

A Featherweight Java Interpreter
Implemented in a Functional

Programming Language
Despite the fact that the functional programming languages are very old,

they are still getting more familiar even to non-academic developers. This

thesis is trying to familiarize the reader with OCaml language and the

creation of interpreters for functional languages in general. On the example

of simple language, which can be considered as a subset of OCaml, several

interpreting techniques are demonstrated. It also includes the topics about

type checking and type inference.

 In the second part of this thesis a minimal core calculus for Java, that is

known as Featherweight Java, is introduced. From the experience gained in

the first part of this thesis, the interpreter for this language is created.

Finally, small extension of Featherweight Java and new interpreter, which is

now based on another approach, are developed.

