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Introduction

In the last decade, neural networks achieved impressive results in all areas of
science, ranging from machine translation [Vaswani et al., 2017] and language
modeling [Brown et al., 2020] to image classification [Deng et al., 2009] or protein
folding [Senior et al., 2020]. These achievements were possible due to new archi-
tectures and a large amount of available data. Thanks to new technologies, we
can communicate with foreign people in their native language, our smart devices
can answer simple questions, and we are able to search through our photos just by
using keywords. Deep learning also influences other science fields, such as physics,
where they used deep reinforcement learning to control Tokamak [Degrave et al.,
2022], or biochemistry, where they used deep learning to tackle protein folding
with substantial precision [Senior et al., 2020].

One of the most natural questions that appear in other science areas is what
formula explains measured inputs and outputs. Ideally, we would want to measure
the process and then pass these data points into some clever algorithm, which
would then output the equation that best fits the data. Such problem of finding
underlying equation from inputs and outputs is called symbolic regression or
equation discovery and was first proposed by Koza [1992]. The searched equation
is usually made of variables, constants, and elementary functions, but it can even
contain recurrence relations d’Ascoli et al. [2022] or be in the form differential
equation. Symbolic regression was used by Matchev et al. [2021] to make a mass
prediction of galaxy clusters more accurate. Wadekar et al. [2022] used symbolic
regression to derive analytical expressions describing the relationship between the
modulated stellar spectrum M(λ) and the input atmospheric parameters. Besides
these applications in natural sciences, symbolic regression was used to discover
policy and value functions for reinforcement learning [Hein et al., 2017, Kubaĺık
et al., 2019]. Symbolic regression can also be used as a tool to learn to represent
classical machine datasets. Wilstrup and Kasak [2021] used symbolic regression to
find the underlying equation for each of the Penn Machine Learning Benchmarks
[Le et al., 2020] and outperformed several statistical machine learning approaches.

Historically, symbolic regression was approached by means of genetic program-
ming firstly proposed by Koza [1992]. Since then, many authors have built on its
foundations and it is still the prevailing method in symbolic regression [Schmidt
and Lipson, 2009, Gomes et al., 2019]. Genetic programming is a bio-inspired
approach that offers a natural way of finding the formula. It works by evolv-
ing expressions encoded as a tree using selection, crossover, and mutation. This
approach, however, has several disadvantages. It can be slow, and the found for-
mulas tend to increase in complexity without an additional performance. Since
then, several various approaches have been proposed. Brence et al. [2020] use a
probabilistic context-free grammar and the Monte-Carlo algorithm for grammar-
based equation discovery to recover equations from the Feynman dataset [Udrescu
and Tegmark, 2020]. Recently Martius and Lampert [2016], Sahoo et al. [2018],
Werner et al. [2021] used neural networks by training them on function inputs and
predicting the correct output values. However, instead of using one non-linear
activation function through the whole network, they use elementary functions
as activation functions and read the weights after the training to get the final
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formula. The disadvantage of this approach is that the number of layers restricts
the complexity of the final equation and that there is no straightforward way
to handle functions that do not have real numbers as their domain. Another
neural-based approach is proposed by Petersen [2019], Mundhenk et al. [2021]
where they have used RNN to predict the function. Then they have used re-
inforcement learning to train the network, and the coefficients are found using
global optimization. The disadvantage of these previously mentioned approaches
is that they are always trained from scratch, which can be slow and impractical
for some applications. To solve this issue Valipour et al. [2021], Biggio et al.
[2021] propose an approach where they pre-train transformer [Vaswani et al.,
2017] or transformer encoder on points and ground-truth equations to predict ex-
pressions without coefficients and find the coefficients in the post-processing step
using global optimization. d’Ascoli et al. [2022] extends the transformer-based
approaches to recurrent equations and predicts the coefficients jointly with the
symbolic representation.

To solve the issues of previous methods, we propose a novel approach that
extends the work of d’Ascoli et al. [2022] and Biggio et al. [2021] with the following
contributions:

• Effective utilization of powerful and scalable transformer [Vaswani et al.,
2017] architecture for the symbolic regression.

• Use pre-training on a large number of equations to bias the search.

• Jointly predicts both the symbolic representation and the coefficients, which
makes the decoder more informed.

• We utilize a local gradient search to further improve our results.

• We empirically show, that our model is competitive with current state-of-
the-art results while outperforming them in the required time to find the
expression.

• We propose a new way of coefficient representation during the training and
inference, which empirically helps the model.
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1. Background

This chapter introduces the reader to the most critical concepts of symbolic re-
gression and deep learning that are later used in the rest of this thesis.

1.1 Symbolic regression

Formally we can define the symbolic regression as: ”Given set of n input-output
pairs ¶(xi, yi)♢n

i=1 ⊆ X×Y , where xi = (xi1 , . . . , xik
) and yi ∈ R

k, we want to find
an equation e and corresponding function fe, such that y ≈ fe(x).” [Biggio et al.,
2021]. In general setting, the function f can be recurrent function as used by
d’Ascoli et al. [2022] or even differential equation. Symbolic regression is typical
example of machine learning on sets, since in general, the input to the model has
no natural order. Due to this limitation, we need to use special architectures or
tools to work with them.

Practically speaking, we are trying to find a function definition that for given
inputs generates given outputs. Usually, we are constrained on some closed in-
terval xik

∈ [a, b] and therefore, there exist many such functions which meet this
condition. An example of such set with input-output pairs sampled from [0, 5]
could be points ¶(1, 1), (2, 2), (3.5, 3.5), (4.1, 4.1)♢ and desired function f(x) = x.
The goal of symbolic regression is to find the function f(x) = ♣x♣, but the pro-
gram could also find function f(x) =

√
x2, which would have zero error on the

interval [0, 5] or functions sin(x) and cos(x − π
2
), which would be equally good.

However, usually, we are looking for a function that is in some sense the simplest
one, e. g. in the number of operators.

The complexity of symbolic regression spans mainly from the vast amount
of possible functions that can be generated. As shown in Lample and Charton
[2019], the amount of possible functions grows exponentially with the number of
operators.

1.2 Function representation

In the future, we will need a way to represent functions as a sequence of symbols
so they can be predicted using a neural network. We will therefore look closely
on what are the possibilities. In general, an expression can be considered a tree,
where internal nodes are operators (addition, sin, . . . ) and leaves (variables and
numbers) are operands. Each of these operators has an arity that tells us how
many arguments it expects (how many children the node has). For example, abs,
denoting absolute value, has an arity of one since it expects only one argument,
on the other hand, operator pow, denoting power, has an arity of two. All
the elementary functions in mathematics are at maximum binary, and therefore
the expression forms a unary-binary tree. Note, that the trees of semantically
equivalent expressions can be different due to commutativity or associativity. E.g.
function x + y = y + x, x · y = y · x or even sin x = sin (x + 2π), whose tree of
the left expression is different then the tree of the right expression. Since each
expression can be represented as a tree, we have three different ways to traverse
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+
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2

Figure 1.1: Example of an expression tree.

it.

• Preorder (prefix) representation

• Inorder (infix) representation means

• Postorder (postfix) representation

For example, if we have an expression (x + y− 1)2 and its tree is the same as
in Figure 1.1. The inorder representation would be the same, and the preorder
would be as ”pow + x - y 1 2” and postorder ”x y + 1 - 2 pow”. The advantage
of using preorder or postorder representation is that we do not need parentheses
and that the expressions can be easily evaluated [Gabbrielli and Martini, 2010].

1.3 Encoder-decoder architecture

Encoder-decoder is a general type of neural network architecture for handling
sequence to sequence problems. As the name suggests, the architecture consists
of an encoder and a decoder. The function of the encoder is to take an input
sequence and convert it into a dense representation. This representation can be
thought of as a representation of the whole input sequence. The decoder then
takes this representation and generates the output sequence [Arumugam and
Shanmugamani, 2018].

The encoder-decoder architecture is mainly known from NLP, where it is used,
for example, in the case of machine translation [Vaswani et al., 2017] or text
summarization [Khandelwal et al., 2019]. In the setting of symbolic regression,
the encoder takes a set of points, and the decoder outputs a sequence of tokens
representing the function given the dense representation and previous outputs.

1.3.1 Recurrent neural networks

Recurrent neural networks (RNNs) are a family of neural networks for processing
sequential data. The idea behind RNN is parameter sharing, making it possible to
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extend and apply the model to examples of different lengths and generalize across
them. Such sharing is essential when a specific piece of information can occur
at multiple positions within the sequence. For instance, in the case of intent
classification, the model should have the same output for ”I want to travel to
Germany next year.” and ”Next year, I want to travel to Germany.” [Goodfellow
et al., 2016].

The usual way to think about RNNs is as unfolding computation graph. Good-
fellow et al. [2016] defines RNN as a function f parameterized with Θ which takes
previous state h ∈ Rm and input x = (x1, x2, ..., xk):

h(t) = f(h(t−1), xt; Θ), (1.1)

where h(t) is called the hidden state. Lets assume that we are at time step
t = 3, then we can unfold the previous equation and obtain:

h(3) = f(h(2), x2; Θ) = f(f(h(1), x1; Θ), x2; Θ) (1.2)

Note that the same parameters Θ are shared across all timesteps Goodfellow et al.
[2016].

1.3.2 Transformer

The Transformer is encoder-decoder network architecture, where the encoder
maps input sequence of symbols (x1, . . . , xn) to a sequence of continuous repre-
sentations z = (z1, . . . , zn), then given z, the decoder generates output sequence
(y1, y2, . . . , ym) one token at the time [Vaswani et al., 2017]. The probability of
next token yk is given as P(yk♣yk−1, yk−2, . . . , y0, z). The goal of the transformer
model was to overcome some of the issues that the previous architectures had.
One of the main problems that RNN has is its inability to properly parallelize the
training due to the need of the previous hidden state to compute the next state.
The second issue is that the RNNs at step n need to remember k previous steps to
retrieve information at position n− k [Vaswani et al., 2017]. These liabilities are
not present in Transformer due to the Multihead attention mechanism, which on
the other side, has its issues, such as its computational cost, which is quadratic
with the length of the sequence [Vaswani et al., 2017]. This issue will, however
be addressed later. For the complete architecture of the transformer model, see
Figure 1.2.

Attention

An attention function can be described as the mapping of a query and a set of
key-value pairs to an output. This output is then computed as a weighted sum
of the values, where the weight represents the compatibility of the query and
corresponding key [Vaswani et al., 2017].

In case of transformer, the ”Scaled Dot-Product Attention” is used. Let us
denote concatenated queries as Q ∈ R

n×dq , concatenated keys K ∈ R
n×dq and

concatenated values V ∈ R
n×dv . The attention matrix is then computed as:

Attention(Q, K, V ) = softmax(
QKT

√
dk

)V, (1.3)
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Figure 1.2: Transformer model architecture. Source: Vaswani et al. [2017]
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where dk is the dimension of the model [Vaswani et al., 2017].
This computation is identical to the dot-product attention except for the 1√

dk

factor. The Vaswani et al. [2017] notes, that the scaling factor is used because of
the large values of dot product, which push the softmax into regions where the
gradient is small. To illustrate the issue, Vaswani et al. [2017] uses this example.
Assume that components of q and k are independent random variables with mean
0 and variance 1, then their dot product q · k =

√︂dk

i=1 qiki.

var (q · k) = var (
dk∑︂

i=1

qiki)
indep.

=
dk∑︂

i=1

var (qiki) =

=
dk∑︂

i=1

(var (qi) var (ki) + var (qi)(E(ki))
2 + var (ki)(E(qi))

2 =

=
dk∑︂

i=1

var (qi) var (ki) = dk

(1.4)

Instead of performing a single attention function with dmodel-dimensional keys,
values, and queries, Vaswani et al. [2017] found beneficial to project the queries,
keys, and values h times with learned linear projections. Then on each of these
projections, we can compute the attention and concatenate the output values,
which are projected once again. Multi-Head attention can therefore be defined
as:

MultiHead(Q, K, V ) = Concat(head1, . . . headh)W O,

headi = Attention(QW
Q
i , KW K

i , V W V
i ),

(1.5)

where W
Q
i ∈ R

dmodel×dk . The computation of the Multi-Head Attention, can be
seen on Figure 1.3.

One of the issues with the Multi-Head attention is its time and memory com-
plexity. Since we need to compute matrix multiplication, the time complexity is
O(n2 · d), where n is sequence length, and d is the dimension of the represen-
tation. The memory complexity is also quadratic O(n2) since we need to store
these matrices during the computation [Vaswani et al., 2017]. There were sev-
eral attempts to lower the time and memory complexity of Multi-Head attention,
such as Wang et al. [2020], Kitaev et al. [2020], but we will later describe a dif-
ferent approach that reduces the computational complexity and therefore is more
suitable for models with larger inputs.

Positional encoding

Since there are no recurrences and no convolutions in the transformer, the model
does not have information about the relative or absolute position of the tokens
in the sequence. To tackle this issue, Vaswani et al. [2017] introduces ”posi-
tional encoding”. The positional encodings have the same dimension as dmodel

and are summed with the token representation. There are two possible choices
of positional encodings. The first one is learned, which is more flexible encoding,
however, it adds parameters to the model. The second option is to use fixed
embeddings, which are given by some equation. Vaswani et al. [2017] propose
these embeddings as:

9



Figure 1.3: Computation of Multi-Head attention. Source: Vaswani et al. [2017]
.

PE(pos, 2i) = sin (
pos

100002i/dmodel
) (1.6)

PE(pos, 2i + 1) = cos (
pos

100002i/dmodel
) (1.7)

1.3.3 Decoding

Since encoder-decoder-based models usually work by predicting probability dis-
tribution over the next token once for each time step, we need a way to decode
the most probable sequence. The most straightforward way is to take the most
probable token at each time step. This method of decoding is called greedy search
[Kamath et al., 2019]. The issue with greedy decoding is it may not yield the
most probable sequence overall, since we are not considering any other tokens
during the decoding. To solve this issue, we can introduce beam search. The idea
behind beam search with beam width k is to keep the k most probable sequences
we have encountered before the current time step. This allows us to decode se-
quences with a small probability in the beginning but high in the end. The exact
algorithm can be seen in the Algorithm 1.

Another way how to select the most probable sequence is to use random
sampling. The idea behind random sampling is that in each time step, we sample
from the predicted distribution. Furthermore, there are several extensions of this
algorithm, namely Temperature sampling [Ackley et al., 1985], in which we alter
the distribution by defining the new probability as:

f(p; τ)i =
p

1
τ

i

√︂
j p

1
τ

j

, (1.8)
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Data: ŷ, beam width, T

Result: y with highest P (y)
R0 ← ¶(⟨SOS⟩)♢;
P0 ← ¶0♢;
for t in 1 to T do

for h in Rt−1 do
for ŷ ∈ Y do

ŷ = (yh
1 , . . . , yh

t−1, ŷ);
Rt+ = ŷ;
Pt+ = log2 P (ŷ);

end
Rt ← select beam width beams from Rt according to Pt;
Pt ← select highest beam width items from Pt;

end

end
return The most probable RT based on PT .

