHA-1, RC4, DES or 3DES. This leads to a signiĄcant increase
in security as it forces users to use more secure ciphersuits and
prevents so-called downgrade attacks.

• Perfect Forward Secrecy Ű To further enhance security, all sup-
ported cryptographic protocols in version 1.3 have the Perfect
Forward Secrecy property. This property makes it impossible for
an attacker to decrypt intercepted messages if he later obtains
the key used to encrypt them.

• Encrypted Handshake ŰAll handshakemessages except the Client

Hello and ServerHello messages are now encrypted. The newly
introduced EncryptedExtensions message allows various exten-
sions previously sent in the clear text as the part of ServerHello.

• Faster Handshakes Ű TLS 1.3 brings a speed acceleration in the
form of 1-RTT and 0-RTT handshakes. Since there is no need

12

2. Network Security

to exchange so much information when establishing a secure
connection, the whole handshake is much faster [21, 18].

2.2 Application Protocols Using TLS/SSL

TLS protocol is universal. It allows to secure any communication on
the application layer and is therefore widely used. The following are
examples of the well-known L7 protocols using TLS nowadays.

• HTTPS Ű Probably the most widespread use of TLS today. TLS
secures HTTP communication using the well-known port 443.
It also provides authentication of the web server being visited.
All data exchange, including visited Uniform Resource IdentiĄer
(URI) or form data is also encrypted. Because of the ability to
host multiple URIs on a single server, Server Name IdentiĄer
(SNI) information has been added to the HTTPS handshake to
identify the requested resource [22].

• FTPS Ű FTP extension. It provides both control message transfer
and data transfer and server authentication. The implicit version
uses ports 990 and 989. Users can also switch to the secure mode
during the connection and thus use standard ports 20 and 21
[23].

• DNS over HTTPS (DoH) Ű A new protocol used to secure the DNS
service. The goal is to prevent modiĄcation and spooĄng of DNS
messages. This protocol is relatively new. It started to be tested in
2018 and therefore its adoption is not yet high. In 2020, it started
to be offered as a default option for Firefox users [24].

• VPN Ű Some VPN implementations use TLS under the hood. One
of these is the open-source software OpenVPN. It uses OpenSSL
libraries to provide encrypted and authenticated traffic between
end devices [25].

13

3 Malware and Encrypted Traffic

Malware developers have not been too far behind in using encrypted
communications. The advent of SSL/TLS, which is supported by de-
fault on all commercially available devices, makes this protocol an
ideal tool to use. Nevertheless, malware developers have a slightly
different motivation to use encrypted connections than other develop-
ers. While in benign software, the motivation is to protect user data,
in the case of malware, the primary motivation is to harden traffic
analysis by Ąrewalls and IDP systems. Encrypted traffic is usually con-
sidered clean because an inspection of such traffic requires deploying
a full proxy, and so this solution is usable only in companies. The
main reasons why malware communicates over the network are listed
below.

• Downloaders Ű The Ąrst reason is downloading additional mal-
ware. This is a typical example of a downloader malware, which
infects a computer and then downloads the Ąnal payload, like
ransomware, from a Command and Control (C2) server.

• Data Exfiltration Ű The second reason is the exĄltration of stolen
data. The typical example here is spyware that sends data such
as screenshots or captured keyboard logs to C2 servers.

• Command and Control Ű The last option is malware communi-
cating with the C2 server to receive instructions. Examples are
botnet malware like Mirai or Zeus.

• Phishing Ű Phishing is an attempt to mimic a legitimate website’s
appearance and extract information such as a user’s credit card
number or password. TLS is often used here as well to spoof a
secure connection. According to research by PhishLabs, 80% of
users believe that the green lock symbol in the browser means
that the page is safe or can be trusted, and the fact that 49% of all
phishing websites are seemingly using HTTPS can be interpreted
as exploitation of this misunderstanding [26].

In all cases, encrypted traffic provides a signiĄcant advantage and
dramatically improves the chance that the communication will not be
detected using traditional signature based methods [27].

14

3. Malware and Encrypted Traffic

3.1 Current State

The adoption of encrypted communication by malware is slightly
behind the current state in the case of benign software. While the total
amount of encrypted traffic in legit traffic is over 90%, it was only
slightly less than 50% in the case of malware in 2021. Nevertheless,
compared to 2020, this number is more than double the increase, and
this trend can be expected in the coming years as well [2, 3].

Figure 3.1: Malware C2 Communication Protocols.

33%

46%

4%

17%

HTTP HTTPS MS SQL OTHER

Malware developers, unlike others, use encrypted traffic mainly to
hide data content. For this reason, malware is less likely to use best-
practice protocols, and these deviations from best practices can also
be used to classify and detect unsolicited traffic. One example of this
trend is using older versions of the TLS protocol or weaker ciphersuits.
Figure 3.2 shows the ratio of TLS versions used by themalware. TLS 1.2
has the majority, and no traffic was captured using the latest version,
TLS 1.3. This does not mean that no malware is using this version, but
its share is so small that it was not captured in real traffic.

The TLS certiĄcate handling is also a typical feature of malware.
More than 60% of malware samples use self-signed certiĄcate, which
is not very common in legit traffic. Of the certiĄcates issued by legit-
imate CAs, the most common are those from Let’s Encrypt since it

15

3. Malware and Encrypted Traffic

Figure 3.2: TLS Versions Used by Malware.

13%

12%

20%

55%

SSL 2 SSL 3 / TLS 1.0 TLS 1.1 TLS 1.2

issues certiĄcates for free, in an automated fashion, with no signiĄcant
oversight on the entity requesting it, with the caveat that the certiĄcate
is only valid for 90 days. Therefore, the certiĄcate needs to be renewed
after 90 days. Table 3.1 shows the names of the top 10 malware cer-
tiĄcate issuers. The abnormality is usually the name of the malware,
default or nonsense issuer name [28, 29].

3.2 Examples of TLS-based Malware

This section presents selected malware strains and their usage of the
encrypted network traffic to hide malicious communication with the
C2 servers.

3.2.1 Dridex

Dridex malware is a trojan specializing in stealing bank credentials
[30]. It was developed back in 2014 and has undergone slight modiĄca-
tions since then, but it has been using TLS to hide communication with
its C2 server since the beginning. Dridex has a modular architecture,
meaning that the core of the malware itself is just a downloader that

16

3. Malware and Encrypted Traffic

Rank CA Name

1 Let’s Encrypt Authority X3

2 AsyncRAT Server

3 C=US, ST=Denial, L=SpringĄeld, O=Dis

4 localhost

5 BitRAT

6 C=XX, L=Default City, O=Default Company Ltd

7 R3

8 example.com

9 C=AU, ST=Some-State, O=Internet Widgits Pty Ltd

10 *

Table 3.1: Top Issuing CAs [28].

downloads additional modules from the C2 server that have different
functionality. The infection vector is often a malicious macro in Mi-
crosoft Word documents. These documents are usually distributed as
an attachment of phishing campaigns via email. Once the user opens
the document and runs the macro, Dridex contacts the C2 server and
downloads the additional modules needed. Figures 3.3 and 3.4 show
the TLS handshake of the Dridex malware with its C2 server [31].
The most important parts of the handshake are highlighted. The used
protocol is SSL 3.0, which is considered obsolete today. Moreover, the
offered ciphersuits are weak and do not match current standards. A
considerable security violation is also the self-signed server certiĄcate.

Figure 3.3: Dridex Client Hello Message.

17

3. Malware and Encrypted Traffic

Figure 3.4: Dridex Server Hello Message.

3.2.2 Cobalt Strike

Cobalt Strike has initially been a paid tool used for penetration testing
[32]. However, it is a Remote Access Trojan (RAT) malware at its
core, so it is not surprising that it was soon misused for criminal
purposes. Cobalt Strike allows communication with a C2 server using
various protocols such as HTTP, HTTPS, Domain Name System (DNS)
or Server Message Block (SMB). This mix of supported protocols
makes the detection of this malware much more difficult. Also, the
level of communication concealment is at a higher level than Dridex.
Figures 3.5 and 3.6 show the TLS handshake of the Cobalt Strike [33].
The TLS version and the agreed encryption version already conform
to standards. The traffic is suspicious based only on the supported
ciphers and the name server certiĄcate. Some of the ciphers offered
by the client, such as RC4 in combination with MD5, are no longer
considered secure and should not occur as part of the legit traffic.
The name of the server certiĄcate issuer called mitmproxy, is also
suspicious.

18

Figure 3.5: Cobalt Strike Client Hello Message.

Figure 3.6: Cobalt Strike Server Hello Message.

19

4. Encrypted Traffic Classification Methods

4 Encrypted Traffic Classification Methods

The analysis of encrypted traffic has evolved in three basic directions.
This chapter discusses and compares all three methods. Most attention
is given to the method using Ąngerprints since this method is the basis
of this thesis.

4.1 Deep Packet Inspection and Behavior-based Methods

The Deep Packet Inspection method is the most accurate but also
the most challenging to implement. It is based on using a proxy or
a Ąrewall that decrypts all encrypted traffic, inspects it, and decides
whether the traffic is benign or not. This method is effectively the Man-
in-the-Middle attack, and as such, there are several problems with it.
The Ąrst is the performance issue. Today’s amount of encrypted traffic
is so large that a considerable amount of computing power would be
required to deploy this solution in a more extensive network.

