
MASARYK UNIVERSITY

FACULTY OF INFORMATICS

⑥✇✁✂✄☎✆✝✞✟✡☛☞✌✍✏✑✒✓✔✕✖✗✘✙✚✤✥✦✧★✩✪✫✬✭✮✰✱✲✳✴✵✶✷✸✹✺❁②❆⑤
New challenges in planar

emulators

MASTER’S THESIS

Martin Derka

Brno, Spring 2013

Declaration

I hereby declare that this thesis is my original work, which I have elabo-

rated on my own. All sources, resources and literature which I have used

or drawn from in the elaboration of this thesis are properly quoted in the

thesis by a complete reference to the appropriate source.

Martin Derka

Advisor: doc. RNDr. Petr Hliněný, Ph.D.

ii

Acknowledgement

I would like to thank my supervisor P. Hliněný for his guidance and in-

valuable insights. I also thank all my colleagues and the other researchers

who have provided me with their opinions, especially M. Fellows for his

warm remarks and inspiring thoughts. My deepest appreciation belongs

also to my family for their support. This includes my beloved girlfriend

Stephanie, who, not having a mathematical background, has shown im-

mense patience when attempting to correct my grammar mistakes. I would

also like to thank all my friends who kept me company during my studies.

The access to computing and storage facilities owned by parties and

projects contributing to the National Grid Infrastructure MetaCentrum, and

to the CERIT-SC computing facilities, is highly acknowledged.

iii

Abstract

This work, which follows up on our Bachelor’s research, deals with the aris-

ing challenges in the field of planar emulations of graphs. We show that the

non-projective graphs with finite planar emulators must be planar expan-

sions of internally 4-connected graphs from a specific finite set, or contain

one of five minor minimal non-projective graphs as a minor. Consequently,

this set of graphs is listed. The work includes a detailed description of the

used tools and their optimization. We also consider the problem of the ex-

istence of finite planar emulators for the class of cubic graphs showing that

there are only two non-projective cubic graphs that can be planar-emulable.

iv

Keywords

Finite planar emulator, Fellows’ conjecture, graph minor, projective plane,

finite planar cover

v

Contents

1 Introduction . 1

2 Basic notion . 3

2.1 Graphs and their structure . 3

2.2 Topological properties of graphs 7

2.2.1 Planar graphs . 7

2.2.2 Projective plane . 8

3 Problem and current position of the field 10

3.1 Role of internal 4-connectivity and methodology 16

4 Proof of Theorem 3.17 . 26

5 Technical details and principles of generating 37

5.1 Addition extensions . 40

5.2 Vertex splitting . 41

5.3 Special extensions . 44

5.4 Representing the graphs and use of the canonical form . . . 44

5.5 Searching for minors . 45

5.5.1 Heuristic for minor search 48

6 Generated results . 54

6.1 K4,4 − e . 56

6.2 K1,2,2,2 . 56

6.3 B7 . 59

6.4 C4 . 61

6.5 C3,D2 . 62

6.6 E2 . 63

6.7 K4,5 − 4K2 . 67

6.8 Analysis of the generated graphs 69

7 Cubic graphs . 76

8 Conclusions . 81

vi

A Lists of Generated Graphs . 88

A.1 C3 . 88

A.2 D2 . 89

A.3 K4,4−e . 91

A.4 Violating splits of K4,4−e . 94

vii

Chapter 1

Introduction

A graph is a discrete mathematical structure that consists of a collection of

nodes and the connections between them. A very common representation

of graphs is a drawing — the nodes are situated as points on some sur-

face, usually the plane, and the connections are drawn as curves connecting

those points. For some graphs, we can accomplish a drawing where no two

edges intersect. Such graphs are called planar.

The graphs with a planar drawing are interesting not only for their eas-

ily readable representation. It was shown that many problems can be solved

efficiently on graphs with a planar drawing as opposed to graphs in gen-

eral.

The concept of finite planar emulations of graphs was introduced by

M. Fellows in the 1980’s [12]. A finite planar emulator is a way how the

structure of a non-planar graph G can be interpreted by planar means. It is a

graph H that, as opposed to G, is planar, and there is a projection ϕ : H → G

that fixes the local structure of G in H (see Chapter 3 for precise definition).

It is rather easy to decide if a given graph is planar (see Theorem 2.5).

However, determining whether a non-planar graph has a finite planar em-

ulator turns out to be in many respects nontrivial. In 1988, Fellows pro-

nounced a conjecture that developed into the claim that no graph without

embedding in the projective plane is emulable in planar.

Despite the long time that has passed, there has been quite little accom-

plished in this field. Fellows’ conjecture surprisingly fell in 2008 by the dis-

covery of two finite planar emulators for non-projective graphs. Many more

emulators for non-projective graphs were discovered later.

Having virtually no useful characterization of planar-emulable graphs,

within our Bachelor’s research, we attempted to follow the approach to

a problem of similar fashion (finite planar covers and Negami’s conjecture)

taken by Hliněný and Thomas. Initial success showed that this direction

1

1. INTRODUCTION

seems to be very promising, however there are many challenges arising.

This work tackles some of those challenges and summarizes the results of

our ongoing research.

This introduction is followed by Chapter 2, which provides the basic no-

tion of graph theory used in this work. In Chapter 3, we introduce the prob-

lem and give an overview of the results accomplished in this field, which

this thesis is elaborated on. Especially, in Section 3.1, we summarize the

methodology of our research. Some interesting details regarding the imple-

mentation of our tools are described in Chapter 5. In Chapter 6, we provide

the results of our search aiming to characterize the non-projective graphs

with finite planar emulators which do not contain a minor isomorphic to

a graph from the K7 − C4 family. In the subsequent Chapter 7, we restrict

the problem to a specific class of graphs — the non-projective cubic graphs.

Chapter 8 provides conclusions and suggestions for future work.

2

Chapter 2

Basic notion

A graph is a collection of nodes, called vertices, and the connections between

them, called edges. Formally, a graph is an ordered pair (V,E) where V is

the set of vertices and E ⊆ V × V is the set of edges. If G is a graph, we

denote the set of vertices and edges of G by V (G) and E(G) respectively.

Two vertices connected by an edge are referred to as adjacent to each other.

If e is an edge, the ends of e are said to be incident with e.

The set of edges E(G) is a binary relation on V (G). A graph is called

undirected if this relation is symmetric. The reflexive pairs in E(G), i.e. the

edges with identical ends, are usually referred to as loops. If E(G) is irreflex-

ive and symmetric, the graph is called simple. The number of vertices of a

graph G is the cardinality of the set V (G), and the number of edges is the

cardinality of E(G). A graph is said to be finite if both its vertex set and

its edge set are finite. All the graphs considered in this work are finite and

simple. The edges are denoted by e = {u, v}, or shortly by e = uv, for an

edge e with ends u, v.

2.1 Graphs and their structure

If v is a vertex of graph G, the vertices adjacent to v in G are called neighbours

of v. The set of all neighbours of v in G is called a neighbourhood denoted by

N(v). The degree dG(v) of a vertex v in G is the number of neighbours of

v. In particular, a vertex of degree 3 is called cubic. Graph G is k-regular if

all the vertices of G have degree k. A cubic graph is a graph that is 3-regular.

From the combinatorial point of view, it can be easily seen that

∑

v∈V (G)

dG(v) = 2|E(G)|.

Two graphs G = (V,E) and H = (V ′, E′) are identical if V = V ′ and

E = E′. Two graphs H and G are said to be isomorphic if there is a bijection

3

2. BASIC NOTION

φ : G → H such that every edge (u, v) ∈ E(G) is mapped to an edge

(φ(u), φ(v)) ∈ E(H). The projection φ is called an isomorphism between G

and H . An automorphism is an isomorphism φ : G → G of a graph to itself.

A homomorphism from H onto G is a projection ϕ : H → G (not necessar-

ily bijective) such that ϕ(V (H)) = V (G) and for every egde (u, v) in E(H),

there is an edge (ϕ(u), ϕ(v)) in E(G).

Let G = (V,E) be a graph. Any graph F = (V ′, E′) such that V ′ ⊆ V

and E′ ⊆ E is called a subgraph of G, written as F ⊆ G. If E′ is maximal, i.e.

it contains all the edges between the vertices of V ′ that occur in G, graph F

is called an induced subgraph1 of G denoted by G ↾ V ′. It is also said that V ′

induces F in G. Trivially, every graph G contains (induced) subgraph G and

the empty graph. Subgraph F of G with F 6= G is called a proper subgraph.

If V (F) = V (G) for F ⊆ G, F is a spanning subgraph of G.

An independent set in a graph G is a subset I ⊆ V (G) of vertices that

induce a graph with no edges. A clique in a graph G is a subgraph of G

that is isomorphic to a complete graph (see the end of this section for the

definition).

A walk in a graph G is a finite sequence v0e1v1e2v2 . . . vk such that ei is

an edge with ends vi−1, vi for 1 ≤ i ≤ k. The vertices v0, vk are ends of the

walk, and all other vertices are internal vertices. The walk is said to connect

v0 and vk. The length of the walk is the number k. Note that a walk allows

that vi = vj for some 0 ≤ i ≤ j ≤ k. If G is simple, a walk can be denoted

simply by the sequence of vertices v0, v1 . . . vk. A walk is said to be closed

if v0 = vk. In this respect, a cycle in a graph is a closed walk such that all

vertices v1 . . . vk are pairwise distinct.

A graph G is said to be connected if every pair of its vertices is connected

by a path. A component of G is every inclusion-wise maximal induced sub-

graph of G that is connected. A vertex cut, or simply a cut, in a graph G is

a set X ⊆ V (G) such that G−X has more components than G. A cut of size

k is referred to as k−cut. A graph is called k-connected if it is connected,

1. The literature often denotes a subgraph of G induced by vertex set V ′
⊆ V (G) by G[V ′].

Our notation is however kept consistent with [18, 20] as we use the these publications in a

fundamental way.

4

2. BASIC NOTION

has at least k + 1 vertices, and has no cut of size less than k.

A separation in a graph G is a pair of sets (A,B) such that A∪B = V (G)

and there is no edge between A−B and B −A. A separation (A,B) is non-

trivial if both A−B and B−A are nonemtpy. The order of separation (A,B) is

the cardinality of A∩B. A separation of size k is also called a k−separation. A

connected graph has a nontrivial k−separation if and only if it has a k−cut.

Theorem 2.1 (Menger’s theorem). Let G be a graph and C,D ⊆ V (G). The

maximum number of vertex disjoint paths between vertices from C and D is the

minimum order of a separation (A.B) in G such that C ⊆ A and D ⊆ B.

Corollary 2.2. Graph G on k + 1 vertices is k−connected if and only if there are

k vertex disjoint paths (up to their ends) between any two vertices u, v in G.

Similarly to vertex connectivity, it also makes sense to define edge con-

nectivity. As this notion in not utilized in any way in this work, we just

remark that it exists and refer to literature (e.g. [8]) for more details.

If u, v are two vertices of a graph G, then G + uv refers to the graph

obtained by adding an edge e connecting u to v in G. Note that all graphs

considered in this work are simple without any parallel edges, thus this

operation does not modify G in any way if the edge u, v already exists. The

graph obtained from G by adding a set of edges E is denoted by G + E.

We also use G+e1+...
+...+ek

for long sequences of k edge additions e1, . . . , ek. The

notion of removing edges is analogous.

If G1, G2 are two graphs, the union of G1, G2 is the graph with vertex set

V (G1)∪ V (G2) and edge set E(G1)∪E(G2). A graph H results from graph

G by subdividing an edge e = uv with vertices v1, . . . , vk that are not in V (G)

if H = (G − e) ∪ P where P = uv1 . . . vkv is a path. Graph H is referred to

as a subdivision of graph G. If graph F is isomorphic to a subdivision of

graph G, it is said to be homeomorphic to G.

If G is a graph and e = {u, v} is an edge in G, the graph F resulting from

G by contracting edge e is described as follows: V (F) = V (G) \ {u, v} ∪ {we}

where we is a new vertex, and the set of edges E(F) = E(G − u − v) ∪

{wex | ux ∈ E(G) ∨ ex ∈ E(G)}.

Graph G is a minor of H , denoted by G ≤ H , if G can be obtained

5

2. BASIC NOTION

from a subgraph of H by contracting edges. The notion of graph minors

plays a fundamental role in this work. The following proposition is widely

exploited by our tools as described in Chapter 5.

Proposition 2.3. G is a minor of H if and only if there are disjoint connected

subgraphs Fv ⊆ H , v ∈ V (G) such that whenever xy is an edge of G, there is an

edge between V (Fx) and V (Fy) in H .

Let P be a graph property. If for every graph G with property P holds

that every minor F of G also has P , then P is said to be closed under taking

minors. The following is a famous result by N. Robertson and P. Seymour.

Theorem 2.4 (N. Robertson, P. Seymour). Let P be a minor closed property.

Then P has a finite set of minor minimal obstructions Λ such that no graph with

a minor isomorphic to a graph from Λ has property P . Moreover, P is testable in

time O(n3).

Unfortunately, Theorem 2.4 is purely of existential nature and hence

provides no clues for constructing a cubic algorithm for P. Set Λ mentioned

in the theorem is sometimes also called the sporadic family for P . The graphs

from Λ, and in a broad sense also the graphs that contain a minor from Λ,

are also referred to as forbidden minors or minor obstructions for P . In this

thesis, we extensively work with the sporadic family of graphs that embed

in the projective plane (see Section 2.2.2). The goal of this entire work can

be viewed as finding the sporadic family for the graphs with finite planar

emulators (cf. Chapter 3).

There is a convention in naming graphs. A graph with n+1 vertices con-

nected by n edges to a path of length n is commonly denoted by Pn. A cycle

of length n is a path Pn−1 with one additional edge connecting vertices 1

and n, denoted by Cn. A cycle of length k is sometimes called a k-cycle and

in particular 3-cycle is called a triangle. The graph Kn denotes a complete

graph with n vertices where every two vertices are adjacent to each other.

A graph G is called bipartite if the vertex set can be partitioned into two

sets V (G) = A ∪B such that both G ↾ A and G ↾ B have no edges. The sets

A,B are called parts of G. A graph Km,n refers to a complete bipartite graph

6

2. BASIC NOTION

G with pairwise disjoint parts V1, V2 where every pair of vertices u ∈ V1,

v ∈ V2 is connected by an edge. Such a graph is called a complete bipartite

graph. The notion of (complete) bipartite graphs can be easily generalized

to (complete) p-partite graphs.

2.2 Topological properties of graphs

A surface is a Hausdorff topological space S such that every point of S

has an open neighbourhood homeomorphic to R
2. A curve, sometimes also

called an arc, is the image of a continuous function f : [0, 1] → S. The curve

is simple if f is injective. If f(0) = u and f(1) = v, the arc A = f([0, 1]) is

said to join or to connect u and v.

A graph G is embedded in surface S if the vertices of G are distinct ele-

ments of S and every edge of G is a simple curve connecting vertices that

are adjacent in G. Furthermore, it is required that no two edges intersect in a

point distinct from a common vertex, and that no edge contains an isolated

vertex (vertex of degree 0 in G). An embedding of G in S is an isomorphism

of G with a graph G′ embedded in S. In this case, G′ is said to be a represen-

tation of G in S and we say that G can be embedded into S. Note that if a graph

G has an embedding in S, so does every minor of G. Thus, the existence of

embeddings is minor-closed.

Let G be a graph embedded in a surface S. A face of G is an arcwise

connected component of S − G. The set of faces is denoted by F (G). Each

face is bounded by a closed walk called a facial walk. A face f of G is said to

be incident with vertices and edges contained in the boundary of f .

2.2.1 Planar graphs

A large group of graphs of our interest are the planar graphs. According to

the definitions above, graph G is planar if it has an embedding in the sphere

S0. It is however more common to treat planar graphs as embeddings in

the (Euclidean) plane R
2. Note that as the plane is homeomorphic to any

open disc in the sphere, both approaches are equivalent. In this work, we

approach planar graphs as R2 embeddings.

7

2. BASIC NOTION

Theorem 2.5 (Kuratowski, 1930). A graph is planar if and only if it does not

contain a subgraph isomorphic to a subdivision of K5 or K3,3.

Corollary 2.6. A graph is planar if and only if it does not contain a minor isomor-

phic to K5 or K3,3.

The following theorem is a generally known result of Euler, which pro-

vides a necessary, but not sufficient condition for a graph to be planar.

Theorem 2.7 (Euler’s formula). Let G be a planar graph, then |V (G)|−|E(G)|+

|F (G)| = 2.

Proposition 2.8 can be easily derived from Euler’s formula.

Proposition 2.8. Let G be a planar graph.

(a) If |V (G)| ≥ 3, then |E(G)| ≤ 3|V (G)| − 6.

(b) If |V (G)| and there is no triangle in G, then |E(G)| ≤ 2|V (G)| − 4.

(c) G contains a vertex of degree at most 5.

A plane graph is a graph embedded in the plane. The unbounded face of

G is called the outer face of G. A graph G that can be embedded in the plane

with every vertex on the outer face of G is called outer planar.

Theorem 2.9. A graph is outer planar if and only if it does not contain a subgraph

isomorphic to a subdivision of K4 or K2,3.

2.2.2 Projective plane

A manifold is a topological space that is locally Euclidean (i.e., around every

point, there is a neighborhood that is topologically the same as the open

unit ball in R
n).

The projective plane is a topological manifold that can be described by

connecting the sides of a rectangle in the orientations (Figure 2.1). It can be

also seen as the sphere S0 (or the Euclidean plane, see. 2.2.1) with a single

crosscap — a self-intersection of a one-sided surface.

8

2. BASIC NOTION

A

A
BB

Figure 2.1: The projective plane can be obtained by unifying oriented edges

of a rectangle.

A graph is called projective planar (or shortly projective) if it has an em-

bedding in the projective plane. The class of projective graphs is strictly

larger than the class of planar graphs. For example, both the graph K5 and

K3,3, the minimal obstructions for planar graphs (cf. Theorem 2.5), can be

embedded in the projective plane without any edge crossings.

Theorem 2.10 is an analog of Euler’s formula (cf. Theorem 2.7) extended

from the plane to the projective plane. In fact, this can be done for any sur-

face S. The constant in χ(S) = |V (G)| − |E(G)|+ |F (G)| is known as Euler’s

characteristic of surface S.

Theorem 2.10. Let G be a graph with a projective embedding. Then, |V (G)| −

|E(G)| + |F (G)| = 1. Consequently, G cannot contain more than 3|V (G)| − 3

edges.

Similarly to planar graphs, projective graphs can be characterized by

obstructions. Glover, Huneke and Wang [17] found a family Λ of 35 graphs

such that each member of Λ has no embedding in the projective plane and

is minor minimal (Figure 3.3). Archdeacon proved that the list is complete

and those are the only such graphs [1].

9

Chapter 3

Problem and current position of the field

Definition 3.1. A graph G has a planar emulator (cover) H if H is a planar

graph and there exists a graph homomorphism ϕ : V (H) → V (G) such that, for

every vertex v ∈ V (H), the neighbours of v ∈ H are mapped by ϕ surjectively

(bijectively) onto the neighbours of ϕ(v) in G. The homomorphism ϕ is called an

emulator (cover) projection.