Algorithm 1: Beam search. Source: [Kamath et al., 2019]

Data: ŷ, n beams, T

Result: y with highest P (y)
R← [(⟨SOS⟩)] ×n beams;
P ← [0] ×n beams;
for t in 1 to T do

preds, probs ← predict(R);
next tokens, probs ← sample(preds, probs);
P+ = log2 (probs);
R← concatenate(R, next tokens);

end
return The most probable R based on P .

Algorithm 2: Random sampling.

where the lower the temperature τ is, the less diverse the results. Lately, there
were proposed several extensions of random sampling (popular mostly in NLP).
Namely Top-K sampling [Fan et al., 2018], where only the top k most probable
tokens are considered for sampling (while redistributing the previous probability
mass), or Top-P sampling [Holtzman et al., 2019], also known as nucleus sampling,
where we sample from the smallest set of tokens with cumulative probability
larger than some threshold p (while also redistributing the probability mass in
the end). The pseudocode of random sampling can be seen in the Algorithm 2,
where predict(·) function predicts the probability distribution of the next token
for each of the inputs, sample(·, ·) is one of the methods of sampling (random,
temperature, Top-K, or Top-P), and concatenate(·, ·) function concatenates the
sampled tokens with previous tokens.
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1.4 Deep learning with sets as input

Sets are a natural way of representing many machine learning problems. These
problems usually consist of some kind of input data that has no natural order.
For example, such problems are multi-instance problems, where the input data
are sets of examples [Chevaleyre and Zucker, 2001]. One of the examples of a
multi-instance problem is classifying aromatic molecules according to whether or
not they are ”musky” [Dietterich et al., 1997]. Another typical problem is set
classification, e.g. 3D shape classification [Wu et al., 2014a] or set to sequence
problems such as symbolic regression. There are generally two conditions that
the method should satisfy to solve these problems. The first one is permutation
invariance:

Property 1. A function f : 2χ → Y , acting on sets must be permutation invariant
to the order of objects in the set, i.e. for any permutation π:

f(¶x1, x2, . . . , xn♢) = f(¶xπ(1)
, xπ(2)

, . . . , xπ(n)
♢), (1.9)

which means that the output of the function f is same for ¶1, 2, 3♢ and ¶2, 3, 1♢
[Zaheer et al., 2017]. Note that 2χ denotes powerset. However, a more common
setting is when each set element has an associated label, the objective would be
to learn a permutation equivariant function.

Property 2. A function f : X
M → Y

M acting on sets must be permutation
equivariant, when function upon permutation of input instances permutes output
labels, i.e. for any permutation π:

f([xπ(1), xπ(2), . . . xπ(n)]) = [fπ(1)(x), fπ(2)(x), . . . , fπ(n)(x)], (1.10)

which just means that if the input to function f is [1, 2, 3] and the output is
[2, 4, 6], then for input [2, 3, 1] the output should be [4, 6, 2] [Zaheer et al., 2017].

The second desirable condition is the ability to handle variable-size inputs
since the size of the input sets can vary in size [Lee et al., 2018]. In recent years,
many methods were developed that meet these conditions, and some of them will
be described in the following sections.

1.4.1 Deep sets

Deep sets is a general framework for solving problems containing sets as inputs
using deep learning. Zaheer et al. [2017] prove that:

Theorem 1. A function f(X) operating on a set X having elements from countable
universe is a valid set function, i. e. invariant to the permutation of instances in
X, iff it can be decomposed in the form ρ(

√︂
x∈X ϕ(x)) for suitable transformation

ρ and ϕ.

Next, they analyze the equivariant case when X = Y = R and fΘ(x) = σ(ΘX)
is neural network parameterized by Θ and σ is non-linear function.

Theorem 2. The function fΘ : R
M → R

M (as defined above) is permutation
equivariant iff all the off-diagonal elements of Θ are tied together, and all the
diagonal elements are equal as well. That is

Θ = λI + γ(11T ), (1.11)
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where λ, γ ∈ R, 1 = [1, . . . , 1]T ∈ R
M and I ∈ R

M×M is identity matrix [Zaheer
et al., 2017].

Based on the Theorem 2, the function is permutation equivariant iff fΘ(x) =
σ(λIx + γ(11T )x). This is simply combination of its input Ix and sum of the
input values (11T )x. Since the summation is permutation invariant, the layer
is also permutation invariant. Zaheer et al. [2017] also further manipulate the
operations and parameters to get other variant, e.g.:

f(x) = σ(λIx + γ ·maxpool(x)1) (1.12)

This function can be interpreted as a combination of feed-forward layers with
pooling operation in the end. Zaheer et al. [2017] calls this neural network as
DeepSets and applies it to several problems. The general framework that they
propose is to first pass each input element xi through the same, possibly multi-
layer, feed-forward neural network to get the embedded representation ϕ(xi). The
second step is to use set invariant operation pool(·) (sum, mean, max, . . . ) over
the feature dimensions to get set representation and then pass it through several
feed-forward layers ρ [Jurewicz and Strømberg-Derczynski, 2021].

DeepSets(¶x1, x2, . . . , xn♢) = ρ(pool(¶ϕ(x1), ϕ(x2), . . . , ϕ(xn)♢) (1.13)

Even though this method introduces a simple way to handle sets in deep
learning and proof of the sufficiency of this method, several concerns were raised.
Jurewicz and Strømberg-Derczynski [2021] argues that summation prevents the
model from learning pair-wise and higher-order interactions between the elements
of the set. Wagstaff et al. [2019] notes that the proof of Property 1 presented in
Zaheer et al. [2017] considers only functions on countable domains, which could
in practice limit the practical value of the work.

1.4.2 Set-Transformer

Set-Transformer is transformer architecture, which can process input data which
consists of sets. There were two goals when proposing this architecture:

• Use powerful transformer architecture to handle sets.

• Since sets can be quite large and Multi-Head Attention scales with O(n2)
then to lower the time complexity without much loss of power.

Lee et al. [2018] builds upon the foundation of Zaheer et al. [2017] and notices
that Equation 1.13 can be deconstructed into two parts. The first is an encoder
ϕ(·) which acts on each element of a set and decoder ρ(pool(·)) which aggregates
these encoded features and produces desired output. To achieve these goals above,
Lee et al. [2018] introduces new layers.

Permutation Equivariant (Induced) Set Attention Block

Most previous methods used to project each instance of the set independently of
each other, which forbid them to model interactions among the instances. Lee
et al. [2018] therefore uses Multi-Head attention [Vaswani et al., 2017] from the
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transformer to encode the whole set. This allows the Set Transformer to compute
pairwise as well as high-order interactions among the instances. Lee et al. [2018]
defines Multi-head Attention block (MAB) as:

Definition 1 (Multi-head Attention Block). Let X, Y ∈ R
n×d represents two sets

of d-dimensional vectors of cardinality n. Then Multi-head Attention Block is
defined as:

MAB(X, Y ) = LayerNorm(H + rFF(H)), (1.14)

where H = LayerNorm(X + MultiHead(X, Y, Y )).

LayerNorm is Layer Normalization as defined by Ba et al. [2016], MultiHead
is Multi-Head Attention as defined in Equation 1.5 and rFF indicates row-wise
feed-forward layer, which processes each instance independently and identically.
After the definition of MAB, we can define the Set Attention block (SAB) [Lee
et al., 2018].

Definition 2 (Set Attention Block). Let X ∈ R
d×n be a matrix representing the

set of d-dimensional vectors and the cardinality of the set is n, then SAB is defined
as

SAB := MAB(X, X). (1.15)

The SAB block takes a set as input and performs a self-attention between the
elements in the set, resulting in a set of the same size. We can then stack these
blocks to create an encoder.

One of the potential issues of the SAB layer is the quadratic time complexity
O(n2) due to the use of Multi-Head Attention. This becomes costly for large
sets e. g. for 3D point clouds, where the number of points in the set can be
in thousands [Wu et al., 2014b], which becomes computationally infeasible. To
tackle the issue, Lee et al. [2018] introduces Induced Set Attention Block.

Definition 3 (Induced Set Attention Block). Let X ∈ R
n×d be a set and I ∈ R

m×d

is m d-dimensional matrix of learnable parameters called inducing points, then
ISAB is defined as

ISABm(X) = MAB(X, H),

H = MAB(I, X).
(1.16)

The ISAB first transforms inducing points I into H by attending to the input
set. Then this resulting set is again attended to the input set X, which produces
a set of n elements. This has an effect, that the attention is computed between
the set of size m and n, which lowers the time complexity of ISABm layer to
O(n · m), where m is a hyperparameter. Note that both SAB and ISAB are
permutation equivariant due to the usage of Multi-Head Attention, rFF, and
LayerNorm, which are all permutation equivariant.

Pooling by Multi-Head attention

A usual way to aggregate representations of each instance of the input set was
to use pooling operations such as a feature dimension-wise sum. However, one
of the concerns is that the high order interactions between individual instances
are lost [Jurewicz and Strømberg-Derczynski, 2021]. Lee et al. [2018] therefore

14



proposes a different kind of pooling which is called Pooling by Multi-Head at-
tention (PMA). The purpose of this method is to aggregate feature vectors by
applying Multi-Head attention with a set of k learnable vectors S ∈ R

k×d called
seed vectors.

Definition 4 (PMAk). Let Z ∈ R
n×d be set of features from an encoder and

S ∈ R
k×d are learnable parameters. Then:

PMAk(Z) = MAB(S, rFF(Z)). (1.17)

Note that the output of PMAk is a set of k items, which is another hyper-
parameter. The value of k is dependent on the task, however Lee et al. [2018]
usually use k = 1. Different values of k ̸= 1 can be used, for example, in the
case of clustering, where the k is dependent on the number of clusters. Lee et al.
[2018] also further models the interactions between the k outputs by applying
SAB afterward.

H = SAB(PMAk(Z)), (1.18)

which they show empirically to work better.

Final architecture

Using the layers above, Lee et al. [2018] defines the final model architecture as:

Encoder(X) = SAB(SAB(X))

Decoder(Z) = rFF(SAB(PMAk(Z))).
(1.19)

Is it also possible (depending on the underlining dataset and task) to change the
SAB layers to ISABk to lower the computational cost. Lee et al. [2018] also proves
that the whole transformer is permutation equivariant since all the building blocks
are permutation equivariant.
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2. Related work

The overall goal of this chapter is to describe related work. In history, the most
used methods were based on genetic programming, such as Koza [1992], which is
since then one of the main branches of the symbolic regression. However, with
the increasing popularity of neural networks, new approaches emerged in recent
years. Most of these methods are based on recurrent neural networks [Petersen,
2019, Mundhenk et al., 2021] or transformer architecture [Valipour et al., 2021,
Biggio et al., 2021, d’Ascoli et al., 2022], however, several novel approaches, such
as Equation Learner, [Martius and Lampert, 2016, Werner et al., 2021, Sahoo
et al., 2018] were developed.

2.1 Genetic programming

A natural way of solving symbolic regression is by using Genetic programming.
The way how Koza [1992] solve the symbolic regression is to encode the expression
as a tree. First, they create a set of possible operands and operators, then gener-
ate a population of random functions, and start the evolution process involving
selection, crossover, and mutation. The fitness function is defined as the mean
squared error between the function and the correct value from input points. Poli
et al. [2008] describes the usage of genetic programming for symbolic regression
in these steps.

2.1.1 Initialization

The evolution starts with creating k random expressions called population. Each
of these individuals is a binary-unary tree representing expression. The example
population can be seen in Figure 2.1. The first tree represents x + y − 1 + 2 =
x + y + 1, the second tree represents x + 1 + 2 = x + 3 and last one is 1− 2 = −1.
The Poli et al. [2008] does not mention any simplification procedure, but it could
be possibly used.

2.1.2 Fitness evaluation

As a fitness function, Poli et al. [2008] uses the sum of absolute errors, however,
different fitness functions such as RMSE [Rad et al., 2018] or R2 [Glantz and
Slinker, 2000] are possible. Chicco et al. [2021] notes that R2 is more informative
than MSE or MAE for regression analysis, and therefore R2 should also be a good
choice for the fitness function.

2.1.3 Selection, Mutation, Crossover

An important point, which Poli et al. [2008] raises, is to use selection that is not
greedy, meaning that even the individuals who have large fitness value (in case of
minimization) are selected with some probability. These types of selections are
called Fitness proportionate selections. An example of such selection is roulette
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Figure 2.1: Initial population

wheel selection [Blickle and Thiele, 1996]. The reason for selecting a sub-optimal
solution is to escape local minima.

Next operation that Poli et al. [2008] uses is mutation. During mutation,
random individuals are selected, and the subtree of a random node in the tree is
replaced with a random tree generated in the same manner as the individual was
created.

The final operation is the crossover, in which individuals are selected to create
offspring. First, two random individuals are selected, and an arbitrary node is
chosen in each tree. Then the algorithm swaps the subtrees spanning from these
selected nodes to create two new trees. The algorithm is stopped once the fitness
function is small enough (in the case of minimization).

2.2 Equation Learner

An interesting approach is presented by Martius and Lampert [2016]. Instead of
training the neural network to predict the desired function as its output, the
authors take a different approach. Lets ¶(xi, yi)♢n

i=1 ⊆ X × Y , where xi =
(xi1 , . . . , xik

) and yi ∈ R be one input instance. They train a feed-forward neural
network to predict yi based on the inputs xi. However, instead of using typical
non-linear activation functions such as ReLU [Agarap, 2018], they use elemen-
tary functions (sin, cos, identity, multiplication, . . . ) as activation functions.
Then they stack L of these layers to create a neural network with parameters
θ = ¶W (1), . . . , W (L), b(1) . . . , b(L)♢. To get the final function, Martius and Lam-
pert [2016] wait up until the network converges, and then they read the weights
from the network and its activations. However, this representation would be dense
since most network weights would be non-zero. Therefore to get the sparse func-
tion representation, they use a L1 penalty on the model weights, which pushes
them to 0. Therefore, the final loss function L consists of MSE between the
predictions ϕ(xi) and ground truth yi and L1 penalty on the network weights
(excluding biases).

L(D) =
1

N

|D|∑︂

i=1

∥ϕ(xi)− yi∥2 + λ
L∑︂

l=1

∥W (l)∥1 (2.1)

The benefit of using this method is that we can select different kinds of net-
works based on each input type, for example, if we have some insight into how
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complex the function is, we can use a different number of layers or select different
activations in each layer. However, this approach also has some disadvantages.
First, the network needs to be trained from scratch for each equation, which can
take some time. Second, it is possible that the final function representation can
get dense due to the number of weights in the network (many of them will be
probably close to zero), and lastly, there are some issues with functions domains,
e.g., there do not exist clear way how to handle ln · or

√· for negative values.
This model would also have a significant problem in retrieving exact exponents
since, once again, xa, a ∈ R can generate complex values.

