
OctoDB - Simple Data Storage
Štěpán Davidovič

Czech Technical University in Prague, Faculty of Electrical Engineering

Introduction

Databases offer robust solution to storing large volume of
diverse data and allow application developers to focus on
the business logic, instead of designing and implementing
physical storage.
OctoDB is a bachelor thesis with a goal to design and im-
plement an embedded data storage allowing transactional
processing, concurrent access and complex queries.

Data model and queries

OctoDB implements a simple data model, storing data in
a set of flat tables. Each column has an associated data
domain (data type), and order of rows in the tables is of no
significance.
Each cell may contain even non-atomic values, therefore
even more complex data such as arrays, structures, trees or
even e.g. XML documents and other persistent objects may
be stored. Current implementation offers base homogeneous
array.
Data types have associated predicates. A query has this
query predicated for all possibly matching rows. Query illus-
tration:

column eq 100

This query will execute predicate eq with argument 100 for
each cell in column, and return rows for which this predicate
evaluated as true. Predicate calls can be combined and
negated without limits, and are passed in conjunctive normal
form. Data types which contain values of other data types
(e.g. array) can call their predicates. This may result in the
following example, where every item of an array must be
equal to 100:

column every eq 100

Actual query is passed using API, no intermediate query
language is used.

Transactions

A transaction is a group of commands, which can end either
by committing all commands into the database, or rolling
the commands back to previous state.
Transactions conform to four basic properties, known as
ACID:

I Atomicity - a transaction either completes entirely, or
not at all.

I Consistency - transaction begins at a consistent
database state, and when finishes, it must return
database to a consistent state.

I Isolation - one transaction does not affect another
transaction.

I Durability - once a transaction commits data, the data
must endure potential subsequent system failures.

Transactions implemented in OctoDB conform to ACID, of-
fering “read committed” transaction isolation.

Concurrency control

Concurrency control is a mechanism used to ensure that
data integrity is not compromised due to concurrent access.
The work describes several significant concurrency control
mechanisms:

I Global exclusive lock

I Two-phase locking

I Optimistic concurrency control

I Multi-version concurrency control (MVCC)

MVCC offers best performance, as conflicts are compara-
tively easy to resolve and there are no limits to the number
of concurrent reads and writes. It is currently used in many
database products, such as Oracle.
Because MVCC offers high performance during parallel ac-
cess, it has been implemented as concurrency control mech-
anism in OctoDB.

Performance

In order to asses the efficiency of the implementation, several
benchmarks were implemented. OctoDB was then compared
to two contemporary database products: SQLite, which is
also an embedded database system, and PostgreSQL, which
represents a full-featured client/server database.

100%

Insert Select Update #1 Update #2 Delete Parallel
insert

Time relative
to OctoDB

6731% 7912%

868%

143%
178% 155% 171%

77%

158%
107%

226%

N/A

Figure: Benchmark results, relative to OctoDB - lower is better. Red
column represents SQLite, blue represents PostgreSQL, OctoDB
results are 100%.

The benchmarks perform most common operations on a
data set of ca. 100 000 rows.

Conclusion

OctoDB is a successful implementation of a database, stor-
ing both simple and complex values and querying them.
The database allows concurrent access to the data by both
readers and writers and supports transactions conforming to
ACID.