Informally, every vertex in G is represented by one or more vertices in

its emulator H , and for every neighbour u of a vertex v in G, any vertex

representing v in H has at least one (or exactly one in the case of a cover)

neighbour representing u. See Figure 3.1 for examples.

We should point out that if there are no restrictions posed on the re-

quired planar emulator, it is always possible to construct an emulator in the

form of an infinite tree. Such an emulator is, however, rather boring and

thus, we are interested in the finite cases only.

The concept of finite planar emulators, first proposed by M. Fellows in

1985 [12], and the concept of finite planar covers by Negami [27] are tightly

connected (despite their independent origin). In both cases, the main ques-

tion is for which graphs it is possible to construct planar emulators and

covers.

Conjecture 3.2 (Negami [27], 1988). A graph has a finite planar cover if and

only if it embeds in the projective plane.

Conjecture 3.3 (M. Fellows, Kitakubo, falsified 2008). Let G be a graph.

(a) G has a finite planar emulator if and only if it has a finite planar cover.

(b) G has a finite planar emulator if and only if it embeds in the projective plane.

Negami conjectured that the class of planar-coverable graphs is identi-

cal to the class of projective graphs (see Conjecture 3.2). Fellows claimed, in

10

3. PROBLEM AND CURRENT POSITION OF THE FIELD

s s

s

a b

c s

s

ss

s

s

b1

c1

a2b2

c2

a1
s

s

s

s

ss

s

s

s

a4

b4

c4

b5

c5b6

a3

b3

c3

Figure 3.1: Examples of a planar cover (center) and a planar emulator (right)

of the triangle G = K3 (left). We simply denote by aj , j = 1, 2, . . . the

vertices representing a of G, and analogously with b, c.

our opinion quite surprisingly, that both the classes of graphs with finite

planar covers and those with planar emulators are identical (cf. Conjec-

ture 3.3(a)). Believing that Negami’s conjecture holds true, Fellows’ claim

was later reformulated by Kitakubo into Conjecture 3.3(b)). Note that while

planar cover conjecture is still open and believed to be true, both claims of

Conjecture 3.3 were already disproved (see Theorem 3.13).

The concept of planar covers was widely investigated by S. Negami

and D. Archdeacon in the 1980’s, and later by R. Thomas and P. Hliněný.

In [26], it has been shown that all projective graphs are planar-coverable,

and the construction of their covers is actually very simple — the crosscap

in a projective-planar drawing of a graph G is replaced with a mirror image

of the drawing, and the corresponding connections between the drawings

are added (see Figure 3.2). It is obvious that every cover is also an emulator.

Hence, Theorem 3.4 immediately follows.

Theorem 3.4. If graph G has a projective embedding, it also has a finite planar

emulator.

To prove Conjectures 3.2 and 3.3, it would be necessary to show also

the converse, i.e. that non-projective graphs are not planar-coverable and

planar-emulable respectively. If G is a graph with finite planar emulator H ,

contraction or deletion of any edge uv in G can be performed as contraction

or deletion of all edges induced by ϕ−1(u), ϕ−1(v) in H without affecting

11

3. PROBLEM AND CURRENT POSITION OF THE FIELD

G = K5
③

s s

ss

s
v

ϕ(v1) = ϕ(v2) = v

b a

dc

←−

ϕ

s s

ss

s s

ss

s

s

v1

v2

a1 b1

d2c2

d1 c1

a2b2

Figure 3.2: The graph G = K5 (left) and its two-fold planar cover (right) via

a homomorphism ϕ. The cover is obtained from a “crosscap-less” drawing

of G and its mirror image.

planarity of H . Vertices can be deleted in a similar fashion. Thus, Proposi-

tion 3.5 easily follows.

Proposition 3.5. The existence of finite planar emulators, and analogously also

planar covers, is enclosed under taking minors.

Hence to prove the conjectures, we can restrict ourselves to showing

that there are no finite planar covers and emulators for the minor minimal

obstructions for the projective plane, which are known [1]. This minor min-

imal family is depicted by Figure 3.3.

There are some structural dependencies that can be observed among

the forbidden minors for the projective plane and that are actually reflected

in planar covers and emulators. Consider the operation of replacing a cubic

vertex by a triangle on its neighbours. This operation is called a Y∆ transfor-

mation, the inverse is denoted by ∆Y. The graphs K7−C4, D3 and E5 can be

obtained by a sequence of Y∆ transformations from the graph F1. Similarly,

the graphs K1,2,2,2, B7, C3, C4 and D2 can be obtained via Y∆ transforma-

tions from the graph E2. Thus, the sets ∆Y(K7−C4) = {K7−C4,D3, E5,F1}

and ∆Y(K1,2,2,2) = {K1,2,2,2,B7, C3, C4,D2, E2} are called the families of

K7 − C4 and K1,2,2,2 respectively.

Proposition 3.6. Existence of finite planar covers and emulators is enclosed under

taking Y∆ transformations.

12

3. PROBLEM AND CURRENT POSITION OF THE FIELD

K3,3+K3,3 K5+K3,3 K5+K5 K3,3 ·K3,3 K5 ·K3,3

K5 ·K5 B3 C2 C7 D1

D4 D9 D12 D17 E6

E11 E19 E20 E27 F4

F6 G1 K3,5 K4,5−4K2 K4,4−e

K7−C4 D3 E5 F1 K1,2,2,2

B7 C3 C4 D2 E2

Figure 3.3: The minor minimal obstructions for the projective plane.

13

3. PROBLEM AND CURRENT POSITION OF THE FIELD

A brief idea why Proposition 3.6 holds can be obtained from Theo-

rem 3.7 — it is possible to emulate independent cubic vertices with ver-

tices of the same degree and thus, the triangle on the neighbours in the

emulator can always be made. Theorem 3.7 is also a fundamental concept

of the proof of Theorem 3.11. We remark that Theorem 3.7 was originally

contained in [13], but, to the best knowledge of the author, it has not been

published until [4].

Theorem 3.7 (M. Fellows, [13]). Let G be a planar-emulable graph and X ⊆

V (G) an independent set of cubic vertices (vertices of degree 3). Then there exists

a planar emulator H of G with a projection ϕ : V (H) → V (G) such that every

vertex u ∈ ϕ−1(v) over all v ∈ X is of degree 3.

As for Conjecture 3.2, proofs of non-existence of planar covers for some

of the forbidden minors for the projective plane were provided (see The-

orem 3.8). In particular, we would like to point out the non-existence of a

finite planar cover for the graph K4,5 − 4K2 [18].

Theorem 3.8 (Archdeacon, Fellows, Hliněný, and Negami, 1988-98). Con-

jecture 3.2 holds true if and only if there is no finite planar cover for the graph

K1,2,2,2.

One can naturally think of applying the same arguments, which were

used in the case of planar covers, to planar emulators, i.e. to Conjecture 3.3.

This however cannot be done as all the more sophisticated tools (structural

and discharging arguments) used to show non-existence of planar covers

fail here (on a technical rather than conceptual level). In the following, we

provide a review of the known obstructions for the finite planar emulators

together with references to the particular proofs.

Definition 3.9. Graph G contains two disjoint k-graphs if there exist two vertex-

disjoint subgraphs J1, J2 ⊆ G such that, for i = 1, 2, the graph Ji is isomorphic

to a subdivision of K4 or K2,3, the subgraph G− V (Ji) is connected and adjacent

to Ji, and contracting all the vertices of V (G) \ V (Ji) in G into one results in

a non-planar graph (i.e. contracting a K5- or K3,3-subdivision).

14

3. PROBLEM AND CURRENT POSITION OF THE FIELD

Figure 3.4: An example of a graph having two disjoint k-graphs (shaded in

gray).

See Figure 3.4 for an example of a graph G with two disjoint k-graphs.

Note that such G is also always non-projective [16].

Theorem 3.10 (Fellows [13]). A planar-emulable graph G cannot contain two

disjoint k-graphs. Consequently, none of the 19 graphs – projective forbidden mi-

nors – inbetween the graph K3,3 · K3,3 and G1 (incl.) of Figure 3.3 has a finite

planar emulator.

Theorem 3.11 (M. Fellows, [13]). The graph K3,5 has no finite planar emulator.

The proofs of Theorems 3.10 and 3.11 can be studied e.g. from [4].

Let us remark that also by Euler’s formula, graphs K7 and K4,4 cannot

have finite planar emulators either. The following corollary is implied:

Corollary 3.12. None of the graphs in the family Λ = {K3,3 · K3,3, K5 · K3,3,

K5 · K5, B3, C2, C7, D1, D4, D9, D12, D17, E6, E11, E19, E20, E27, F4, F6, G1,

K3,5} (see Figure 3.3) has a finite planar emulator. The graphs K4,4 and K7 are

not planar-emulable either.

The following result was a big breakthrough in the field of planar emu-

lations and indeed, it falsified Conjecture 3.3.

Theorem 3.13 (Rieck and Yamashita [30], 2008). The graphs K1,2,2,2 and

K4,5 − 4K2 do have finite planar emulators.

Theorem 3.13 is especially significant for the discovery of a finite planar

emulator for the graph K4,5−4K2 (Figure 3.5), which, as emphasized above,

15

3. PROBLEM AND CURRENT POSITION OF THE FIELD

Figure 3.5: Planar emulator of the graph K4,5−4K2 by Rieck and Yamashita.

is not planar-coverable. We remark that the emulator of K4,5 − 4K2 is no

longer a unique finding in this respect and finite planar emulators for the

graph E2, C4 and all the members of ∆Y(K7 −C4), which do not have finite

planar covers either, have been found [4]. Consequently, the class of planar-

emulable graphs is much larger than the class of planar-coverable graphs.

From Corollary 3.12 and Proposition 3.5, we obtain:

Corollary 3.14. If a non-projective graph has a finite planar emulator, it must

contain a minor isomorphic to one of K4,4−e,K4,5 − 4K2 or to a graph from the

K7 − C4 or K1,2,2,2 families.

We remark that finite planar emulators do actually exist [4] for all the

graphs in Corollary 3.14 with a single possible exception of K4,4−e.

3.1 Role of internal 4-connectivity and methodology

A graph G is internally 4-connected if it is simple, 3-connected, has at least

five vertices, and for every separation (A,B) of order 3, either G ↾ A or

G ↾ B has at most three edges.

16

3. PROBLEM AND CURRENT POSITION OF THE FIELD

Figure 3.6: Planar emulator of the graph K7 − C4 [4].

17

3. PROBLEM AND CURRENT POSITION OF THE FIELD

Figure 3.7: Planar emulator of the graph E2 from which emulators for the

rest of graphs in the family of K1,2,2,2 (except for C4) can be derived [4].

18

3. PROBLEM AND CURRENT POSITION OF THE FIELD

Let G be a graph. Let F be a connected planar graph on the vertex set

V (F) disjoint from V (G), and let x1 ∈ V (F). If y1 is a vertex of G, and the

graph H1 is obtained from G∪F by identifying the vertices x1 and y1, then

H1 is called a 1-expansion of G. Let x1, x2 ∈ V (F) be two distinct vertices that

are incident with the same face in a planar embedding of F . If e = y1y2 is

an edge of G, and the graph H2 is obtained from (G− e)∪F by identifying

the vertex pairs (x1, y1) and (x2, y2), then H2 is called a 2-expansion of G.

Let x1, x2, x3 ∈ V (F) be three distinct vertices such that F − {x1, x2, x3} is

connected. Moreover, let each of the vertices x1, x2, x3 be adjacent to some

vertex of V (F − {x1, x2, x3}), and let all three vertices x1, x2, x3 be incident

with the same face in a planar embedding of F . If w is a cubic vertex of G

with the neighbours y1, y2, y3, and the graph H3 is obtained from (G−w)∪F

by identifying the vertex pairs (x1, y1), (x2, y2) and (x3, y3), then H3 is called

a 3-expansion of G.

Definition 3.15 (Planar expansion). A graph H is a planar expansion of a graph

G if there is a sequence of graphs G0 = G,G1, . . . , Gl = H such that Gi is a 1-,

2- or 3-expansion of Gi−1 for all i = 1, . . . , l.

The following is easy to see:

Lemma 3.16. Let H be a planar expansion of G.

(a) G has an embedding in the projective plane if and only if so does H .

(b) G has a finite planar emulator (cover) if and only if so does H .

(c) G is a minor of H .

The discovery of finite planar emulators for the graphs K4,5 − 4K2 and

K1,2,2,2 (cf. Theorem 3.13) showed that there are non-projective graphs with

finite planar emulators, but we do not know anything about this class. Thus,

it is natural to ask how many such graphs exist and how large and compli-

cated they can be.

In [20], Hliněný and Thomas provided the answer for a similar question

for planar covers. They showed that all the minor-minimal non-projective

graphs that possibly have a finite planar cover (recall that we do not know

19

3. PROBLEM AND CURRENT POSITION OF THE FIELD

of any finite cover for a non-projective graph – Conjecture 3.2 is still open)

are, up to planar expansions, internally 4-connected. Consequently, they

searched for all such graphs and showed that there are at most 16 possible

counterexamples to Conjecture 3.2.

The topic of finite planar emulators is widely discussed in the author’s

Bachelor’s thesis [6]. We adopted the approach of Hliněný and Thomas

and with sketch of a proof, we proposed that the non-projective graphs

with finite planar emulators must be planar expansions of an internally 4-

connected graph unless they contain a minor isomorphic to a member of

the K7 − C4 family.

Theorem 3.17. Let G be a connected graph that has a finite planar emulator,

but no projective embedding. Then, G has a minor isomorphic to a member of the

K7−C4 family, or G is a planar expansion of an internally 4-connected graph (see

below for the definitions).

The proof of Theorem 3.17 is presented in Chapter 4.

Using the tools presented in [18] and later in this section, we conducted

an exhaustive search described in [6]. As our research uses and builds up

on the previous work, we are going to review the used methods now.

For the purpose of the following, consider this definition of a vertex split

operation. Let a simple graph G be obtained from H by contracting an edge

e = uv ∈ E(H) to a vertex v. If degrees of the endvertices of e in H are at

least 3, then H is said to be obtained from G by splitting the vertex v. The

graph G is formally denoted by G<v
{

N1

N2

}

, where N1, N2 are the neighbour-

hoods of endvertices u, v of e in H , respectively, excluding u, v themselves.

A graph G is called almost internally 4-connected is it is simple, 3-

connected, has at least five vertices, and for every separation (A,B) of order

3, either G ↾ A or G ↾ B has at most four edges. The notion of almost inter-

nal 4-connectivity clearly differs from internal 4-connectivity by one edge

only. Hence, a pair (v, e) where v is a cubic vertex in G and e has both the

endvertices adjacent to v is called a violating pair in G. The edge e in violat-

ing pair (v, e) is referred to as a violating edge.

Given a violating edge e = {u1, u2} in a simple graph G, the operation

of a triad addition is defined as follows. Let v be a vertex of G distinct from

20

3. PROBLEM AND CURRENT POSITION OF THE FIELD

✡

✔

❡

✔

✖

✡

✔

❪

✟

✕

✕

✮

❪

✟

❪

✡

✟

Figure 3.8: The operations of splitting a vertex, triad addition and triangle

explosion.

and not adjacent to any of u1 or u2, and there is no violating pair (w, e) such

that w and v are adjacent, the triad addition produces graph Gt from G by

subdividing the edge e with a new vertex v′ and connecting v to v′ by an

edge.

Let (w, e) be a violating pair in a simple graph G and u of degree at

least 5 be the neighbour of w which is not incident with e. Then, the triangle

explosion produces graph Gx from G by splitting the vertex u into vertices

u1, u2 and by adding the missing one of edges {w, u1}, {w, u2} so that the

degrees of both u1 and u2 in the resulting graph are at least 4.

See Figure 3.8 for the operations introduced above.

Theorem 3.18, along with subsequent Theorems 3.19 and 3.20, are our

main tools for producing internally 4-connected graphs.

Theorem 3.18 (T. Johnson, R. Thomas, 1997). Let G be an internally 4-

connected minor of an internally 4-connected graph H such that G has no embed-

ding in the projective plane. Then there exists a sequence J0 = G, J1, . . . Jk ≃ H

of almost internally 4-connected graphs such that for i = 1, 2, . . . k, the graph Ji is

obtained from Ji−1 by adding an edge, splitting a vertex, or by a triad addition or

21

3. PROBLEM AND CURRENT POSITION OF THE FIELD

Figure 3.9: Quadrangular, pentagonal and hexagonal extension.

by a triangle explosion. Moreover, each Ji has at most one violating edge and if an

edge e is contained in both Ji−1 and Ji, it is not violating in at least one of them.

Let us remark that no proof of Theorem 3.18 was published so far. It

was used to generate results of Hliněný in [18] and our Bachelor’s research.

Despite it is believed to be correct, we suggest that it should be perceived

rather as a useful tool for double checking our results presented in Chap-

ter 6, which are based on Theorem 3.19 1.

Let H be an internally 4-connected graph, let t ≥ 1 be an integer, and let

H0 = H,H1, . . . , Ht be a sequence of graphs such that for i = 1, 2, . . . , t the

following conditions are satisfied:

(a) Hi = Hi−1+{ui, vi}, where ui, vi are two distinct non-adjacent vertices

of Hi−1.

(b) No edge is violating in both Hi−1 and Hi.

(c) If 1 < i < t, then Hi has at most one violating pair.

(d) Ht is internally 4-connected.

Then we say that Ht is an addition extension of H . We also say that Ht is

a t-step addition extension of H . Let us point out that in condition (c), we do

mean i > 1, i.e. H1 is permitted to have more than one violating pair (but it

has at most one violating edge, because H is internally 4-connected).

1. Theorem 3.18 was used to generate graphs for the graph covering problem within [18].

It provided the exact same results as the ones published later in [20] which were obtained

by application of Theorems 3.19 and 3.20.

22

3. PROBLEM AND CURRENT POSITION OF THE FIELD

Let G be a graph, let {u, v, x, y} be cubic vertices forming a cycle of

length 4 in G. Then a graph H obtained by adding a vertex w to G and

connecting it by an edge to all of {u, v, x, y} is called a quadrangular exten-

sion of G, denoted by H = G⊠ {u, v, x, y}.

Let G be a graph and (v1, v2, v3, v4, v5) a cycle C of length 5 in G (with

vertices in this order). Assume that v2 and v5 are cubic vertices and that v1

is not adjacent to any of v3 or v4, and let e denote the edge {v3, v4} of C.

Then a graph H obtained by subdivision e by a vertex w and connecting

w to v1 by an edge is called a pentagonal extension of G, denoted by H =

GD{v1, v2, v3, v4, v5}.

Let G be a graph and {u, v, w} independent vertices in G. Furthermore,

assume that no cubic vertex of G has all the neighbors u, v, w and that every

pair of vertices from {u, v, w} have a common neighbor of degree three. In

such circumstances, we say a graph H obtained by adding a new vertex x

into G and connecting x to all of {u, v, w} by an edge is a hexagonal extension

of G, denoted by H = G9{u, v, w}.