However, recently there were several approaches which improves the original
Equation learner idea [Werner et al., 2021, Sahoo et al., 2018] by fixing the issue
with the function domains. For example Werner et al. [2021] introduces solution
to domain problem of ln · or

√· which involves shifting input ẑ = z + α by
learnable positive relaxation parameter α = log (1 + eα̂) > 0

f̂(ẑ) =

®

f(z + α), for z > a,

0, otherwise

2.3 Methods based on reinforcement learning

In recent years, new neural network-based approaches emerged. The idea is
to leverage the knowledge and power of neural networks to predict the expres-
sion. One of the first methods was introduced by Petersen [2019]. The idea
is to train Recurrent Neural Network for each of the input equations. The
goal of the network then predicts the given equation. To calculate the loss
between the ground truth function and the function predicted by the RNN,
they use Normalized root mean square error between the predicted values from
the predicted function and the groundtruth function. NRMSE is defined as

NRMSE = 1
σy

»

1
n

√︂n
i=1(yi − f̂(Xi))2, where σy is standard deviation of y, yi is the

ground truth, f̂ is the predicted function and Xi is one the function inputs. This
loss is however not differentiable due to usage of predicted f̂ , therefore Petersen
[2019] uses reinforcement learning to train the network with reward function de-
fined as R(τ) = 1

1+RMSE
. The process of generating the same expression tree as

in the Figure 1.1 can be seen in the Figure 2.2. To exploit the problem’s hier-
archical nature, the author uses the parent in the expression tree and its sibling
if its parent binary operation as the input to the network. This helps the model
since it does not need to remember these important nodes.

2.3.1 Training

The training is then done using NRMSE as the reward function using the Risk-
seeking policy gradient. The reason for using the Risk-seeking policy gradient is
that the standard REINFORCE policy gradient [Williams, 1992]:

∇θJstd(θ) = ∇θEτ∼p(τ |θ)[R(τ)] = Eτ∼p(τ |θ)[R(τ)∇θ log p(τ ♣θ)], (2.2)

is defined as an expectation that is often desired for control problems, where one
seeks to optimize the average performance of the policy [Petersen, 2019]. However,
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in the case of symbolic regression or program synthesis, the final performance is
measured by a single sample found during training. For such cases Jstd(θ) is not
an appropriate objective. Therefore Petersen [2019] proposes a new objective,
which focuses on maximizing best-case performance. First, they define Rϵ(θ) as
the (1− ϵ)-quantile of the distribution of rewards under the current policy. This
is, however, not tractable, and therefore they propose a new learning objective
Jrisk(θ; ϵ), parametrized by ϵ

Jrisk(θ; ϵ) = Eτ∼p(τ |θ)[R(τ)♣R(τ) ≥ Rϵ(θ)]. (2.3)

This learning objective aims to increase best-case performance at the expense
of lower worst-case and average performance. During the training Petersen [2019]
also outputs C as part of the symbolic output, which indicates coefficient. Since
the model does not output the exact values of these coefficients, they need to be
found in another way. Petersen [2019] uses global optimization BFGS [Fletcher,
1987] to find them, which in effect slows down the training. They report that
finding an equation from the Nguyen benchmark [Uy et al., 2011] (which will be
shown later) takes 1920.7±342.9 s without early stopping and 483±641.9 s with
early stopping on Nvidia P100.

Petersen [2019] also shows an easy way how to constrain the search space,
which can be easily used in any sequence to sequence model which outputs prob-
ability distribution. During the inference, it is possible to zero the probabilities of
an unwanted sequence of tokens. E.g. we do not want to have an operator followed
by its inverse (log (exp (x))) or nested trigonometric function (sin (1 + cos (x))),
which is not very common in real-world problems.

2.3.2 Hybrid approach

An interesting approach that has been proposed recently is to use Recurrent
neural networks and Genetic programming jointly. Mundhenk et al. [2021] uses a
method that first generates N samples from the RNN and then uses these samples
to initialize the population for the genetic programming algorithm. Then it runs
the genetic algorithm several times and selects the best samples from both RNN
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and the genetic algorithm. Lastly, it uses these found examples to calculate
the reward function to train the RNN and continues with the first step, which
once again generates N samples from RNN. This algorithm continues up until
the prediction is good enough. This approach has empirically better results in
comparison to Petersen [2019], however it can be slower in some cases.

2.4 Transformer based approaches

Since the invention of the Multi-Head Attention mechanism [Vaswani et al., 2017],
the transformer architecture has been used across all the machine learning sub-
fields. Symbolic regression is no exception in this regard, and therefore we will
describe approaches that use transformed-based architectures.

A critical distinction from previous methods is that the transformer-based
approaches are trained in a supervised manner, so they need to receive pairs of
points and expressions. In contrast, Genetic programming and Reinforcement
based methods focus on guiding the search, and therefore no training data are
necessary.

The full workflow usually looks like this. The first step is to generate data.
There are several approaches how to generate random expressions, which will be
described later, however, for now, let’s assume that we have generated k random
expressions. Next, we need to sample points from these equations. Some authors
choose to sample n points uniformly such as Biggio et al. [2021] or equidistantly
such as d’Ascoli et al. [2022]. The next step is to encode the generated expression
as a sequence of tokens. In most cases, each method has its unique way of handling
the coefficients. The different ways of encoding and handling the coefficients will
be described later. Finally, the model is trained using cross-entropy loss and
evaluated.

2.4.1 Data generation

There are several ways how to generate random expressions, such as modeling
an expression as output from probabilistic context-free grammar [Brence et al.,
2020] or generating a random expression tree [Valipour et al., 2021, Lample and
Charton, 2019]. Each of these methods starts with defining the operators (e.g.,
sin, cos, . . . ), which are fixed before the training, and the operands (variables,
possible integers, and floats) and assigning them some probability. Usually, the
randomly generated expressions are not in the most simple form (e.g., 1 + 1− 1
can be generated), and therefore most methods use postprocessing to simplify the
generated expression using SymPy [Meurer et al., 2017]. This, however prolongs
the time to generate one expression since the simplification can be costly. In-
terestingly d’Ascoli et al. [2022] empirically showed that skipping the expression
simplification does increase the training error, but the error on the validation set
stays the same.

The most straightforward way how to generate a random expression tree is
to recursively generate nodes while deciding what kind of node it is by randomly
choosing the arity of the node. If it is terminal, therefore containing constant or
variable, or if it is an operator such as sin or addition. The problem with this
approach is that it favors deep trees, and therefore not all trees are equiprobable
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[Lample and Charton, 2019]. To solve this issue Lample and Charton [2019]
derives an algorithm to generate a random unary-binary tree with n internal
nodes. First, they generate the tree, filling in the operators and leaves. The
pseudocode can be seen in Algorithm 3, where L(e, n) = (k, a) is the probability
that the next internal node is in position k with arity a.

Start with an empty node, set e = 1;
while n > 0 do

Sample a position k and arity a from L(e, n) (if a = 1 the next
internal node is unary);

Sample the k next empty nodes as leaves;
if a = 1 then

Sample a unary operator;
Create one empty child;
Set e = e− k;

end
else

Sample a binary operator;
Create two empty children;
Set e = e− k + 1;

end
Set n = n− 1;

end
Algorithm 3: Random unary-binary tree generation. Source: Lample and
Charton [2019]

A different approach is taken by Valipour et al. [2021], where they parametrize
the algorithm by the depth of the tree instead of a number of internal nodes. This
allows them to constrain the complexity of the expression since the complexity
is dependent on the depth of the tree. First, they generate a perfectly balanced
tree and fill the operations into the tree. If the operation is binary, then both
of its children are considered, if the operation is unary, only the left child is
considered. To allow an unbalanced tree, the authors introduce id(·) operation,
which returns its input unchanged. To further reduce the complexity of the
equations, the authors also randomly mark nodes as terminal, which results in
shallower trees.

2.4.2 Coefficient handling

Currently, there are two approaches how to handle coefficient. The first one
is not to handle the coefficients during the training and to find them in the
postprocessing step using some global optimization such as BFGS [Fletcher, 1987].
This approach is taken by Valipour et al. [2021] and Biggio et al. [2021]. First
they take the expression and remove the coefficients e.g. 2.1 sin (−5x) becomes
C1 sin (C2x). The model is then trained on these so-called skeletons using cross-
entropy, and in the postprocessing step, the coefficients are fitted using global
optimization. The disadvantage of this approach is that the model does not see
the coefficients during the training, which could theoretically help the model to
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Figure 2.3: The architecture of Symbolic GPT. Source: [Valipour et al., 2021]

make better decisions, and the second one is that the global optimization can
be quite slow, which slows down the whole inference and makes it harder to use
larger beam width during the beam search.

The second approach is taken by d’Ascoli et al. [2022], where they encode the
coefficients into the symbolic representation, and therefore they are part of the
model vocabulary. There are two cases of how to handle the coefficients. In the
case of integers, the authors encode the integers using some large base b and add
the sign. So for example −325 would be represented in base b = 10 as [−, 3, 2, 5]
and in base b = 30 as [−, 10, 25]. The size of the base b is a hyperparameter,
and it creates a tradeoff between the length of the sequence and the size of
the vocabulary. In their experiments, they use base b = 10000. In the case of
floats, they use the same approach as Charton [2021], where they encode the
floats in the base of 10 floating-points notation and encode them as a sequence
of 3 tokens. Sign, the four most significant digits (mantissa), and exponent.
Therefore 1

3
becomes [+, 3333, E−4]. The disadvantage of this encoding is that it

has limited precision due to the length of the mantissa. This has an effect that
when approximating complex functions, only the largest term in its asymptotic
expansion is usually predicted. The advantage, on the other side, is that it can
handle quite large values (up to 10100) [d’Ascoli et al., 2022].

2.4.3 Symbolic GPT

Another approach is called Symbolic GPT Valipour et al. [2021], which takes its
inspiration from the famous GPT2 model [Radford et al., 2019] and combines
it with ideas from T-Net [Qi et al., 2016]. The model is trained on expressions,
generated by generating a completely balanced tree as described in Valipour et al.
[2021] and Section 2.4.1. From this generated tree, the points are sampled. In
the case of a single dimension, only 30 points are sampled. The model is then
trained using these generated pairs.

The architecture can be seen in the Figure 2.3 and it consists of two parts.
The first part of the network consists of the T-Net [Qi et al., 2016], whose goal is
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to create a representation of the input points. The T-Net [Qi et al., 2016] consists
of several layers, first, it passes the input data through the batch norm layer [Ioffe
and Szegedy, 2015], then several feed-forward layers are used. Each of these layers
processes each point with the same feed-forward layer. Then the authors take
the representation of each of the points and perform a global max pool over the
feature dimension. This representation is then fed through feed-forward layers to
get the final representation. This representation is then called Point Embedding.
The second part is GPT encoder-like architecture which takes Point embedding,
Positional Embedding for each of the input tokens, and then Token Embedding
which embeds the symbolic tokens (sin, cos, . . . ). This overall representation
is passed through the encoder layers, and the final prediction is made by the
softmax layer, which gives the probability of the next token. This predicted
token is concatenated to previous inputs, and the prediction is performed once
again.

The whole model is trained in an end-to-end manner using cross-entropy
loss, and the expression coefficients are fitted using global optimization BFGS
[Fletcher, 1987].

2.4.4 Neural Symbolic Regression that Scales

Biggio et al. [2021] takes an inspiration from Lee et al. [2018] where they use
its encoder and original decoder from transformer [Vaswani et al., 2017]. The
architecture can be seen in Figure 2.4. First, Biggio et al. [2021] generates random
expression as random unary-binary tree as described in Lample and Charton
[2019] and samples uniformly 128 points from interval [0, 1]. Then it removes
coefficients from the expression to create a skeleton (e.g. x + 1 becomes x + C).
These sampled points are then fed into the transformer and trained using cross-
entropy loss between the predicted skeleton and the ground truth. The skeleton
is generated using beam search during the inference, and then the constants are
fitted using BFGS [Fletcher, 1987].

2.4.5 Deep Symbolic Regression for Recurrent Sequences

d’Ascoli et al. [2022] extends the problem of symbolic regression to recurrent
sequences. They use the idea from Lample and Charton [2019] to generate the
dataset while altering the original algorithm by introducing recurrent terms. They
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encode the floats and integers into the symbolic representation as described in
the Section 2.4.2 and train the model using cross-entropy loss. Compared to
other methods, they sample the equation equidistantly, since they are working
with sequences that take integer input. They also compare a different number
of sampled points ranging from 5 to 30. For the model, they use the original
transformer [Vaswani et al., 2017] and train it on five million equations. They
also use beam search in their experiments, and instead of ranking each of the
hypotheses by the log probability and the length of the output, the authors use
the error on the input points to select the best one.
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3. Method

The goal of this chapter is to describe the method, that we use to solve the
problem of symbolic regression. In short, we follow Lample and Charton [2019]
algorithm to generate the dataset and then train our transformer model based on
set encoder [Lee et al., 2018] and original decoder [Vaswani et al., 2017] in end-to-
end manner. In comparison to current state of the art approaches, our method has
many advantages. Mainly that the model is trained only once (genetic algorithms
and Petersen [2019], Mundhenk et al. [2021] needs tens of minutes to find the
right expression), predicts the coefficients jointly (Valipour et al. [2021], Biggio
et al. [2021] needs to find the coefficients using the global optimization) and in
comparison to d’Ascoli et al. [2022], our model does not have precision constraints
in mantissa. We also introduce local gradient search to further improve the model
coefficients.

