
Exception flow analysis for Kotlin

Motivation

Problem demonstration

Method

State of the art Source code preprocessing

Main contributions

Exception handling is challenging. Done improperly

can cause many problems – from bad UX to security

vulnerabilities. It is especially difficult to handle

exceptions thrown by APIs of other systems.

Exceptions in APIs are usually not correctly

documented because maintaining such documen-

tation is time-consuming and error-prone.

Exception handling is a relatively well-researched

problem. Some existing solutions use static analysis

of exception flow to generate the required exception

documentation.

The problem is that existing research focused on the

past generation of programming languages like Java

or ML. More modern programming languages, like

Kotlin, mix procedural, object-oriented, and

functional programming styles. Consequently,

modern languages have many complex features.

And while the core concepts remain the same, the

static analysis must be significantly modified to

support those features.

1. Design of static analysis for exception propagation

2. Prototype implementation of the core concepts

3. Acceptance tests covering many Kotlin features

4. Documentation of a significant part of Kotlin IR

The graph above shows a sequence of function calls.

It demonstrates the complexity of determining what

exceptions can be thrown by a function. It is easy to

spot exceptions that are thrown directly. However,

some exceptions are produced by calling other

functions. These functions are spread across the

program – making it laborious to find the exceptions.

This phase transforms the source code into an

intermediate representation (IR). IR is an in-memory

data structure that holds the program's semantics.

The Kotlin compiler is used to parse the source code

into Kotlin IR. Kotlin IR is then converted into a

custom IR designed specifically for this analysis.

The designed static analysis utilizes an approach

called abstract interpretation. Abstract interpretation

creates a sound approximation of the analyzed

program's semantics. The approximation is obtained

by partially executing the program - by omitting

unimportant details.

The design is based on a combination of existing

algorithms - with some additional changes. The main

novelty is in the source code preprocessing phase.

During this phase, the complex Kotlin features are

lowered to (represented as) simpler features that the

abstract interpretation understands.

createRoomBooking

getUser

verifyAuthentication

getRoom
newBooking

saveBooking

UserNotFound

NotAuthenticated

RoomNotFound

RoomIsAlreadyBooked

Function("first", parameters = ["<this>"])

If

Throw

Return

StaticCall("isEmpty") VirtualCall("get")

GetVariable("<this>") GetVariable("<this>")

Constant(0)CreateObject("NoSuchElementException")

Author: Ing. Filip Dolník Supervisor: Ing. Jiří Hunka