The following theorem is a simplified version of a result proved in [21]:

Theorem 3.19 (T. Johnson, R. Thomas [21]). Suppose that G and H internally

4-connected graphs, G is a proper minor of H , and that G has no embedding in the

projective plane. Then, there exists a minor H ′ of H satisfying one of the following:

H ′ is a t-step addition extension of G, or H ′ is a quadrangular, pentagonal or

hexagonal extension of G, or H ′ is obtained by splitting a vertex.

Note that unlike the other cases, if the graph H ′ is obtained from G by

splitting a vertex, it is not necessarily internally 4-connected. In our search,

we solve this by continuous removing the violating edges of such H ′ until

we obtain an internally 4-connected subgraph of H ′, also minor of H .

In [21], Theorem 3.20 is provided as a stronger version of Theorem 3.19.

Theorem 3.20 (T. Johnson, R. Thomas [21]). Suppose that G and H internally

4-connected graphs, G is a proper minor of H , and that G has no embedding in

the projective plane. Assume further that each component of the subgraphs of G

induced by cubic vertices is a tree or cycle. Then, either H is an addition extension

of G, or there exists a minor H ′ of H satisfying one of the following: H ′ is a 1-

23

3. PROBLEM AND CURRENT POSITION OF THE FIELD

step addition extension of G, or H ′ is a quadrangular, pentagonal or hexagonal

extension of G, or H ′ is obtained by splitting a vertex.

We refer to Theorem 3.20 as stronger since, as long as the additional as-

sumption about cubic vertices in G is satisfied, it allows us not to consider

the operations other than addition extensions. To be more precise, assume

non-projective graphs F,G,H such that F is a minor of G and G is a mi-

nor of H (so does obviously F). Assume further that G is a t-step addition

extension of F with t > 1 and no subgraph of G is a 1-step addition ex-

tension of F . Then, H must be a t′-step addition extension of G, or there

exists a minor H ′ of H that is distinct from G and that can be obtained from

F by the four listed operations. Consequently, we do not need to take into

account the graphs that can be obtained from G by operations other than

t′-step addition extensions.

Within our Bachelor’s research, we used Theorem 3.18 to generate all

the non-projective internally 4-connected graphs that do not contain a mi-

nor from the family of K7 − C4 and can have finite planar emulator. By

Corollaries 3.14 and 3.12, such graphs contain a minor from the family of

K1,2,2,2, K4,5−4K2 or K4,4−e and do not contain 2 disjoint k-graphs or a mi-

nor isomorphic to K3,5. The family of K7−C4 was excluded and postponed

for future work as these minor minimal obstructions are not internally 4-

connected and thus Theorem 3.18 is not applicable. Furthermore, at that

point, planar-emulability of ∆Y(K7 − C4) was open and we hoped in hav-

ing a proof that the emulators exist rather than finding some. Recall that the

emulators for the family of K7 − C4 are known [4].

Our previous research showed the following theorem:

Theorem 3.21. If H is a non-projective graph with finite planar emulator, then H

is a planar expansion of an internally 4-connected graph G from a finite set of 176

graphs, or it contains a minor isomorphic to K4,5 − 4K2, E2 or to a graph from the

family of K7 − C4.

Despite our enormous effort, we did not manage to generate all the in-

ternally 4-connected graphs with E2 or K4,5 − 4K2 minors. This was given

24

3. PROBLEM AND CURRENT POSITION OF THE FIELD

by the necessity of searching for various minor obstructions for planar em-

ulators in generated graphs and by the large number of graphs produced

by Theorem 3.18.

Given above, the challenges and main goals of this work are following:

(1) To provide a proper proof of Theorem 3.17. The proof is presented in

Chapter 4.

(2) To reproduce the previously generated results graphs using Theo-

rems 3.19 and 3.20 proofs of which were publish (unlike previously

used Theorem 3.18). Results of this part of work were already published

in [7] and are presented in Chapter 6.

(3) To finish computations for graphs E2 and K4,5 − 4K2. This requires ad-

justing the current tool and their optimization, especially the algorithm

used for searching for forbidden minors. Theorems 3.19 and 3.20 might

be more suitable for this task. We managed to finish all the computa-

tions for the graph E2. The results are presented in Section 6.6. Note that

these results were not included in [7].

(4) To analyse the obtained result and suggest further steps heading to-

wards characterization of planar-emulable graphs. The analysis is avail-

able in 6.8 and further directions provided in Chapter 8.

We provide a detailed description of our approach to the generating

process and optimization that our tools use in Chapter 5. In addition in

Chapter 7, we tackle the problem of planar-emulations restricted to the class

of cubic graphs only.

25

Chapter 4

Proof of Theorem 3.17

In this chapter, we are going to present a proof of Theorem 3.17. Let us

point out that we have already published this part of our work in [7], how-

ever due to a discovered mistake in the picture of graph as E11 presented

in [18, Appendix A] (and consequently in [20, 7, 4]), the proof in this chap-

ter contains a minor correction (with respect to previous [7]). However, the

main idea and core of the proof remains unchanged.

We remark that Theorem 3.17 will likely follow quite easily from a new

approach to Archdeacon’s result [1] which is currently being prepared by

Asadi, Postle and Thomas [2], but in the meantime we present our inde-

pendent arguments. Before we approach to indeed a very technical proof of

this statement let us introduce the notion used in this section properly.

Suppose that G is a graph and v1, v2, v3 ∈ V (G) are three distinct ver-

tices of G. Let 3-extension of G be the graph H defined as follows: If there

are two or more common cubic neighbours of v1, v2, v3 then H = G. If there

exist a cubic vertex w ∈ V (G) adjacent to v1, v2, v3 then H results from G by

adding one new vertex t adjacent to all three vertices v1, v2, v3. Otherwise,

H results from G by adding two new vertices s, t both adjacent to all three

vertices v1, v2, v3. A reduced 3-extension of G is the graph H0 obtained from

a 3-extension H by removing possible edge between v1, v2, v3. Notice that

presence of such edges does not influence the embeddability and emulabil-

ity properties, cf. Proposition 3.6.

From now on, we can start building the theory leading to the proof of

Theorem 3.17 which is our main task in this section. For purpose of the rest

of this section, let Λ = {K3,3 ·K3,3, K5 ·K3,3, K5 ·K5, B3, C2, C7, D1, D4, D9,

D12, D17, E6, E11, E19, E20, E27, F4, F6, G1, K3,5} be the family of minor mini-

mal non-projective graphs without planar emulators (cf. Corollary 3.12).

A separation (A,B) in G is called flat if the graph G ↾ B has a planar

embedding with all the vertices of A ∩B incident with the outer face.

26

4. PROOF OF THEOREM 3.17

Lemma 4.1 (Hliněný, Thomas [20]). Let G be a 3-connected graph, and let

(A,B) be a non-flat separation of order three in G. Let F0 be a simple 3-connected

graph. Suppose that F ⊆ G is a subgraph of G isomorphic to a subdivision of F0,

and that W ⊆ V (F) is the subset of vertices that have degree more than 2 in F. If

|W ∩ (B −A)| ≤ 1, then G contains a minor isomorphic to a 3-extension of F0.

Lemma 4.2. Let G be a 3-connected graph, and let (A,B) be a separation of or-

der three such that neither of (A,B) or (B,A) is flat. Assume H is a minor of

G such that H is an internally 4-connected minor-minimal non-projective graph

(Figure 3.3). Then, G contains a minor isomorphic to a reduced 3-extension of H ,

or G contains another minor F having two disjoint k-graphs or isomorphic to K3,5

or a member of ∆Y(K7 − C4).

Proof. First, note that since H is an internally 4-connected minor of G and

both (A,B) or (B,A) are non-flat, then the condition |W ∩ (B − A)| ≤ 1

given by Lemma 4.1 is satisfied and G contains a minor isomorphic to a

3-extension of H ′, where H is a minor of, up to violating edges, internally

4-connected graph H ′. If H ′ is obtained from H , by adding edges, then G

contains a minor isomorphic to a 3-extension of H and this case is not inter-

esting. Hence H ′ is obtained from H only by splitting vertices.

From Lemma [20, Lemma 3.4(b)] follows that if H is one of the graphs

K1,2,2,2, B7, C3 or D2 and G is obtained from H by vertex splits, then G

contains a minor isomorphic to a member of Λ, ∆Y(K7 − C4) or to one of

the graphs K4,4−e,K4,5 − 4K2, C4 or E2. Hence, we need to focus on the

graphs K4,4−e,K4,5 − 4K2, C4 and E2 only.

So, let graph H ′ be obtained from H by a sequence of splitting a ver-

tex v in H into vertices v, w1, . . . , wk in H ′, and let H ′
E<−{v1, v2, v3} be a 3-

extension of H ′. If |{v1, v2, v3}∩{v, w1, . . . , wk}| ≤ 1 for every split vertex v,

then H ′
E contains a minor isomorphic to a reduced 3-extension of H (via

backward contraction of {v, w1, . . . , wk} into v). This is clear unless H ′ con-

tained a cubic vertex s adjacent to v1, v2, v3 while no such vertex s exists in

H . In the latter case, s will play the missing role in a reduced 3-extension of

H .

If {v1, v2, v3} ⊆ {v, w1, . . . , wk} for a split vertex v, then the two common

cubic neighbours of {v1, v2, v3} in H ′
E form a subgraph isomorphic to K2,3,

27

4. PROOF OF THEOREM 3.17

and the vertices in H ′ − v, as H ′ is non-planar, form the other part of two

disjoint k-graphs in H ′
E .

The last case, without loss of generality, is that {v1, v2} ⊆

{v, w1, . . . , wk}, and v3 ∈ {u, z1, . . . , zk}, where {u, z1, . . . , zk} are the ver-

tices created by splitting a vertex u ∈ H distinct from v. In this case, there

is a connection of u and v in G, which is not necessarily an edge of H .

To apply the same argument about the existence of two disjoint k-graphs

in H ′
E as in the previous case, we need to show that every graph X ob-

tained by an edge contraction or unifying two nonadjacent vertices from

H ∈ {K4,4−e,K4,5− 4K2, C4, E2} is non-planar. We consider all the possible

cases of X .

Let H = K4,4−e, let us denote the two partitions of H by A,B and let

xa ∈ A and xb ∈ B be the vertices of degree three in H . Without loss of gen-

erality, if e = xay for any vertex y ∈ V (X), then the graph X contains a K3,3

subgraph induced by the six vertices of degree four in H . So, let e = yayb

with ya ∈ A, yb ∈ B distinct from xa, xb. Then, X contains a K3,3 subgraph

on vertex set V (X) − x for all x ∈ {xa, xb}. The K3,3 subgraph remains

unchanged even after unifying vertices xa, xb. So, consider the graph X ob-

tained by unifying y1a, y2a ∈ A, i.e. X ≃ H − y1a. But in this case, X has

a minor isomorphic to K5 and hence, it is non-planar.

Consider the labeling of the graph H = E2 as in Figure 4.1. Let σ1 =

{0, 4, 6, 7, 8}, σ2 = {1, 2, 5, 7, 9} and σ3 = {10} be the sets, classes of equiv-

alence, of the vertices that are symmetric to each other. Note that three ver-

tices of σ1 and three vertices of σ2 form several subdivisions of K3,3 in H . By

contracting an edge between vertices u ∈ σi and v ∈ σj for i, j ∈ {1, 2, 3},

some of the subdivisions of K3,3 always remain unchanged and hence, re-

sulting X cannot be non-planar. As |σ1| = |σ2| = 5, even after unifying two

vertices u, v within σ1 or σ2, the subdivision of K3,3 is still present.

Let H = C4. In this case, we list only the ten non-symmetric choices of

the edge to be contracted to obtain graph X (it is easy to verify that none

of such graphs is planar). The edges, referring to the labeling introduced

by Figure 4.1, are {0, 1}, {0, 6}, {0, 7}, {3, 6}, {2, 6}, {3, 8}, {4, 5}, {4, 6} and

{4, 7}. As for unifying the vertices, there are the following pairwise non-

28

4. PROOF OF THEOREM 3.17

K4,4−e K4,5 − 4K2

K1,2,2,2 B7 C3

C4 D2 E2

Figure 4.1: Illustration of the graphs F1 = K4,4−e, F2 = K4,5 − 4K2, F3 =

K1,2,2,2, F4 = B7, F5 = C3, F6 = C4, F7 = D2 and F8 = E2 introducing the

labeling for the proof of Lemma 4.4. The drawings are different from the

usual representations (cf. Figure 3.3) for the symmetries in the graphs to be

more obvious.

29

4. PROOF OF THEOREM 3.17

symmetric cases:

• If X is obtained via unifying vertices {0, 2}, it contains K5 minor via

contracting the vertices {0, 2, 7} and {1, 3, 8}.

• If X is obtained by unifying vertices {2, 8} into vertex 2, it contains

a subdivision of K5 formed by the vertices {1, 2, 3, 4, 6} and vertices

5 and 0 subdividing the connections from between {4, 2} and {1, 6}

respectively.

• If X is obtained via unifying vertices {3, 5}, it contains K5 minor via

contracting {7, 4} and {1, 2, 8}.

• If X is obtained by unifying vertices {3, 7} into 3, it contains K5 mi-

nor via contracting edges {1, 2}, {5, 8} and {4, 6}.

• If X is obtained by unifying vertices {0, 3} into 3, it contains K5 mi-

nor via contracting edges {1, 2, 7} and {5, 8}.

• If X is obtained by unifying vertices {2, 5}, it contains K5 minor via

contracting vertices {4, 7} and {1, 3, 8}.

Hence, for all the possible graphs X for H = C4 are non-planar.

Let H = K4,5 − 4K2 with labeling as in Figure 4.1. Let σ1 = {0, 2, 5, 7},

σ2 = {1, 3, 4, 6} and σ3 = {8} be the set of pairwise symmetric vertices.

Three vertices of σ1 and three vertices of σ2 form multiple subdivisions of

K3,3 in H . One of them is always preserved even after contracting an edge

between σ1 and σ2 or unifying two vertices u, v within σ1 or σ2. The same

argument applies for unifying a vertex in σ3 with a vertex of σ1.

Without loss of generality let the graph X be obtained from H by con-

tracting the edge {1, 8} into vertex 1. In this case, X is planar. However,

we show that in this case, H ′
E , and hence also G, contains another minor F

isomorphic to F1 ∈ ∆Y(K7 − C4).

There are two options of obtaining H ′ from H

• H ′ = H < 8
{

v1,v2
v3,v4

}

for v1, v2, v3, v4 ∈ σ1. Due to symmetries within

σ1, all such H ′ are symmetric. Hence, let us choose v1 = 0, v2 = 2,

30

4. PROOF OF THEOREM 3.17

v3 = 5 and v4 = 7. Now, there are only two non-isomorphic cases for

H ′
E = H ′<−{8, 9, x} for x ∈ V (H ′)

0, 2, where 9 is the vertex created by splitting 8. If x ∈ σ1, then H ′
E

contains F1 subgraph via contracting {x1, y1, y2}, where x1 ∈ σ1

x and y1, y2 are its two neighbours from σ2, and {x2, y3} with x2 ∈ σ1

x, x1 and y3 ∈ σ2

y1, y2. If x ∈ σ2, then H ′
E contains F1 subgraph via contracting edges

{x, y}, {x1, y1}, {x2, y2}, where {y, y1, y2} ⊆ σ1 and {x1, x2} ⊆ σ2. In

both the cases, the extended vertices {8, 9, x} create the K2,3 in H ′
E ,

the rest of the vertices form the remaining part of F1.

• H ′ = H<0
{

8,v1
v2,v3

}

, where v1, v2, v3 are the neighbours of vertex 0, all

of them belonging to σ2. There are in total 6 pairwise non-isomorphic

3-extensions H ′
E<−{0, 9, x}, all of which contain a F1 subgraph via,

without loss of generality, contracting edge {2, 3} and

– {0, 4} and {1, 5} for x ∈ {2, 3, 7}

– {4, 7} and {1, 5} for x = 1

– {4, 5, 7} for x = 6

– {1, 5, 6} for x = 8

There are no other options.

Lemma 4.3. Let G be a connected graph that has no embedding in the projective

plane, and that has no minor isomorphic to a member of Λ or ∆Y(K7 − C4). If

k ∈ {1, 2, 3} is the least integer such that there is a nontrivial separation (A,B) of

order k in G, then either (A,B) or (B,A) is flat.

Proof. For the cases of k = 1 and k = 2, we refer to the argumentation

provided within the proof of [20, Lemma 2.2]. Since there are differences in

argumentation for k = 3, we focus on this case.

So, let k = 3 and suppose, for a contradiction, that neither (A,B) nor

(B,A) are flat. Notice that the assumptions guarantee that G is 3-connected

in this case. By Corollary 3.14, G has a minor isomorphic to M = Fi for

31

4. PROOF OF THEOREM 3.17

∆Y

G H

Figure 4.2: By replacing a triangle with a cubic vertex (∆Y transformation)

in a 3-extension G, we obtain a subdivision of a reduced 3-extension H .

As planar-emulability is enclosed under Y∆ transformations, if G does not

have a finite planar emulator, H does not either.

some 0 < i ≤ 8, where F1 = K4,4− e, F2 = K4,5 − 4K2, F3 = K1,2,2,2,

F4 = B7, F5 = C3, F6 = C4, F7 = D2 and F8 = E2. Let i be the maximum

such integer. Since Fi is internally 4-connected and G does not contain any

minor isomorphic to a member of Λ, we deduce from Lemma 4.1 that graph

G contains a minor isomorphic to a reduced 3-extension of Fi. Thus, G con-

tains a minor isomorphic to a member of Λ or ∆Y(K7−C4), which is shown

later as Lemma 4.4, a contradiction.

Lemma 4.4. Let E be a reduced 3-extension of a graph Fi, where F1 = K4,4−e,

F2 = K4,5 − 4K2, F3 = K1,2,2,2, F4 = B7, F5 = C3, F6 = C4, F7 = D2 and

F8 = E2, on vertices v1, v2, v3 ∈ V (Fi). Then, E contains a minor isomorphic to

a member of Λ or ∆Y(K7 − C4).

Proof. First, note that if a 3-extension E′ of Fi contains a minor M ∈ Λ ∪

∆Y(K7 − C4), then also the reduced 3-extension E ⊆ E′ contains a minor

M ′ isomorphic to M or to a graph that can be obtained from M by ∆Y

(inverse of Y∆) transformations (see Figure 4.2). Such M ′ must belong to

Λ ∪ ∆Y(K7 − C4) as well. Hence, we prove Lemma 4.4 by showing that

all 3-extensions E′ of all Fi with 1 ≤ i ≤ 8 contain a minor isomorphic to

a member of Λ or ∆Y(K7 − C4).

32

4. PROOF OF THEOREM 3.17

The proof for Fi with i ∈ {3, 4, 5, 7} is provided within the proof of [20,

Lemma 2.2, p. 13]. Hence, we focus on the remaining cases, i.e. F1, F2, F6

and F8. Figure 4.1 depicts all the graphs Fi with emphasis on their symme-

tries.

Case F1 = K4,4−e:

Let vertices 0 and 7 be the cubic vertices of K4,4−e. It is easy to see that for

every 3-extension of F1 on triple of vertices {a, b, c}, one of the following

situations applies:

• The triple {a, b, c} does not contain any of the vertices {0, 7}. Then,

an edge e = uv such that u ∈ {a, b, c} and b ∈ {0, 7} can be contracted

resulting in graph G that contains a subgraph isomorphic to E5.