3.1 Dataset

In order to create a dataset, we first randomly select the number of operators
and then we follow the Algorithm 3 proposed by Lample and Charton [2019].
The unnormalized probabilities of unary operations can be seen in Table A.1, for
binary operations in Table A.3 and for leafs in Table A.2. Then we use SymPy
[Meurer et al., 2017] to simplify the expression. However if SymPy is unable to
simplify the expression in 5 seconds, we ignore the generated expression. After
that, we sample randomly uniformly n points from the range [−5, 5]. In our
experiments, we have found out, that in some cases, the interval [−1, 1] was not
sufficient, since for example sin x was easily approximated by polynomial which
had negative effect on the results. Therefore we have decided to extend the range
to [−5, 5]. If there was some error on this range, meaning if there was some Not-
A-Number, infinity, complex number or if the absolute value of the coefficient is
larger than 1e7, we skip the range and continue with [0, 5] or [−5, 0] (similarly,
for more dimensions, where we enumerate all these possible combinations). This
error can happen in many natural cases such as log x, which is not defined on
(− inf, 0]. We also throw away an expression if the number of tokens representing
the expression is larger than 50 (expression is too complex), the found coefficients
are larger than 109 (too large) or if the absolute value of the coefficient is in
interval (0, 10−9] (almost zero coefficient). These constrains are there because of
the numerical stability and the requirements of the encoding. Besides throwing
out expressions which contain too large or too small values, we throw away linear
functions if they were generated only after simplification, but not before e.g. if
the generated expression is x+x0, we throw it away, but if the expression is x+1,
we keep it. We also throw away any constant function e.g. 5. The reason for both
of these filtering is, that many of the functions were linear after simplification and
the dataset was dominated by the linear and constant functions, which prevented
the model from learning more complex functions. The second reason is, that
if we are trying to model a function, linear or constant function is usually the
first choice, that we try, before exploring more complex functions. We also filter
out expressions which were simplified and contains operation which is not in the
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Figure 3.1: Model architecture

vocabulary (e.g. hyperbolic trigonometric functions or absolute value) its content
will be described in Section 3.3 (generally it contains most of of the common
mathematical operators such as sin, cos, exp, . . . ). The reason for throwing out
these functions is that they can be computed using different kind of formula
and they are very rare in the dataset (cosh appeared, at maximum, in 0.02 %
of generated expressions). If we would like to keep these operations, we could
substitute them with their equivalent form.

We have tested several settings for the maximum number of operators and
empirically found that the value of 10 (same value as in d’Ascoli et al. [2022])
gives the best tradeoff between the complexity and the variety of the expressions.
If we have used larger number, the expressions become too complex, which slows
down the training process, on the other hand if we select the smaller number the
complexity of the expressions is too low (mainly due to the simplification, which
generally reduces the number of operators). Interestingly d’Ascoli et al. [2022]
skipped the simplification step, which made the training loss larger, however the
final performance was unchanged. We have also experimented with the number
of equations, number of sampled points and number of variables. The effect of
such changes will be described in next chapter.

3.2 Architecture

In general our architecture consists of Set Transformer encoder as described in
Lee et al. [2018] and decoder as described in Vaswani et al. [2017]. The dia-
gram of the transfomer architecture, can be found in Figure 3.1. The input to
the encoder is set of points, and the output is hidden representation z ∈ R

k×d,
where d is dimension of the output and k is number of seed vectors. The ex-
act hyperparameters will be later described in experiments. First we take input
points and pass them through linear layer, which embeds them into higher di-
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mension (similarly to embedding layer in language modelling). After that we pass
it through several ISAB layers ending with Dropout [Srivastava et al., 2014] and
use Pooling-by-Multi-Head-Attention to get final representation z. In compari-
son to Lee et al. [2018], we did not find beneficial to use SAB layer in the end,
the performance was almost the same. Architecture of encoder can be seen in
Figure 3.2. The representation from the encoder is then passed to the decoder
with previous symbolic tokens and previous coefficients. These previous symbolic
tokens are passed through the embedding layer to get high dimensional represen-
tation. After that, the learned positional encoding is summed with the symbolic
representation to give the model some sense of the order. The final representation
is then concatenated or summed (based on architecture) with the representation
of symbolic tokens. The architecture of the decoder can be seen in Figure 3.3.
This representation is then passed through decoder as described in Vaswani et al.
[2017]. In the end, the internal representation is passed to classification head,
which predicts the symbolic representation and to regression head which predicts
the coefficient for the constant symbol.
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Symbolic representation: + C sin * 2 x

Coefficients representation: 0 1.7 0 0 0 0
Improved symbolic representation: + C1 sin * 2 x

Improved coefficients representation: 0 0.17 0 0 0 0

Table 3.1: Example of function representation.

3.3 Function representation

In our work we use pre-order representation of an expression as the function
representation. For example 1.7 + sin (2x) will becomes, [+, 1.7, sin , *, 2, x],
we further process the expression and replace the integers and floats with special
symbol C which indicates that the coefficient should be predicted by the model.
The previous expression therefore splits into two parts. The first part is symbolic
representation [+, C, sin , *, C, x] and the second is coefficient representation [0,
1.7, 0, 0, 2, 0]. We call this base encoding.

We also propose improved way how to represent these coefficients. Instead of
predicting the float number as 1.7, we first transform it to scientific-like format,
where the mantissa is between [−1, 1] and the exponent is part of symbolic rep-
resentation. The preprocessing goes like this. First we take the logarithm of the
constant to get the exponent = ⌈log10 C⌉ and then mantissa = C

10exponent , this will
transform the constant C to C = mantissa · 10exponent, where mantissa is in range
[−1, 1] and exponent is integer. So instead of predicting 1.7 and C, the model
predicts 0.17 and C1 which represents number as 0.17 · 101 = 1.7 (0.17 from the
regression head and Ck which represents 10k). Previous example [+, 1.7, sin , *,
2, x] therefore becomes [+, C1, sin , *, C1, x] and [0, 0.17, 0, 0, 2, 0]. We call
this extended encoding.

Furthermore we also help the model by including several integers from -5 to 5
as part of vocabulary to better represent rational numbers or integers in general
which naturally occur in equations e.g. x

1
3 or 3 + x. The representation can

be seen as a first part of the Table 3.1. We later empirically show that this
representation is more stable since the output from the regression head can be
only in interval [−1, 1] and therefore the loss is bounded. It also solves issues with
handling the different magnitudes of two losses. Note the maximum representable
value is upperbounded due to the maximum exponent that we can represent, but
it is not lowerbounded. Imagine, that our vocabulary only consist of C1, C0 and
C−1. We would like to predict 0.001, but the symbolic output can only have 10−1.
However nothing keeps the model from predicting 0.01 and C−1 and therefore it
is able to represent number arbitrarly close to zero. On the other hand, this
model would not be able to predict number 1000, since it is not able to predict 1
and C3. However, we believe, that this should not be an issue, since vocabulary
contains all exponents from [10−10, 1010] (only 20 tokens) and therefore is able to
represent numbers up to 1010 which is usually sufficient.

This representation has an advantage over the previous approaches such as
Valipour et al. [2021], Biggio et al. [2021], in which they did not predicted these
coefficients as part of output and therefore the model could not get some sense
of coefficients and how the output changes under the change of these coeffi-
cients. Secondly it improves the approach by d’Ascoli et al. [2022], which is
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able to represent only the four most significant digits. One of the issues with
the extended approach is, that it becomes significantly harder to be more precise
when predicting the coefficients, when the magnitude increase. So for example
sin (x + 0.017) + 10781.5 · x becomes [+, sin, +, x, C-1, mul, C5, x] as symbolic
representation with [0, 0, 0, 0, 0.17, 0, 0.107815, 0] as coefficients. Since the
binary representation of floats in IEEE 754 is sparse it will become harder and
harder to predict the exact coefficient for larger values. The complete vocabulary
of the model can be found in the Table A.4. Note, that we do not use subtraction
operator ”-”, since a− b = a + (−1) · b and division operator, where a

b
= a · b−1,

this reduce the number of operators, however it lengths the expressions.

3.4 Training

During the training we have to consider several possible losses. Since we need to
combine loss for both symbolic representation and for coefficients. The loss for
symbolic representation is straightforward, since we are training the Transformer
in supervised manner. The symbolic representation is trained using cross-entropy
loss [Goodfellow et al., 2016] defined as

Lclass = −Ex,y∼p̂data
log pmodel(y♣x). (3.1)

However for the regression loss, we have many possible options such as mean
squared error defined as:

Lmse =
1

k
∥ŷ − y∥2

2, (3.2)

where k is size of y, ŷ is the prediction from the network and y is ground truth.
Alternatively we can use mean absolute error:

Lmae =
1

k
♣ŷ − y♣ . (3.3)

Interestingly, we can also combine these two losses to get Huber loss [Huber,
1964] which is linear for large values and quadratic for small values. The Huber
loss is defined as:

Lhuber =

®

1
2
(y − ŷ)2 for ♣y − ŷ♣ ≤ α

α(♣(y − ŷ)♣ − 1
2
α) otherwise

,

where α is a hyperparameter, usually α = 1. In general, in case of simple coef-
ficients representation (where coefficient representation can have arbitrary num-
ber), we have used Huber loss since the mean squared error was too noisy, for the
extended coefficient representation, we have used mean squared error.

The final loss is then defined as

L = Lclass + λLreg, (3.4)

where reg is one of the regression losses and λ is hyper-parameter. We also
calculate the regression loss only on places, where the ground truth of symbolic
output was C. One consideration which we need to take before the training is
what value should λ have, since if the λ value is too large, than the model will not
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learn to output the correct symbolic representation, however if the λ is too small,
the model will not learn to output the correct coefficients. We have therefore
decided to use cosine decay [Loshchilov and Hutter, 2016], which is defined as:

lr = 0.5 · init · (1− α) · (1 + cos
π · step

decay steps
) + α, (3.5)

where step is minimum between decayed steps and current step, decay steps is
the number of steps we want to decay, and α is minimum value as a fraction
of initial value and init is initial value. However, since this equation decay with
time, but we want to increase the λ with time, we use

λ = init− lr. (3.6)

To further strength the effect, we also delay the schedule and keep λ = 0 for first
k epochs, which can resembles curriculum learning [Soviany et al., 2021].

Note that when training the model with base encoding, another issue which
we met during the training was that the model did not perform very well during
the inference. The hypotheses was, that the model is trained using teacher forcing
on the coefficients, which are always correct. However during the inference, this is
not necessary true. To emulate this issue, we inject random noise from N (0, σ2)
during the training. The value for σ2, is usually selected in similar manner as for
the λ. We use cosine decay as defined in Equation 3.5, however in this case we
lower the noise during the training. This phenomena did not appear using our
extended encoding but we have found beneficial to inject small noise during the
training.

3.5 Inference

During the inference, we use two different decoding strategies. The first one is
greedy decoding, where each timestamp we select the most probable token given
the previous tokens and the encoder output. The second one is a random sampling
in which case we generate n independent beams and sample from them using
Top-K [Fan et al., 2018], Top-P sampling [Holtzman et al., 2019] or temperature
sampling [Ackley et al., 1985]. To further improve our results, we run gradient
descent [Ruder, 2016] on the predicted coefficients. As a loss function we use
mean squared error between the y values from the input points and y values
which were obtained from predicted function f̂(x) on x from the input points.
The final expression is then selected with the smallest mean squared error.
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4. Experiments

In this chapter, we describe how the experiments were performed and evaluated.
We focused mainly on metrics that tell us how the model would perform during
the inference, but it is also important to monitor other metrics such as training
or validation loss to catch any possible errors.

4.1 Metrics

This section will describe metrics that we use to assess the model quality and its
predictions. We can generally divide metrics into three categories. The classifica-
tion metrics tell us how well skeletons are predicted, the second is the coefficient
metrics which measure how successfully the model can predict the coefficients.
The goal of the third metrics is to combine both the symbolic and the coeffi-
cient predictions, which measure the overall quality of the predictions. During
the training, we prioritize the classification metrics over the regression metrics
since when the model cannot predict the correct formula, the perfect prediction
of coefficients is useless. However, overall, we care the most about the last kind
of metrics since they measure the desired performance.

4.1.1 Classification metrics

Since the goal of the network is to predict the formula exactly, natural way of
measuring its success is accuracy. We define the per batch accuracy of prediction
ŷ as:

Acc(y, ŷ) =
1

m

|batch|∑︂

j=1

|y|∑︂

i=1

1yj

i
=ŷj

i
, (4.1)

where y
j
i is ground truth vector j on position i, and m is the number of positions

where the accuracy was calculated. The prediction or ground truth can be longer,
and therefore, we calculate the accuracy only on valid positions from the ground
truth. We defined the accuracy per batch to be able to define what we call hard
accuracy, which tells us exact match accuracy.

AccHard(y, ŷ) =
1

n

|batch|∑︂

j=1

1yj=ŷj , (4.2)

where n is the number of vectors in the batch. These metrics are important in
assessing how good the model predicts the formulas without constant. If the
model cannot predict the symbolic representation successfully, then there is no
need to predict the coefficients. We also use cross-entropy loss to measure how
good the model is performing.

4.1.2 Coefficient metrics

To measure the quality of the predictions of the regression head and to be able
to compare different losses, we use the same metrics for all models, mean squared
error, mean absolute error, and Huber loss. Note that the loss computation is
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done only if the model should predict the symbol C representing the constant since
we can always zero out the values for non-constant tokens during the inference.
Besides those metrics, we also introduce Hard regression metrics, which reflect
how large the error on coefficients is if the symbolic prediction was completely
correct.

RegMetHard =
1

n

∀vectors∑︂

j

1yj=ŷj RegMet(c, ĉ), (4.3)

where yj is the symbolic ground truth, ŷj is the symbolic prediction, c is ground
truth of coefficients, ĉ is prediction of coefficients, n is the number of symbolic
predictions which were completely right and RegMet is some regression metric. It
does not make a lot of sense to look at error of the regression head, if the model
did not predict the expression completely correctly since the regression values
can be on the same position, but in totally different expression e.g. exp(100x)
vs ln(100x), regression error would be 0 but, the expressions are diametrically
different.

4.1.3 Hybrid metrics

The disadvantage of using only the coefficient of the classification metrics above
is that they do not truthfully reflect the model performance on the underlying
task. The issue is that the model can have an accuracy of zero and a large coef-
ficient error, but the prediction is entirely correct e.g. cos (−π

2
+ x) and sin x are

equivalent, but the model would receive both large regression error and classifi-
cation error. To address this issue, we introduce hybrid metrics, which consider
both symbolic and regression output. All the hybrid metrics mainly work based
on the error between the predicted values f(x) = y ∈ R from the ground truth

and from the predicted function f̂(x) = ŷ on some input x ∈ R
d, where d is the

dimension of the input.
Before we compute the metrics on the inputs, we first need to consider in

which range we will sample the points. Firstly, we sample the points from the
range [−5, 5] (or similar as we described in Section 3.1 to find the right function
domain). We call this range an interpolation range since the model needs to
find the function by interpolating the inputs. The second range, from [−6, 6]
(excluding the interpolation range), is called the extrapolation range since it
shows how good the model is outside of known boundaries. To assess the quality
of the model, we will introduce several metrics. In most of these metrics, we
report median values instead of mean due to the outliers with large values, which
will dominate the mean. Example of such large error are functions 1

x
and − 1

x
for

x ≈ 0.

Classic regression metrics

Similar to the metrics on coefficients, we can use similar metrics here, but on
the points predicted by the ground truth function and the function predicted by
our network. We can calculate mean squared error or mean absolute error on
predicted ŷ and ground truth values y. The disadvantage of such an error is that
it does not consider the magnitude of the predicted values. For example, if we
have a function x, we can expect low errors on the interval [−5, 5], however, if
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the ground truth is 1000x, then the errors will be in a different magnitude. To
address the issue, we use relative error, which is computed as:

RE(y, ŷ) =
1

♣y♣
∑︂

i

♣yi − yî

yi

♣, (4.4)

where y is vector of values from ground-truth function f(x) = y, ŷ is vector of

values from the predicted function f̂(x) = ŷ and ♣y♣ denotes the size of y.