Another problem is versatility. For end stations to communicate
through the Ąrewall and for the device to decrypt this communication,
it is necessary to distribute Ąrewall or proxy certiĄcates as trusted
to all end devices. Lastly, privacy is also an issue. The employer or
network service provider usually does not have the legal ability to
decrypt the communications of its employees or clients. The deploy-
ment of this solution usually needs to be covered by some exceptions
or contract [4].

Behaviour-based or Feature-basedmethods is a set of methods that
aim to avoid the need to decrypt traffic and even have knowledge of
the protocol being used. However, the price for this solution is reduced
accuracy. These methods use communication patterns to classify traf-
Ąc. These patterns can be observed without the need to interfere with
the traffic in any way or even decrypt it. This makes these methods
far more applicable and can be deployed for arbitrary traffic capture.
The patterns are calculated from traffic characteristics such as the total
number of packets or bytes sent or the average packet interval time [5].
Then, it is possible to classify encrypted traffic based on the similarity
of these patterns. However, there are two problems. The Ąrst is that
even legitimate traffic may resemble malware-generated traffic in its

20

4. Encrypted Traffic Classification Methods

patterning and thus be misclassiĄed. The second is the exact oppo-
site. Malware can interact with its C2 server so well that it perfectly
resembles normal traffic. This is especially the case when using covert
channels such as Google Docs to deliver malware commands in the
case of the Lampion banking trojan or covert channels like injecting
malicious traffic to the DNS or misuse of the IP header Ąelds such as
Traffic Class [2, 34]. Such traffic using these cloaking methods is
almost impossible to classify as malicious using the Behavior-based
detection methods.

4.2 Fingerprinting Methods

Fingerprinting methods combine the two approaches introduced in
Section 4.1. On the one hand, traffic inspection is based on the inspec-
tion of speciĄc packets in the Ćow and thus should be more accurate
than the Behavior-based approach. Nevertheless, on the other hand,
only a few packets from each Ćow are examined, and these packets
are not encrypted, eliminating the relatively expensive need to de-
crypt and inspect these packets. Yet, it is much faster and easier to
implement compared to the DPI method. However, the amount of
information obtained about each connection is not as large, and this
method is not as accurate. The advantage over Feature-based methods
is the ability to classify traffic immediately. In contrast, in the Feature-
basedmethod, the classiĄcation is made based onmore extended term
observation of the characteristics of each Ćow. The disadvantage is the
need for knowledge of the structure of the investigated protocol, on
which this method depends.

The information for Ąngerprinting SSL/TLS connections is ob-
tained from the messages exchanged between the communicating
parties at the beginning of the encrypted session, the so-called TLS
handshake, described in Section 2.1.1. Since the secure connection
is not yet established during the handshake, these messages are not
encrypted and are thus sent in plaintext. Research in recent years has
conĄrmed the differences between benign andmalicious traffic in how
communicating parties establish connections. An interesting obser-
vation is that malicious traffic tends to use weaker ciphers and TLS
versions than benign traffic. An explanation could be that encrypted

21

4. Encrypted Traffic Classification Methods

traffic used by malware is because of camouĆage the traffic, not be-
cause of protecting the traffic [35, 36]. So it does not matter on the used
encryption algorithm so much. The speciĄc methods listed in the next
part differ only in what information they extract from the handshake
and how they handle it. Another important feature of Ąngerprints is
the way they handle the GREASE values. GREASE values are random
values added to the TLS handshake and are deĄned in RFC 8701 [37].
The purpose of GREASE is to detect a bad implementation of the
TLS protocol since the server or client should ignore unknown values
during the handshake.

4.2.1 JA3, JA3s and JARM

JA3, the version of the JA3 for the server Ąngerprinting JA3s, and
the active version of JA3 Ű JARM are three Ąngerprinting methods
developed by John Althouse and his team in 2017 [6, 38, 39, 40]. The
JA3 Ąngerprint is created from data obtained from the ClientHello

Message when establishing an encrypted TLS connection. The speciĄc
values extracted from this message are the TLS version, Supported
Ciphersuits, List of Extensions, Elliptic Curves, and Elliptic Curve
Formats. Figure 4.1 shows the process of creating the JA3 Ąngerprint.
Values from the speciĄed Ąelds are represented as strings and then
hashed using the MD5 hash function. The MD5 hash is also the result-
ing JA3 Ąngerprint.

The same principle is applied in the case of JA3s. The difference
is that the data is retrieved from the ServerHello message. Since
this message has a different structure compared to ClientHello, the
information obtained from this message is also different. It contains
only the TLS version, the chosen ciphersuit and the extensions. The
rest of the JA3s Ąngerprint creation is identical to the JA3 Ąngerprint
creation.

JARM is a tool based on active server Ąngerprinting. JARM re-
peatedly sends ClientHello messages to the server and monitors
the server’s responses. Then, it hashes selected attributes from the
ServerHello messages together with encoded server responses into
the resulting JARM Ąngerprint. These JARM Ąngerprints are unique
enough to be used to identify malicious servers on the Internet.

22

4. Encrypted Traffic Classification Methods

Figure 4.1: JA3 Fingerprint Creation Process.

New TLS/SSL

Certificate

Extract TLS

Version

Extract

Supported

Ciphers

Extract

Extensions

Extract

Supported

Elliptic Curves

Extract Elliptic

Curves Format

Extract Certificate Features

Express Features as String Values

Concatenate Strings

Use MD5 Hash Function

JA3

Fingerprint

4.2.2 Mercury

Mercury is a relatively new tool developed by Balke Anderson of
Cisco in 2020 [41]. The core principle of Mercury is the same as JA3,
namely the analysis of ClientHello messages. However, unlike JA3
Ąngerprints, Mercury does not use a hashing function to create a
Ąngerprint and contains much more detailed information about the
ClientHello message. The main difference between JA3 and Mercury
is the addition of the Extension enumeration, which is not included in
the original JA3 Ąngerprint.

23

4. Encrypted Traffic Classification Methods

The entire format of the Ąngerprint is as follows.

(version)(cipher suites)((extension0)(extension1)...)

The resulting Ąngerprint consists of a hexadecimal representation
of each Ąeld. In addition, GREASE values are preserved, and they are
just normalized to 0x0a0a form.

24

5 Design

Recognizing encrypted malicious traffic is an area that has been re-
searched for many years and uses the methods described in Chapter 4.
Each of these methods has its advantages and disadvantages. One
of the main disadvantages of the Ąngerprint-based method is its low
ability to detect unknown and emerging 0-days threats. Each Ąnger-
print is compared against a database of known benign or malignant
Ąngerprints. In the case of a match, such traffic is classiĄed based on
the application associated with the Ąngerprint. The problem arises
when the Ąngerprint is not found in the database. This is where the
abilities of the Ąngerprint-based methods end. The research in this
paper attempts to address this limitation. Section 5.1 presents the over-
all motivation and description of the method. Sections 5.2 and 5.3
describe the theoretical background of the clustering problem. The
last section 5.4 covers the cluster set comparison problem.

5.1 Fingerprints Cluster Comparison Method

The core of this work is to verify the ability to detect unsolicited en-
crypted traffic based on the (dis)similarity of JA3 Ąngerprints with the
clean traffic and to analyzewhether andwhat differences exist between
the establishment of benign and malignant encrypted communica-
tion. As shown in Section 3.2, these communications exhibit some
differences. However, the question remains whether these differences
can be observed in general and the JA3 Ąngerprint of the malignant
communication can be correctly detected with some probability based
on its (dis)similarity to another, already known communication.

Therefore, the method proposed in this paper consists of two main
parts. The Ąrst part uses the selected clusteringmethods to analyze and
cluster JA3 Ąngerprints. The second part compares the distribution
between clusters in the case of clean and malware traffic captures. The
idea of this research is that if the cluster distribution for clean traffic is
known, then any other captured traffic should be somewhat similar
if it is also clean. SigniĄcant differences in cluster distribution can
indicate the presence of a malware traffic. This research aims to verify

25

5. Design

whether this detection method is applicable and which algorithm is
best suited for this task. Accuracy and performance will be assessed.

5.1.1 Use Case

The illustration of the situation is shown in Figures 5.1 and 5.2. First,
data that are expected for our application must be collected. The green
dots represent the clusters of the JA3 Ąngerprint, which belong to the
clean and expected communication. After that, the unknown traffic
can be analyzed in the same way. Such traffic may contain a mix of
clean and malware traffic. Orange dots in Figures below represents
clean clusters, but it is not known for sure because they were captured
from unknown traffic. The red dots represent clusters of malware.
Therefore, if the captured traffic is also clean, it should look similar to
the known clean traffic. This situation is depicted in Figure 5.1.

Figure 5.1: Clusters of Clean Traffic (Illustration).

However, if there is malware communication in the intercepted traffic,
this traffic will probably deviate signiĄcantly from the known clean
traffic, as shown in Figure 5.2.

Figure 5.2: Clusters of Mixed Traffic (Illustration).

26

5. Design

The detection is based on comparing the structures of the set of JA3
Ąngerprint clusters with the known traffic. This method is even more
universal, because it should be able to detect unexpected (and there-
fore malicious) behaviour.

5.2 Clustering

Clustering is the task of dividing input data into similar groups. The
division is done in such a way that the points assigned to the same
group are Şmore similarŤ. Clustering can be divided into two basic
groups [42].