• The triple {a, b, c} contains just one of the vertices {0, 7}. Then, the

triple {a, b, c} is symmetric to one of the following, and the corre-

sponding construction can be applied:

– for triple {0, 3, 6}, E5 subgraph is obtained via contracting the

edge e1 = {3, 4}

– for triple {0, 2, 6}, E5 subgraph is obtained via contracting the

edge e2 = {2, 4}

– for triple {0, 2, 4}, E5 subgraph is obtained via contracting the

edge e3 = {2, 6}

• The triple {a, b, c} contains both the vertices {0, 7}. Then, an edge

f = uv such that u ∈ {0, 7} and v /∈ {a, b, c} can be contracted. The

resulting 3-extension of Fi contains E5 subgraph.

Case F2 = K4,5 − 4K2:

Consider the labeling for the graph F2 as denoted by Figure 4.1. For every

3-extension H = F2<−{a, b, v} with vertex v from the set {1, 3, 4, 6}, one of

the following constructions can be applied:

33

4. PROOF OF THEOREM 3.17

• For v = 1, either the edges {0, 3}, {2, 6}, {4, 5}, or the edges {0, 4},

{2, 3}, {5, 6} are contracted.

• For v = 3, either the edges {0, 4}, {1, 2}, {6, 7}, or the edges {0, 1},

{2, 6}, {4, 7} are contracted.

• For v = 4, either the edges {0, 3}, {1, 5}, {6, 7}, or the edges {0, 1},

{3, 7}, {5, 6} are contracted.

• For v = 6, either the edges {1, 2}, {3, 7}, {4, 5}, or the edges {1, 5},

{2, 3}, {4, 7} are contracted.

For all such 3-extensions H , the vertices v, a, b remain distinct after ap-

plying the contractions in at least one of the two cases mentioned above

for each vertex v. The graph resulting from H by applying the contractions

contains a subgraph S isomorphic to K5 − e, where edge e = {a, b}. The

vertex v is attached to a common neighbour of a, b in S – a vertex of degree

four in S, by an edge. Hence, H must contain a D3 subgraph.

The 3-extensions H = F2<−{a, b, c} with a, b, c being a combination of

{0, 2, 5, 7} are symmetric to each other. Such vertices a, b, c already have

a common cubic neighbour and therefore, only one is added to form the

3-extension H , which directly contains a subgraph isomorphic to D9.

The only remaining possibilities are the 3-extensions H = F2<−{a, b, 8}

such that a, b ∈ 0, 2, 7, 5. Such 3-extensions are symmetric to each other.

Without loss of generality, consider a 3-extension H of F2 on the vertices

{0, 2, 8} with the edge {2, 3} contracted. The resulting graph contains a sub-

graph isomorphic to E27.

Case F6 = C4:

There are in total 14 pairwise non-isomorphic 3-extensions H =

F6<−{a, b, c} of F6 = C4. Referring to the labeling introduced by Figure 4.1,

they contain a D3 ∈ ∆Y(K7 − C4) subgraph by contracting following com-

ponents:

• {3, 4, 7} and {1, 8} for {a, b, c} = {0, 1, 2}

34

4. PROOF OF THEOREM 3.17

• {4, 5}, {2, 7} and {1, 8} for {a, b, c} = {0, 1, 3}

• {3, 4}, {0, 7} and {1, 8} for {a, b, c} = {0, 2, 6}

• {3, 4, 5} and {1, 8} for {a, b, c} = {0, 2, 7}

• {3, 4}, {0, 7} and {1, 6} for {a, b, c} = {0, 2, 8}

• {1, 2}, {4, 7} and {5, 8} for {a, b, c} = {0, 3, 6}, {0, 6, 7} or {0, 6, 8}

• {1, 2}, {4, 6} and {5, 8} for {a, b, c} = {0, 3, 7}

• {1, 2}, {4, 7} and {5, 6} for {a, b, c} = {0, 7, 8}

• {2, 3}, {0, 7} and {5, 8} for {a, b, c} = {0, 1, 6}

• {2, 3}, {4, 7} and {5, 8} for {a, b, c} = {0, 1, 7}

• {1, 8} and {4, 5} for {a, b, c} = {0, 2, 4}

• {0, 1, 2} and {4, 5} for {a, b, c} = {6, 7, 8}

Case F8 = E2:

There are 16 pairwise non-isomorphic 3-extensions of H = F8<−{a, b, c}

of F8 = E2, which contain at least one of F1, E5 ∈ ∆Y(K7−C4) or E11,G1 ∈ Λ

minors as follows:

• For {a, b, c} ∈ {{0, 1, 2}, {1, 2, 3}, {1, 3, 8}}, a subgraph isomorphic to

F1 ∈ ∆Y(K7 − C4) is obtained via contraction of {4, 5}, {6, 7}, {0, 3}

and {2, 8}.

• For {a, b, c} ∈ {{2, 6, 7}, {2, 6, 8}, {2, 7, 10}, {2, 8, 10}}, a subgraph

F1 ∈ ∆Y(K7 − C4) is obtained via contraction of {0, 1}, {3, 4} and

{7, 8, 9}.

• For {a, b, c} ∈ {{3, 4, 7}, {3, 7, 9}, {3, 7, 10}}, a subgraph F1 ∈

∆Y(K7 − C4) is obtained via contraction of {0, 1} and {2, 4, 8, 9}.

• For {a, b, c} = {4, 5, 6}, a subgraph F1 ∈ ∆Y(K7 − C4) is obtained

via contraction of {0, 1}, {2, 8} and {3, 4, 9}.

35

4. PROOF OF THEOREM 3.17

• For {a, b, c} = {5, 7, 9}, a subgraph F1 ∈ ∆Y(K7 − C4) is obtained

via contraction of {0, 1}, {6, 7} and {8, 9}.

• For {a, b, c} = {2, 6, 10}, a subgraph E5 ∈ ∆Y(K7 − C4) is obtained

via contraction of {0, 1}, {3, 4}, {6, 7} and {8, 9}.

• For {a, b, c} = {2, 6, 10}, a subgraph E5 ∈ ∆Y(K7 − C4) is obtained

via contraction of {0, 1}, {4, 5} and {2, 8, 9}.

• For {a, b, c} = {4, 6, 8}, a subgraph G1 ∈ Λ is obtained via contraction

of {5, 7, 9, 10}.

• For {a, b, c} = {4, 6, 10}, a subgraph E11 ∈ Λ is obtained via contrac-

tion of {4, 5, 6}.

In all the cases listed above, the graphs contain a minor isomorphic to

a member of Λ ∪∆Y(K7 − C4) and hence, Lemma 4.4 holds true.

Finally, we can approach the proof of Theorem 3.17.

Proof of Theorem 3.17. A corollary of Lemma 4.3 is that if G is a connected

graph that has no embedding in the projective plane and that has no minor

isomorphic to a member of Λ or ∆Y(K7−C4), then there exists an internally

4-connected graph H with the same properties, i.e. H is non-projective and

has no minor isomorphic to a member of Λ or ∆Y(K7 − C4), such that G is

a planar expansion of H . See the proof of [20, Corollary 2.2] for the argu-

mentation. Lemmas 4.3 and 3.16 respectively provide generalizations of [20,

Lemma 2.2] and [20, Lemma 2.1] for finite planar emulators, which are re-

ferred to during the proof. Theorem 3.17 is then a simple reformulation of

this corollary.

36

Chapter 5

Technical details and principles of generating

Our tools for conducting the exhaustive search went, up to this point,

through three “stages of development”. The early stage tools were the ones

that we used to initially explore the idea of the exhaustive search within our

Bachelor’s research [6]. The tools were capable of applying Theorem 3.18

only and required a massively parallel environment1 utilized when search-

ing for forbidden minors. We did not manage to finish computations for the

graphs K4,5 − 4K2 and E2, which we gave up when processing graphs of

size about 12 vertices only. These tools showed that Theorem 3.18 perhaps

is not the splitter theorem that fits our problem best.

Therefore, already within our Master’s research, we approached adjust-

ing our tools to be able to apply Theorem 3.19 and 3.20 as well. These adjust-

ments gave rise to the second generation of our software, which was used to

generate results for [7]. New splitter theorems not only proved themselves

to offer much better performance than Theorem 3.18, but also provided a

valuable verification of the previous results (see [7]). We still used paral-

lel environment when searching for minors, but we incorporated some im-

provements based on previous experiences (e.g. searching for minors based

on the origin of the graph). Despite our effort, we still have not managed

to finish computations for the graphs K4,5 − 4K2 and E2. We managed to

process graphs of size up to 14 vertices generated from the aforementioned

graphs. The second generation tools also revealed existence of what we now

call violating minors and cycles in generating.

The lack of success in finishing the search for the two aforementioned

graphs brought us to developing the latest generation of the search soft-

ware. The main improvement was designing a beautifully simple, but ex-

tremely powerful, heuristic for searching for forbidden minors of our in-

1. Our computations were conducted on 64 Intel Xeon X7560 CPU’s at 2.27 GHz with hy-

perthreading

37

5. TECHNICAL DETAILS AND PRINCIPLES OF GENERATING

terest (see Section 5.5.1). This heuristic meant a significant performance im-

provement which allowed us to abandon the parallel environment for most

of the graphs to be processed. In fact, the only graph that now requires par-

allelism is K4,5−4K2. The remaining graphs, including E2 can be processed

on a regular laptop2. Other than the minor search heuristic (see Section5.5)

we integrated some other tools such as nauty [23] with our software. These

tools were present in the previous development stages as well, however

they were compiled separately and called by our software as external mod-

ules.

During this long process of development, we conducted many exper-

iments striving for the best performance. Due to those experiments, we

gained a lot of invaluable experiences with application splitter theorems to

internally 4-connected non-projective graphs and the presented problem.

The purpose of this section is to present some aspects of our approach to

the exhaustive search. We are doing so in order to show that our compu-

tations and obtained results are not only correct, but, with a good level of

insight, also fairly easy to reproduce.

Figures 5.1 through 5.4 document our use of Theorems 3.19 and 3.20 for

generating internally 4-connected graphs. Figure 5.1 shows the overall algo-

rithm. During the initialization step, the input — an internally 4-connected

non-projective graph G, together with the general setup of generating pro-

cess, e.g. what splitter theorem is to be used, is loaded.

The initialization also includes loading the following collections that are

maintained during the search:

̺ ⊆ G

A ⊆ G

P ⊆ G

L ⊆ G

M ⊆ G × G × {true, false}

where ̺ is the list of forbidden minors for graphs generated from G, A is

the set of results — pairwise nonisomorphic internally 4-connected graphs

2. with 2.0 GHz Intel Core 2 Duo T7300 and 4GB RAM in our case

38

5. TECHNICAL DETAILS AND PRINCIPLES OF GENERATING

Initialize

Generate vertex splits

Generate edge additions

Generate quadrangular extensions

Generate pentagonal extenstions

Generate hexagonal extensions

Filter graphs for restricted minors

Save new results

Figure 5.1: Scheme of generating according to Theorems 3.19 and 3.20.

generated so far (from all initial graphs, not only from G), P is the set of

graphs for which the repairs of a violating edge were attempted before (see

Section 3.1), and M is the set of positive or negative records (H,M, bool)

that represent already known information that graph H does or does not

contain minor M . These collections are sorted in order to allow for fast

searching. They are used for our computations to avoid redundant work.

Their particular use is described in further sections within this chapter.

Then, all the graphs H that are t-step addition extensions of G are gener-

ated. The vertex splits, quadrangular, pentagonal and hexagonal extensions

of G are generated as well if necessary (cf. Theorem 3.20). Every graph H

produced in this phase is then passed to a routine that tests whether it con-

tains a minor isomorphic to a graph from ̺. The routine is described in

detail in Section 5.5. If the graph contains a forbidden minor, it is rejected,

otherwise it is passed to a saving module. This module verifies that this

graph was not produced yet, i.e. it is not in A, and if not, it is inserted in

A, saved and a request to start generating recursively using Theorem 3.19

or 3.20 is put through. If a violating minor is found, we also include another

request to apply Theorem 3.18 to graph G.

39

5. TECHNICAL DETAILS AND PRINCIPLES OF GENERATING

5.1 Addition extensions

Having an internally 4-connected graph G, our use of the splitter theorems

aims to generate all the internally 4-connected graphs H that are minimal,

i.e. there is no other internally graph F with G ≤ F ≤ H .

More detailed depiction of generating addition extensions is provided

within Figure 5.2. For an internally 4-connected graph G = G0, first, all

graphs G1 that can be obtained by single edge addition are generated. For

every G1, the canonical representative is immediately computed, so only

the non-isomorphic representatives are kept to continue with. Every graph

then goes through a series of tests: the internally 4-connected graphs are

designated for further processing, otherwise a process of repairs is initi-

ated. Let Gi be a graph in the repair process. In an attempt to not com-

pute anything more than once, we maintain a set L of graphs that already

went through the repair process. Note that L is not a global collection

passed through the entire search, it is initially empty for every internally

4-connected graph G that enters generating addition extensions. If graph

Gi isomorphic to some already processed graph F ∈ L is to be repaired

(such graphs can be created e.g. by adding edges in a different order), it is

immediately rejected. Otherwise, we verify that Gi does not contain multi-

ple violating edges or the same violating edge as the preceding graph Gi−1.

Note that these conditions are not relevant for i = 1. If the graph Gi meets

all the criteria and is not rejected, it is added to the list of repaired graphs

and consequently, all graphs Gi+1 are generated by single edge additions.

Before Gi+1 is sent to the same repair routine, the very last condition is

verified. In order to break the entire search into as many independent steps

as possible, our algorithm attempts to construct all t-step addition exten-

sions H = Gt of G = G0 such that there is no internally 4-connected addi-

tion extension Gj for 0 < j < t. Thus, all graphs Gj = (V (Gi+1), E(G0)+S)

such that S is a nontrivial subset of E(Gi+1) \E(G0) are generated. If there

is an internally 4-connected Gj among them, Gi+1 is rejected as it will be

obtained as a t-step addition extension of Gj later.

We tested many approaches to producing addition extensions. The one

40

5. TECHNICAL DETAILS AND PRINCIPLES OF GENERATING

presented above provides by far the best performance we were able to

achieve.

The process terminates when there are no more graphs to be repaired.

The fact that the algorithm converges and is correct is obvious.

5.2 Vertex splitting

If vertex splits are required, the algorithm generates all the graphs that can

be obtained by splitting a vertex u into vertices u1, u2. Splits with any of

u1, u2 having degree less than 3 are omitted. Let G1 denote a graph pro-

duced from an internally 4-connected G = G0 by the described opera-

tion. Unlike graphs produced by quadrangular, pentagonal and hexago-

nal extension, G1 does not need to be internally 4-connected in this case.

The theorem does not provide any further information about such graphs,

thus we approach iterative removal of the violating edges in order to cre-

ate a sequence of graphs G2, G3, . . . , Gk,≤. We remove the edges as they

are encountered by iterators used in the implementation, i.e. we do not en-

force any specific order. Lemma 5.1 implies that if there is an internally

4-connected subgraph F ≤ G1 that can be obtained by such a process, the

order in which the violating edges are removed does not matter.

Lemma 5.1. Let S ⊆ E(G) be the set of violating edges of a graph Gi. If there

are two distinct violating edges e1, e2 ∈ S such that e2 would not be violating in

Gi+1 = (V (Gi), E(G) \ {e1}), then Gi+1 is not 3-connected.

Proof. If edge e2 of violating pair (v, e2) is no longer violating after remov-

ing edge e1, then the neighbours of vertex v no longer form a 3-cut. By re-

moving an edge from the graph, the degree of vertex v could not increase,

thus v is a vertex of degree 2 in Gi+1.

The order of violating edges to be removed matters if consecutive re-

moving of violating edges produces Gi ≤ Gk that is not 3-connected. As

discussed in the other sections, such situations do occur; we refer to such a

vertex split as violating split. If a violating split is encountered, our software

41

5. TECHNICAL DETAILS AND PRINCIPLES OF GENERATING

Ad
d
si
ng
le
ed
ge

in
ev
er
y
po
ss
ib
le
w
ay

Re
je
ct
gr
ap
h

Gr
ap
h
is
no
ta

lm
os
tI
4c

or
co
nt
ai
ns

m
ul
tip

le
vi
ol
at
in
g
ed
ge
s

Sa
m
e
vi
ol
at
in
g
ed
ge

Ad
d
to

th
e
ou
tp
ut

co
lle
ct
io
n

Ad
d
si
ng
le
ed
ge

in
ci
de
nt

w
ith

v
in
ev
er
y
po
ss
ib
le
w
ay

Is
om

or
ph

ic
gr
ap
h
w
as

al
re
ad
y
in
th
e
re
pa
ir
pr
oc
es
s

Gr
ap
h
is
I4
C

Ad
d
gr
ap
h
to

th
e
lis
to

fg
ra
ph

s
th
at

w
er
e
in
th
e
re
pa
ir
pr
oc
es
s

Co
nt
ai
ns

an
I4
C
su
bg

ra
ph

di
st
in
ct
fro

m
th
e
in
iti
al
gr
ap
h
G

Fo
re

ve
ry

gr
ap
h
H

Fo
re

ve
ry

gr
ap
h
G

Ex
it
w
he
n

al
lg
ra
ph

s
ar
e
pr
oc
es
se
d

Figure 5.2: Scheme of generating t-step edge additions. 42

5. TECHNICAL DETAILS AND PRINCIPLES OF GENERATING

Generate all

vertex splits

Repair graph by

removing all violating edges

Save graph and

declare created cycle

Do for each

generated graph Graph is not I4C

Add graph to

the output collection

Graph is not 3 connectedGraph is I4C

Finish when all graphs were processed

Figure 5.3: Scheme of generating and repairing vertex splits.

indicates its occurrence and continues processing the remaining graphs. Oc-

currence of a violating split means that in addition, Theorem 3.18 will be

applied to G0 in order to discover internally 4-connected graphs with both

G0 and G1 through Gk minors.

Note that it is possible that after removing some violating edges from

a graph G, it may no longer be 3-connected. However, it can still contain

edges with endvertices having a common cubic neighbour. Such edges can

no longer be called violating as the notion of a violating edge is defined for

almost internally 4-connected graphs, which are required to be 3-connected.

However, it is only natural to treat such edges as “violating”and continue

removing until no such edges exist.

All generated internally 4-connected graphs are accompanied by canon-

ical labeling (see Section 5.4) and organized to a set. Thus, only one repre-

sentative of each isomorphism class gets to the output collection A.

43

5. TECHNICAL DETAILS AND PRINCIPLES OF GENERATING

Generate all the possible

quandrangular / pentagonal / hexagonal

extensions

Add graph to the

output collection

Figure 5.4: Scheme of generating quadrangular, pentagonal and hexagonal

extensions.

5.3 Special extensions

Should quadrangular, pentagonal or hexagonal additions also be gener-

ated, the algorithm exhaustively explores all the combinations of vertices

that meet the conditions defined by the operations. If a combination match-

ing the criteria is found, the particular extension is produced. Note that in

all the cases, this extension must be internally 4-connected and thus, it can

be added to the output collection, which is free from isomorphisms due to

the use of canonical representatives.