Coefficient of determination

Another metric that is often used in regression analysis is the coefficient of de-
termination, often called R2 (R-squared). R2 is a dimensionless measure of how
well a model describes a data set. R2 is defined as:

R2 = 1−
√︂

i(yi − ŷi)
2

√︂
i(yi − ȳ)2

, (4.5)

where yi is ground truth, ŷi is the prediction and ȳ is the mean of y, ȳ = 1
n

√︂n
i=1 yi

[Glantz and Slinker, 2000]. The advantage of R2 is that it has a nice interpreta-
tion. If R2 ≤ 0, then it means it would be better just to predict the mean value.
If the R2 = 1, then we have perfect predictions. Another interpretation that can
be used is that R2 is the fraction of the variance that the model ”explains,” and
therefore, one would want to maximize R2 ideally.

4.2 Training

The code for training is implemented using Tensorflow [Abadi et al., 2015] and
available at https://gitlab.mff.cuni.cz/vastlm/master-thesis or in sup-
plementary materials, where they also contain pretrained models. We trained
the model using a multi-GPU setup with batch sizes ranging from 128 to 768,
depending on the model and the number of sampled points. During the hyper-
parameter tuning, we train the model for 130 epochs (or 390 epochs for the final
model) using Adam optimizer [Kingma and Ba, 2014] with learning schedule as
described in Vaswani et al. [2017], however, divided by 5.0 since the model some-
times diverged during multi-GPU setup. We also use label smoothing [Goodfellow
et al., 2016] to regularize the model further. We trained the model on two Nvidia
GTX 1080 Ti or on eight Nvidia A100. For the encoder, we use 4 layers, 12
heads in Multi-Head attention, the dimension of the model is 384, and we use
64 inducing points. We also use a dropout layer after each ISAB with a rate of
0.1. For the PMA, we use 32 seed vectors. For the decoder, we have 4 layers,
with the model dimension of 256, a number of heads of 8, and the dimension of
the feed-forward layer of 256. The names of hyperparameters are the same as in
the original Transformer paper Vaswani et al. [2017]. For the regression head, we
use two feed forwards layers of size 64 with tanh activation function in the end
to squash into the [−1, 1] interval for the model, which contains exponents in the
symbolic output (extended encoding) and no activation function for the model
which predicts the coefficients on its own. We call this model a large model. We
also have a baseline model, which just has a smaller encoder. The only difference
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Figure 4.1: The model approximates function using a polynomial.

is that the number of heads is 8 instead of 12 and the model dimension is 256
instead of 384. We use this model to test several of our hypotheses and save
the computation power. Our model has around 70 million parameters depending
on the hyperparameters. We also concluded a small hyper-parameter search to
find the best architecture. To compare the effect of different sizes of datasets,
we set one epoch to be equal to one million equations. We also run the cosine
scheduling on the regression parameter during the training and delay it for 50
steps. The starting value is 0 and ends at 1.0 in the end. For the injected noise
into the coefficients, we have found it most beneficial to use noise with σ2 = 0.1
and slowly decay it to 0 during the whole training. The comparison of different
noises will be described later.

4.3 Dataset

The dataset is created as described in Section 3.1 using at most 10 operations
and with a range [−5, 5]. We were also considering using a smaller range how-
ever we have run into the issue where the model approximated some functions
using a polynomial. One example is function 1.5574x2

arctan x
, where model predicted

1.3623x+0.0902x2. These functions are close, and therefore the model had prob-
lems distinguishing between them on the interval [−1, 1] during the training the
model learned to predict polynomials in most cases. In total, we have generated
130 million equations, which took around 500 CPU days, since generating 10
000 equations takes around 1 hour on average, mainly due to the simplification in
SymPy [Meurer et al., 2017]. We have sampled 500 points for each equation, how-
ever, we test the effect of the number of sampled points in the results section. We
have generated 10 000 equations with the same hyper-parameters as the training
generator but with different random seeds for the validation set. Note that the
validation set can contain the same expressions as the training set, but they have
distinct sampled points. The 2D dataset was generated similarly, except that we
have generated only 100 M equations.
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We were also considering generating a dataset, which contains only unique
equations. However, one issue with generating this dataset is that it is very hard
to create a unique expression not contained in the dataset. Such problematic
examples can be sin x and cos (x− π

2
), which are semantically the same but have

different symbolic and coefficient representations. This is not the only issue. Even
if we could filter such equivalent pairs, we would have problems with functions
that are the same on the closed interval but different outside of this interval.
Filtering such equations by the points would be costly, and therefore we have
decided not to create such a dataset.

4.4 Local search

Since the model is predicting symbolic representation and coefficients jointly, we
would ideally want to improve the coefficients further to fit the input points better.
We have chosen to use a local gradient search to improve the points further. We
use gradient descent [Ruder, 2016] with a learning rate of 0.001, momentum 0.9,
and clip norm 10. We use the mean squared error between the predicted values
and the ground truth as a loss function. We ran the gradient search up until the
loss did not improve by at least 0.1 % for 5 iterations. After that, we return the
best coefficients with its loss. This approach, however has one issue, if we use
coefficients as they are, we can run into problems with function domains. For
example, let’s imagine we are trying to find x10, the model predicts x10.15, and
we would like to improve these coefficients further. The issue is that for x < 0,
the result is a complex value. To solve this issue, we artificially add abs(·) into
the expression if the operation would create a complex value. Note that we do
not add the abs(·) if it is not necessary in cases such as x3, where negative values
can appear in the input.

4.5 Evaluation benchmarks

Since there is no single dataset that everyone uses, mainly due to the prevalence
of genetic algorithms in the area of symbolic regression, everyone uses its own
dataset. This has an effect that the final distribution of the expressions in the
dataset is different for each method and each generator hyper-parameters. Be-
cause of this, some methods can generate datasets that are similar in distribution
to the benchmark datasets, and therefore, they can have some advantage. How-
ever, the equations presented in these benchmarks are usually expressions, which
could one see in real-world applications. Another problematic aspect of the evalu-
ation is that many metrics measure the quality of the regression, and each author
decides on its own which metric they will use.

To compare our results, we will mainly follow the benchmarks as described
in Mundhenk et al. [2021]. They use the Nguyen benchmark [Uy et al., 2011],
R rationals, [Krawiec and Pawlak, 2013] and their newly proposed benchmark
Livermore [Mundhenk et al., 2021], we extend these benchmarks with Keijzer
[Keijzer, 2003], Constant, and Koza [Koza, 1994]. However, these benchmarks
are mainly built for methods that are optimized per equation and therefore con-
tain the ground truth function, the range where it should be sampled, sampling
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type (uniform or equidistant), number of sampled points, and the set of elemen-
tary functions, and number of variables. However, our method is trained on the
[−5, 5] range with uniform sampling, a fixed number of points, and a fixed set of
elementary functions, and therefore the comparison will not be strictly compara-
ble. The benchmark functions can be seen in Table A.5.
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5. Results and discussion

This chapter will outline our results and compare several different settings and
their effect on the results. Lastly, we will compare our best model to other
approaches. Note that in most of these experiments, the different settings are de-
pendent on each other, e.g. the number of generated equations and the number
of sampled points. If not stated differently, we use 100 points and 130 million
equations, we concatenate the representation of symbolic embedding with coeffi-
cient embedding and sum it with positional encoding. We also use the symbolic
representation with constants containing exponents (extended encoding). We will
compare the results from greedy decoding on 1024 random equations from the
validation set for each setting. The results can be further improved by using
random sampling with Top-k sampling [Fan et al., 2018] with a local search on
the constants shown on the final model. The full metrics and training process
will also be shown only for the final model. Later we will also assess the model’s
ability to generalize outside its training hyperparameters. To compare different
hyperparameters, we use relative error, denoted as RE, and R2 metric on interpo-
lation range [−5, 5] and extrapolation range [−6, 6] (excluding the range [−5, 5]).
Note that we use median values due to outliers.

5.1 Dataset hyperparameters

In this section, we will consider different settings of function representation, num-
ber of sampled points, and number of equations. Overall, using extended coef-
ficient representation (the one with exponents), 100 points, and as much data
as possible is the best choice of hyperparameters, which gives the best trade-off
between the performance and computational effectiveness.

5.1.1 Effect of function representation

In this experiment, we want to compare how the expression representation im-
pacts the model performance. We present two approaches how to predict these
coefficients. Both of them predicts the symbolic output in the same way, however
the difference is that for the first representation the model predicts the coefficient
for the whole R e.g. function is sin x + 20 + x0.7 which is [+, sin, +, x, 20, pow,
x, 0.7] and the symbolic output is [+, sin, +, x, C, pow, x, C] and the coefficient
output is [0, 0, 0, 0, 20, 0, 0, 0.7]. The second approach uses the exponents in
the symbolic output and values from [−1, 1] in the coefficients so [+, sin, +, x,
20, pow, x, 0.7] becomes [+, sin, +, x, C1, pow, x, C0] for symbolic output and
[0, 0, 0, 0, 0.2, 0, 0, 0.7] for coefficient output. The hypothesis is that the second
representation is more stable during the training since the coefficient values are
bounded, however, it could possibly have issues with values close to the correct
values e.g. ground truth is 0.99 and the model could have problems if it should
predict C0 or C1. One of the issues with the classical encoding is that the re-
gression loss tends to be pretty large and noisy during the training. The second
issue is that the regression loss is larger than the classification loss, and therefore
we use the cosine schedule as defined in Section 3.4 with the final learning rate
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Figure 5.1: The effect of encoding.

Encoding type RE inter. ↓ RE extrap. ↓ R2 inter. ↑ R2 extrap. ↑
Base 0.269 0.1612 0.9116 0.7314

Extended 0.1143 0.0775 0.9817 0.9392

Table 5.1: Effect of expression encoding.

of 0.01 and delay it for 50 epochs. We could start with some fixed value, in the
beginning, however, in our experiments, the classification loss diverged when we
started with a non-zero value for the regression loss. The results can be seen
in Table 5.1. The extended encoding is superior in all of our metrics, and even
though we would probably be able to find ideal hyperparameters to match the
performance, it is easier to use the extended encoding and not to tune the param-
eters. Furthermore, the training is more stable, it requires less hyperparameter
tuning since it is not sensitive to the regression loss schedule and noise schedule,
and it does not diverge in the end due to the need to balance regression and clas-
sification loss. These issues can be best seen on the training loss in the Figure 5.1.
Note that these losses are not comparable in absolute value. It is important to
compare them by their shape since base encoding uses Huber loss and extended
encoding uses mean squared error.

5.1.2 Effect of number of sampled points

One of the most critical hyperparameters is the number of sampled points. We
can expect that with the increase of sampled points, the model’s performance
also increases. However, with a large number of points, the time and memory
complexity also increase, which slows down the training. The second downside
is that if we would like to use our model in a real-world scenario, we usually do
not have that many points. We have tested 100, 200, 300, and 500 points for the
smaller model. The results can be seen in the Table 5.2. As you can see, the more
points were sampled, the better model performed. This is, however, expected.
Interestingly the model with 100 and 200 points has similar performance, and then
the 300 and 500 also have similar performance. The explanation could be that
there is some threshold of the number of points (in this case, somewhere between
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# points RE inter. ↓ RE extrap. ↓ R2 inter. ↑ R2 extrap. ↑
100 0.1596 0.1154 0.9580 0.8223
200 0.1695 0.1169 0.9587 0.8378
300 0.1468 0.0897 0.9734 0.8620
500 0.1231 0.0881 0.9815 0.9127

Table 5.2: Effect of number of sampled points

# equations RE inter. ↓ RE extrap. ↓ R2 inter. ↑ R2 extrap. ↑
1 M 0.1352 0.0905 0.9694 0.8864
10 M 0.1113 0.0636 0.984 0.9505
50 M 0.0984 0.0637 0.9853 0.9476
130 M 0.0957 0.0644 0.9872 0.9574

Table 5.3: Effect of number of equations

the 200 and 300) where the number of points below this does not improve the
performance, but once we pass this threshold, the performance improves. In the
end, we have decided to use the model with 100 points since it is comparable
with the performance of 200 points, however, it is more computationally feasible
than the 300 and 500 (500 was not able to finish 130 epochs in 48 hours for larger
model). The second reason we have decided to use the 100 points is how the
benchmarks are defined since they usually sample a low number of points.

5.1.3 Effect of number of equations

We want to see how the number of randomly generated equations impacts the
model performance with these experiments. Usually, we want to use as much
data as possible in machine learning, especially deep learning. Many problems
can be solved by using a large amount of good quality data and a large model.
Fortunately, in the case of symbolic regression, we can generate as much data
as we want, therefore, we have generated 130 million random equations. One
would expect that the model performance would improve with the increase of
data if the model has enough capacity. It can be seen from the Table 5.3, that
the performance of the model increases with the number of equations, however,
the difference between the 50 million and 130 million is not so significant.

5.2 Architecture considerations

In this chapter, we will outline our architecture considerations, we mostly settled
on using a concatenated representation of embedding and not using SAB after
the PMA layer. We have also fixed the overall architecture regarding the encoder
from Set Transformer [Lee et al., 2018] and decoder from the original Transformer
[Vaswani et al., 2017]. However different architectures are possible, for example
d’Ascoli et al. [2022] uses original Transformer.
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Merge op. RE inter. ↓ RE extrap. ↓ R2 inter. ↑ R2 extrap. ↑
Sum 0.1133 0.0747 0.9829 0.9371

Concatenate 0.0957 0.06.44 0.9872 0.9574

Table 5.4: Effect of a different merge operation

Size RE inter. ↓ RE extrap. ↓ R2 inter. ↑ R2 extrap. ↑
Baseline (23 M) 0.1286 0.0824 0.981 0.9055
Larger (73 M) 0.0957 0.0644 0.9872 0.9574
Final (96 M) 0.0515 0.0315 0.9964 0.9879

Table 5.5: Effect of a different merge operation

5.2.1 Effect of the embedding merge operation

One decision we need to make is how we will merge the embeddings from symbolic
input and the coefficient input. We have tested two settings. In one case, we have
pairwise summed these representations, and in the other, we have concatenated
them. To make a fair comparison between the two operations, we want to have
the same final dimension after the merge operation. We, therefore, decided to use
half of the dimensions for the symbolic embedding and half of the dimensions for
coefficient embedding for the concatenate case, and full dimension for the summa-
tion case. We have tried two different settings of the merge operation and found
that the concatenate operation tends to perform slightly better than the sum
operation with the same number of parameters and the same hyperparameters.
The results can be seen in Table 5.4.