• Hard Clustering Ű Each point is assigned to one group, i.e. for each
group and each point, the given point belongs to the group or
not.

• Soft Clustering Ű For each point and each group, a probability is
assigned that the given point belongs to the group. Thus a point
can belong to more groups with a certain probability.

There are a number of clustering algorithms. Their difference is
mainly in the deĄnition of the similarity between points. Each method
thus behaves differently for different types of input data [43, 44].

• Connectivity models Ű Methods based on the observation that
points which are close to each other in space are at the same time
more similar. There are two approaches. The Ąrst starts with one
large cluster, which is gradually divided into smaller ones. The
second approach is exactly the opposite. Each point is initially in
its own cluster, and gradually the clusters merge. These methods
are also called hierarchical clustering. Its disadvantage is that it
is not very effective on large datasets.

• Centroid models Ű The assignment of a point to a cluster depends
on its distance from the cluster centre. The cluster centre is itera-
tively calculated until a local optimum is found. The disadvan-
tage is the need to know the resulting number of clusters. Among
the best-known representatives is the K-Means algorithm.

27

5. Design

• Distribution models Ű The assignment to a cluster depends on
the probability with which all data in the cluster are gener-
ated using the same distribution. An example is an Expectation-
Maximization algorithm.

• Density Models Ű This method is based on searching for nodes
with different point densities. The known algorithms are DB-
SCAN and OPTICS.

There are many speciĄc methods, which differ in the number of pa-
rameters, the ability to scale for extensive input data and, of course,
themetric used. From this, themost suitable use cases for eachmethod
emerge. The following subsections describe a few selected clustering
algorithms used in this research.

5.2.1 CD-HIT

The CD-HIT method is a hierarchical clustering method used mainly
in bioinformatics to cluster DNA sequences. Its great advantage is
its simplicity and speed. The idea behind this algorithm is that two
sequences can be in the same cluster if they share at least some of the
features in the sequence. This minimum shared part is expressed as
a percentage called similarity threshold. Thus, it is often sufficient
to compare the lengths of two samples to determine whether two
sequences can be in the same cluster. This avoids many unnecessary
time-consuming comparisons, and in practice, this algorithm is very
efficient. The whole algorithm works in two steps. In the Ąrst step,
the input dataset is sorted by size. In the second step, the samples are
processed in descending order. The processed sample is compared
sequentially with the longest sample in the already formed clusters. If
it exceeds the similarity threshold, it is assigned to the best matching
cluster. Otherwise, a new cluster is created. All samples are processed
in this way [45].

5.2.2 K-Medians

The K-Mediansmethod is a clusteringmethod that solves the partition-
ing of a dataset into k clusters. The core of each cluster is the so-called
median string. The median string is the string out of all the possible

28

5. Design

strings, which minimizes the sum of distances to all the strings of the
set. However, the problem of Ąnding such a string is NP-hard, and
it is not possible to Ąnd it in a reasonable time. Thus, a suitable ap-
proximation of the string median is used in practice as the set median
string of set T. The set median string of set T is always a point in set T
and thus effectively reduces the size of the search space. Such a prob-
lem can be solved in polynomial time. The algorithm itself is greedy.
Initially, k points are chosen randomly or according to some algorithm
from the entire dataset. Then the remaining points are divided into
clusters, and within these clusters, the set string medians are recom-
puted. The algorithm terminates when the process converges a local
optimum [46].

5.2.3 OPTICS

Ordering Points To Identify the Clustering Structure (OPTICS) is a
density-based clustering algorithm. It is a generalization of another
well-known clustering algorithm Ű Density-based Spatial Clustering
of Applications with Noise (DBSCAN). This algorithm arranges the
samples so that the two closest samples are immediately after each
other and creates a so-called reachability graph. This graph allows
for dynamically changing the relative distance threshold, thus deter-
mining the resulting clusters. The resulting clusters are determined
by splitting the sequence at points where the relative distance exceeds
a given threshold (also called an epsilon value). ŞCuttingŤ the reacha-
bility plot at a single value produces DBSCAN like results; all points
above the ŞcutŤ are classiĄed as noise, and each time there is a break
when reading from left to right signiĄes a new cluster. This approach
has the advantage over the similar DBSCAN algorithm of identifying
clusters with different densities [47, 48].

The average run-time of OPTICS is nearly the same as in the case
of DBSCAN. The searching for neighbours mainly inĆuences the com-
plexity. In the worst case, the complexity is Θ(n2), where n is the
number of samples but can be lowered using different data structures
[44, 47].

29

5. Design

5.3 Metric Space

All clustering algorithms rely on measuring and quantifying the dis-
tance between two samples. The concept of metric space andmetrics is
used for this purpose. A metric ρ is a mapping fromM2 −→ R, where
M is any non-empty set. The metric must satisfy the fundamental
axioms for arbitrary x, y, z ∈ M.

• Identity:
ρ(x, y) = 0 ⇐⇒ x = y (5.1)

• Symmetry:
ρ(x, y) = ρ(y, x) (5.2)

• Triangle Inequality:

ρ(x, z) ≥ ρ(x, y) + ρ(y, z) (5.3)

There are standard metrics for different setsM.

• Real Metrics

– Euclidean Metric Ű Probably the most famous metric that is
very often used. It is deĄned over real sets and expresses the
length of the line segment between two points. The distance
d of 2 points p and q in n-dimensional space is deĄned as
follows:

d(p, q) =

√

n

∑
i=1

(pi − qi)2 (5.4)

– Manhattan Metric Ű Also called a Taxicab Metric. Distance d
of two points p, q is deĄned as the absolute difference of
their Cartesian coordinates. The distance is deĄned as:

d =
n

∑
i=1

|pi − qi| (5.5)

30

5. Design

• Discrete Metrics

– Levenshtein Metric Ű Also called edit distance. It is deter-
mined by the minimum number of operations that must
be performed to change one string to another. Acceptable
operations are deleting a character, adding a character, or
replacing one character with another. Levenshtein distance
lev between two strings a, b of length |a|, |b| is given by:

lev(a, b) =

|a| if |b| = 0,

|b| if |a| = 0,

lev(tail(a), tail(b)) if a[0] = b[0],

1 + min

lev(tail(a), B)

lev(a, tail(b))

lev(tail(a), tail(b))

otherwise.

(5.6)
where a[0] resp. b[0] stands for the Ąrst character of a resp.
b and tail is a function returning the string without the Ąrst
character.

– Damerau-Levenshtein Metric Ű It is a modiĄed version of the
Levenshtein algorithm. It admits the same operations and
adds the possibility to swap two consecutive characters. It is
possible to normalize this metric with respect to the length
of the string. The result is normalized to the interval [0,1].
The DamerauŰLevenshtein distance between two strings
a and b is a function da,b(i, j) whose value is a distance
between an i-symbol preĄx of string a a j-symbol preĄx
of b. The deĄnition is as follows:

da,b(i, j) = min

0 if i = j = 0,

da,b(i, j− 1) + 1 if i > j,

da,b(i− 1, j− 1) + 1 if i, j 6= 0,

da,b(i− 2, j− 2) + 1 if i, j > 1 and
ai = bj−1 and
ai−1 = bj

(5.7)

31

5. Design

5.3.1 Common Similarity

This metric is used speciĄcally in the CD-HIT clustering algorithm.
For two sets of discrete values s1 and s2, their similarity is deĄned as
follows:

similarity = 1−
|s1 − s2|

length o f s1

(5.8)

where s1 is the longer sequence or the greater set.
In the case of JA3 sequence clustering, this metric was used sepa-

rately for each section of the JA3 Ąngerprint due to duplicate values
with different meanings occurring in other sections of the JA3 Ąnger-
print.

5.4 Classification

The analysis and classiĄcation of the set of clusters is the second part
of the whole process. The method is based on the idea that the JA3
Ąngerprint cluster space will be different from the clean traffic in the
case of malware traffic. Since there is no metric space to place these
clusters, this problem must be viewed slightly differently. Therefore,
the solution to this problem was not to compare cluster sets directly
but to use the properties of the set of clusters to compare them. Three
properties were selected. The Ąrst is the average distance of the clusters
within the set. The second property is the maximum distance of two
clusters within a set. The last metric is the maximum dissimilarity (in
the sense of the function used in the CD-HIT algorithm described in
Section 5.3.1). Neither of these properties guarantees the correctness
of the results, but their combination can achieve reasonably good ac-
curacy. In all cases, the normalized Damerau-Levenshtein distance is
used to measure the distance between clusters. The distance is mea-
sured in four different modes. Cluster representatives distance, cluster
medians distance or the closest or farthest cluster points distance.

32

6 Implementation

This section describes the implemented tool.
Section 6.1 describes the overall design of the tool. Section 6.2

describes the Ąrst module responsible for loading and parsing data.
Section 6.3 describes the second module responsible for clustering
JA3 Ąngerprints. Section 6.4 describes the last module responsible for
classifying the clusters and comparing the traffic.

6.1 High-Level Design

The whole tool, whose high-level design is shown in Figure 6.1, con-
sists of 3 main engines. The Ąrst one provides loading, parsing and
processing of PCAP Ąles. This engine uses a slightly modiĄed version
of the official JA3 parser [38]. The output of this engine is a structure
storing individual JA3 Ąngerprints in text form and their associated
destination IP addresses. This part can be replaced in the future by
another data source that preserves the deĄned interface.