5.4 Representing the graphs and use of the canonical form

Our implementation of the splitter theorems represents graphs as data

structures that carry information about the undirected graph in an adja-

cency matrix. To represent the matrix, we use a simple array of C/C++

unsigned int numeric records with the record at index i representing the

adjacency vector for vertex i. This way, we gain all the benefits of the adja-

cency matrix representation (especially the constant time adjacency test and

fast neighbourhood modification) while reducing the overhead of copying

a 2-dimensional array. In addition to this fundamental data, we also main-

tain the following records for every graph H :

• The information about the origin of the graph. This includes the se-

quence of splitting operations leading to H from the preceding inter-

44

5. TECHNICAL DETAILS AND PRINCIPLES OF GENERATING

nally 4-connected graph G.

• The graph F that graph G was obtained from. This information can be

used in connection with the former to quickly find a forbidden minor

in H is some cases.

• The canonical representation of the graph H .

One of the principles making our search feasible is to never never com-

pute anything twice for the same graph. Thus, every graph also carries its

canonical representation, which we compute using nauty [23]. This repre-

sentation has the form of a string — it is the adjacency matrix of the canon-

ical representative of the isomorphism class read row-wise. The canonical

form is used in order to maintain the collections A,P and M. Graphs in

these collections are represented only using the canonical strings. The lexi-

cographic ordering on the string also defines the ordering on graphs that is

used for fast lookup in binary fashion.

The data structure used to represent graphs is one of the features that

can be further optimized in the future. It is important to realize that the

software is determined to handle a large number of graphs that need to be

copied and passed around a lot. Thus, reducing the size of the represen-

tation will bring a performance improvement, which should be noticeable

especially if the tools are used in a massively parallel environment.

5.5 Searching for minors

Considering the number of graphs produced by the splitting process, hav-

ing an effective way of searching for forbidden minors turns out to be cru-

cial. This part of our software was a bottleneck in both our Bachelor’s re-

search tools and the consequently created second generation. This section

provides an in-depth description of the routine used for searching for mi-

nors in graph. Most of the functionality described was implemented by the

second generation software, the heuristic presented at the end of the section

was added in third generation.

45

5. TECHNICAL DETAILS AND PRINCIPLES OF GENERATING

Before we approach a detailed description of the heuristic used, let us

first focus on searching for minors in graphs from outside of the box. Know-

ing that minor search is a lengthy procedure we should obviously attempt

to avoid the search as much as possible. Thus, searching for minors in the

generated graphs is always the very last operation that determines whether

an internally 4-connected graph belongs to the graphs that possibly have a

finite planar emulator. Also, if minor search is necessary, we have our tools

remember the result for future use. The results are stored in the form of

triples (G,M, bool) ∈ M where G is a graph, M is the tested minor, and

bool is the result of the conducted search, i.e. true if M ≤ G and false oth-

erwise. The graph G is stored via canonical labeling (see Section 5.4), M

is a string identifier denoting the minor, and the last parameter a boolean

value. Should the same search be initiated multiple times, the answer is first

searched among the known results and the actual search routine is run only

if the result is not found.

Now consider another aspect of the minor search process. Generating

from an internally 4-connected graph G, by application of the splitter the-

orems, we obtain some other internally 4-connected graph H . If H does

not contain any of the forbidden minors M ∈ ̺, it is added to the possi-

ble planar-emulable graphs in A and the generating process is recursively

applied to H . If J is a graph obtained from H by application of Theo-

rems 3.18, 3.19 or 3.20, it was created by a series of small local changes in H .

Such a nature of operations applied to graphs has the following effect: Let

σ denote the sequence of operations that produces internally 4-connected

graph J× = σ(H) with a forbidden minor M ∈ ̺ from H , due to which J×

is rejected. It is likely that σ is also applicable to graph J and produces an

internally 4-connected graph K = σ(J). In such a situation, we would be

forced to search for minors from ̺ in K. Since we are already familiar with

some structural relations among the graphs in question, we may observe

that K also contains forbidden minor M .

Lemma 5.2. Let H, J,K be non-projective internally 4-connected graphs with

H ≤ J ≤ K. Denote σ the sequence of split operations such that σ(J) = K. If σ

is applicable to H (it does not violate the conditions under which the operations of

46

5. TECHNICAL DETAILS AND PRINCIPLES OF GENERATING

σ are applicable) and σ(H) contains a M minor, then K also contains M minor.

Proof. We know that H ≤ J ≤ K = σ(J). Since σ is applicable to both H

and J , there is a subgraph S isomorphic to H in J , on which σ acts. Thus,

M ≤ J× = σ(H) = σ(S) ≤ σ(J) = K.

In our generating scheme, for an internally 4-connected graph J , we al-

ways have information about the preceding internally 4-connected graph

H from which J was obtained. We also have the information about all in-

ternally 4-connected graphs J × and J X (note that J ∈ J +) and some mi-

nors that they do or do not contain. Thus, when we need to verify that an

internally 4-connected graph K = ϑ(J) obtained from J by sequence of

operations ϑ does not contain any minor from ̺, we take graph H , attempt

to construct an internally 4-connected graph ϑ(H) and if successful (it is

possible that ϑ does not apply to H), for each minor M ∈ ρ we first verify

that we did not already perform search (ϑ(H),M) with a positive answer. If

there is (ϑ(H),M) with M ≤ ϑ(H) known, we know that K contains M as

well. Thus, adding (K,M, true) to the list of known minor containment, we

can reject K. Note that we cannot make any conclusion about M being a mi-

nor of K from the negative records (ϑ(H),M, false). Hence for all M ∈ ̺,

if there is no positive knowledge about M ∈ ϑ(H), we have no means of

avoiding searching for forbidden minors in K, and the search routine has

to be initiated.

Reusing the computed information about minors in graphs was first im-

plemented by the second generation of our tools and further improved (in

the sense of storing and accessing the records) in the third generation.

Having an internally 4-connected graph G, we need to generate all the

internally 4-connected graphs H with G minor that do not contain any mi-

nor from the set of forbidden graphs ̺. The set ρ is always formed by graphs

that are known not to have finite planar emulators (2 disjoint k-graphs and

K3,5), graphs that are disregarded (usually the family of K7−C4), and some

additional internally 4-connected graphs that the generating scheme will be

applied to separately. Let us denote the last group of graphs by Q.

Consider two internally 4-connected non-projective graphs G1, G2 and

47

5. TECHNICAL DETAILS AND PRINCIPLES OF GENERATING

their two sets of forbidden minors ̺1, ̺2 with Q1,Q2 such that G2 is con-

tained in ̺1 and it is the only graph in which ̺1, ̺2 differ. Formally, we have

̺1 \̺2 = {G2} = Q1 \Q2 = {G2}, and we wish to generate all the internally

4-connected graphs with G1 and G2 minors.

One possible approach would be to start generating from G1 using ̺1

yielding a set of internally 4-connected graphs with G1 minors only — all

the graphs with G2 minor would be rejected as they contain minor G2 ∈ ̺1.

Then, the splitting process would be applied to G2 using ̺2 producing a set

of internally 4-connected graphs with both G1 and G2 minors, and a set of

internally 4-connected graphs with only G2 minors.

The other option is to run the search from G2 first using ̺2. This pro-

duces a set of graphs that contains either both G1 and G2 minors, or G2

minor only. Let this set be denoted by AG∈
. As we know this set of results,

we can employ the following optimization: Conduct the search from G1

using ̺2. When graph H with G1 ≤ H is generated, verify that H is not

contained in A. If it is, H contains G2 minor and should be rejected.

The later approach avoids heuristic search for G2 minor when generat-

ing from graph G1. Instead, it performs a lookup in a per expectation small

ordered set and thus, it can be significantly faster.

5.5.1 Heuristic for minor search

In our original work, we used an algorithm that exhaustively explored sub-

graphs which upon contraction could produce the minor being searched

for. We conducted the computations in a highly parallel environment which

made it feasible to produce the aforementioned results. The performance of

this module, however, remained one of the limiting factors for finishing the

computation for the graphs K4,5 − 4K2 and E2.

Given the nature of the generated graphs, we can employ the following

heuristic searching for minor minimal non-projective obstructions of our

interest:

All the minors M that we need to search for in a graph G, produced

by the splitting process, are non-projective graphs. Thus, if a contraction of

48

5. TECHNICAL DETAILS AND PRINCIPLES OF GENERATING

a graph G′, subgraph of G, results in a graph with projective embedding,

it is not a contraction of our interest and it can be disregarded. Given the

nature of our problem, all the graphs G produced by the splitting process

are not far from being projective. Hence, we can expect many subgraphs G′

of G to be forbidden for a contraction making the search for minor M quite

straightforward.

The routine searching for non-projective minor M in a non-projective

graph G starts with enumerating all the subgraphs of G of size at most

V (G)−V (M) vertices. Let us denote the set of such subgraphs S . Then, for

every S ∈ S , we construct a graph FS ≤ G by contracting all the vertices in

S into one. Then, if FS is not projective planar, S is excluded from S as its

contraction cannot result in discovery of minor M in G.

In the rest of this section, we provide a brief description of the algorithm

we use for testing existence of a projective embedding of a given graph

S ∈ S . For the algorithm to be usable in the aforementioned heuristic, it

is required to perform very fast. First, let us remark that we are not aware

of implementation of any projective plane embedding tests in any of the

commonly use libraries that work with graphs3. Hence, our own imple-

mentation was necessary. There is an algorithm with running time in O(n)

known, however its implementation is an extremely difficult task [31]. For

this reason, we decided to to use an O(n2) algorithm by W. Myrvold [24],

implementation of which is claimed to be much easier [24, 25]. Given that

graphs that this routine is applied to are rather small, the performance drop

should not be as significant.

The projective test algorithm (Figure 1) starts with verifying if graph sat-

isfies Euler’s formula for the projective plane. If it tests whether the graph

is planar. If graphs is planar, it is also projective planar and a plane embed-

ding of G can be returned as result. Otherwise, a Kuratowski subgraph, i.e.

subdivision K of K3,3 or K5, of graph G is found. We denote this graph by

3. The availability of such algorithms was discussed [25] with the author of [24]. The author

offered to provide us with testing implementation of their algorithm, however we were

warned that give its age, it no longer compiles on the currently used platforms. For this

reason, we decided implement the algorithm on our own

49

5. TECHNICAL DETAILS AND PRINCIPLES OF GENERATING

K.

For each projective plane embedding of K, the main idea is to try to em-

bed the rest of the graph in the faces of the embedding K̃ of K. A bridge

of a graph G with respect to an embedded subgraph H is a subgraph of G

which is either (1) an edge not in H whose endpoints are both in H plus

its endpoints; or (2) a connected component G−H together with the edges

which connect a vertex in the connected component to a vertex in H and

their endpoints. The vertices that a bridge shares with H are called its at-

tachment vertices.

A bridge can be drawn in a face F if its all attachment vertices lie on

F . A bridge B can be embedded in a face F is there is a planar embedding

of B ∪ F . A k-face bridge with respect to an embedded subgraph K̃ is a

bridge that can be embedded in k faces. All bridges for an embedding K̃

of K ∈ {K3,3,K5} in the projective plane are either 1-face, 2-face or 3-face

bridges. Two bridges are compatible for a face if both can be drawn inside the

face simultaneously. Otherwise, they are said to be conflicting.

The goal of the algorithm is to embed the bridges to faces, which can

be perceived as an instance of a SAT problem — to determine if there is

an assignment of boolean values to the variables of a formula in shape of

conjunction of clauses, where every clause is formed by disjunction of liter-

als. The SAT problem is generally known to be NP-hard, however if every

clause is formed precisely by two literals, so called 2-SAT problem, there is

a simple algorithm running in linear time with respect to the input size.

The obstacle for SAT to 2-SAT reduction are the 3-face bridges. There

are in total 3 ways in which K be embedded in the projective plane (cf. Fig-

ures 5.5 and 5.6), with 6 non-equivalent labellings for K3,3 and in total 27

non-equivalent labellings for K5. By case analysis of possible 3-face bridges

with respect to a given type of embedding,[24] shows that for each of them,

there is only a constant number of assignments of that bridge to the faces.

Thus, for every such assignment of 3-bridges to faces, the problem can be

reduced to an instance of 2-SAT and solved efficiently.

The running time O(n2) is obtained as follows: Let n denote the number

of vertices and m be the number of edges of the input graph G. If there are

50

5. TECHNICAL DETAILS AND PRINCIPLES OF GENERATING

Figure 5.5: Projective embedding of K3,3.

Figure 5.6: Two ways of embedding K5 in the projective plane.

51

5. TECHNICAL DETAILS AND PRINCIPLES OF GENERATING

more than 3n−3 edges, the input graph cannot be projective by Euler’s for-

mula for the projective plane (see Theorem 2.10) and the algorithm rejects

in constant time after reading the input. Thus for the remaining steps, we

have at most 3n− 3 ∈ O(n) edges in the graph.

If G is planar, is is also projective planar, which is detected by line (4).

This test can be conducted in O(n) time using any planarity testing algo-

rithm, for example [3], which can also extract the Kuratowski subgraph K

if G is non-planar. For both the aforementioned tasks, our implementation

uses the aforementioned Boyer-Myrvold planarity test and Kuratowski ob-

struction extraction algorithm [3] available in C library boost [29]. An inde-

pendent implementation is also available in OGFD [5].

The loop at line (8) is executed at most O(1) times — precisely 6 times

for K homeomorphic to K3,3 and 27 times for K homeomorphic to K5.

For each of the embeddings K̃, the algorithm finds the bridges of K̃

and faces in which the bridges can be embedded using a modified BFS in

O(n) time. Determining the faces that each bridge can be embedded in can

be accomplished using a planarity test. The total number for all tests is in

O(n) using a linear time planarity tester if the graph tested for planarity is

the bridge with its points of attachment connected in a cycle which respects

the cyclic order of the face. The number of faces in K̃ is constant, thus line

(9) operates in O(n) time.

The conflicts among bridges can be computed using a fairly small finite

state machine (10 states, each of them with out-degree 3) described by [24].

It is important to realize that the number of bridges can be linear and thus

the number of bridge pairs can be quadratic. In order for the entire algo-

rithm to run in O(n2) time, the information about bridge conflicts must be

computed in O(n2) total time and thus, this part of the algorithm (which

also utilizes O(n) number of edges) really is crucial.

For loop at line (14), the number of arrangements of 3-face bridges is

constant as state earlier. The search for an assignment of bridges to faces is

conducted via reduction to 2-SAT instance which is then solved in a linear

time, thus the total run time is in O(n2). If the projective embedding ex-

ists, it can be composed using the information available in O(n) time and

52

5. TECHNICAL DETAILS AND PRINCIPLES OF GENERATING

returned.

Because each of the loops involves in the above code only involves a

constant number of iterations, the time for the whole algorithm is in O(n2).

The author also remarks that the constant overhead of this algorithm is very

reasonable.

Algorithm 1 Algorithm searching for projective embedding of a graph G.

1: if m > 3n− 3 then

2: return false.

3: end if

4: if G is planar then

5: return planar embedding of G

6: end if

7: Find subgraph K homeomorphic to K3,3 or K5.

8: for all labeled projective plane embedding K̃ of K do

9: Find all the bridges of K̃ and determine which faces they can be

embedded in.

10: if bridge b cannot be embedded in any face of K̃ then

11: return false.

12: end if

13: Compute the conflicts between pairs of bridges.

14: for all arrangements of 3-face bridges do do

15: Use reduction to 2-SAT problem instance in order to search for a

compatible bridge assignment to faces.

16: if there is such an assignment of bridges to the faces of K̃ then

17: return a projective planar embedding

18: end if

19: end for

20: end for

21: return false.

53

Chapter 6

Generated results

In Chapter 3, Section 3.1, we presented two tools that can be used for an ex-

haustive search for non-projective internally 4-connected graphs. We used

both Theorem 3.18 and combination of Theorems 3.19 and 3.20 for a com-

puterized exhaustive search for the internally 4-connected graphs that con-

tain one of the K4,4−e,K4,5 − 4K2,K1,2,2,2,B7, C3, C4,D2 or E2 minors, can

have a finite planar emulator and do not contain any minor isomorphic to

a graph in the K7 − C4 family, i.e. we searched for graphs without a minor

isomorphic to a graph in the set Λ ∪∆Y(K7 − C4) ∪ {K4,4,K7}.

The search solely via Theorem 3.18 was described in [6]. This section

presents the search and results obtained by application of Theorems 3.19

and 3.20. The theorems were applied in the following fashion: If the ini-

tial internally 4-connected graph G satisfies condition specified by Theo-

rem 3.20, this theorem is applied and only t-step edge additions are gen-

erated from the graph H that is a t-step addition of G, t ≥ 2. If the con-

ditions are not satisfied, Theorem 3.19 is applied and all of t-step edge

addition, vertex splits, quadrangular, pentagonal an hexagonal extensions

are generated. If application of Theorem 3.19 produces after a vertex split

graph H that is not internally 4-connected, all the violating edges and con-

sequently edges that connect neighbours of a cubic vertex are removed to

obtain graph F ≤ H . If F is internally 4-connected, it is used as an input

graph for further generating using Theorem 3.19. If the graph is not inter-

nally 4-connected (in fact, this can happen only if F is not cubic), we call F

a violating minor as it does not allow for further application of any of the the-

orems. The vertex split that produced H from G is referred to as a violating

split. Note that these situations are common e.g. for graph E2 and we pro-

vide a detailed analysis later. In such a case, we apply also Theorem 3.18

to graph G in order to check whether some other internally 4-connected

graphs H ′ ≥ G exist.

54

6. GENERATED RESULTS

In the following sections, we list the generated results. Together with

each graph, we list also a reference to this result in [6], where it was gen-

erated using Theorem 3.18. In all the cases, we refer to labeling as in Fig-

ure 4.1. The results are listed in separate sections based on from which inter-

nally 4-connected minor minimal obstruction for the projective plane they

were generated. For every such minor minimal obstruction, we also include

a diagram of the generating process (Figures 6.1 through 6.7). These figure

contain the splitting tree where every node represents a graph explored

within our search. The color coding has the following meaning.

• The blue nodes represent internally 4-connected graphs for which we

do not know if a finite planar emulator exists.

• The yellow nodes are the graphs in the family of K1,2,2,2.

• The green nodes are the graphs for which a finite planar emulator can

be derived from the previously discovered ones. Some of these graphs

— the ones that do not contains an E2 minor, were already described

by Hliněný in [20].

• The white nodes represent the graphs that were created for technical

reasons only so that Theorem 3.18 can be applied to them. They are

always isomorphic to their predecessor which has a violating minor

(see Section 6.8).

• Specifically in the generating tree for E2, the colour coding has a

slightly different meaning. The green graphs are the graphs that be-

long to class IE
[0]
2 , the orange graphs are the graphs from IE

[2]
2 and

the blue graph is the only graph from IE
[4]
2 (see Section 6.8 for more

details). The white nodes have the meaning stated above.

