Automatic Fusions of CUDA-GPU Kernels for Parallel Map

ovrs

JiFi Filipovic
fila@mail.muni.cz

Jan Fousek
izaak@mail.muni.cz

Motivation

Studied problem The GPU implementation of the
function which is applied element-wise to the list
of elements is studied. Despite easy paralleliza-
tion, it is difficult to find efficient code-to-kernels
distribution.

The goal To determine the efficient distribution of
a computation of a mapped function into GPU
kernels to balance memory locality and paralle-
lism reduction.

Approach A proposed decomposition-fusion
scheme suggests to decompose computational
problem to be solved by several simple functions
and some of these functions later automatically
fuse into more complex kernels to improve
memory locality.

Contribution We present a source-to-source
compiler automating the fusion phase and the
search for the most efficient implementation.

Experimental evaluation

1400

Estimated +
Measured «

1200f-

1000

Performance [M elements/s]

ay
oy s
3 o
& .
C W
A, PR

Fusions implementations (sorted by real time)

Fitted ——
Measured performance

Performance [M elements/s]

Matas Madzin

gotti@mail.muni.cz

Elementary Functions

The basic building bricks are the ele-
mentary functions - simple hand tuned
kernels. They conform to the load/
compute/store template to enable au-
tomated fusion of several compute
routines exchanging the intermediate
results via shared memory.

Multiple implementations of every ele-
mentary function are made with differ-
ent performance characteristics.

Pros:
» easily fusable into complex kernels

« reusable
« easy to implement

Cons:
« often memory bounded, fusions
needed for better efficiency
« many possible fusions

Performance Prediction

The running time for every fusion is
predicted to enable the search for
most efficient implementation of the
whole mapped function.

The performance prediction combines the
empirically evaluated behaviour of the ele-
mentary functions and the characteristics
of a given fusion.

The load, compute and store routines of all
elementary functions are benchmarked for
certain ranges of parallelism reduction by
additionaly allocated shared memory and
different number of elements processed
per block and represented by table
function:

Y (routine, elems, ASHMEM)

Masaryk University, Czech Republic

Compiler Input

MATRIX3x3 A, B, Ml;

VECTOR3 ¢,
SCALAR sl ;

vl;
load
compute

compute Ml = mmul33(A, B);

store

sl = venorm3(vl);
M2 = mmul55(D, E);
M3 = madd55 (M2, D);

return F;

/] code for f:F=||A-B-c|l,-(D-E+ D)

matrix 3x3 matrix 3x3

vector 3 matrix 5x5 matrix 5x5

MATRIX5x5 D, E, F, M2, M3;

input A, B, ¢, D, E;

/| Mi=A-B

vl = mvmul33(ML, c);

F = smmul55(M3, s1);

matrix 5x5

The user describes the mapped function as a sequence
of calls to the elementary functions which exchange

compiler
workflow

To model the GPU capability of overlapping
the computation and memory transfers all
memory transfer and compute times of all
elementary functions are summed sepa-
rately:

> Y(rm,i, AM,,,),

rmERE

> W(re,i, AMy,) + tma

re€RE

7(F) = max

the intermediate results via off-chip memory.

This sequence is then parsed into a data flow

DAG with function calls as vertices and data
dependencies as edges.

Memory Allocation

As the GPU doesn't allow dynamical
shared memory allocation, we have de-
vised a memory reusing scheme. One
large block is allocated and the vari-
ables are associated with offests in this
space.

To determine the optimal offsets a branch

and bound algorithm is used with complex-

ity in O(m™) where n is number of elements
and m is sum of their size in memory.

le ‘D M1

Ve
Fusion DAG

Ve

Linearization SHMEM allocation

Combinations of Fusions

As a last step the most efficient subset of all can-
didate fusions implementations and standalone

kernels U is to be chosen. This task can be formu-
T, fated as a set covering problem and solved by the

Compiler efficiency

The best generated implementation speed-

linear programming.

Fusions

To decrease the preassure on the off-chip
bandwidth, several elementary functions
can be fused into one kernel and exchange
the intermediate results via on-chip.

A subgraph G of the graph G = (V, E) can
be fused only if there is no outgoing edge
from G such that there is a path beginning
with this edge and returning back to the G
The number of such subgraphs is in O(|V|?)
in the best case and in O(|2V|) in the worst

case.
worst g § best

To overcome the high complexity of the al-
gorithms performed on every fusion, the
maximal size of a fusion is bound by a
constant k, thus limiting the nuber of sub-
graphs to: Y0, (V).

Fusion Implementations

For every fusion there are several variants
of translation to the CUDA code differing in:
* the linearization of the fusion DAG
* the choice of the elementary functions
implementations
the number of elements processed by
one block

Linearization The linearization enumerating
algorithm runs in O(|V¢|!) and only the
implementations of the fusion linearization
with best lower bound on the on-chip me-
mory consumption are further considered.

Granularity Every elementary function can
process the data elements in different
granularity. However the number of data
elements processed by one fusion kernel

has to be constant and therefore the
number of active threads can vary through-
out the execution.

Generation of the state-space:
300 CUDA code generation:
Compile time of the generated code:

0.215
0.15s
2.08s

up was 2.49x over the unfused version and
1.46x over the implementation with all ker-
nels fused.

EU:UEV(U) y=LWweV
2 ses T(8)Ts

50 100 150 200 250
Mapped Function Implementations in

the order of predicted performance

minimize
~—