The second part is the clustering engine. This part is responsible
for clustering the JA3 Ąngerprints supplied from the previous en-
gine. To do this, it uses one of the implemented clustering algorithms.
An overview of the algorithms implemented in this work is given in
Section 5.2, and a more technical description is given in Section 6.3.

The last part is the classiĄcation engine. The classiĄcation engine
is responsible for detecting samples and clusters that may originate
frommalware communication. It should be emphasized that the result
of the whole process is not a sample classiĄcation. Just as the mere
presence of a known malware JA3 Ąngerprint does not automatically
imply the presence of malware, in this case, the engine only aims to
highlight possible suspicious samples. A more detailed description is
in Section 6.4.

6.2 Data Loader Engine

The Ąrst part module is responsible for processing the data into a
form accepted by the following engines. In this thesis, data from the

33

6. Implementation

Figure 6.1: Design Overview.

Clustering Engine Classification Engine

Results DB

Loader Engine

PCAP DB

PCAP Ąle or precomputed JA3 prints were processed (to save time dur-
ing testing). Therefore only the FileDataLoader and PCAPDataLoader

classes were implemented. Both of them implement the DataLoader
Interface. Thanks to this, other data sources could be added later.
Figure 6.2 shows the UML Class Diagram of the Data Loader Engine.

Figure 6.2: DataLoader Classes.

PCAPDataLoader

+PCAPDataLoader(

clean_dirs: [String],

malware_dirs: [String]

)

+ get_samples(): Samples

+ get_runtime(): int

- process_pcaps(

pcaps: [String]

): dict

FileDataLoader

+FileDataLoader(

clean_file: String,

malware_file: String

)

+ get_samples(): Samples

+ get_runtime(): int

- load_from_file(

filename: String

): dict

- MAX_FINGERPRINTS_TO_LOAD_FROM_FILE: int

- MIN_JA3_LEN: int

DataLoaderInterface

+ get_samples(): Samples

+ get_runtime(): int

The DataLoaderInterface deĄnes two methods. The Ąrst one is the
get_runtime method. This method is used for performance monitor-
ing and returns the data loading operation time. The second deĄned
method is get_samples. This method returns an instance of the class
implementing the SampleStorage interface. This is responsible for

34

6. Implementation

storing the data. The TestSampleStorage class, which separates mal-
ware and clean samples, is used for testing purposes. However, in
general, the Samples class can be used.

Figure 6.3: SampleStorage Classes.

TestSampleStorage

+ TestSampleStorage(

malware: dict,

clean: dict

)

+ get(): [String]

+ size(): int

+ get_malware(): [String]

+ get_clean(): [String]

+ size_malware(): int

+ size_clean(): int

+ add(samples: SampleStorage)

+ find_ip(ja3: String)

- malware: dict

- clean: dict

Samples

+ get(): [String]

+ size(): int

+ add(samples: SampleStorage)

- data: [String]

SampleStorage

+ get(): [String]

+ size(): int

+ add(samples: SampleStorage)

6.3 Clustering Engine

The second module of the tool ensures the clustering of JA3 Ąnger-
prints. The data is passed as an instance of a class implementing the
SampleStorage interface. As part of this research, three types of clus-
tering algorithms described in Section 5.2 were implemented. The
design of these classes is shown in Figure 6.4. Each of the three clus-
tering algorithms has its class implementing the common Cluster

Method Interface.
Two classes are used to store cluster data. The Cluster class is used

to store data about one cluster. It also provides methods for cluster

35

6. Implementation

Figure 6.4: ClusterMethod Classes.

OpticsMethod

+ OpticsMethod(threshold: float)

+ get_clusters(

data: SampleStorage

): Clusters

+ get_runtime(): int

- compute_simmilarity_matrix(

data: [String]

): [[int]]

- metric: Callable

- threshold: float

Samples

+ get(): [String]

+ size(): int

+ add(samples: SampleStorage)

- data: [String]

ClusterMethodInterface

+ get_clusters(

data: SampleStorage

): Clusters

+ get_runtime(): int

CDHitMethod

+ CDHitMethod(

similarity_threshold:

float

}

+ get_clusters(

data: SampleStorage

): Clusters

+ get_runtime(): int

- similarity_threshold: float

KMediansMethod

+ KMediansMethod(

metric: Callable,

k: int,

init_centroids: [String]

)

+get_clusters(

data:SampleStorage

): Clusters

+get_runtime(): int

- compute_clusters(

data: dict,

centroids: [String]

)

- compute_median(

samples: [String]

): [String]

- metric: Callable

- number_of_clusters: int

- initial_centroids: [String]

analysis that are used in the classiĄcation engine. The second deĄned
class, the Clusters class, is a wrapper for keeping all clusters together
and for working with clusters in bulk. The UML Class Diagram is
shown in Figure 6.5.

Figure 6.5: Cluster Data Storage Classes.

Clusters

+ Clusters()

+ size(): int

+ onIndex(index: int): Cluster

+ add(cluster: Cluster): bool

+ get_representatives(): [String]

- data: [Cluster]

Cluster

+ Cluster(cluster: [String])

+ size(): int

+ onIndex(index: int): String

+ add(sample: String): bool

+ get_representative(): String

+ cluster_length(): float

- cluster: [String]

1..*1

36

6. Implementation

6.3.1 Implementation of the CD-HIT

The CD-HIT algorithm is used mainly in biomedicine for clustering
protein sequences, and its description is in Section 5.2. Algorithm 1
shows the pseudocode of the CD-Hit algorithm. This algorithm takes
two parameters as input. The fingerprints parameter represents the
input sequences. The second parameter, threshold, speciĄes the per-
centage of elements two sequences must have in common to be in one
cluster. The output of this function is the Ąngerprints grouped into
clusters.

Algorithm 1: CD-HIT Clustering Algorithm.

Input f ingerprints Ű JA3 Ąngerprints
Input threshold Ű A number between 0 and 1
Output Clusters Ű Clustered Ąngerprints

1: procedure CD-HIT

2: fingerprints← sorted fingerprints
3: clusters← new Clusters()
4: for each f ingerprint in f ingerprints do

5: max_similarity← −∞

6: closest_cluster← NULL
7: for each cluster in clusters do

8: representative← representative of cluster
9: if f ingerprint ≥ threshold ∗ representative then

10: similarity← get_similarity(representative, f ingerprint)
11: if similarity ≥ max_similarity then

12: max_similarity← similarity
13: closest_cluster ← cluster

14: if max_similarity > −∞ then

15: closest_cluster.add(f ingerprint)
16: else

17: new_cluster ← new Cluster()
18: new_cluster.add(f ingerprint)
19: clusters.add(new_cluster)

20: return clusters

At the beginning of this algorithm, the input sequences are sorted
by size in descending order (line 2). On lines 4 Ű 13, the percentage
of common elements with the representative of the already formed

37

6. Implementation

clusters is calculated for each Ąngerprint. The cluster representative is
the Ąrst assigned (and therefore the longest) sequence in the cluster.
If this value exceeds the value given by the threshold parameter for at
least one cluster, then the Ąngerprint is assigned to the cluster with the
highest similarity (lines 14 Ű 15). Otherwise, a new cluster is created,
and the Ąngerprint is the new representative of the cluster.

The acceleration of this algorithm happens on line 9. If the length
of the Ąngerprint being compared is less than a threshold multiple of
the length of the cluster representative, it is clear that the Ąngerprint
does not belong to the cluster. In this way, many measurements are
eliminated, making this algorithm very efficient.

6.3.2 Implementation of the K-Medians

The K-Medians algorithm for strings is an iterative clustering algo-
rithm, and its detailed description is in Section 5.2. Finding themedian
for a given set of strings is an NP-hard problem, so an approximation
called the set median problem is used in the implementation. This
approximation admits as the median for a given group of strings only
strings from the given group. This signiĄcantly reduces the search
space. However, it also lowers the accuracy. Algorithm 2 shows the
pseudocode of the implemented K-Medians algorithm for strings.

Algorithm 2: K-Medians Clustering Algorithm.

Input f ingerprints Ű JA3 Ąngerprints
Input k Ű A number of clusters
Output Clusters Ű Clustered Ąngerprints

1: procedure K-Medians

2: centroids← k random samples from fingerprints
3: changing← TRUE
4: clusters← assign data to clusters given by centroids
5: while changing do

6: new_centroids← []
7: for each cluster in clusters do

8: new_median← compute median for cluster
9: new_centroids← new_centroids + new_median

10: new_clusters← assign data to clusters given by new_centroids
11: if new_clusters 6= clusters then

38

6. Implementation

12: clusters← new_clusters
13: else

14: changing← FALSE

15: return clusters

At the beginning of the algorithm on line 2, random centroids are
selected from the input data. Then, on line 4, the data is assigned
to a cluster based on the closest centroid. The loop on lines 5 Ű 14 is
executed iteratively until a local optimum is found. On line 8, a new
centroid is calculated for each cluster, and the data is reassigned to
the clusters based on the new centroids. This loop is repeated until a
local optimum is found.

6.3.3 Implementation of the OPTICS

The OPTICS algorithm was implemented using the python library
scikit, which implements this algorithm. The input of this algorithm
is data and a metric function or table of pre-calculated measurements.
The pseudocode implementation of this function is shown in Algo-
rithm 3.

