
Patterns4Net: Design Patterns Support in Development Environments
Štěpán Šindelář me@stevesindelar.cz Faculty of Mathematics and Physics, Charles University in Prague

Design Patterns
A design pattern is a description of communicating
objects and classes that are customized to solve a
general design problem in a particular context.
The main aim of patterns in object-oriented design
is to make the design reusable and flexible. This
is very important because frequent changes in the
functional requirements are usual nowadays.

Complexity of Design Patterns
Design patterns bring a new complexity into the
design, which is caused by an introduction of new
classes and interfaces in order to provide better
flexibility and reusability.

Not Enough Time for Documentation. Devel-
opers often don’t have enough time to create a
textual documentation and so the mapping be-
tween classes and a design patterns is lost. Nei-
ther the source code, nor reverse-engineered di-
agrams emphasize the design patterns structure,
which would provide more abstract view.

Misunderstanding. Even well documented pat-
terns can be misunderstood, which can slow down
the development process or even lead to an intro-
duction of software bugs in the system.

Existing Approaches
Formal Verification. There are several ap-
proaches for formal verification of design patterns
implementation. Most of them target the Java
platform or C++, but we are not aware of such
tool for the .NET platform. Moreover, too much
mathematical formalism is usually involved in
their usage, which makes them harder to be used
by average developers.
Reverse Engineering. Tools for tackling the com-
plexity of design patterns are mostly based on an
automatic recognition of design patterns, whose
advantage is that it does not require additional
work from developers and can be used for legacy
systems, but it’s disadvantage is that it cannot cor-
rectly recognize all the design patterns, since the
differences between some of them are only se-
mantical (the Bridge and the Adapter patterns) and
some patterns, such as the Command pattern, are
too much abstract to be recognized only from the
source code.

Patterns4Net
The main conception behind the Patterns4Net is
that developers will annotate their code using
.NET attributes mechanism and the Patterns4Net
will provide tools that will take advantage of this
documentation and will support the development
process of design patterns oriented software.

Patterns4Net provides two tools:

• Pattern Enforcer verifies some of the struc-
tural aspects of selected design patterns im-
plementation.

• Architecture Explorer generates interactive
UML-like class diagrams from .NET assem-
blies. This tool uses the information about
design patterns implementations to generate
more abstract and high-level diagrams than
standard UML reverse engineering tools.

Pattern Enforcer
Pattern Enforcer is a tool that verifies correctness of
selected structural aspects of design patterns imple-
mentations. For example, it verifies that all elements
that can be visited by the Visitor indeed override and
correctly implement the Accept method, which is es-
sential for the correct implementation of this pattern,
but unfortunately not enforced by the standard com-
piler. There are 14 built-in patterns, but users can
also add their custom patterns or even simple id-
ioms using the special type-safe domain specific lan-
guage embedded into the C# language. We believe
this approach is easier to use than most of the other
formalization techniques that use special languages.

Pattern Enforcer can be integrated into the Visual
Studio build process or used as a strand-alone com-
mand line program.

Implementation. Patterns4Net and Pattern En-
forcer analyzes CIL (common intermediate lan-
guage) code in .NET assemblies, which means it can
be used for any programming language that can be
compiled into the CIL.

Architecture Explorer
Architecture Explorer provides UML-like class di-
agrams generated from .NET assemblies. Instead
of a one large diagram with lots of unnecessary in-
frastructural classes, it uses the information about
implemented design patterns to create more dia-
grams with different levels of abstraction. For ex-
ample, the top level view shows only the high level,
domain specific classes that are important for un-
derstanding of the overall architecture. However,
if a user "zooms" to a particular class, all related
classes, even infrastructural, are displayed. Which
elements are displayed and which are not, is cho-
sen according to design patterns they implement.
For instance, the NullObject pattern represents rather

implementation detail. Users can browse the di-
agrams in an interactive graphical user interface.

Related Work
The main source of inspiration for Pattern En-
forcer was Pattern Enforcing Compiler for Java
(PEC). It is extended Java compiler that verifies de-
sign patterns. For patterns annotation PEC uses
marker interfaces. This technique has few draw-
back (e.g., methods cannot be annotated with in-
terfaces), which the authors of PEC have admit-
ted and they planned to support Java annotations
(similar to .NET attributes used in our Enforcer) in
the next version. We are, however, not aware of
any updated version of PEC with Java annotations.
PEC also does not provide any special API or lan-
guage for custom patterns specification as we do.

Conclusion
Patterns4Net can enhance the development pro-
cess of complex design patterns oriented systems
created by larger teams, because it helps to dis-
cover communication errors and violations of de-
sign patterns implementations earlier and it pro-
vides visual tool to tackle the design complexity
that is caused by design patterns usage.
We are not aware of any other design patterns ver-
ification tool for the .NET platform. Pattern En-
forcer is, among all of these tools, also extraordi-
nary with it’s special C# API for structural con-
straints specification, because most of the other ap-
proaches use special languages for this purpose.