5.2.2 Effect of the model size

The important hyperparameter of the model is the model size. We have decided
to try three different models, the first one is the baseline in which the encoder
has 8 heads and the model dimension is 256 and the decoder also 8 heads, the
dimension of the feed-forward layer is 256, and the dimension of the model is 256.
The second model is larger, with 12 heads and a dimension 384 in the encoder
and 12 heads, the dimension of the feed-forward layer is 384, and the dimension
of the model is 384. The third one, the final, was trained on slightly different
hyperparameters, and therefore it is not precisely comparable with the larger and
the baseline model just by the number of parameters. The exact hyperparameters
of the final model will be described later. Note that most of these parameters
are in the encoder part, which in the case of the baseline model has cca 20
million parameters and the decoder 3 million, and for the larger model, 67 million
parameters for the encoder and cca 6 million parameters for the decoder. The
idea is that the encoder should do the heavy-lifting i.e., transforming the points
to latent representation, and the decoder should do the easier work. As expected
from the results in Table 5.5, the larger the model, the better it performs, with
a significant jump between the larger and final model. Note that the final model
was scaled even more and trained for longer, so the difference can also be due to
longer training.
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Size RE inter. ↓ RE extrap. ↓ R2 inter. ↑ R2 extrap. ↑
No noise 0.1126 0.0805 0.982 0.9339
N (0, 0.1) 0.1019 0.0685 0.9864 0.9408
N (0, 1.0) 0.1159 0.0732 0.9843 0.9378

Table 5.6: Effect of different noise injection

Metric name Greedy search Top-K sampling
R2 interp.↑ 0.9964 0.9995

R2 extrap. ↑ 0.9887 0.9984
RE interp. ↓ 0.0515 0.0288
RE extrap. ↓ 0.0315 0.0090
Accuracy ↑ 58.96 % 43 %

Hard accuracy ↑ 53.71 % 17.19 %
Hard MSE ↓ 0.0008 0.3982

Table 5.7: Evaluation metrics using greedy and Top-K sampling.

5.2.3 Effect of the injected noise

Even though the amount of injected noise into the coefficients does not entirely
change the model performance, it trains the model on the possibility of making
an error. From Table 5.6 we can see that injecting too much or too little noise
hurt the model. Therefore, we have decided to use σ = 0.1 and use cosine decay
on this parameter. The idea is that in the beginning, the model makes these
errors more often, and with time, it learns to make smaller and smaller errors.
Note that we have used the smaller model to save computational resources in this
case.

5.3 Final model

For the final model, we have decided to scale the model even more and trained
it for 390 epochs (each epoch is one million equations, and therefore the model
has seen the data three times). We have not used this model during the hyperpa-
rameter tuning because the training of the model takes around one day, and we
wanted to save computational resources. The hyperparameters of the final model
can be seen in Table A.6.

5.3.1 Greedy and Top-K sampling results

We use TopK sampling [Fan et al., 2018] with K = 16 and sampled 256 equations
during the inference. In the end, we have selected the equation which has the
lowest MSE between the predicted values and the ground-truth. The results can
be seen in Table 5.7. Note that the metrics for Top-K sampling [Fan et al.,
2018] are estimated on 256 equations and 1024 for the greedy search. From the
Table 5.7 it can be seen that even with a greedy search, the model can perform
very well, however, further improvements can be done using Top-K sampling.
Interestingly, the accuracy and mainly hard accuracy were lower when using Top-
K sampling. The explanation for this observation is that we select the equation
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Ground-truth Greedy search Top-K sampling
cos (x2) cos (x2) cos (x2)

x2 x2 (x4)0.5

(1.9881 + xx)−1 (2.1555 + xx)−1 2.0x2 + x2(xx)−1

0.0597− 5x1−sin
√

x −2.2x− 3.7 sin 2.1x− 2.3x log x −5x1−sin
√

x

Table 5.8: Examples of generated expressions

by MSE and therefore is not selected as the most probable equation but the most
fitting equation. This naturally decreases the accuracy since less likely equations
are selected. However, on the other hand, the R2 metric is maximized, and
therefore we see better results. We have also decided to show only Hard MSE
(MSE calculated only if the skeleton was predicted correctly) since it does not
make sense to compare the ability of the model to predict correct coefficients if
the skeleton is not identical. The hard MSE is larger for Top-K sampling than
is for greedy search because the number of equations in which skeletons were
entirely correct was lower in comparison to the greedy search, and therefore the
sample is too small.

To show the ability of the model to predict the correct equations, we have
plotted several model predictions and their ground-truth, which can be seen in
Figure A.1 and in Table 5.8. The interesting ability of the model is to approximate
one function using another. For example, in the Figure A.1f, model should predict
(1 + x−2)−0.5, but predicted sin(♣atan(x)♣). If we look at the difference between
these two functions, we find that the absolute difference on the interval [−10, 10]
is at a maximum 10−16. Note that the greedy search and Top-K sampling results
are not necessarily generated by the same set of points, they just share the same
ground-truth (some of the numbers can be rounded, so they fit the table).

Furthermore, we have decided to run several experiments using TopK [Fan
et al., 2018], TopP, [Holtzman et al., 2019] and temperature sampling [Ackley
et al., 1985] to select the best performing sampling method with 256 samples.
From the results in Table 5.9, it can be seen that all methods are comparable in
all of the metrics and the differences are subtle. However, the best performing
method is Top-K [Fan et al., 2018] with K = 20, which will be used for the
benchmarks. Another hyperparameter that we wanted to test is how the number
of generated expressions helps with the model performance. The results run on
one GPU with 64 GB RAM and 16 CPUs without coefficients optimization can
be seen in Table A.7. There is a trade-off between the running time and the
model performance. The best performing model uses 16384 equations, but it ran
for almost 12 hours for 256 equations, which is not practical, however, it allows
us to find the best possible equation. On the other hand, when selecting only 16
or 32 equations, we quickly received the results, but the results were cca 10 times
worse. In the end, we have settled on using 1024 equations for the benchmark.

5.3.2 Local optimization

From the previous results, we can see that the model is performing really well.
However, it can be further improved using local gradient search on the coefficients.
As described before, we run the gradient search up until it does not further
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Sampling method Value RE inter. ↓ R2 inter. ↑ Time

Top-K 4 0.0403 0.9993 31:09
8 0.0385 0.9995 35:59
16 0.0404 0.9995 38:37
20 0.0381 0.9995 41:32
32 0.0450 0.9992 40:28

Top-P 0.90 0.0406 0.9992 29:41
0.95 0.0426 0.9993 39:25
0.98 0.0422 0.9993 43:34

Temperature 0.90 0.0406 0.9992 42:46
0.95 0.0424 0.9992 45:11
0.98 0.0428 0.9993 26:42
1.00 0.0428 0.9992 26:46
1.05 0.0439 0.9993 27:42
1.10 0.0471 0.9990 28:35

Table 5.9: Effect of different sampling methods, its hyperparameter, denoted as
value, and its performance. The time is minutes:seconds format.

Model R2 ↑ RE ↓
Without coeff. optimization 0.9992261 0.040194

With coeff. optimization 0.9999999 0.001029

Table 5.10: Comparison of the model with and without coefficients optimization.

improve the found expression based on the MSE between the input points and
the prediction. The results of such comparison can be seen in the Table 5.10 (in
this case, we have used Top-K [Fan et al., 2018] with K = 20 and 1024 sampled
equations). The local optimization helps a model fine-tune its coefficients to the
correct values and, therefore, further improve the function’s fit. One concern,
which will be addressed later, is if the local search overfits the equation on the
input points and makes the performance worse outside the sampling range.

5.4 More dimensions

Similarly to the previous experiments, we have trained the model on more di-
mensional inputs, meaning that the input to the function can be more than one
variable. We should ideally find the best hyper-parameters, similarly to the pre-
vious experiments, but this would be computationally expensive. Therefore, we
have decided to train the model with the same hyperparameters as were previ-
ously found except for the number of sampled points, which we have chosen to be
200, and for the number of equations, where we have used 100 million equations.
We have trained the model on two-dimensional inputs, however, scaling to more
dimensions could be done in the same manner, except for number of sampled
points and number of equations, which should ideally be larger. The final results
can be seen in the Table 5.11. As you can see, the results are comparable, even
slightly better than the one-dimensional case. This observation could be that the
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Metric name Greedy search Top-K sampling
R2 interp. ↑ 0.9921 0.9996
R2 extrap. ↑ 0.9908 0.9996
RE interp. ↓ 0.0921 0.0389
RE extrap. ↓ 0.0801 0.0306
Accuracy ↑ 57.55 % 42.37 %

Hard accuracy ↑ 50.68 % 19.14 %
Hard MSE ↓ 0.0009 0.1757

Table 5.11: Evaluation metrics using greedy search for 2D model.

validation set contains moreeasier examples such as x + 1, y + 1, x · y, . . . in com-
parison to the one-dimensional case. Interestingly, the same phenomena of lower
(hard) accuracy for the Top-K sampling [Fan et al., 2018] than for the greedy
also occurred here.

5.5 Benchmark results

We use all benchmark functions as defined in Table A.5, and we mainly focus on
the comparison between Biggio et al. [2021], denoted NSRS, since it is currently
the best performing transformer based solution (we cannot compare it with the
promising solution by d’Ascoli et al. [2022], since no model was published) and
Mundhenk et al. [2021], denoted as DSR, due to its performance. For the Biggio
et al. [2021] we use their 100M model available from their published repository1

with a beam size of 32 and 100 points for the 1D case and 200 points for the
2D case. For the Mundhenk et al. [2021], we use their implementation avail-
able from their published repository2 with hyperparameters as defined by the
authors in their configuration files, including early stopping. Note that for the
transformer models, we use the range and sampling method as used during the
training (however, different points for inference and evaluation), and therefore
the dataset sampling method, range, and allowed functions are used only for the
DSR method. We run all experiments only once using 16 CPU threads and 64
GB of RAM with a maximum running time of three hours. We use our best
model, trained only for one dimension of the 1D cases and the best 2D model
for the 2D benchmark equations to achieve the best possible results. We sample
1000 equations using Top-K with K = 20, and we also employ early stopping to
speed up the whole process. The results can be seen in the Table 5.12.

Name Ours NSRS DSR
R2 Time (s) R2 Time (s) R2 Time (s)

Nguyen-1 1 13 1 80 1 14
Nguyen-2 1 30 1 105 1 21
Nguyen-3 1 32 1 131 1 11
Nguyen-4 0.9998 136 0.5484 151 1 34
Nguyen-5 1 16 1 121 1 11

1https://github.com/SymposiumOrganization/NeuralSymbolicRegressionThatScales
2https://github.com/brendenpetersen/deep-symbolic-optimization
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Nguyen-6 1 27 1 101 1 11
Nguyen-7 1 31 0.9967 145 1 134
Nguyen-8 1 5 1 122 1 53
Nguyen-9 1 13 1 166 1 11
Nguyen-10 1 14 1 190 1 23
Nguyen-11 1 8 0.999 296 1 11
Nguyen-12 1 57 1 503 0.9015 1004

Average 0.99998 47.5 0.96744 169.46 0.99297 140.25

R-1 1 18 1 135 0.9931 851
R-2 1 38 1 78 0.9681 778
R-3 0.9999 227 1 74 0.9790 937

Average 0.99986 94.33 1 95.67 0.97488 855.33

Livermore-1 1 101 1 152 1 16
Livermore-2 1 15 0.1157 168 1 29
Livermore-3 1 15 0.1248 121 1 115
Livermore-4 1 22 0.9967 151 1 36
Livermore-5 1 54 1 463 1 167
Livermore-6 1 39 1 143 1 79
Livermore-7 1 42 0.9999 138 0.9999 707
Livermore-8 0.9998 33 1 118 0.9999 771
Livermore-9 0.9995 117 0.9831 130 1 872
Livermore-10 1 123 1 265 0.9694 971
Livermore-11 1 19 1 195 1 36
Livermore-12 1 14 1 212 1 68
Livermore-13 1 6 1 132 1 18
Livermore-14 1 30 1 572 1 110
Livermore-15 1 70 1 154 1 146
Livermore-16 1 33 0.9986 126 1 286
Livermore-17 1 13 1 288 0.9972 233
Livermore-18 1 15 0.2679 183 0.9677 891
Livermore-19 1 32 1 150 1 30
Livermore-20 1 7 1 115 1 14
Livermore-21 0.9999 138 0.9944 148 1 120
Livermore-22 1 8 1 124 0.9992 364

Average 0.99996 43 0.88551 193.09 0.99651 276.32

Koza-2 1 20 1 73 1 27
Koza-3 1 182 1 150 1 408

Average 1 101 0.99999 111.5 1 217.5

Keijzer-3 1 49 0.7549 174 0.6454 5802.62
Keijzer-4 0.9887 58 0.9991 179 0.8990 9171.36
Keijzer-6 1 13 1 108 1 510
Keijzer-7 1 5 1 138 1 1678.25
Keijzer-8 1 5 1 203 1 86
Keijzer-9 1 116 0.996 126 1 1304.82
Keijzer-10 1 12 0.9335 316 0.9856 2926.49
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Keijzer-11 1 78 1 240 0.9536 5235.31
Keijzer-12 1 48 1 521 1 8124.74
Keijzer-13 1 96 1 321 0.9526 6848.41
Keijzer-14 1 37 1 274 1 3864.92
Keijzer-15 1 67 1 266 0.9999 1601.03

Average 0.99904 48.67 0.97392 255.50 0.95302 3929.50

Constant-1 1 23 1 175 1 972
Constant-2 1 162 0.0996 130 1 4836.01
Constant-3 1 89 1 348 1 976
Constant-4 1 11 0.9997 317 1 707
Constant-5 1 57 1 127 1 1094
Constant-6 1 19 1 221 1 907
Constant-7 1 146 1 353 1 4186.39
Constant-8 1 220 1 172 1 8851.11

Average 0.99998 90.88 0.88742 230.375 1 2816.19

Total avg. 0.99978 52.95 0.92901 199.63 0.99443 326.53

Table 5.12: Benchmark comparison, R2 values are rounded to 4 decimals and
time to whole seconds.

From the results, it can be seen that the DSR outperforms the NSRS, how-
ever, for more complex expressions (mainly Kaijzer), DSR can be very slow,
taking thousands of seconds. Furthermore, if we would allow such longer times
for NSRS and DSR, the results would probably be slightly better. We have run
the DSR for longer than the others because sometimes we got the first results
only after an hour. On the other hand, it can be quite fast for simple equations
such as the Nguyen benchmark, where DSR outperforms NSRS in both speed
and R2 in most cases. However, this could be due to the choice of the beam
size. If we had lowered the beam size for the NSRS, we would get similar results
faster. If we compare our solution to NSRS and DSR, we are, in most cases,
faster than NSRS, and also, we can recover almost all of the equations. For ex-
ample, in the case of the Keijzer benchmark, where DSR mostly fails, we can
recover the underlying equations. Model predictions and if the model could re-
cover the original formula can be seen in Table A.8. In most cases, we were able
to recover them, however, they are not always the most straightforward solutions.
Example of such expression is Keijzer-6 x2+x

2
, however what the model found is

ln(exp(0.49991x) exp(0.5x2)). These expressions are the same after simplification,
however, the latter is unreasonably complex. The reason for this observation is
that the model predicted better coefficients for the expression than in the case of
simpler expressions.