Algorithm 3: OPTICS Clustering Algorithm.

Input f ingerprints Ű JA3 Ąngerprints
Input min_samples Ű The number of samples in a neighborhood (See 5.2)
Input max_eps Ű The maximum distance between two samples (See 5.2)
Input threshold Ű Used for separating clusters (See 5.2)
Output Clusters Ű Clustered Ąngerprints

1: procedure OPTICS

2: similarity_matrix← distance between every pair JA3 Ąngerprints
3: optics← OPTICS(min_samples, max_eps)
4: optics. f it(similarity_matrix)
5: clusters← separate clusters based on the threshold from optics
6: return clusters

The Ąrst step of this algorithm is to calculate the similarity matrix.
This matrix contains the distance between all pairs of prints. The
OPTICS algorithm implementation from the scikit library processes
this matrix using the max_eps and min_samples parameters, whose
meaning is described in chapter 5.2 [44].

39

6. Implementation

6.3.4 Implemented Metrics

This thesis implements three clustering algorithmsOPTICS, K-Medians
for string, andCD-HIT. Each of these algorithmsworks on a slightly dif-
ferent principle. OPTICS and K-Medians algorithms use the Damerau-
Levenshtein distance to measure the distance of two Ąngerprints. This
metric is described in section 5.3. A normalized version of this distance
is used here with respect to the length of the individual JA3 sections
of the Ąngerprint. The normalized Damerau-Levenshtein distance is
calculated for each section of the JA3 Ąngerprint separately. The values
from all sections of the JA3 Ąngerprint are then summed together. The
code snippet used to calculate the normalized Damerau-Levenshtein
distance between two Ąngerprints is shown in Listing 6.1.

Listing 6.1: Normalized Distance Computation.

1 @staticmethod

2 def normalized_distance(fingerprint1: str, fingerprint2: str) -> float:

3 weights = []

4 f1 = JA3Methods.Parser.parse_fingerprint(fingerprint1)

5 f2 = JA3Methods.Parser.parse_fingerprint(fingerprint2)

6

7 for part in range(JA3Methods.JA3_PARTS):

8 weights.append(1/max(len(f1[part]), len(f2[part])))

9 return JA3Methods.Metrics.__weighted_distance(fingerprint1,

10 fingerprint2, weights=weights)

In the Ąrst step, JA3 Ąngerprints are parsed on lines 4 and 5. Then, the
normalized distance is calculated as the weighted distance. On line
8, weights are set for each part of the JA3 Ąngerprint separately. They
are calculated as 1 divided by the length of the JA3 part.

On line 9, the result is returned as the weighted distance of two
Ąngerprints. The weighted distance is computed in two steps. In the
Ąrst step, the Damerau-Levenshtein distance between individual parts
of the JA3 Ąngerprint is computed. Then the results are multiplied by
weights and summed together.

The last-mentioned algorithm called CD-Hit uses a slightly differ-
ent method to deĄne the similarity of two Ąngerprints. This function

40

6. Implementation

is implemented as a common_similarity function. It compares two Ąn-
gerprints and checks if the overlap in all features of the JA3 Ąngerprint
is above the threshold. The code snippet showing the implementation
of this function is shown on Listing 6.2.

Listing 6.2: Common Similarity Computation for the CD-HIT.

1 @staticmethod

2 def common_similarity(fingerprint1: str, fingerprint2: str) -> float:

3 if JA3Methods.Metrics.length(fingerprint1) <

4 JA3Methods.Metrics.length(fingerprint2):

5 fingerprint1, fingerprint2 = fingerprint2, fingerprint1

6

7 f1 = JA3Methods.Parser.parse_fingerprint(fingerprint1)

8 f2 = JA3Methods.Parser.parse_fingerprint(fingerprint2)

9 common = 0

10

11 for part in range(JA3Methods.JA3_PARTS):

12 for value_f1 in f1[part]:

13 for value_f2 in f2[part]:

14 if value_f1 == value_f2:

15 common += 1

16 return common/JA3Methods.Metrics.length(fingerprint1)

Two Ąngerprints are swapped on lines 3 Ű 5, so the longer one is always
fingerprint1. After that, the Ąngerprints are parsed on lines 7 Ű 8. In the
loop on lines 11 Ű 15, the method calculates the number of common
values. The result is then divided by the length of the Ąngerprint,
giving the resulting percentage of the common values.

6.4 Classification Engine

The clustering engine is the last module that classiĄes intercepted traf-
Ąc and determineswhether or not it containsmalware. The description
of this method is in Section 5.1. However, unlike the illustrations in
this section, the problem that arises in implementation is how to deĄne
the area of the cluster. The nature of this problem makes it impossible

41

6. Implementation

for us to use traditional cluster comparison methods, such as the hull
comparison method [49]. Only the distance between the two clusters
can be measured but not the direction.

This problem was solved by comparing the average distances be-
tween clusters. Since the assumption is that malware samples from
the site are signiĄcantly different, such traffic will likely have a greater
average distance between clusters.

Three methods were implemented to measure the distance be-
tween clusters. The Ąrst method deĄned the distance between two
clusters as the (normalized Damerau-Levenshtein) distance of their
representative. This method was used exclusively for clusters created
by the CD-HIT algorithm, which deĄnes a cluster representative as the
longest sequence that occurs in it. The other two methods deĄned the
distance between clusters as the distance of the nearest or outermost
sequences, respectively. The last method deĄned the distance of the
clusters as the distance of their medians.

Algorithm 4: ClassiĄcation.

Input clean_clusters Ű Known clean clusters
Input unknown_clusters Ű Clusters of the unknown traffic
Output Di f f erence Ű Difference between average distances of clusters

1: procedure Classification

2: clean_average_distance← average distance of clean_clusters
3: unknown_average_distance← average distance of unknown_clusters

4: return
clean_average_distance− unknown_average_distance

clean_average_distance

Therefore, the result is a relative average difference between clusters
of clean and unknown traffic. Then it depends only on a limit, from
which the traffic is considered suspicious.

42

7 Testing and Results

This chapter describes the tests and their results. Section 7.1 describes
the data used for the testing. Section 7.2 describes the results regard-
ing the time performance. The last Section 7.3 presents the results of
the testing regarding the ability to detect malicious network traffic
behavior.

7.1 Dataset

This research used publicly available sources for testing purposes. Data
sources were not from the production network for several reasons.
Firstly, there was no need to anonymize the data, which would have
been necessary when using data from a production network. Based on
this data, it was also straightforward to distinguish between malware-
generated traffic and clean traffic because it was possible to analyze
PCAP Ąles directly, or the source indicated the nature of the traffic.
The following paragraphs describe the datasets used in this research.

The dataset consists of PCAP Ąles available from public databases,
speciĄcally the Stratosphere IPS andMalware Traffic Analysis projects
[50, 51]. The Stratosphere project offers PCAP Ąles of clean, mixed
and malware traffic. The disadvantage is that many samples are pretty
old, especially the malware samples, thus do not contain encrypted
traffic so much. On the other hand, it offers a large number of clean
and mixed PCAP Ąles that have been used for testing. PCAP Ąles from
the Malware Traffic Analysis project were used as malware samples.

Four malware families were used for testing. SpeciĄcally, these
were PCAP Ąles of the Dridex, Emotet, QakBot and IcedID families.
All captures were from the Malware Traffic Analysis project [51].

7.2 Performance

The performance of each clustering algorithm is crucial for practical
applications. Since clustering is only one part of the whole process
and can take place over different data sizes, the algorithmmust be fast.
The three implemented algorithms were compared in processing time

43

7. Testing and Results

Table 7.1: Runtime of Clustering Algorithms comparison between
Number of Samples (NoS) and Used Algorithm (Algo).

Algorithm

X CD-Hit OPTICS K-Medians

100 0.06 sec 12.11 sec 90.6 sec

500 0.98 sec 4.83 min 29.02 min

#
JA

3

1000 3.53 sec 19.31 min -

10 000 4.31 min - -

for different data sizes. The CD-Hit algorithm proved to be the best
in the practical tests. This result is expected since both the OPTICS
algorithm and the K-Medians algorithm have a quadratic complexity
concerning the number of sequences compared. The K-Medians prob-
lem is even NP-Hard, so the approximation described in Section 5.2
was performed here. However, even with this approximation, the com-
plexity is still quadratic. The CDHit algorithm achieves a considerable
speedup because many distance measurements between pairs need
not be made at all since the difference in their lengths is too large.
The results of the measurements for different Numbers of Samples
(NoS) and various algorithms are given in Table 7.1. It is evident that
the CD-Hit algorithm was able to cluster even 10 000 samples in a
reasonable time, while the K-Medians algorithm was practically unus-
able even for quite a small amount of data. For this reason, only the
CD-Hit algorithm is used as a clustering algorithm in the next part of
the thesis.

The CD-HIT algorithm produced more and more clusters as the
number of samples increased. Together with the increasing average
cluster size, this fact caused the classiĄcation engine to slow down.
Graph 7.1 shows the number of clusters created for different input
data sizes with a similarity threshold set to 80%.

Graph 7.2 shows the average cluster size with the same setup. Both
values increase with an increasing number of input sequences, and for
an input sequence length of 10 000, the CD-HIT algorithm generated

44

7. Testing and Results

Figure 7.1: Number of Clusters.