The directed edges in figures are labelled by sequences of splitting op-

erations. The edge addition is denoted by EA, the edge removal by ER, the

quadrangular, pentagonal and hexagonal extension by QE, PE and HE with

standard parameters respectively, and the vertex split by VS. The parame-

ters for vertex split denote the vertex v to be split and the bit mask of the

55

6. GENERATED RESULTS

neighbourhood N(v). The mask neighbours will become the neighbours of

the vertex introduced by the split, the unmasked neighbours will remain

adjacent to v. The vertex introduced by the vertex split gets the next avail-

able label l ∈ N.

6.1 K4,4 − e

Consider the graph K4,4−e. Let the set ̺ be the set of graphs {K1,2,2,2, B7,

C3, C4, D2, E2, K4,5 − 4K2} and let G be an internally 4-connected graph ob-

tained from K4,4−e by Theorem 3.19 that contains a minor M isomorphic to

a member of ̺. By Theorem 3.19, there exist a generating sequence leading

to G from M . Hence, we do not need to consider G here, because it will be

obtained later from M . The set of forbidden minors for K4,4−e thus is

̺0 = Λ ∪∆Y(K7 − C4) ∪∆Y(K1,2,2,2) ∪ {K4,4,K7} ∪ {K4,5 − 4K2}

(see Corollary 3.12 for the rest of forbidden minors). The 85 internally 4-

connected graphs that can be obtained from K4,4− e and do not contain

a minor isomorphic to a member of ̺0 are listed in Appendix A.3. We de-

note this set of results by AK4,4−e = K4,4−e[i], 0 ≤ 72. The tree depicting the

generating process is shown in Figure 6.1.

6.2 K1,2,2,2

For the graph K1,2,2,2, the set of forbidden minors is

̺1 = Λ ∪∆Y(K7 − C4) ∪ {K4,4,K7} ∪ {B7, C3, C4,D2, E2} ∪ {K4,5 − 4K2}.

The same arguments as above apply for inclusion of the graphs B7, C3, C4,

D2 and E2. Also, note that graph K4,4− e cannot be in ̺1. The internally

4-connected graphs that can be obtained from K1,2,2,2 and do not contain

a minor isomorphic to a member of ̺1 are as follows:

• K
[0]
1,2,2,2 = K1,2,2,2

• K
[1]
1,2,2,2 = K

[0]
1,2,2,2<6

{

0,2,3
1,4,5

}

, in [6] referred to as K
[1]
1,2,2,2

56

6. GENERATED RESULTS

K44-e

01

02

03

04

05

06

07

08

9

10

11

12 13 14

15

16
17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

383940

41

4243

4445

46

47

4849

50

51

52

535455

56

5758

59

60

61

62

63

64

65

66

67 68 69

70

71 72
EA(0,4)

VS(1,17)

EA(2,7)

EA(1,7)

VS(4,132)

VS(2,33)

EA(0,5)

EA(2,8)-EA(1,0)

EA(1,7)

EA(3,7)

EA(2,3)

EA(0,5) EA(3,7) EA(5,6)

EA(1,7)

EA(3,7) EA(1,7)

EA(5,6)

EA(4,5)

EA(5,6)

EA(1,7)

EA(4,5)

VS(4,132)

EA(2,7)

EA(2,8)

VS(5,13)

EA(1,7)

EA(2,8)

VS(0,36)-ER(2,5)

EA(4,6)

EA(2,8)
EA(1,4)

VS(1,160)
-ER(5,7)-ER(4,6)

EA(1,4)

VS(5,9)-ER(0,3)-ER(2,8)

EA(2,9)

EA(1,7)

EA(1,4)EA(1,7)EA(4,6)

EA(6,8)

EA(4,6)EA(6,8)

EA(0,3)-EA(2,10)-EA(7,5)-
EA(6,9)-EA(4,1)-EA(2,8)EA(4,6)

EA(5,7)-EA(6,9)EA(4,6)

EA(6,8)

EA(3,9)-EA(2,0)
EA(6,8)

EA(4,6)

EA(6,8)EA(0,4)

EA(0,4)

EA(0,4)

EA(3,9)

EA(1,4)

EA(2,5)

EA(3,7)

EA(1,4)

EA(2,7)

EA(4,5)

EA(1,7)

EA(1,2)

EA(0,5) EA(1,7) EA(4,6)

EA(1,7)

EA(3,7) EA(4,5)

Figure 6.1: A tree depicting the generating process for K4,4−e.

57

6. GENERATED RESULTS

Figure 6.2: A tree depicting the generating process for K1,2,2,2. The repre-

sented by the orange belong to the family of K1,2,2,2.

There are no other graphs that can be created from K1,2,2,2 by applica-

tion of Theorem 3.19 (note that Theorem 3.20 is not applicable here). All the

1-step addition extensions are isomorphic to K1,2,2,2+{0, 3}, which contains

a K7−C4 minor. Hence, no t-step addition extensions with t ≥ 1 comes into

account either. There are no quadrangular, pentagonal or hexagonal exten-

sions that could be obtained from K1,2,2,2. The only remaining operations

to explore are vertex splits, where without loss of generality:

• K
[0]
1,2,2,2<6

{

0,4,5
1,2,3,

}

contains D17 ∈ Λ minor

• K
[0]
1,2,2,2<6

{

2,5
0,1,3,4,

}

contains K3,5 ∈ Λ minor

• K
[0]
1,2,2,2<5

{

1,4,6
0,3

}

contains D3 ∈ ∆Y(K7 − C4) minor

• K
[0]
1,2,2,2<0

{

1,2
4,5,6

}

is not internally 4-connected, but via removing edge

{1, 2}, it contains an internally 4 subgraph with B7 ∈ ̺1 minor

• K1,2,2,2<1
{

2,3,5
0,6

}

is not internally 4-connected, but via removing edge

{0, 6}, it contains an internally 4 subgraph with D3 ∈ ∆Y(K7 − C4)

minor

All the other operations create a graph isomorphic to one of the men-

tioned above.

When applying Theorem 3.19 on the graph K
[1]
1,2,2,2, all the t-step addi-

tion extensions can be transformed to t-step addition extensions of K
[0]
1,2,2,2

by the backward contraction of the edge {6, 7} (resulting in possible paral-

lel edges in the cases of K
[1]
1,2,2,2+{3, 6} and K

[1]
1,2,2,2+{5, 7}) and as such, they

contain the corresponding minors listed above (up to symmetries). There

58

6. GENERATED RESULTS

are no quadrangular, pentagonal or hexagonal extensions of K
[1]
1,2,2,2. Any

graph G resulting from K
[1]
1,2,2,2 by splitting a vertex contains a minor iso-

morphic to the graph H resulting from K
[0]
1,2,2,2 by performing the corre-

sponding vertex split via contraction of the edge {6, 7} (respectively {8, x}

with x ∈ {6, 7} if the edge {6, 7} does not exist in some cases of splitting

of the vertex 6 or 7) in G. Note that H must be different from K
[1]
1,2,2,2, and

therefore it, as well as G, contains a minor isomorphic to one of the graphs,

members of̺1, mentioned above.

Hence, the graphs K
[0]
1,2,2,2 and K

[1]
1,2,2,2 are the only results. Let us denote

them by AK1,2,2,2
= {K

[0]
1,2,2,2,K

[1]
1,2,2,2}.

6.3 B7

The set of forbidden minors for the graph B7 is

̺2 = Λ ∪∆Y(K7 − C4) ∪ {K4,4,K7} ∪ {C3, C4,D2, E2} ∪ {K4,5 − 4K2}.

The same arguments as above apply for inclusion of the graphs C3, C4, D2,

E2. Also, note that the graphs K4,4−e and K1,2,2,2 cannot be in ̺2. The inter-

nally 4-connected graphs that can be obtained from B7 and do not contain

a minor isomorphic to a member of ̺2 are listed below.

Let us start generating graphs from B7 (via Theorem 3.19, Theorem 3.20

is not applicable here). Only the following graphs without a minor isomor-

phic to a member of ̺2 can be created:

• B
[0]
7 = B7

• B
[1]
7 = B

[0]
7 +{6, 7}, in [6] referred to as B

[2]
7

• B
[2]
7 = B

[0]
7 <1

{

0,2
3,5,6

}

, in [6] referred to as B
[3]
7

• B
[3]
7 = B

[0]
7 <0

{

1,5
6,7

}

−{1, 5} ≃ C3 (the vertex split itself does not create

an internally 4-connected graph)

• B
[4]
7 = B

[0]
7 <6

{

0,1,3
2,4,5

}

, in [6] referred to as B
[4]
7

• B
[5]
7 = B

[0]
7 <1

{

3,5
0,2,6

}

−{3, 5} ≃ C4 (the vertex split itself does not create

an internally 4-connected graph)

59

6. GENERATED RESULTS

As for the other operations, there are three more pairwise non-

symmetric options of adding an edge, which are e1 = {1, 4}, e2 = {5, 7}

and e3 = {0, 2}. The graphs B
[0]
7 + e1 and B

[0]
7 + e2 both contain a minor

isomorphic to K7 − C4. The edge e3 in B
[0]
7 + e3 is violating and cannot be

“repaired” in one step. Hence, no addition extensions of B
[0]
7 other than B

[1]
7

are possible.

No quadrangular, pentagonal or hexagonal extensions of B
[0]
7 exist.

The rest of possible pairwise non-isomorphic graphs that can be created

by splitting a vertex is covered by the following:

• B
[0]
7 < 6

{

0,4
1,2,3,5

}

, B
[0]
7 < 6

{

0,2,4
1,3,5

}

, and B
[0]
7 < 6

{

0,4,5
1,2,3

}

contain a minor

isomorphic to E20 ∈ Λ

• B
[0]
7 <6

{

0,3
1,2,4,5

}

contains K3,5 ∈ Λ minor

• B
[0]
7 < 1

{

2,5
0,3,6

}

and B
[0]
7 < 6

{

0,1,2,4
3,5

}

−{3, 5} contains F1 ∈ ∆Y(K7 −

C4) minor. Note that the graph B
[0]
7 < 6

{

0,1,2,4
3,5

}

is not internally 4-

connected.

• B
[0]
7 < 6

{

0,1
2,3,4,5

}

−{0, 1} (the vertex split itself does not create an inter-

nally 4-connected graph) contains D3 ∈ ∆Y(K7 − C4) minor.

By consequent applications of Theorem 3.19 (Theorem 3.20 is still not

applicable), we obtain the following graphs that do not contain a minor

isomorphic to a member of ̺2 (we no more include the rest of graphs that

do not satisfy our requirements):

• B
[6]
7 = B

[1]
7 <6

{

0,1,3
2,4,5,7

}

, in [6] referred to as B
[7]
7

• B
[7]
7 = B

[1]
7 +{0, 2}, in [6] referred to as B

[1]
7

• B
[8]
7 = B

[1]
7 <6

{

0,2,3
1,4,5,7

}

, in [6] referred to as B
[8]
7

• B
[9]
7 = B

[2]
7 <6

{

0,1,4
2,3,5

}

, in [6] referred to as B
[10]
7

• B
[10]
7 = B

[6]
7 +{0, 2}, in [6] referred to as B

[5]
7

• B
[11]
7 = B

[6]
7 +{0, 4}, in [6] referred to as B

[6]
7

60

6. GENERATED RESULTS

Figure 6.3: A tree depicting the splitting process for the graph B7. The or-

ange highlighted graphs belong to the family of K1,2,2,2. For the graphs in

green, we have a finite planar emulator. Those graphs were also identified

by Hliněný with respect to the finite planar covers problem [18, 20].

• B
[12]
7 = B

[6]
7 +{7, 8}, in [6] referred to as B

[9]
7

Let us denote the set of results generated from the graph B7, excluding

B
[3]
7 ≃ C3 and B

[5]
7 ≃ C4, by AB7

. The cardinality of AB7
is 11.

6.4 C4

The set of forbidden minors for the graph C4 is ̺3 = Λ ∪ ∆Y(K7 − C4) ∪

{K4,4,K7} ∪ {D2, E2}. The same arguments as above apply for inclusion of

the graphs D2, E2. Also, note that the graphs K4,4−e, K1,2,2,2 and B7 cannot

be in ̺3. The eight internally 4-connected graphs that can be obtained from

C4 and do not contain a minor isomorphic to a member of ̺3 are as follows:

• C
[0]
4 = C4 • C

[1]
4 = C

[0]
4 +{0, 2},

in [6] referred to as C
[1]
4

61

6. GENERATED RESULTS

Figure 6.4: A tree depicting the generating process for C4.

• C
[2]
4 = C

[0]
4 <1

{

0,2
6,8

}

,

in [6] referred to as C
[5]
4

• C
[3]
4 = C

[1]
4 +{1, 3},

in [6] referred to as C
[2]
4

• C
[4]
4 = C

[1]
4 +{0, 7},

in [6] referred to as C
[6]
4

• C
[5]
4 = C

[2]
4 +{3, 9}+{0, 2},

in [6] referred to as C
[3]
4

• C
[6]
4 = C

[2]
4 D{9, 1, 6, 3, 2},

in [6] referred to as C
[4]
4

• C
[7]
4 = C

[5]
4 +{0, 1},

in [6] referred to as C
[7]
4

Note that in this case, the graph C
[5]
4 is obtained from C

[2]
4 by 2-step addi-

tion extension. Since all the components of C
[2]
4 induced by cubic vertices are

trees or cycles, Theorem 3.20 is applicable and only t-step addition exten-

sions of C
[5]
4 need to be considered further (resulting in no graphs satisfying

our criteria). Let the set of graphs generated from C4 be denoted by AC4 ,

|AC4 | = 8.

6.5 C3,D2

For the graphs C3 and D2, we list the 30 and 38 (respectively) generated

graphs in the appendix.

62

6. GENERATED RESULTS

The sets of forbidden minors are

̺4 = Λ ∪∆Y(K7 − C4) ∪ {K4,4,K7} ∪ {C3,D2, E2} ∪ {K4,5 − 4K2}

̺5 = Λ ∪∆Y(K7 − C4) ∪ {K4,4,K7} ∪ {E2} ∪ {K4,5 − 4K2}

for C3 and D2 respectively. See the previous sections for an explanation

of how these sets were obtained.

Let us denote the set of the graphs obtained from C3 and D2 denote by

AC3 = {C
[m]
3 } with 0 ≤ m ≤ 30, m 6= 5, AD2

= {D
[n]
2 } with 0 ≤ n ≤ 39,

n 6= 4.

6.6 E2

One of the main goals of this work was to finish the computations for the

graph E2 and provide a full list of internally 4-connected graphs that comply

with the previously introduced notion and contain a graph isomorphic to

E2 as a minor. Having heavily optimized our tools, especially by employing

heuristic for the minor search (cf. Section 5.5.1), we were able to finish all the

necessary computation for E2 and obtained results described in this section.

We remark that these results were not published in [7].

The set of forbidden minors used for the graph E2 was

̺7 = Λ ∪∆Y(K7 − C4) ∪ {K4,5 − 4K2}.

As the cubic vertices in E2 do not induce a tree or a cycle, only Theo-

rem 3.19 can be applied and vertex splits must be considered in any case.

This holds also for some other internally 4-connected graphs that can be

obtained from E2. In many (in fact all but three) cases, there are some ver-

tex splits that produce a graph that is not internally 4-connected. Denote

the initial graph by G and the graph obtained by a vertex split H . Recall

that in such a situation, we iteratively remove the violating edges and con-

sequently also the edges in the neighbourhood of a cubic vertex from H .

If the resulting graph is not 3-connected, we cannot be sure that there is

no other internally 4-connected graph J that contain both G ≤ H minors.

Hence in addition to Theorem 3.19, we also apply Theorem 3.18 to G in

63

6. GENERATED RESULTS

Figure 6.5: Generating tree for the graph C3. 64

6. GENERATED RESULTS

D
2

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

V
S
(9
,4
2
)

E
A
(0
,9
)-
E
A
(6
,1
)

E
A
(1
,3
)-
E
A
(9
,0
)-
E
A
(5
,6
)-

E
A
(9
,8
)-
E
A
(4
,7
)-
E
A
(9
,2
)

V
S
(3
,4
8
)-
E
R
(4
,5
)

P
E
(1
,0
,3
,4
,2
)

H
E
(0
,1
,2
,7
,8
,6
)

E
A
(0
,1
0
)-
E
A
(6
,1
)

E
A
(2
,1
0
)-
E
A
(3
,1
)-
E
A
(9
,0
)-

E
A
(5
,6
)-
E
A
(9
,8
)-
E
A
(4
,7
)

E
A
(8
,1
0
)

E
A
(2
,9
)-
E
A
(1
,7
)

E
A
(2
,9
)-
E
A
(1
,7
)

E
A
(8
,9
)-
E
A
(7
,6
)

E
A
(2
,1
0
)

E
A
(2
,9
)-
E
A
(1
,7
)

E
A
(1
,7
)-
E
A
(9
,2
)

E
A
(0
,1
0
)

E
A
(8
,9
)-
E
A
(5
,6
)

E
A
(8
,9
)

E
A
(0
,9
)

E
A
(5
,7
)-
E
A
(9
,8
)

E
A
(8
,1
0
)

E
A
(8
,9
)

E
A
(6
,7
)

E
A
(0
,1
0
)

E
A
(5
,6
)-
E
A
(9
,8
)

E
A
(0
,9
)

E
A
(6
,7
)

E
A
(5
,6
)

E
A
(2
,9
)

E
A
(2
,9
)

E
A
(4
,7
)

E
A
(5
,7
)

E
A
(5
,6
)

E
A
(0
,1
0
)

E
A
(0
,9
)

E
A
(0
,9
)

E
A
(1
,3
)

E
A
(0
,9
)

E
A
(3
,6
)

Figure 6.6: Generating tree for the graph D2. 65

6. GENERATED RESULTS

order to generate J . For technical reasons, our tools perform this task by

taking the initial graph G ≃ E
[i]
2 for some 0 ≤ i ≤ 38, assigning the next

available index i < j ≤ 38 to it effectively creating graph E
[j]
2 ≃ E

[i]
2 ≃ G

and applying Theorem 3.18 to E
[j]
2 . We list the results in the same form as

we wish to keep the list consistent with the records in our logs. To clearly

indicate that graph E
[j]
2 was created for technical reasons only, we mark

those cases with ✪. Note that all the graphs obtained from such a graph

E
[j]
2 (additionally marked with✪) were obtained using Theorem 3.18. The

total number of graphs generated from E2 is 21 and together, they form set

denoted by AE2 = {E
[p]
2 }, 0 ≤ p ≤ 38.