One could argue that we have such high R2 is just that we are using the local
search, which is from 1000 samples, able to fit almost any function. To test this
hypothesis, we have run the benchmark again in the same way as previously, but
now, we turn off the local search which should improve the coefficients. From our
experiments, it turned out that the model is slightly worse than when using the
local search, however, the hypotheses were not confirmed, and the model would
have good performance even without the local search. The R2 and if the skeleton
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was found without the local search can be seen in Table A.9.

5.5.1 Performance of the 2D model

To test the ability of our architecture to scale to more dimensions, we have run
our 2D model even on the benchmark functions, which contain only one dimen-
sion. We have found out that there is some performance degradation, however,
it is so small that it does not have almost any effect on the model performance.
The model was performing equally good on the easier expression such as

√
x or

polynomials, but it had slight performance degradation on the more complex ex-
pressions. This is, however, no surprise since the 2D model also has to handle
more dimensions, and therefore it needs to handle more complex scenarios with
more variables. The full results can be seen in the Table A.10.

5.6 Discovering mathematical formulas

The goal of this section is to manually inspect the model predictions and look
at some interesting cases. One example of such interesting case is ability of
the model to learn that some functions are mathematically equivalent. Such
examples, which was predicted by model are −8

ln(x)
= 8

ln( 1
x

)
, so the model found that

− ln(x) = ln(x−1) or x
tan x−1 − 0.8486 ≈ x cot x−1− 1, which shows that the model

was able to find that tan(x) = 1
cot x

. Different cases show, that the model has
some sense of the law of exponents (xa)b = xa·b. The model had to find (x−1)1.5,
but it found 1√

x3
. Interesting identities are also found for trigonometric functions.

Model goal is to find cos(3.5005+2x+x2), however it outputs − sin(x2 +2x+2).
These two results are pretty close together. To get from the one side to the other,
we have to use this rule cos(π

2
+ x) = − sin(x).

cos(3.5 + 2x + x2) = cos(
π

2
+ 1.9 + 2x + x2) = − sin(1.9 + 2x + x2), (5.1)

which is close to sin(2 + 2x + x2). Another example of such equivalence is ex-
ponential rule ax = ex·ln a. The model should predict (−1.3673x), but it pre-
dicted ln(0.2492x) this can however be simplified ln(0.2492x) = ln(ex ln 0.2492) =
x ln 0.2492 = −1.3895x, which is once again very close the required answer. In this
case, it is really interesting that the model did not predict simpler function, which
should be easier for the model. Another interesting rule, that the model used is
ln a · b = ln a + ln b. For example, in one of the benchmark functions the model
had to find x2+x

2
, however what the model found is ln(exp(0.49991x) exp(0.5x2)).

This can be simplified as ln(exp(0.49991x) exp(0.5x2)) = ln(exp(0.49991x)) +
ln(exp(0.5x2)) ≈ 0.5x + 0.5x2.

However, these examples do not exactly prove that the model knows these
rules, they could be selected during the sampling just because they had the lowest
mean squared error, and it was just a coincidence that the model generated them.
However, we can at least claim they belong to the high probable cases since they
were sampled from the model.
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5.7 Generalization

An interesting aspect of every machine learning model is how well it can perform
outside of its training hyperparameters and training data. To assess the so-called
generalization, we will look at the ability of the model to perform under different
numbers of sampled points, different sizes of sampling range, and also how model
performs outside of its sampling range, which was slightly touched before when
we looked at the extrapolation range. We use Top-K sampling [Fan et al., 2018]
with K = 20 and 256 examples in these experiments. If not stated otherwise, we
do not use a local gradient search to improve the coefficients.

5.7.1 Extrapolation ability

In these experiments, we want to assess the ability of the model to extrapolate
beyond the sampling range since it could be possible that the model can find an
almost perfectly fitting expression on the range [−5, 5], however, this expression
would fail beyond the sampling range. Note that this especially hard task, since
two functions can be almost the same on the closed interval, but totally different
outside of it. We also want to test the hypotheses if the local search overfits
the inputs points and therefore hurts the model performance in the ability to
extrapolate. To test these hypotheses, we run an experiment in which we calculate
the R2 and the relative error based on the distance from the sampling range. We
select ¶x ∈ R♣5 < ♣x♣ < 5 + a♢, where a is wanted distance and compute the
metrics for their prediction f(x) = y. From our results, which can be seen
in the Figure A.3 and A.4, we can conclude that the relative error increases
with the distance from the sampling range, which is nothing surprising, however
interestingly, the total error, even for the furthest distance 95, is not so large.
This effect is even less apparent for the model using local search to improve
the coefficients where the absolute difference between the relative error in the
distance of 1 and 95 is just 0.0001. This shows that the model can successfully
extrapolate over the sampling range and that the hypothesis that the local search
on the coefficients could overfit the equation is incorrect.

5.7.2 Effect of number of sampled points

One of the most critical aspects of the model is how it will behave under the
change in the number of sampled points. In real life problems, one usually does
not have exactly 100 points. To assess the quality of the model under this change,
we use the trained final model on the same equations from the validation set, but
for each experiment, we use a different number of sampled points. Each of them
is evaluated on new 100 points from the same [−5, 5] range. We have tried several
different settings starting from 10 and ending at 1000 points. The full results can
be seen in the Figure A.2 and the exact values in Table A.11. It turned out that
10 or 20 points were not enough for the best performance, but from 50 points,
the model’s performance almost did not change. Therefore we can conclude that
if we have at least 50 samples, the model performance should be good enough.
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Range
Original Scaled Scaled with opt.

R2 ↑ RE ↓ R2 ↑ RE ↓ R2 ↑ RE ↓
[−1, 1] 0.9836 0.1211 0.9961 0.0514 0.99997681 0.0041
[−3, 3] 0.9976 0.0889 0.9955 0.0738 0.99997211 0.0134
[−5, 5] 0.9992 0.0402 0.9993 0.0423 0.99999996 0.0010

[−10, 10] 0.9967 0.0977 0.9986 0.0650 0.99999541 0.0110
[−15, 15] 0.9895 0.1756 0.9970 0.0703 0.99998027 0.0174
[−20, 20] 0.9404 0.3352 0.9977 0.0767 0.99997954 0.0225
[−30, 30] 0.8350 0.5045 0.9954 0.1028 0.99989361 0.0434
[−50, 50] 0.4060 0.6598 0.9840 0.1105 0.99986374 0.0558

[−100, 100] 0.2196 0.9933 0.9850 0.1217 0.99889144 0.0336

Table 5.13: Effect of sampling range during the inference.

5.7.3 Effect of sampling range

In this experiment, we want to test how the model will perform under the change
of the sampling range, which is one of the most essential hyperparameters which
has to be decided before the training. During the experiment, we fix the range
from the points sampled e.g. [−5, 5], and then sample 100 points. To evaluate its
performance, we use the same range however sample new 100 points once again.
We also test three settings, in the first, we take the points as they are without any
modification, in the second case, we re-scale its x values to the interval [−5, 5],
and in the last setting, we scale the values once again, but we also use the local
search to improve the coefficients further. From the results from the Table 5.13,
we can see that the sampling range has an impact on the models’ ability to
predict the right equations. If we do not scale the range to the range that was
used by the transformer during the training, then the model has a problem with
recovering equations, and the error increase with the distance from the original
range. However, this explanation is not the only possible explanation. The error
could possibly be observed just due to an insufficient number of sampled points,
since it is much harder to predict the correct function using the same number of
points on the interval [−100, 100] than on interval [−5, 5]. We could also try an
experiment in which we use more points, however the issue is, that the model
could focus only on the interval [−5, 5] and ignore the other points, which would
not give us any interesting insight. Another experiment could be to train the
transformer not just on random equations, but also by randomly selecting the
range from which are the points generated. This could help the model learn to
handle different range sizes and also asymmetric ranges.

5.8 Ablation study

In the ablation study, we want to look at the effect of changing different parts of
the network. We want to mainly focus on the coefficient encoding since it is one of
the most crucial parts of the network. We have trained our model with the same
hyperparameters as in the final model while changing only the final regression loss
weight (with 1.0 for the extended encoding and 0.001 for the base encoding) and
also the way, how are the coefficients represented for the network. We have tested
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Model R2 inter. ↑ R2 extrap. ↑ RE inter. ↓ RE extrap. ↓
No coefficients 0.9929 0.9929 0.1547 0.0802
Base encoding 0.9979 0.9874 0.0669 0.0216

Extended encoding 0.9995 0.9984 0.0288 0.0090

Table 5.14: Comparison of different encoding.

three different settings. In the first one, we trained the model only on the skeletons
and used BFGS [Fletcher, 1987] to find the coefficients. This is similar setting to
what Biggio et al. [2021] propose. In the second experiment, we have used base
encoding in which, we have let the network predict the coefficients without any
pre-processing, and in the last experiment, we have used our extended encoding
in which we have transformed the coefficients into ”scientific” like notation as
described in Section 2.4.2. The results, when using random sampling with Top-K
K = 16 sampling, can be seen in Table 5.14. This table also shows the achieved
performance gains by using coefficients are not just because of a larger model or
more data but because of the usage of the coefficients during the training and
inference.
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Conclusion

The goal of this thesis was to find a way to solve the issues that previous ap-
proaches had. Mainly the possibility of the slow inference of genetic-based and
reinforcement-based solutions and the slightly worse performance of previous
transformer-based methods. To solve them, we have introduced a transformer-
based model for predicting expressions based on the input data. We have pro-
posed several novel ways to represent and handle the coefficients during the train-
ing and the inference. Furthermore, we have also used a local search on the co-
efficients to improve our predictions further. During our experiments, we found
out that transformer architecture can predict the equations accurately even when
they contain multiple input variables with enough data and model capacity.

We have measured our models’ ability on several metrics and showed that
it can generalize in both the number of points given to it, the number of input
variables, and the range outside of the sampled points. This shows that the
equations found by the model are not just over-fitted on the inputs points and
are correct even outside of the sampling range. However, we have also found that
the model has problems finding the correct equation when used with sampled
points outside its training range. This inability to generalize when using points
outside its range is magnified by how much the range differs from the original
one. Some improvements can be done when the range is scaled to the original
one and when the local search on the coefficients is used. However, this still
does not result in the same performance as before, and the original formulas are
mostly not recovered. The solution to this problem is still an open question for
further research. Another drawback when using the transformer model is that its
hyperparameters are fixed before the training and, therefore, can not be changed
for each equation. We have also manually evaluated model outputs to inspect its
predictions in relation to the ground-truth. We have found that the model can
predict mathematically equivalent functions using different mathematical rules.

To compare our solution to the previous approaches, we have used several
benchmarks, namely the Nguyen benchmark [Uy et al., 2011], R rationals [Kraw-
iec and Pawlak, 2013], Livermore [Mundhenk et al., 2021], Keijzer [Keijzer, 2003],
Constant, and Koza [Koza, 1994]. Our model is comparable with previous ap-
proaches while maintaining the speed of transformer-based solutions and achiev-
ing high-quality results as in reinforcement-based approaches. This shows the
competitiveness of the model to previous solutions.

Even though our solution has some limitations, such as the need for a fixed
range, fixed vocabulary, and the maximum number of variables, it still performs
quickly and accurately when used under the same conditions as during the train-
ing. Compared to previous approaches, it combines both accuracy and speed,
and therefore it has a great potential to be one of the main branches of future
research in symbolic regression.
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A. Attachments

A.1 Dataset generator unnormalized probabili-

ties

Operation Mathematical meaning Unormalized probability
pow2 (·)2 8
pow3 (·)3 6
pow4 (·)4 4
pow5 (·)5 4
pow6 (·)6 3
inv (·)−1 8
sqrt

√· 8
exp exp · 2
ln ln · 4
sin sin · 4
cos cos · 4
tan tan · 2
cot cot · 2
asin arcsin · 1
acos arccos · 1
atan arctan · 1
acot arccot· 1

Table A.1: Unnormalized probabilities of unary operators

Operation Unnormalized probability
variable 20
integer in interval [−5, 5] (excluding zero) 10
float in interval [−5, 5] 10
zero 1

Table A.2: Unnormalized probabilities of leaf values
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Operation Unnormalized probability
+ 8
- 5
* 8
/ 5
pow 2

Table A.3: Un-normalized probabilities of binary operators
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A.2 Model vocabulary

Token Mathematical meaning
Integers from [-5, 5] Integers from [-5, 5]
Variables Variables
pow ab

+ addition
* multiplication
sqrt

√·
abs ♣·♣
pow2 (·)2

pow3 (·)3

ln ln ·
exp exp ·
sin sin ·
cos cos ·
tan tan ·
cot cot ·
asin arcsin ·
acos arccos ·
atan arctan ·
acot acot·
neg (−1)(·)
C Constants, optionally C-10, . . . , C10 for exponents

Table A.4: Model vocabulary.
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A.3 Examples of generated functions

−10 −5 0 5 10

−20

−10

0

10

Ground truth: −7.46− 0.8x+ x cos(tan(x))

Predicted: x cos(tan(x))− x− 7.7

(a) Example 1.

−10 −5 0 5 10

−0.2

−0.1

0.0

0.1

0.2

Ground truth: 0.2 cos(4x)

Predicted: asin(0.2 cos(4x))

(b) Example 2.

0 2 4 6 8 10

−5

0

5

10

15

Ground truth: 7.7 + 3 ln(x)

Predicted: 3 ln(x) + 7.9

(c) Example 3.

−10 −5 0 5 10

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ground truth: exp(−2.7−x
2

)

Predicted: exp(− exp(−x
2))

(d) Example 4.

−10 −5 0 5 10

−10

−5

0

5

10

Ground truth: x sin(4x2
− 3.0x)

Predicted: x sin(4x2
− 3.0x)

(e) Example 5.

−10 −5 0 5 10

0.0

0.2

0.4

0.6

0.8

1.0

Ground truth: (1 + x
−2)−0.5

Predicted: sin(
√

(atan(x))2)

(f) Example 6.