0

200

400

600

800

1000

1200

100 500 1000 10 000

N
o

.
o

f
C

lu
st

e
rs

No. of Samples

more than 1100 clusters. This fact is not surprising. However, it affects
the performance of the classiĄcation engine.

Figure 7.2: Average Cluster Size.

0

1

2

3

4

5

6

7

8

9

10

100 500 1000 10 000

A
v
e

ra
g

e
 C

lu
st

e
r

S
iz

e

No. of Samples

The result of the clustering algorithm depends on the value of the
threshold representing the percentage of parts that two Ąngerprints
must have in common to be in one cluster. Figure 7.3 shows a graph
of the dependence of the number of clusters created and their average
size on the threshold.

45

7. Testing and Results

Figure 7.3: Number of Cluster / Cluster Size Trade-off.

0

100

200

300

400

500

600

700

800

900

1000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Threshold

Number of clusters Average Size of Cluster

The second component that makes up the overall complexity of the
algorithm is the complexity of calculating the average cluster distance.
Here, of course, it depends on the measurement method used. The
results for different input data sizes are shown in Graph 7.4. As in the
case of the clustering time measurement, data with sizes ranging from
100 to 10 000 JA3 Ąngerprints were used.

7.3 Accuracy

The results and tests conĄrmed the expectations. In the Ąrst step,
samples from the clean and mixed traffic were clustered.Then the
three properties of these clusters were measured. Figure 7.5 shows the
number of clusters for different datasets.

We can see that the number of clusters for mixed traffic containing
malware was a bit higher. This is caused by the fact that the mixed
traffic contained malware as well as clean traffic. Because the malware
sample created separate clusters, the resulting numberwas a bit higher
than in the case of clean traffic.

In the second step, three features of the set were measured. The
Ąrst was the average distance of the clusters. The distance was mea-

46

7. Testing and Results

Figure 7.4: Average Inter-Cluster Distance Computation Time.

0

50

100

150

200

250

300

350

400

450

100 500 1000 10000

T
im

e
 [

s]

No. of Samples

Representative Outermost Closest Median

Figure 7.5: Number of Created Clusters.

0

2

4

6

8

10

12

0.5 0.6 0.7 0.8 0.9

N
o

.
o

f
C

lu
st

e
rs

CD-HIT Threshold

Clean IcedID Emotet QakBot Dridex

sured by the normalized Damerau-Levenshtein method described in
Section 6.3.4, and the distance of clusters is deĄned as the distance of
the cluster’s representatives. The measurement results are shown in
Figure 7.6.

47

7. Testing and Results

Figure 7.6: Average Inter-Cluster Distance.

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

0.5 0.6 0.7 0.8 0.9

D
is

ta
n

c
e

CD-HIT Threshold

Clean IcedID Emotet QakBot Dridex

Figure 7.6 shows the average cluster distance for various types of
traffic and different CD-HIT thresholds. In total, measurements were
performed for each malware strain as well as for the clean traffic. In
all cases, there is a visible difference between the average distance of
the cluster in the case of clean and mixed traffic. The average distance
between clusters is higher for mixed traffic in all four cases. It is con-
Ąrmed that the mixed samples would have a larger average distance
between clusters, even though the differences were less signiĄcant
than expected. This may be because there are signiĄcantly more clus-
ters with clean traffic than clusters with malware traffic, which distorts
the results. A solution to this problem could be to weight the clusters
in the measurement, with more distant clusters being given more
weight. However, this has not been implemented in this work.

The second used method was to examine the distance of the two
most distant clusters in the set. The measured values are shown in
Figure 7.7.

This graph shows the distance of two outermost clusters in the set
for different thresholds used by the CD-HIT algorithm. This test also
conĄrmed the expectation that the distance of the two most distant
clusters in mixed traffic would be greater than in clean traffic.

The last comparison method is based on the metrics used directly
in the CD-HIT clustering algorithm. This metric represents the per-

48

7. Testing and Results

Figure 7.7: Distance Between Outermost Clusters.

1.6

2.1

2.6

3.1

3.6

4.1

0.5 0.6 0.7 0.8 0.9

D
is

ta
n

c
e

CD-HIT Threshold

Clean IcedID Emotet QakBot Dridex

centage of matching elements of two sequences. If clean and mixed
samples are compared, a rather signiĄcant difference can be seen. This
difference is around 50% in clean traffic, while in malware traffic, the
two clusters differ by up to two-thirds of the values.

Figure 7.8: Minimal Similarity.

10

15

20

25

30

35

40

45

50

55

60

0.5 0.6 0.7 0.8 0.9

S
im

il
a

ri
ty

 [
%

]

CD-HIT Threshold

Clean IcedID Emotet QakBot Dridex

49

8 Conclusion

The importance of encrypted traffic on the Internet is growing, and
it is almost inevitable that encrypted traffic will soon displace unen-
crypted traffic. However, what brings many beneĄts, such as ensuring
data conĄdentiality or integrity, also brings the same beneĄts for the
malware developers. Hiding traffic generated by malware becomes
much easier and its detection more difficult.

However, the problem of detectingmalware-generated traffic is not
new and has been the subject of research for several years. The current
methods are problematic because of their computational complexity,
data conĄdentiality requirements or the detection based on known
signatures.

One of themethods currently used is the JA3Ąngerprintingmethod.
Its main advantages are speed and simplicity, but detection is based on
known signatures. This method is therefore not suitable for detecting
new threats and malware strains.

The method proposed in this work tries to take advantage of the
simplicity of the JA3 Ąngerprint and, at the same time, improve the
ability to classify unknown traffic.

Themethodworks in several steps. In the Ąrst step, JA3 Ąngerprints
are collected Ąrst from traffic that is known to be clean and assumed
to be legit for our system. Then the JA3 Ąngerprints from this traffic
is grouped into clusters using a selected clustering algorithm and
measure the properties of this set of clusters. Then the real unknown
traffic data is collected and processed in the same way. If the traffic is
legitimate, the properties of the set clusters from the unknown traffic
should be approximately the same as the clean traffic. The measured
properties include the average cluster distance, the maximum cluster
distance or the minimum similarity between clusters.

This research implemented three clustering algorithms, namely the
CD-HIT, OPTICS and K-Medians algorithms. These algorithms were
tested in terms of performance. Here the CD-HIT algorithm clearly
appears the best, which, also due to its simplicity, was used for the
second part of the work.

In this part, the measurement of the properties of the set of clusters
was implemented. Then the classiĄcation hypotheses were tested by

50

8. Conclusion

comparing the clean traffic and themixed trafficwithmalware, namely
containing the three Trojan horses strains.

The Ąrst hypothesis was that the average distance of a cluster in
clean traffic should be lower than in mixed traffic. The second hypoth-
esis was that the maximum distance between clusters should be more
signiĄcant in the case of mixed traffic. The last assumption was that
the minimum similarity between clusters should be smaller in the case
of mixed traffic. All these hypotheses were conĄrmed, even though
the differences in the average distances between clusters were not as
signiĄcant as expected. This is very likely caused by the disproportion
in the number of clusters with clean and malware traffic in the mixed
data. Therefore, combining all three approaches seems to be a better
option.

51

9 Discussion

This paper proposes a new method for detecting unsolicited traffic
in the network based on the JA3 Ąngerprint. The method proposed
and tested in this paper is entirely new, and at the moment, there is
no publication on the same topic. For this reason, it is unfortunately
not possible to compare the results independently.

This research have found a suitable clustering algorithm that is
fast enough and produces good enough results in the tests. The CD-
HIT algorithm, primarily used for clustering protein sequences in
bioinformatics, proved to be suitable also for clustering JA3 Ąngerprint
sequences. In addition, this algorithm also allows the simple inĆuence
of the results in terms of accuracy and computation complexity using
a single parameter.

This research also conĄrmed the hypotheses about the different
properties of mixed traffic and clean traffic and the possibility of using
these differences to detect unsolicited traffic in a real network.

However, open and unresolved questions remain. The Ąrst is the
lack of a multidimensional space for cluster comparison. This research
have only worked with the ability to measure the distance between
clusters but not the direction. The possibility of displaying the data in
a space could increase the detection capabilities by considering the
overlap of these spaces, for example.

Another way this work can be developed is by testing other clus-
tering algorithms or measuring different properties of cluster groups
than the three mentioned properties used in this work.

The last problem was the amount of test data. Data from publicly
available databases were used for testing, and their quantity was not
too large. However, obtaining a larger sample of data is quite prob-
lematic. The JA3 Ąngerprints themselves are not a problem, as they
do not contain any personal data, and their acquisition is not compli-
cated. However, verifying the accuracy of the method is problematic
in this case because of results veriĄcation. It is necessary to decrypt
the suspicious traffic and conĄrm whether it is unsolicited or not. The
second way to get this data is to build your own network and simulate
the whole process. However, the problem here is how to simulate the
situation to reĆect it in the real network.

52

A Attached files

ZIP archive containing the implementation of the tool used during
the testing of the method.

53

Bibliography

1. HTTPS encryption on the web — Google transparency report. Google,
2021. Available also from: https : / / transparencyreport .

google.com/https/overview.

2. GALLAGHER, Sean. Nearly half of malware now use TLS to
conceal communications. Sophos news. 2021. Available also from:
https://news.sophos.com/en-us/2021/04/21/nearly-half-

of-malware-now-use-tls-to-conceal-communications/.

