
Efficient implementationofACBcompressionalgorithmforExComlibrary
Author: Ing. Michal Valach Supervisor: doc. Ing. Jan Holub, Ph.D. Czech Technical University in Prague

Motivation
ACB is an unexplored context-based compression method. It is

called Associative Coder of Buyanovsky or in short ACB, published by
George Buyanovsky in 1994 [1]. The article was written in Russian,
and the compression method was called Associative coding. George
Buyanovsky also created an implementation of this algorithm, but dis-
tributed it only as a MS-DOS executable.

ExCom library
The ExCom is a library containing many different compression

method, for example PPM, DCA, LZ-family, Huffman coder, and
many others. It was created by Filip Šimek in his master’s thesis [4]
to become a library you would use whenever you need to use any
compression method. It is written in C++ with strong emphasis on
simple usage, future extensibility, and thread safety. It was published
under GNU LGPL license

Related work
There are few implementations, except the one presented by

George Buyanovsky. Their creators are Lukáš Cerman in 2003 [2],
Martin Děcký in 2006 [3], and Filip Šimek in 2009 [4]. They are mostly
only simple implementations including only part of the algorithm
and they are also very slow, except the implementation by Cerman.

ACB algorithm
ACB uses LZ77-like sliding window. Left part of the sliding win-

dow is called the context, and the right part is called the content part
of the context. While compression or decompression proceeds, new
pairs of contexts and contents are created. Each such pair is added to
a dictionary. The dictionary consists of context-content pairs, which
are sorted lexicographically by their context from the last symbol to
the first one. One compression cycle is shown below. The text before
the pipe represents already encoded text.

swiss m|iss is missing
Sliding window

1. Best context ctx = 3

2. Best content cnt = 6

3. Common length l = 4 symbols
4. Output consists of (d, l, c) where

• d = cnt − ctx = 6− 3 = −3

• l = 4

• c =‘i’

5. Update dictionary

Dictionary
Context|Content

0 |swiss m
1 swiss |m
2 swi|ss m
3 s|wiss m
4 swis|s m
5 swiss|m
6 sw|iss m

Implementation
The dictionary is implemented using the suffix tree and the suffix array. The suffix array is implemented using two different representa-

tions: a simple two dimensional array and the B+ tree. The B+ tree is a modification of a B tree, where all the data are stored in the leafs to make
simple access to neighbourhood data, and also the tree leafs are linked together.

Encoding of the data produced by the main ACB algorithm, the triplets, must be done, otherwise the compression gained by the algorithm
would be lost. There are two parts of the encoding process. The first part is to choose what to store into the output stream to not loose any
information. The second part is how to compress the output stream (how to compress items of the triplets). Adaptive Huffman coder and
adaptive arithmetic coder are presented as viable coders for the triplets.

Experiments
The figures below show the comparison of all presented ACB implementations. The figure on the left compares the compression ratio. The

figure on the right compares the compression time. The decompression times are almost identical to the compression times. The tests were run
on Calgary corpus files.

0.1

1

10

bib
book1

book2

geo
new

s

obj1
obj2

paper1

paper2

pic
progc

progl

progp

trans

C
o
m

p
re

s
s
io

n
 r

a
ti
o
 [
-]

Corpus file

Buyanovsky [b]
Cerman

Decky
Simek

Valach

10 ms

100 ms

1 s

10 s

100 s

1,000 s

10,000 s

obj1
progc

progp

paper1

progl

paper2

trans

geo
bib

obj2
new

s

pic
book2

book1

C
o
m

p
re

s
s
io

n
 t
im

e

Corpus file

Buyanovsky [b]
Cerman

Decky
Simek

Valach

The implementation by Buyanovsky is superior to all by the means of the compression ratio. The implementation by Cerman gives similar
results as the implementation in this thesis. It is better for two files, which can be explained by differently setted default parameters. The other
two implementations are not challengable.

As you can see, the implementation by Děcký provides the worst time performance among the implementations. For small files it performs
better than the implementation by Šimek, but with the increasing size of the files it is far inferior and unusable. The best time performance
is provided by the implementation presented in this thesis. It is approximately 400 times faster than the previous implementation by Šimek,
4–10 times faster then the implementation by Cerman, and 10–20 times faster than the implementation by Buyanovsky.

Conclusion
Experiments and performance tests showed, that the implemen-

tation based on this thesis is not better, than the implementation by
George Buyanovsky in terms of the compression ratio. It only ac-
knowledges that the known description of the algorithm is not accu-
rate. On the other hand, it gives better results in comparison to the
other known implementations.

The part of the algorithm called sorted contents was also imple-
mented, but the test results showed, that it gives neither better com-
pression ratio, nor compression time. So, it is by default disabled, but
can be turned on by using compiler directives.

References
[1] G. M. Buyanovsky, “Associative Coding,” Monitor, pp. 10–22,

1994.

[2] L. Cerman, “Acb compression algorithm,” Czech Technical Uni-
versity in Prague, Jan. 2003.

[3] M. Děcký, “Associative coder of buyanovsky,” 2006. [Online].
Available: {http://projects.decky.cz/ACB/}

[4] F. Simek, “Data compression library,” Master’s thesis, Czech
Technical University in Prague, May 2009.