Figure A.1: Examples of generated functions.
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A.4 Benchmark functions

Name Expression Dataset

Nguyen-1 x3 + x2 + x U (−1, 1, 20)
Nguyen-2 x4 + x3 + x2 + x U (−1, 1, 20)
Nguyen-3 x5 + x4 + x3 + x2 + x U (−1, 1, 20)
Nguyen-4 x6 + x5 + x4 + x3 + x2 + x U (−1, 1, 20)
Nguyen-5 sin(x2) cos(x)− 1 U (−1, 1, 20)
Nguyen-6 sin(x) + sin(x + x2) U (−1, 1, 20)
Nguyen-7 ln(x + 1) + ln(x2 + 1) U (0, 2, 20)
Nguyen-8

√
x U (0, 4, 20)

Nguyen-9 sin(x) + sin(y2) U (0, 1, 20)
Nguyen-10 2 sin(x) cos(y) U (0, 1, 20)
Nguyen-11 xy U (0, 1, 20)
Nguyen-12 x4 − x3 + 1

2
y2 − y U (0, 1, 20)

R-1 (x+1)3

x2−x+1
E (−1, 1, 20)

R-2 x5−3x3+1
x2+1

E (−1, 1, 20)

R-3 x6+x5

x4+x3+x2+x+1
E (−1, 1, 20)

Livermore-1 1
3

+ x + sin (x2) U (−10, 10, 1000)
Livermore-2 sin (x2) cos (x)− 2 U (−1, 1, 20)
Livermore-3 sin (x3) cos (x2)− 1 U (−1, 1, 20)
Livermore-4 ln(x + 1) + ln(x2 + 1) + ln(x) U (0, 2, 20)
Livermore-5 x4 − x3 + x2 − y U (0, 1, 20)
Livermore-6 4x4 + 3x3 + 2x2 + x U (−1, 1, 20)
Livermore-7 sinh(x) U (−1, 1, 20)
Livermore-8 cosh(x) U (−1, 1, 20)
Livermore-9 x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x U (−1, 1, 20)
Livermore-10 6 sin (x) cos (y) U (0, 1, 20)

Livermore-11 x2x2

x+y
U (−1, 1, 50)

Livermore-12 x5

y3 U (−1, 1, 50)

Livermore-13 x
1
3 U (0, 4, 20)

Livermore-14 x3 + x2 + x + sin (x) + sin (x2) U (−1, 1, 20)

Livermore-15 x
1
5 U (0, 4, 20)

Livermore-16 x
2
5 U (0, 4, 20)

Livermore-17 4 sin (x) cos (y) U (0, 1, 20)
Livermore-18 sin (x2) cos (x)− 5 U (−1, 1, 20)
Livermore-19 x5 + x4 + x2 + x U (−1, 1, 20)
Livermore-20 exp (−x2) U (−1, 1, 20)
Livermore-21 x8 + x7 + x6 + x5 + x4 + x3 + x2 + x U (−1, 1, 20)
Livermore-22 exp (−0.5x2) U (−1, 1, 20)

Koza-2 x5 − 2x3 + x U (−1, 1, 20)
Koza-3 x6 − 2x4 + x2 U (−1, 1, 20)

Keijzer-3 0.3 · x · sin (2 ∗ π ∗ x) E (−3, 3, 0.1)
Keijzer-4 x3 exp (−x) cos (x) sin (x)(sin x2 cos x− 1) E (0.05, 10.05, 0.1)
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Keijzer-6 x∗(x+1)
2

E (1, 120, 1)
Keijzer-7 ln x E (1, 100, 0.1)
Keijzer-8

√
x E (1, 100, 0.1)

Keijzer-9 ln (x +
√

(x2 + 1)) E (1, 100, 0.1)
Keijzer-10 xy E (0, 1, 0.01)
Keijzer-11 xy + sin ((x− 1)(y − 1)) E (−3, 3, 0.01)

Keijzer-12 x4 − x3 + y2

2
− y E (−3, 3, 0.01)

Keijzer-13 6 sin (x) · cos (y) E (−3, 3, 0.01)
Keijzer-14 8

2+x2+y2 E (−3, 3, 0.01)

Keijzer-15 x3

5
+ y3

2
− y − x E (−3, 3, 0.01)

Constant-1 3.39x3 + 2.12x2 + 1.78x U (−1, 1, 20)
Constant-2 sin x2 · cos x− 0.75 U (−1, 1, 20)
Constant-3 sin (1.5x) · cos (0.5y)) U (0, 1, 20)
Constant-4 2.7xy U (0, 1, 20)

Constant-5
√

1.23x U (0, 4, 20)
Constant-6 x0.426 U (0, 4, 20)
Constant-7 2 sin (1.3x) · cos y U (0, 1, 20)
Constant-8 ln(x + 1.4) + ln(x2 + 1.3) U (0, 2, 20)

Table A.5: Benchmark function, U(a, b, k) stands for sampling k points uniformly
randomly from the range [a, b], E(a, b, k) denotes equidistant sampling.
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A.5 Final hyperparameters

Encoder
Number of row wise FF 2
Number of heads 12
Number of layers 4
Dimension of model 384
Dimension of the first FF layer 1536
Dimension of the second FF layer 384
Number of inducing points 64
Number of seed vectors 32
Dropout rate 0.1

Decoder
Dimension of model 512
Number of heads 12
Dimension of FF layer 2048
Number of layers 4
Dropout rate 0.1
Vocabulary size 54

Dataset
Number of equations 130 million
Number of sampled points 100

Training
Number of epochs 390
Starting σ2 noise 0.1
Ending regression λ 0.1

Table A.6: Hyperparameters for the final model.
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A.6 Effect of number of sampled equations

Number of equations R2 ↑ RE interp. ↓ Time (hh:mm:ss)
16 0.998256 0.066528 00:04:46
32 0.998532 0.053106 00:04:36
64 0.999068 0.046484 00:06:46
128 0.999336 0.037968 00:07:19
256 0.999449 0.030616 00:19:04
512 0.999702 0.033389 00:30:05
1024 0.999826 0.022776 01:05:00
2048 0.999902 0.023793 01:03:57
4096 0.999942 0.017102 04:08:42
8192 0.999976 0.013216 06:15:53
16384 0.999985 0.008698 11:58:18

Table A.7: Performance of number of sampled equations for Top-K Fan et al.
[2018] with K = 20

A.7 Full predictions

Name Exact Prediction

Nguyen-1 ✓ x3 +
√

x4 + x

Nguyen-2 ✓ x3 + x2 + x + x4

Nguyen-3 ✓ x3 + x2 + x + x4 + x5

Nguyen-4 0.2811x2
+ x3 + x2 + x + x5 + ♣x♣6.0298

Nguyen-5 ✓ sin(x2) cos(x)− 1
Nguyen-6 ✓ sin(x) + sin(x + x2)

Nguyen-7 ln(x3 + x2 +
√

x2 + 1.0)
Nguyen-8 ✓

x√
x

Nguyen-9 ✓ ln(exp(sin(x))) + sin(y2)
Nguyen-10 ✓ 2 sin(x) cos(y)
Nguyen-11 ✓

1
x−y

Nguyen-12 −x3 + x4 − y + (y2)0.7395 − 0.0015

R-1 ✓ x−2 + 4 + 3
x

R-2 −3x3

x2+1
+ cos(x)

x2+1.0
+ x5

x2+1
+ 1

x2+1

R-3 x5

x3+x+0.1616+x−1

Livermore-1 ✓ x + sin(ln(exp(x))2)− 0.3333
Livermore-2 ✓ sin(x2) cos(x)− 2
Livermore-3 ✓ −0.99834 + cos(6.281− 0.0011x + x2) sin(x3)
Livermore-4 ln(x3 + x2 + x + x4)
Livermore-5 ✓ −x3 + x4 − y + ln(exp(x2))
Livermore-6 ✓ 3x3 + 2x2 + x + 4x4

Livermore-7 x exp(0.2072x(atan(x))3)
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Livermore-8 exp(0.6259 · x · atan(x))

Livermore-9 x2

x+1.9673
+ 2.1942x

x+1.9794
+ 3.4366|x|6.4462

x+1.9318
+ 2.2568|x|9.4658

x−1.0625

Livermore-10 ✓ 6 sin(x) cos(y)

Livermore-11 ✓
x2y2

x+y

Livermore-12 ✓
x5

y3

Livermore-13 ✓ 3.32960.2778 ln(x)

Livermore-14 ✓ x3 + x2 + x + sin(x) + sin(y2)
Livermore-15 ✓ ln(exp(x))0.2001

Livermore-16 ✓ 1.9477ln(x)

Livermore-17 ✓ 4 sin(x) cos(y)
Livermore-18 ✓ sin(x2) cos(x)− 5
Livermore-19 ✓ x2 + x + x4 + x5

Livermore-20 ✓ (exp(−x))x

Livermore-21 2.9x + ♣x♣4(acot(x))2 + 1.5615♣x♣6.9acot(x) + ♣x♣8
Livermore-22 ✓

√

exp(−x2)

Koza-2 ✓ −2x3 + x + x5

Koza-3 x2 − 2.0011♣x♣4.001 + ♣x♣6.0005 + 0.0027

Keijzer-3 ✓ 0.3 · x · sin(6.2832x− 6.2832)
Keijzer-4 2.6612x2 exp(−x) sin(1.9876x)
Keijzer-6 ✓ ln(exp(0.49914x) exp(0.5x2))
Keijzer-7 ✓ ln x

Keijzer-8 ✓
√

x

Keijzer-9 x
0.4136x2+1.0021)0.3173

Keijzer-10 ✓
1

x−y

Keijzer-11 ✓ xy − sin(−xy + x + y − 1)
Keijzer-12 −x3 + x4 − 0.01835y3 + 0.4286y2 − y + 0.0012y4

Keijzer-13 ✓ 4.7063
√

1.6253 sin(x) cos(y)
Keijzer-14

√
y4 + 4

(0.455x2+1)

Keijzer-15 ✓ 0.2048x3 − x + 0.4973y3 − y

Constant-1 ✓ 3.3881x3 + 2x2 + 1.7031x + 1
Constant-2 ✓ sin(x2) cos(x)− 0.75
Constant-3 ✓ sin(1.5x) cos(0.5y)
Constant-4 cot(0.371

xy )

Constant-5 ✓ ln(exp(
√

1.23
√

x))
Constant-6 ✓ 1.5311ln(x)

Constant-7 ✓ 2 sin(ln(3.6693x)) cos(y)
Constant-8 1.9671 ln(x1.5567 + 1.3927)

Table A.8: Benchmark predictions with coefficients rounded to four decimals and
simplified. The recovered column tells if the expression is semantically equivalent
to the searched equation.
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A.8 Benchmark results without local optimiza-

tion

Name Skeleton found R2

Nguyen-1 ✓ 1
Nguyen-2 ✓ 1
Nguyen-3 ✓ 1
Nguyen-4 ✓ 0.9991
Nguyen-5 ✓ 1
Nguyen-6 ✓ 1
Nguyen-7 1
Nguyen-8 ✓ 1
Nguyen-9 ✓ 1
Nguyen-10 ✓ 1
Nguyen-11 ✓ 1
Nguyen-12 1

R-1 ✓ 1
R-2 0.9996
R-3 0.9990

Livermore-1 ✓ 1
Livermore-2 ✓ 1
Livermore-3 ✓ 1
Livermore-4 1
Livermore-5 ✓ 1
Livermore-6 ✓ 1
Livermore-7 0.9993
Livermore-8 0.9995
Livermore-9 0.9869
Livermore-10 ✓ 0.9911
Livermore-11 ✓ 1
Livermore-12 ✓ 1
Livermore-13 ✓ 0.9982
Livermore-14 0.9996
Livermore-15 ✓ 1
Livermore-16 ✓ 0.9983
Livermore-17 ✓ 1
Livermore-18 ✓ 1
Livermore-19 ✓ 1
Livermore-20 ✓ 1
Livermore-21 0.9922
Livermore-22 ✓ 1

Koza-2 ✓ 1
Koza-3 0.9990

Keijzer-3 0.9400
Keijzer-4 0.9564
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Keijzer-6 ✓ 0.9998
Keijzer-7 ✓ 1
Keijzer-8 ✓ 1
Keijzer-9 0.9990
Keijzer-10 ✓ 1
Keijzer-11 ✓ 0.9993
Keijzer-12 1
Keijzer-13 ✓ 0.9992
Keijzer-14 0.9998
Keijzer-15 ✓ 0.9973

Constant-1 ✓ 1
Constant-2 ✓ 0.9879
Constant-3 ✓ 0.8987
Constant-4 ✓ 1
Constant-5 0.9992
Constant-6 ✓ 1
Constant-7 ✓ 0.7340
Constant-8 0.9997

Table A.9: Benchmark predictions without using local optimization. Coefficients
are rounded to four decimals and simplified. The recovered column tells if the
expression is semantically equivalent to the searched equation.
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A.9 Comparison of 1D and 2D model

Name R2 of 1D model R2 of 2D model

Nguyen-1 1 1
Nguyen-2 1 1
Nguyen-3 1 1
Nguyen-4 0.9998 0.9995
Nguyen-5 1 1
Nguyen-6 1 1
Nguyen-7 1 1
Nguyen-8 1 1

R-1 1 1
R-2 1 0.9999
R-3 0.9999 0.9995

Livermore-1 1 1
Livermore-2 1 1
Livermore-3 1 1
Livermore-4 1 1
Livermore-6 1 1
Livermore-7 1 1
Livermore-8 0.9998 0.9999
Livermore-9 0.9991 0.9995
Livermore-13 1 1
Livermore-15 1 1
Livermore-16 1 1
Livermore-18 1 1
Livermore-19 1 1
Livermore-20 1 1
Livermore-21 0.9999 0.9997
Livermore-22 1 1

Koza-2 1 1
Koza-3 1 1

Keijzer-3 1 1
Keijzer-4 0.9927 0.9893
Keijzer-6 1 1
Keijzer-7 1 1
Keijzer-8 1 1
Keijzer-9 1 1

Constant-1 1 1
Constant-2 1 1
Constant-5 1 1
Constant-6 1 1
Constant-8 1 1

Table A.10: Comparison of the 1D model and the 2D model on benchmark.
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A.10 Effect of number of sampled points during

inference

Number of points R2 ↑ RE interp. ↓
10 0.985261 0.253189
20 0.998609 0.061538
50 0.999552 0.032989
75 0.999510 0.034804
100 0.999354 0.033015
200 0.999377 0.043438
500 0.999613 0.044338
700 0.999269 0.036514
1000 0.999537 0.042521

Table A.11: Effect of a number of sampled points.
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(b) The relative error is based on the number of sampled points, start-
ing from 20 points.

Figure A.2: R2 and relative errors for a different number of sampled points,
starting from 20 points.
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A.11 Model ability to perform outside of sam-

pling range
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(a) R
2 is based on the distance from the original sampling

range without coefficient optimization.
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(b) R
2 is based on the distance from the original sampling

range with coefficient optimization.

Figure A.3: R2 based on the distance from the original sampling range starting
with 1 and ending with 95.
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(a) The relative error is based on the distance from the orig-
inal sampling range without coefficient optimization.
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(b) The relative error is based on the distance from the orig-
inal sampling range with coefficient optimization.

Figure A.4: The relative error is based on the distance from the original sampling
range, starting with 1 and ending with 95.
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