3. NAGY, Luca. Nearly a quarter of malware now communicates
using TLS. Sophos news. 2020. Available also from: https : / /

news.sophos.com/en-us/2020/02/18/nearly-a-quarter-of-

malware-now-communicates-using-tls/.

4. VELAN, Petr; ČERMÁK, Milan; ČELEDA, Pavel; DRAŠAR, Mar-
tin. A survey of methods for encrypted traffic classiĄcation and
analysis. International Journal of Network Management. 2015. Avail-
able also from: https://doi.org/10.1002/nem.1901.

5. MOORE, Andrew; ZUEV, Denis; CROGAN, Michael. Discrim-
inators for Use in Flow-based ClassiĄcation. Queen Mary and
Westfield College, Department of Computer Science. 2005. issn 1470-
5559. Available also from: https://qmro.qmul.ac.uk/xmlui/

bitstream/handle/123456789/5050/RR-05-13.pdf.

6. ALTHOUSE, John.TLS fingerprintingwith JA3 and JA3S. Salesforce
Engineering, 2021. Available also from: https://engineering.

salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-

247362855967.

7. Suricata Documentation. 2017. Available also from: https : / /

suricata.readthedocs.io/en/suricata-6.0.0/rules/ja3-

keywords.html.

8. Ja3 fingerprints Database. 2022. Available also from: https://

sslbl.abuse.ch/ja3-fingerprints/.

9. JA3er. 2022. Available also from: https://ja3er.com/.

10. PANDYA, Dwiti; THAKARE, BS; MADHEKAR, T; THAKKAR,
S; RAM, K. Brief History of Encryption. International Journal of
Computer Applications. 2015.

54

https://transparencyreport.google.com/https/overview
https://transparencyreport.google.com/https/overview
https://news.sophos.com/en-us/2021/04/21/nearly-half-of-malware-now-use-tls-to-conceal-communications/
https://news.sophos.com/en-us/2021/04/21/nearly-half-of-malware-now-use-tls-to-conceal-communications/
https://news.sophos.com/en-us/2020/02/18/nearly-a-quarter-of-malware-now-communicates-using-tls/
https://news.sophos.com/en-us/2020/02/18/nearly-a-quarter-of-malware-now-communicates-using-tls/
https://news.sophos.com/en-us/2020/02/18/nearly-a-quarter-of-malware-now-communicates-using-tls/
https://doi.org/10.1002/nem.1901
https://qmro.qmul.ac.uk/xmlui/bitstream/handle/123456789/5050/RR-05-13.pdf
https://qmro.qmul.ac.uk/xmlui/bitstream/handle/123456789/5050/RR-05-13.pdf
https://engineering.salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-247362855967
https://engineering.salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-247362855967
https://engineering.salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-247362855967
https://suricata.readthedocs.io/en/suricata-6.0.0/rules/ja3-keywords.html
https://suricata.readthedocs.io/en/suricata-6.0.0/rules/ja3-keywords.html
https://suricata.readthedocs.io/en/suricata-6.0.0/rules/ja3-keywords.html
https://sslbl.abuse.ch/ja3-fingerprints/
https://sslbl.abuse.ch/ja3-fingerprints/
https://ja3er.com/

BIBLIOGRAPHY

11. PRICHARD, Roger A. Global Information Assurance Certification
Paper. 2002. Available also from: https://www.giac.org/paper/

gsec/1555/history-encryption/102877.

12. GANCHEVA, Zlatina; SATTLER, Patrick; WÜSTRICH, Lars. TLS
Fingerprinting Techniques. 2020. Available also from: https :

//doi.org/10.2313/NET-2020-04-1_04.

13. BHARGAVAN, Karthikeyan; LAVAUD, Antoine Delignat; FOUR-
NET, Cédric; PIRONTI, Alfredo; STRUB, Pierre Yves. Triple hand-
shakes and cookie cutters: Breaking and Ąxing authentication
over TLS. 2014. Available also from: https://doi.org/10.1109/

SP.2014.14.

14. The heartbleed bug. 2014. Available also from: https : / /

heartbleed.com/.

15. DOWLING, Benjamin; FISCHLIN, Marc; GÜNTHER, Felix; STE-
BILA, Douglas. A cryptographic analysis of the TLS 1.3 hand-
shake protocol. Journal of Cryptology. 2021. Available also from:
https://doi.org/10.1007/s00145-021-09384-1.

16. MORIARTY, Kathleen; FARRELL, Stephen. Deprecating TLS 1.0
and TLS 1.1. Internet Engineering Task Force, RFC. 2021, vol. 8996.
Available also from: https://datatracker.ietf.org/doc/

html/rfc8996.

17. SSL Pulse. 2022. Available also from: https://www.ssllabs.com/

ssl-pulse/.

18. RESCORLA, Eric et al. RFC 8446: The Transport Layer Security
(TLS) protocol version 1.3. Internet Engineering Task Force (IETF).
2018. Available also from: https://www.rfc-editor.org/rfc/

rfc8446.txt.

19. MYERS, Michael; ADAMS, Carlisle; SOLO, Dave; KEMP, David.
Internet X. 509 certiĄcate request message format. Request for
Comments. 1999, vol. 2511. Available also from: https://www.rfc-

editor.org/rfc/pdfrfc/rfc2511.txt.pdf.

20. ALINA.BOLTON.Maximum SSL/TLS certificate validity one year.
2020. Available also from: https://www.globalsign.com/en/

blog/maximum-ssltls-certificate-validity-now-one-year.

55

https://www.giac.org/paper/gsec/1555/history-encryption/102877
https://www.giac.org/paper/gsec/1555/history-encryption/102877
https://doi.org/10.2313/NET-2020-04-1_04
https://doi.org/10.2313/NET-2020-04-1_04
https://doi.org/10.1109/SP.2014.14
https://doi.org/10.1109/SP.2014.14
https://heartbleed.com/
https://heartbleed.com/
https://doi.org/10.1007/s00145-021-09384-1
https://datatracker.ietf.org/doc/html/rfc8996
https://datatracker.ietf.org/doc/html/rfc8996
https://www.ssllabs.com/ssl-pulse/
https://www.ssllabs.com/ssl-pulse/
https://www.rfc-editor.org/rfc/rfc8446.txt
https://www.rfc-editor.org/rfc/rfc8446.txt
https://www.rfc-editor.org/rfc/pdfrfc/rfc2511.txt.pdf
https://www.rfc-editor.org/rfc/pdfrfc/rfc2511.txt.pdf
https://www.globalsign.com/en/blog/maximum-ssltls-certificate-validity-now-one-year
https://www.globalsign.com/en/blog/maximum-ssltls-certificate-validity-now-one-year

BIBLIOGRAPHY

21. RESCORLA, Eric et al. RFC 5246 Ű The Transport Layer Security
(TLS) protocol version 1.2. The Internet Engineering Task Force
(IETF). 2008. Available also from: https://datatracker.ietf.

org/doc/html/rfc5246.

22. RESCORLA, Eric et al.HTTPOver TLS. RFC 2818, 2000. Available
also from: https://www.hjp.at/doc/rfc/rfc2818.html.

23. FORD-HUTCHINSON, Paul et al. Securing FTPwith TLS.Request
for Comments. 2005, vol. 4217. Available also from: https://www.

hjp.at/doc/rfc/rfc4217.html.

24. Firefox DNS Over HTTPS. 2022. Available also from: https://

support.mozilla.org/en-US/kb/firefox-dns-over-https.

25. OpenVPN Source Code. 2022. Available also from: https :

//github.com/OpenVPN/openvpn3/.

26. CREBS, Brian. Half of all phishing sites now have the Padlock. 2018.
Available also from: https://krebsonsecurity.com/2018/11/

half-of-all-phishing-sites-now-have-the-padlock/.

27. Encryption Is Now a Trojan Horse: Ignore It at Your Peril. Fortinet,
2019. Available also from: https : / / www . fortinet . com /

content/dam/fortinet/assets/white-papers/wp-Encrypt-

Now-Trojan-Horse.pdf.

28. SSL blacklist. 2022. Available also from: https://sslbl.abuse.

ch.

29. MOKBEL, Mohamad. The state of SSL/TLS certificate usage in mal-
ware C&C Communication. TrendMicro, 2021. Available also from:
https://www.mfmokbel.com/wp-content/uploads/2021/09/

ssl-tls-technical-brief.pdf.

30. Dridex Malware. CISA, 2019. Available also from: https://www.

cisa.gov/uscert/ncas/alerts/aa19-339a.

31. Dridex Malware Sample. Stratosphere Project, 2016. Available also
from: https :/ / mcfp . felk .cvut . cz / publicDatasets /CTU -

Malware-Capture-Botnet-153-1/.

32. Cobalt strike: Adversary simulation and red team operations. 2022.
Available also from: https://www.cobaltstrike.com/.