• E
[0]
2 = E2

• E
[1]
2 = E

[0]
2

+{1,2}+{10,0}+{5,3}+{10,4}
+{2,9}+{10,8}+{5,7}+{10,6}

• E
[2]
2 = E

[0]
2 <10

{

1,2,5
3,7,9

}

• E
[3]
2 = E

[0]
2

+{1,2}+{10,0}+{5,3}
+{10,4}+{7,9}+{10,8}

• E
[4]
2 = E

[0]
2 9{0, 6, 4}

• E
[5]
2 = E

[1]
2 <10

{

0,2,3,5
1,4,6,7,8,9

}

• E
[6]
2 = E

[1]
2 <10

{

0,2,3,7,8
1,4,5,6,9

}

• E
[7]
2 = E

[1]
2 ✪

• E
[8]
2 = E

[7]
2 <2

{

0,1
8,9,10

}

+{10, 11}

• E
[9]
2 = E

[2]
2

+{0,10}+{5,3}+{10,4}
+{7,9}+{11,8}+{1,2}

• E
[10]
2 = E

[3]
2 +{6, 10}

• E
[11]
2 = E

[3]
2 ✪

• E
[12]
2 = E

[11]
2 +{1, 5}+{6, 10}

• E
[13]
2 = E

[5]
2 ✪

• E
[14]
2 = E

[17]
2 <2

{

8,9
0,1,11

}

+{11, 12}

• E
[15]
2 = E

[6]
2 ✪

• E
[16]
2 = E

[15]
2 <2

{

0,1
8,9,11

}

+{11, 12}

• E
[17]
2 = E

[8]
2 ✪

• E
[18]
2 = E

[17]
2 <5

{

3,4
6,7,10

}

+{10, 12}

• E
[19]
2 = E

[9]
2 +{6, 10}

• E
[20]
2 = E

[9]
2 +{6, 11}

• E
[21]
2 = E

[9]
2 ✪

• E
[22]
2 = E

[21]
2 +{5, 7}+{6, 11}

• E
[23]
2 = E

[21]
2 +{1, 7}+{6, 11}

• E
[24]
2 = E

[21]
2 +{1, 5}+{6, 10}

• E
[25]
2 = E

[10]
2 ✪

• E
[26]
2 = E

[12]
2 ✪

• E
[27]
2 = E

[14]
2 ✪

• E
[28]
2 = E

[27]
2 <5

{

3,4
6,7,11

}

+{11, 13}

• E
[29]
2 = E

[16]
2 ✪

• E
[30]
2 = E

[18]
2 ✪

66

6. GENERATED RESULTS

• E
[31]
2 = E

[19]
2 +{6, 11}

• E
[32]
2 = E

[19]
2 ✪

• E
[33]
2 = E

[20]
2 ✪

• E
[34]
2 = E

[22]
2 ✪

• E
[35]
2 = E

[23]
2 ✪

• E
[36]
2 = E

[24]
2 ✪

• E
[37]
2 = E

[28]
2 ✪

• E
[38]
2 = E

[21]
2 ✪

6.7 K4,5 − 4K2

The graph K4,5 − 4K2 is internally 4-connected and thus it should be pos-

sible to carry out the same computations. In fact, we devoted a significant

effort as well as computational power to this graph, but it turns out to be

notably different from the other cases. The graph allows many internally 4-

connected graphs to be created, which quickly become very large and thus

it is very time-consuming to search for the forbidden minors in them us-

ing an exponential algorithm. Within our previous work, we managed to

process graphs of size approximately 11 vertices. We managed to improve

this bound within tool to generate results for [7], where we were able to

process graphs up to size of 14–15 vertices. Using our optimized tools, we

are nowadays able to process graphs with 20 vertices, but it still is not suf-

ficient.

For the graphs generated from K4,5 − 4K2 the sets of forbidden minors

̺6 corresponding with the rest of the already finished computations would

be

̺6 = Λ ∪∆Y(K7 − C4) ∪∆Y(K1,2,2,2) ∪ {K4,4−e}

The following Theorem 6.1 can be considered proven at this point:

Theorem 6.1. There is only a finite set U, a subset of

V = {G | G ∈ AH for H ∈ (∆Y(K1,2,2,2) ∪ {K4,4−e})},

67

6. GENERATED RESULTS

E2

01

02

03

04

05

06

07

08

09

10

11

12

1314

1516

1718

19

20

21

22

23

24

25

26

2728

29

30

31

32

34

35

36

37

38

33

EA(1,2)-EA(10,0)-EA(5,3)-
EA(10,4)-EA(2,9)-EA(10,8)-

EA(5,7)-EA(10,6)

VS(10,38)

EA(1,2)-EA(10,0)-EA(5,3)-
EA(10,4)-EA(7,9)-EA(10,8)

HE(0,1,6,5,4,3)

VS(10,45)

VS(10,397)

VS(2,3)-EA(10,11)

EA(0,10)-EA(5,3)-EA(10,4)-
EA(7,9)-EA(11,8)-EA(1,2)

EA(6,10)

EA(1,5)-EA(6,10)

VS(2,768)-EA(11,12)

VS(2,3)-EA(11,12)

VS(5,24)-EA(10,12)

EA(6,10)

EA(6,11)

EA(5,7)-EA(6,11)

EA(1,7)-EA(6,11)

EA(1,5)-EA(6,10)

VS(5,24)-EA(11,13)

EA(6,11)

Figure 6.7: A tree depicting the generating process for the graph E2.

68

6. GENERATED RESULTS

of non-projective graphs that are internally 4-connected, have a finite planar emu-

lator and do not contain any minor isomorphic to a member of K7 − C4 family or

K4,5 − 4K2. Consequently, if a non-projective graph G has a finite planar emula-

tor, it is a planar expansion of a member of U, or it contains a minor isomorphic to

a member of the K7 − C4 family or to K4,5 − 4K2.

6.8 Analysis of the generated graphs

In the previous sections, we described how we generated a set of internally

4-connected graphs that are, up to several cases, the only important ones

for the problem of finite planar emulators. In this section, we would like to

analyse these results with respect to the structural relations among them.

We also speak about the phenomenon of violating minors and an impact

that it has has on the potentially planar-emulable graphs.

Recall that existence of finite planar emulators is closed under taking mi-

nors. The trees of the splitting operations that lead to generating the graphs

show minor relations among these graphs, however those are surely not the

only ones. As shown by the series of searches that we have conducted so far

(starting with [6]), there are many ways how those graphs can be obtained

one from another. The order in which we we obtained the graphs is simply

given by the way how the iterators in the particular implemented tool be-

have. Thus we can see that there are many more minor relations among the

results and they main be used to pinpoint the most important graphs that

we would wish to understand better.

Let us focus on the graphs that were obtained from the family of K1,2,2,2.

We generated the ordering by ≤ relation, although we do not list the com-

plete structure here as the ordering is rather dense. Instead, we include the

structure in combination with analysis based on the violating minors of E2.

Our computation showed that any graph G that has E2 minor, does not

have a minor from the family of K7 − C4 or K4,5 − 4K2 and is distinct

from E
[0]
2 , E

[2]
2 , E

[4]
2 has a violating split graph H . Recall that this means that

there is a vertex split of G that results in graph H that is not internally

4-connected. We verified that by removing all the violating edges, and con-

69

6. GENERATED RESULTS

sequently also edges that whose endvertices share a common cubic neigh-

bour, we obtain graph F which isomorphic to a subdivision of some other

graph E
[x]
2 . This is an extremely interesting phenomenon as it allows us to

take an emulator of E
[x]
2 , subdivide the edges in order to obtain emulator

of graph F , and iteratively add the edges violating edges (in the backward

order as they were removed from H to obtain F) adjusting cubic degree ver-

tices in the emulator whenever necessary. This process leads to constructing

an emulator of H and by reverting the vertex split, also to emulator of G.

Thus, the following is corollary of existence of violating splits.

Corollary 6.2. Let G be an internally 4-connected graph, H = G<v
{

N1

N2

}

graph

that is not internally 4-connected and F graph obtained from H by iterative re-

moval of violating edges, and consequently all the edges that connect two neigh-

bours of a cubic vertex, from H . Furthermore, let F be homeomorphic to a graph

F0 ≤ G. Then, for two graphs J1, J2 ∈ {F0, F,G,H}, J1 has a finite planar

emulator if and only if J2 has a finite planar emulator.

Let us remark Corollary 6.2 can be formulated in the same way for finite

planar covers.

We can observe three sets of graphs that contain E2 minor graphs in

which are equivalent with respect to the existence of finite planar emula-

tors:

• IE
[0]
2 = {E

[0]
2 , E

[1]
2 , E

[3]
2 , E

[8]
2 , E

[10]
2 , E

[12]
2 , E

[18]
2 }

• IE
[2]
2 = {E

[2]
2 , E

[5]
2 , E

[6]
2 , E

[9]
2 , E

[14]
2 , E

[16]
2 , E

[19]
2 , E

[20]
2 , E

[22..24]
2 , E

[28]
2 , E

[31]
2 }

• IE
[4]
2 = {E

[4]
2 }

Furthermore, as there is a graph G in IE
[0]
2 for which a graph H in IE

[2]
2

such that G is a minor of H exists, if a graph in IE
[2]
2 has finite planar em-

ulators (thus all the graphs in IE
[2]
2 do as well), all the graphs from IE

[0]
2

are emulable in planar too. The same can be observed with with respect

to IE
[4]
2 . Hence, we can in some sense say that these classes tend to form a

hierarchical structure where IE
[0]
2 � IE

[2]
2 and IE

[0]
2 � IE

[4]
2 . Also note that

we already have finite planar emulator for E
[0]
2 ≃ E2 and thus for the entire

class IE
[0]
2 .

70

6. GENERATED RESULTS

The particular violating splits for each graph are listed below. Note that

for some of the graphs, multiple violating splits exists. In such a case how-

ever, all such splits lead upon to different subdivisions of the same graph.

• E
[1]
2 <0

{

1,2
3,10

}

−{1,2}−{3,10}−{4,5}−{6,10}
−{9,10}−{2,8}−{5,7}−{7,10}

• E
[3]
2 <1

{

0,2
6,10

}

−{0,2}−{3,10}−{4,5}
−{8,10}−{9,10}−{7,8}

• E
[5]
2 <1

{

0,2
6,10

}

−{0,2}−{3,11}−{4,5}−{6,10}
−{9,10}−{2,8}−{5,7}−{7,10}

• E
[5]
2 <6

{

5,7
1,10

}

−{1,10}−{5,7}−{8,10}−{0,2}
−{2,9}−{3,11}−{4,5}−{4,10}

• E
[6]
2 <0

{

1,2
3,11

}

−{1,2}−{3,11}−{4,5}−{6,10}
−{9,10}−{2,8}−{5,7}−{7,11}

• E
[6]
2 <10

{

1,6
4,5,9,11

}

−{1,6}−{5,7}−{8,11}−{0,2}
−{2,9}−{3,11}−{4,5}−{4,10}

• E
[8]
2 <0

{

3,10
1,11

}

−{1,11}−{2,10}−{3,10}−{4,5}−{6,10}
−{8,9}−{9,10}−{5,7}−{7,10}

• E
[8]
2 <2

{

8,9
10,11

}

−{8,9}−{10,11}−{0,1}−{3,10}−{4,5}
−{4,10}−{6,10}−{7,10}−{5,6}

• E
[8]
2 <5

{

3,4
6,7,10

}

−{3,4}−{9,10}−{0,10}−{1,11}−{2,8}
−{2,10}−{6,10}−{7,10}−{5,6}

• E
[9]
2 <5

{

3,4
6,11

}

−{3,4}−{9,10}−{0,10}
−{1,2}−{7,8}−{8,11}

• E
[9]
2 <7

{

8,9
6,10

}

−{8,9}−{2,11}−{4,10}
−{0,1}−{3,5}−{3,10}

• E
[9]
2 <11

{

2,8
1,5,10

}

−{2,8}−{7,9}−{0,1}
−{3,10}−{4,5}−{4,10}

• E
[10]
2 <0

{

1,2
3,10

}

−{1,2}−{3,10}−{4,5}−{6,10}
−{8,10}−{9,10}−{7,8}

• E
[12]
2 <7

{

8,9
6,10

}

−{6,10}−{8,9}−{1,5}−{2,10}
−{4,10}−{0,1}−{3,5}−{3,10}

• E
[14]
2 <1

{

0,2
6,10

}

−{0,2}−{3,11}−{4,5}−{6,10}−{9,10}
−{11,12}−{5,7}−{8,9}−{8,10}

• E
[14]
2 <9

{

4,10
8,12

}

−{4,10}−{8,12}−{2,11}−{3,5}−{7,10}
−{0,1}−{0,11}−{5,6}−{6,10}

• E
[14]
2 <8

{

7,10
9,12

}

−{7,10}−{9,12}−{2,11}−{4,10}−{5,6}
−{0,1}−{1,10}−{3,5}−{3,11}

• E
[14]
2 <12

{

8,9
2,11

}

−{2,11}−{8,9}−{0,1}−{3,11}−{4,5}
−{4,10}−{6,10}−{7,10}−{5,6}

• E
[14]
2 <6

{

5,7
1,10

}

−{1,10}−{5,7}−{8,10}−{9,12}−{0,2}
−{2,11}−{3,11}−{4,5}−{4,10}

• E
[16]
2 <0

{

3,11
1,12

}

−{1,12}−{2,11}−{3,11}−{4,5}−{6,10}
−{8,9}−{9,10}−{5,7}−{7,11}

• E
[16]
2 <2

{

8,9
11,12

}

−{8,9}−{11,12}−{0,1}−{3,11}−{4,5}
−{4,10}−{6,10}−{7,11}−{5,6}

• E
[16]
2 <4

{

3,5
9,10

}

−{3,5}−{9,10}−{0,11}−{1,12}−{2,8}
−{2,11}−{6,10}−{7,11}−{5,6}

• E
[16]
2 <10

{

1,6
4,5,9,11

}

−{1,6}−{5,7}−{8,11}−{0,12}−{2,9}
−{2,11}−{3,11}−{4,5}−{4,10}

• E
[18]
2 <0

{

3,10
1,11

}

−{1,11}−{2,10}−{3,10}−{4,12}−{5,10}
−{6,7}−{6,10}−{8,9}−{8,10}−{9,10}

• E
[19]
2 <7

{

8,9
6,10

}

−{6,10}−{8,9}−{2,11}−{4,10}
−{0,1}−{3,5}−{3,10}

• E
[19]
2 <3

{

4,5
0,10

}

−{0,10}−{1,2}−{4,5}−{8,11}
−{9,10}−{7,8}−{6,10}

• E
[19]
2 <8

{

7,9
2,11

}

−{2,11}−{7,9}−{0,1}−{3,10}
−{4,5}−{4,10}−{6,10}

• E
[20]
2 <6

{

1,7
5,11

}

−{5,11}−{3,4}−{9,10}−{0,10}
−{1,2}−{7,8}−{8,11}

• E
[20]
2 <8

{

7,9
2,11

}

−{2,11}−{7,9}−{0,1}−{3,10}
−{4,5}−{4,10}−{6,11}

• E
[20]
2 <7

{

8,9
6,10

}

−{8,9}−{2,11}−{4,10}−{0,1}
−{3,5}−{3,10}−{6,11}

• E
[22]
2 <2

{

0,1
8,11

}

−{0,1}−{3,10}−{4,5}−{6,11}
−{8,11}−{9,10}−{5,7}−{7,8}

• E
[22]
2 <8

{

7,9
2,11

}

−{2,11}−{7,9}−{0,1}−{3,10}
−{4,5}−{4,10}−{6,11}−{5,7}

• E
[22]
2 <7

{

8,9
5,6,10

}

−{8,9}−{2,11}−{4,10}−{0,1}
−{3,5}−{3,10}−{6,11}−{5,7}

• E
[23]
2 <5

{

3,4
6,11

}

−{3,4}−{6,11}−{9,10}−{0,10}
−{1,2}−{1,7}−{7,8}−{8,11}

• E
[23]
2 <8

{

7,9
2,11

}

−{2,11}−{7,9}−{0,1}−{3,10}
−{4,5}−{4,10}−{6,11}−{1,7}

• E
[23]
2 <7

{

8,9
1,6,10

}

−{8,9}−{2,11}−{4,10}−{0,1}
−{3,5}−{3,10}−{6,11}−{1,7}

71

6. GENERATED RESULTS

• E
[24]
2 <0

{

1,2
3,10

}

−{1,2}−{3,10}−{4,5}−{8,11}
−{9,10}−{7,8}−{6,10}−{1,5}

• E
[24]
2 <7

{

8,9
6,10

}

−{6,10}−{8,9}−{1,5}−{2,11}
−{4,10}−{0,1}−{3,5}−{3,10}

• E
[24]
2 <8

{

7,9
2,11

}

−{2,11}−{7,9}−{0,1}−{3,10}
−{4,5}−{4,10}−{6,10}−{1,5}

• E
[28]
2 <2

{

0,1
11,12

}

−{0,1}−{3,11}−{4,13}−{5,11}−{6,7}
−{6,10}−{8,10}−{9,10}−{9,12}−{11,12}

• E
[28]
2 <10

{

1,6
4,7,8,9,11

}

−{1,6}−{5,7}−{8,10}−{9,12}−{11,13}
−{0,2}−{2,11}−{3,4}−{3,11}−{4,10}

• E
[28]
2 <10

{

7,8
1,4,6,9,11

}

−{7,8}−{9,12}−{2,11}−{4,10}−{5,6}
−{11,13}−{0,1}−{1,10}−{3,4}−{3,11}

• E
[31]
2 <0

{

1,2
3,10

}

−{1,2}−{3,10}−{4,5}−{6,11}
−{8,11}−{9,10}−{7,8}−{6,10}

• E
[31]
2 <7

{

8,9
6,10

}

−{6,10}−{8,9}−{2,11}−{4,10}
−{0,1}−{3,5}−{3,10}−{6,11}

• E
[31]
2 <8

{

7,9
2,11

}

−{2,11}−{7,9}−{0,1}−{3,10}
−{4,5}−{4,10}−{6,10}−{6,11}

Since the violating splits effectively decompose the set AE2 into three

classes, we can raise question what happens with the graphs generated

from graphs in ∆Y(K1,2,2,2). The only other violating splits that occur

within graphs from ∆Y(K1,2,2,2) are in the case of D2. These splits were

also discovered within [20].

• D
[3]
2 <0

{

1,3
6,9

}−{1,3}−{2,9}−{4,7}
−{6,9}−{8,9}−{5,6}

leading to a subdivision of D
[0]
2 ≃ D2

• D
[8]
2 with the vertex splits (listed below) leading to a subdivision

of D
[1]
2 :

– D
[8]
2 <7

{

2,4
8,9

}−{2,4}−{8,9}−{1,10}
−{5,6}−{0,3}−{0,9}

– D
[8]
2 <0

{

1,3
6,9

}−{1,3}−{2,10}−{4,7}
−{6,9}−{8,9}−{5,6}

– D
[8]
2 <8

{

5,6
7,9

}−{5,6}−{7,9}−{0,9}
−{1,3}−{2,4}−{2,10}

– D
[8]
2 <6

{

5,8
0,9

}−{0,9}−{1,3}−{2,10}
−{4,7}−{5,8}−{7,9}

– D
[8]
2 <9

{

7,8
0,4,6,10

}−{7,8}−{2,4}−{5,6}
−{0,9}−{1,3}−{1,10}

Generating internally 4-connected graph that contain D2 minor, both

these cycles can be avoided as the we can apply Theorem 3.20. Also, note

that the graphs D
[3]
2 and D

[0]
2 are minors of some graphs in the set IE

[0]
2 , and

D
[8]
2 together with D

[1]
2 are minors of some graphs in the set IE

[2]
2 . Violating

minors occur also in the case of K4,4−e — they are listed in Appendix A.4.