56

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
https://www.hjp.at/doc/rfc/rfc2818.html
https://www.hjp.at/doc/rfc/rfc4217.html
https://www.hjp.at/doc/rfc/rfc4217.html
https://support.mozilla.org/en-US/kb/firefox-dns-over-https
https://support.mozilla.org/en-US/kb/firefox-dns-over-https
https://github.com/OpenVPN/openvpn3/
https://github.com/OpenVPN/openvpn3/
https://krebsonsecurity.com/2018/11/half-of-all-phishing-sites-now-have-the-padlock/
https://krebsonsecurity.com/2018/11/half-of-all-phishing-sites-now-have-the-padlock/
https://www.fortinet.com/content/dam/fortinet/assets/white-papers/wp-Encrypt-Now-Trojan-Horse.pdf
https://www.fortinet.com/content/dam/fortinet/assets/white-papers/wp-Encrypt-Now-Trojan-Horse.pdf
https://www.fortinet.com/content/dam/fortinet/assets/white-papers/wp-Encrypt-Now-Trojan-Horse.pdf
https://sslbl.abuse.ch
https://sslbl.abuse.ch
https://www.mfmokbel.com/wp-content/uploads/2021/09/ssl-tls-technical-brief.pdf
https://www.mfmokbel.com/wp-content/uploads/2021/09/ssl-tls-technical-brief.pdf
https://www.cisa.gov/uscert/ncas/alerts/aa19-339a
https://www.cisa.gov/uscert/ncas/alerts/aa19-339a
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-153-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-153-1/
https://www.cobaltstrike.com/

BIBLIOGRAPHY

33. Cobalt Strike Malware Sample. Stratosphere Project, 2018. Available
also from: https://mcfp.felk.cvut.cz/publicDatasets/CTU-

Malware-Capture-Botnet-345-1/.

34. CAVIGLIONE, Luca. Trends and Challenges in Network Covert
Channels Countermeasures.Applied Sciences. 2021. Available also
from: https://doi.org/%2010.3390/app11041641.

35. ANDERSON, Blake; PAUL, Subharthi; MCGREW, David A. Deci-
phering Malware’s use of TLS (without Decryption). CoRR. 2016,
vol. abs/1607.01639. Available from arXiv: 1607.01639.

36. Zeus Source Code. 2014. Available also from: https://github.

com/Visgean/Zeus/.

37. BENJAMIN, David. RFC 8701 Applying Generate Random Exten-
sions And Sustain Extensibility (GREASE) to TLS Extensibility. 2020.
Tech. rep. Internet Engineering Task Force. Available also from:
https://www.rfc-editor.org/rfc/rfc8701.pdf.

38. ALTHOUSE, John. JA3 – A method for profiling SSL/TLS Clients.
2019. Available also from: https://github.com/salesforce/

ja3.

39. ALTHOUSE, John. Easily identify malicious servers on the
internet with Jarm. Salesforce Engineering, 2021. Available
also from: https://engineering.salesforce.com/easily-

identify-malicious-servers-on-the-internet-with-jarm-

e095edac525a.

40. ALTHOUSE, John. JARM. 2020. Available also from: https://

github.com/salesforce/jarm.

41. DAVID MCGREW, Brandon Enright; ANDERSON., Blake.Mer-
cury: Fast TLS, TCP, and IP Fingerprinting. 2020. Available also
from: https://github.com/cisco/mercury.

42. Clustering: Types of clustering: Clustering applications. 2020. Avail-
able also from: https : / / www . analyticsvidhya . com / blog /

2016/11/an-introduction-to-clustering-and-different-

methods-of-clustering/#:~:text=Clustering%20is%20the%

20task%20of,and%20assign%20them%20into%20clusters..

57

https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-345-1/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-345-1/
https://doi.org/%2010.3390/app11041641
https://arxiv.org/abs/1607.01639
https://github.com/Visgean/Zeus/
https://github.com/Visgean/Zeus/
https://www.rfc-editor.org/rfc/rfc8701.pdf
https://github.com/salesforce/ja3
https://github.com/salesforce/ja3
https://engineering.salesforce.com/easily-identify-malicious-servers-on-the-internet-with-jarm-e095edac525a
https://engineering.salesforce.com/easily-identify-malicious-servers-on-the-internet-with-jarm-e095edac525a
https://engineering.salesforce.com/easily-identify-malicious-servers-on-the-internet-with-jarm-e095edac525a
https://github.com/salesforce/jarm
https://github.com/salesforce/jarm
https://github.com/cisco/mercury
https://www.analyticsvidhya.com/blog/2016/11/an-introduction-to-clustering-and-different-methods-of-clustering/#:~:text=Clustering%20is%20the%20task%20of,and%20assign%20them%20into%20clusters.
https://www.analyticsvidhya.com/blog/2016/11/an-introduction-to-clustering-and-different-methods-of-clustering/#:~:text=Clustering%20is%20the%20task%20of,and%20assign%20them%20into%20clusters.
https://www.analyticsvidhya.com/blog/2016/11/an-introduction-to-clustering-and-different-methods-of-clustering/#:~:text=Clustering%20is%20the%20task%20of,and%20assign%20them%20into%20clusters.
https://www.analyticsvidhya.com/blog/2016/11/an-introduction-to-clustering-and-different-methods-of-clustering/#:~:text=Clustering%20is%20the%20task%20of,and%20assign%20them%20into%20clusters.

BIBLIOGRAPHY

43. HUBERT, Lawrence; ARABIE, Phipps. Comparing partitions.
Journal of classification. 1985. Available also from: https://link.

springer.com/content/pdf/10.1007/BF01908075.pdf.

44. Scikit – Clustering. 2022. Available also from: https://scikit-

learn.org/stable/modules/clustering.html#clustering.

45. LI, Weizhong; JAROSZEWSKI, L; GODZIK, Adam. Clustering
of highly homologous sequences to reduce the size of large pro-
tein database. Bioinformatics (Oxford, England). 2001. Available
also from: https : / / www . researchgate . net / publication /

12038873 _ Clustering _ of _ highly _ homologous _ sequences _

to_reduce_the_size_of_large_protein_database.

46. MARTÍNEZ-HINAREJOS, Carlos-D; JUAN, Alfons; CASACU-
BERTA, Francisco. Generalized K-Medians Clustering for Strings.
In: 2003, vol. 2652, pp. 502Ű509. Available from doi: 10.1007/978-

3-540-44871-6_59.

47. ANKERST, Mihael; BREUNIG, Markus M.; KRIEGEL, Hans-
Peter; SANDER, Jörg. OPTICS: Ordering Points to Identify the
Clustering Structure. In: Proceedings of the 1999 ACM SIGMOD
International Conference on Management of Data. Association for
Computing Machinery, 1999. isbn 1581130848. Available from
doi: 10.1145/304182.304187.

48. SCHUBERT, Erich; SANDER, Jörg; ESTER, Martin; KRIEGEL,
Hans Peter; XU, Xiaowei. DBSCAN Revisited, Revisited: Why
and How You Should (Still) Use DBSCAN. 2017, vol. 42, no. 3.
issn 0362-5915. Available from doi: 10.1145/3068335.

49. HERSHBERGER, J.; SHRIVASTAVA, Nisheeth; SURI, Subhash.
Cluster Hull: A Technique for Summarizing Spatial Data Streams.
In: 2006. Available from doi: 10.1109/ICDE.2006.38.

50. STRATOSPHERE. Stratosphere Laboratory Datasets. 2015. Avail-
able also from: https://www.stratosphereips.org/datasets-

overview.

51. Malware Traffic Analysis. 2022. Available also from: https://www.

malware-traffic-analysis.net/.

58

https://link.springer.com/content/pdf/10.1007/BF01908075.pdf
https://link.springer.com/content/pdf/10.1007/BF01908075.pdf
https://scikit-learn.org/stable/modules/clustering.html#clustering
https://scikit-learn.org/stable/modules/clustering.html#clustering
https://www.researchgate.net/publication/12038873_Clustering_of_highly_homologous_sequences_to_reduce_the_size_of_large_protein_database
https://www.researchgate.net/publication/12038873_Clustering_of_highly_homologous_sequences_to_reduce_the_size_of_large_protein_database
https://www.researchgate.net/publication/12038873_Clustering_of_highly_homologous_sequences_to_reduce_the_size_of_large_protein_database
https://doi.org/10.1007/978-3-540-44871-6_59
https://doi.org/10.1007/978-3-540-44871-6_59
https://doi.org/10.1145/304182.304187
https://doi.org/10.1145/3068335
https://doi.org/10.1109/ICDE.2006.38
https://www.stratosphereips.org/datasets-overview
https://www.stratosphereips.org/datasets-overview
https://www.malware-traffic-analysis.net/
https://www.malware-traffic-analysis.net/

	Introduction
	Scope and Goals
	Structure of the Thesis

	Network Security
	SSL/ TLS
	TLS Handshake
	TLS Certificate
	Differences Between TLS 1.2 and TLS 1.3

	Application Protocols Using TLS/SSL

	Malware and Encrypted Traffic
	Current State
	Examples of TLS-based Malware
	Dridex
	Cobalt Strike

	Encrypted Traffic Classification Methods
	Deep Packet Inspection and Behavior-based Methods
	Fingerprinting Methods
	JA3, JA3s and JARM
	Mercury

	Design
	Fingerprints Cluster Comparison Method
	Use Case

	Clustering
	CD-HIT
	K-Medians
	OPTICS

	Metric Space
	Common Similarity

	Classification

	Implementation
	High-Level Design
	Data Loader Engine
	Clustering Engine
	Implementation of the CD-HIT
	Implementation of the K-Medians
	Implementation of the OPTICS
	Implemented Metrics

	Classification Engine

	Testing and Results
	Dataset
	Performance
	Accuracy

	Conclusion
	Discussion
	Attached files
	Bibliography