As planar-emulable graphs are closed under taking minors, we also

exhaustively enumerated the ordering of all the graphs produced from

∆Y(K1,2,2,2) under the minor relation. This ordering decomposes the set

72

6. GENERATED RESULTS

into only seven classes JG for which the following holds: if G is a planar-

emulable graph, then all the graphs in JG are are planar-emulable as

well. Due to the way how violating splits behave on the graphs generated

from E2, we can include all the minors of JG for G being a graph from

IE
[0]
2 , IE

[2]
2 , IE

[4]
2 into one class obtaining the following list.

• J E
[0]
2 = IE

[0]
2 ∪{K

[0]
1,2,2,2, B

[0..1]
7 , B

[7]
7 , C

[0]
3 , C

[3]
3 , C

[11]
3 , C

[19..20]
3 ,D

[0]
2 ,D

[2..3]
2 ,

D
[11]
2 , D

[18]
2 , D

[27]
2 , D

[28]
2 }

• J E
[2]
2 = J E

[0]
2 ∪IE

[2]
2 ∪{K

[2]
1,2,2,2, B

[4]
7 , B

[6]
7 , B

[8]
7 , B

[10..12]
7 , C

[1]
3 , C

[2]
3 , C

[6..10]
3

C
[12..18]
3 , C

[21..30]
3 , D

[0]
2 , D

[1]
2 , D

[7..10]
2 , D

[13..17]
2 , D

[20..26]
2 , D

[30..39]
2 }

• J E
[4]
2 = IE

[4]
2 ∪ {C

[0]
4 , C

[2]
4 , C

[0]
3 ,D

[0]
2 ,D

[5]
2 , E

[0]
2 }

• JD
[29]
2 = {B

[0..2]
7 , C

[0]
3 , C

[3]
3 , C

[4]
3 , C

[11]
3 , C

[0..3]
4 , C

[5]
4 , C

[7]
4 ,D

[0]
2 ,D

[2]
2 ,D

[5]
2 ,D

[6]
2 ,

D
[11..12]
2 ,D

[18..19]
2 ,D

[29]
2 }

• J C
[6]
4 = {B

[0]
7 ,B

[2]
7 , C

[0]
4 , C

[2]
4 , C

[6]
4 , C

[0]
3 , C

[4]
3 }

• J C
[4]
4 = {C

[0]
4 , C

[1]
4 , C

[4]
4 }

• JB
[9]
7 = {B

[0]
7 ,B

[2]
7 ,B

[4]
7 ,B

[9]
7 }

From this perspective, the most interesting graphs for planar emula-

tors are the graphs E
[4]
2 ,D

[29]
2 , C

[6]
4 , C

[4]
4 ,B

[9]
7 as these graphs contain all the

other graphs from the class as minors, and any graph from E2
2 . Note that

the classes are not pairwise disjoint. Emulators for the entire class E
[0]
2 can

be derived from our emulator for E2, and finite planar emulator for C4 is

known as well.

None of the internally 4-connected graphs with a minor isomorphic to a

graph in ∆Y(K1,2,2,2) rejected due to some forbidden minor M was rejected

because of M isomorphic to K4,5 − 4K2. Thus for all ̺i with 1 ≤ i ≤ 6, it

is not necessary that K4,5 − 4K2 is included as a forbidden minor. Much

stronger consequence can be however observed from the other point of

view:

73

6. GENERATED RESULTS

E
[0]
2 E

[2]
2 E

[4]
2

D
[29]
2 C

[6]
4

C
[4]
4 B

[9]
7

Figure 6.8: The graphs that together contain minors isomorphic to all inter-

nally 4-connected graphs generated from the family of K1,2,2,2.

74

6. GENERATED RESULTS

Lemma 6.3. Let G be an internally 4-connected graph that contains a minor iso-

morphic to K4,5 − 4K2 and has no minor from ∆Y(K7 −C4) or K4,4−e and does

not contain any minor forbidden for the finite planar emulators. Then, G does not

contain a minor from the family of K1,2,2,2.

Let us remark that no similar conclusion can be made with respect to

the graph K4,4−e as our computations discovered internally 4-connected

graphs that contain both K4,4−e and K4,5− 4K2 minors and are potentially

emulable in planar.

Some of those graphs were listed in [7], where we called the listing com-

plete. We unfortunately have to make a correction to that statement due to

a mistake in the structure of the graph E11 as published in [18]. The list

provided in [7] is incomplete and there are more internally 4-connected

graphs that can be obtained from K4,4−e and contain minor isomorphic

to K4,5 − 4K2 and no minor from ̺0 \ {K4,5 − 4K2}. The remaining results

related to K4,4−e listed in this work, in [6] and [7] remain valid. The wrong

structure did not affect previously published results for any other graph.

75

Chapter 7

Cubic graphs

While characterization of planar-emulable graphs has proven itself to be

difficult in general, significant progress can be made in a special case.

Negami’s conjecture has been confirmed in the case of cubic graphs in [28],

and the same readily follows from [20]. Here we prove:

Theorem 7.1. If a cubic non-projective graph H has a finite planar emulator,

then H is a planar expansion (Definition 3.15) of one of two minimal cubic non-

projective graphs shown in Figure 7.1.

The purpose of this section is to prove Theorem 7.1. As approach to

Theorem 7.1 slightly differs from the previous rather algorithmic chapters

of this work, we restate the folklore known facts about planar-emulable

graphs that are important in this chapter within Proposition 7.2.

Proposition 7.2. Let G be a connected graph.

1. The class of planar-emulable graphs is closed under taking minors.

2. If G is projective, then G has a finite planar emulator in form of its finite

planar cover.

3. If G contains two disjoint k-graphs or a K3,5 minor, then G is not planar-

emulable.

4. G is planar-emulable if, and only if, so is any planar expansion of G.

A computerized search for all possible counterexamples to Conjec-

ture 3.3, carried out so far (see previous chapters), shows that a non-

projective planar-emulable graph G cannot be cubic, unless G contains a

minor isomorphic to K4,5 − 4K2, or a member of the K7 − C4 family (see

Chapter 6). Our new approach, Theorem 7.1, actually dismisses the former

two possibilities completely and strongly restricts the latter one.

76

7. CUBIC GRAPHS

G1 G2

Figure 7.1: Two (out of six in total) cubic irreducible obstructions for the pro-

jective plane [16]. Although these graphs result by splitting non-projective

graphs for which we have finite planar emulators [4] (namely K7 − C4 and

its “relatives”), it is still open whether they are planar-emulable.

Proof of Theorem 7.1. Glover and Huneke [16] characterized the cubic

graphs with projective embedding using six minimal forbidden cubic topo-

logical minors (see Figure 7.1 for two of them).

Theorem 7.3 (Glover–Huneke [16]). There is a set I of six cubic graphs such

that; if H is a cubic graph that does not embed in the projective plane, then H

contains a graph G ∈ I as a topological minor.

Let us point out that four out of the six graphs in I contain two dis-

joint k-graphs, and so only the remaining two—G1 ∈ I and G2 ∈ I of

Figure 7.1, can potentially be planar-emulable. Hence the cubic graph H in

Theorem 7.1 contains one of G1, G2 as a topological minor. In other words,

there is a subgraph G′ ⊆ H being a subdivision of a cubic G ∈ {G1, G2}.

At this point, recall the notion of bridges introduced in Chapter 5, Sec-

tion 5.5.1. A bridge of G′ in H any connected component B of H − V (G′)

together will all the incident edges. In a degenerate case, B might consist

just of one edge from E(H) \ E(G′) with both ends in G′. We would like,

for simplicity, to speak about positions of bridges with respect to the un-

derlying cubic graph G: Such a bridge B connects to vertices u of G′ which

subdivide edges f of G—this is due to the cubic degree bound, and we

(with negligible abuse of terminology) say that B attaches to this edge f in

G itself.

A bridge B is nontrivial if B attaches to some two nonadjacent edges of

77

7. CUBIC GRAPHS

G, and B is trivial otherwise. For a trivial bridge B; either B attaches to only

one edge in G, and we say exclusively, or all the edges to which B attaches

in G have a vertex w in common (since G contains no triangle), and we say

that B attaches to this w.

We divide the rest of the proof into two main cases; that either some

bridge of G′ in H is nontrivial or all such bridges are trivial. We moreover

assume that G′ ⊆ H being a subdivision of G is chosen such that it has a

nontrivial bridge if possible. In the “all-trivial” case one more technical con-

dition has to be observed: Suppose B1, B2 are bridges such that B1 attaches

to w and B2 attaches to an edge f incident to w in G (perhaps B2 exclu-

sively to f). On the path Pf which replaces (subdivides) f in G′, suppose

that B2 connects to some vertex which is closer to w on Pf than some other

vertex to which B1 connects to. Then we declare that B2 attaches to w, too.

The transitive closure of declared attachment is well defined because of the

following:

Lemma 7.4. Let G′ ⊆ H be a subdivision of G where G,H are cubic graphs.

Suppose that all bridges of G′ in H are trivial, and that a bridge B0 attaches (or, is

declared to) both to w1 and w2, where w1w2 ∈ E(G). Then there is G′′ ⊆ H which

is a subdivision of G, too, and a nontrivial bridge of G′′ in H exists.

Proof. Let Pf be the path representing f = w1w2 in H . In the described

situation, we call B0 a conflicting bridge, and assume that H − B0 has no

conflicting bridge of G′. By the definition of declared attachment there exist

vertices u1, u2 ∈ V (Pf) such that the following holds for i = 1, 2: Either

ui = wi and B0 attaches to at least two edges incident to wi, or there is a

bridge Bi connecting to ui such that Bi attaches (or, is declared to) to wi

in G and B0 connects the two components of Pf − ui together. Notice that

B1 6= B2 and u1 is closer to w1 on Pf than u2 (since H−B0 has no conflicting

bridge).

One can now easily check that there exist two internally disjoint paths

from ui to the two neighbours of wi not on Pf , for each i = 1, 2 (Figure 7.2).

Hence there exists new G′′ ⊆ H a subdivision of G such that the vertices

w1, w2 now correspond to u1, u2, respectively, and the bridge of G′′ arising

from B0 is nontrivial.

78

7. CUBIC GRAPHS

Figure 7.2: Illustration for sketch proof of Lemma 7.4. The trivial bridge on

the left takes over the role of a branch vertex of G in the graph G′, resulting

in existence of a nontrivial bridge. The other case shows when the transitive

closure of declared attachment becomes important.

Lemma 7.5. Let G′ ⊆ H be a subdivision of G where G,H are cubic non-

projective graphs and G does not contain two disjoint k-graphs. Suppose that all

bridges of G′ in H are trivial, and no one is conflicting (cf. Lemma 7.4). Then H

does not contain two disjoint k-graphs if, and only if, H is a planar expansion of

G.

Proof. If H is a planar expansion of G, then two disjoint k-graphs in H

would imply containment of those in G itself, which is not possible. In the

converse direction, we assume that H is not a planar expansion of G. Let

Bv be the union of all trivial bridges of G′ in H that attach or are declared to

attach to a vertex v ∈ V (G). Let Bf be the union of all trivial bridges of G′

in H that attach exclusively to an edge f ∈ E(G). Since H is not a planar ex-

pansion of G, for at least one x ∈ V (G)∪E(G) the subgraph Hx = G′∪Bx is

not a planar expansion of G, too. For simplicity, we consider only the more

interesting case x = u ∈ V (G). See an illustration in Figure 7.3.

Let G′
u ⊆ G′ denote the corresponding subdivision of G − u. Let C =

{e1, e2, e3} be a minimal edge-cut in Hu which separates G′
u on one side

and B′
u ⊃ Bu ∪ {u} on the other side. Then our graph Hu is not a planar

expansion of G′ if and only if B′
u is not planar with all the three connections

to C on the outer face. The latter can be characterized by containment of a

K2,3 subdivision in B′
u with the size-three part incident to C. Then it is easy

to show that G′ ∪ Bu confirms to Definition 3.9 of two disjoint k-graphs,

since G− u is connected and particularly G is non-planar.

79

7. CUBIC GRAPHS

u
v1

v2

v3

u
v1

v2

v3

u
v1

v2

v3

Figure 7.3: Illustration of three collections of trivial bridges that attach to a

cubic vertex u. The first collection gives a planar expansion, while the other

two are “minimal” non-planar-expansion cases.

Lemma 7.6. Let G′ ⊆ H be a subdivision of G where G,H are cubic and G is

not projective. If there exists a nontrivial bridge of G′ in H , then H does not have

a finite planar emulator.

Proof. Starting from Theorem 7.3, we have exhaustively verified that for

G ∈ {G1, G2}, all the graphs G′ + e where e is a nontrivial bridge of G do

not admit existence of finite planar emulator. Up to one case, all such graphs

contain two disjoint k-graphs. In the one special case, the graph G′
2+e does

not contain two disjoint k-graphs, but it contains a K3,5 minor. We would

like to point out that due to the necessity of K3,5 in that one case, there

is likely no simple argument summarizing the cases similarly as done in

Lemma 7.5.

Theorem 7.1 is then an immediate corollary of Lemmas 7.6 and 7.5.

80

Chapter 8

Conclusions

By application of Theorems 3.19 and Theorem 3.20, we confirmed the pre-

viously obtained results. We also confirmed our previous suggestion that

these two theorems can prove more suitable for generating internally 4-

connected graphs that can have a finite planar emulator. Using optimized

tools, we managed to finish the exhaustive search for the graph E2, which

was one of the main goals of this work. Furthermore, we provided a de-

tailed analysis of the obtained results and described an especially interest-

ing behaviour of the vertex split operation, called violating splits, on some

internally 4-connected non-projective graphs. We also considered the prob-

lem of planar-emulations for a restricted class of graphs and showed that

in such a case, it becomes significantly easier leaving only two graphs in

question. In this chapter, we provide an overview of our results and some

suggestions for the future work.

Except for the obvious impact on planar-emulations, there is also an-

other interesting perception of our exhaustive searches. We have shown

that up to a finite number of exceptions and planar expansions of internally

4-connected graphs, the family of K1,2,2,2 and the graph K4,4−e can be disre-

garded as obstructions for the projective plane. With respect to planar em-

ulators, we are in fact interested if there is an infinite sequence of internally

4-connected graphs without projective embedding that does not contain 2

disjoint k-graphs or a graph isomorphic K3,5 as a minor, still leaving a ques-

tion mark hanging above the family of K7−C4. However, is it possible that

the main obstructions (with finite number of exceptions) for the internally

4-connected graphs with projective embedding are only 2 disjoint k-graphs

and the graph K3,5? Or perhaps that it is only 2 disjoint k-graphs?

G. Ding provided a list of minor minimal obstructions of the internally

4-connected graphs that embed in the projective plane [9]. The list includes

the graphs in ∆Y(K1,2,2,2), K4,5 − 4K2, K4,4−e and graphs that contain a

81

8. CONCLUSIONS

minor isomorphic to K3,5, a graph from ∆Y(K7 − C4) and some graphs

that immediately contain 2 disjoint k-graphs. Using our software tools and

the notion of splitting described in this work and related literature [6, 21,

18], it might be possible to conduct a series of computations leading to a

positive answer to the questions raised above. We took some preliminary

steps in this direction, although the amount of effort made, regardless of

the promising results, does not allow us to state a conjecture. We however

consider this question extremely interesting and surely suggest this topic

for future work.

The family of K7 − C4 was still not reflected in our computations, be-

cause its members are not internally 4-connected and therefore, the pre-

sented tools do not apply to them. However, the significance of these graphs

for the characterization of planar-emulable non-projective graphs is obvi-

ous.

So, which tools would be suitable for tackling the cases from the family

of K7 − C4? We give a very brief theoretical outline here.

Assume H is a non-projective planar emulable graph having a minor F

in K7 − C4 family, and that H is minimal under planar expansions. Then

two cases may occur:

• H is internally 4-connected. Then there is a practically small finite

set of minor-minimal graphs H0 that “bridge” every 3-separation of

F , see [15]. These graphs H0 can be exhaustively listed, and further

generating from H0, as in Section 3.1, can be run on them.

• H still has a non-flat 3-separation. One can then consider indepen-

dently in parallel each of the separation sides (replacing the other side

with a cubic vertex), again as in the internally 4-connected case.

Note that the graphs in the former case were already listed by G. Ding

in [9].

Our current tools were still unable to finish the search for the graph

K4,5 − 4K2. In order to finish the computation, we can either continue op-

timizing the current tools for graph splitting, especially in terms of graph

82

8. CONCLUSIONS

representation, parallelization and fast minor testing. A performance im-

provement can also be achieved by using a different splitter theorem for

non-projective internally 4-connected graphs. In this respect, we are curi-

ously awaiting results announced by G. Ding [10, 11].

In this work, we pointed out an interesting phenomenon of violating

splits and violating minors. This can be extremely interesting especially

considering Conjecture 3.2 about planar coverings. Can violating splits and

minors be exploited in order to provide a proof that there is no finite planar

cover for some graphs in the family of K1,2,2,2? Specifically, is there a graph

G isomorphic to a subdivision of a graph in the family of K1,2,2,2 from which

we can via a sequence of edge additions into neighbourhoods of cubic ver-

tices, and perhaps also ∆Y transformations, obtain graph H that is known

to not have finite planar cover?

While our main effort (started in [7, 4]) is to provide a new finite char-

acterization of non-projective graphs with finite planar emulators, Chap-

ter 7 shows that the problem becomes significantly easier when only a re-

stricted class of graphs is considered. We identified two graphs (Figure 7.1),

for which the existence of a finite planar emulator now becomes extremely

interesting. We would like to point out that the similarity of these two

graphs suggest that if one has a finite planar emulator, the other one does

as well. If we however elaborate on this idea and attempt to “unify” the

graphs as depicted in Figure 8.1, we have to use a nontrivial bridge, which

was shown not to be possible. Perhaps, this provides a clue that these two

graphs should not be planar-emulable. Surely, providing an answer for ei-

ther of these two graphs would bring a better insight to the problem of

planar emulations not only for the cubic case, but also in general.

Lastly, we would like to include in our opinion a remark and suggestion

by M. Fellows [14]: It is actually an interesting fact that F-coverable and F-

emulable are general “operators” on minor ideals. If F is any minor ideal

(e.g. in this work, F = planar graphs) then the F-coverable and F-emulable

families of graphs, are also minor ideals. There are not very many opera-

tors known. So for every F , there is an analog of the notorious Fellows’

conjecture — for what F , does F-coverable = F-emulable? This works for

83

8. CONCLUSIONS

Figure 8.1: “Unification” of pictures of G1 and G2 using a nontrivial bridge.

F = outerplanar, and fails for F=planar. In between are the disk dimension

k classes: The disk dimension of a planar graph G is the least number k for

which G embeds in the plane minus k open disks with every vertex on the

boundary of some disk. It should be easy to show that for F = outerplanar,

the situation is even stronger:

F-emulable = F-coverable = F .

Is it possible that the same holds for F being any disk dimension k class

of graphs?

In this respect, one can naturally think of extending the idea of em-

ulations and coverings to other surfaces. What are the relations among

those graph classes? We know that planar-emulable ⊆ projective-planar-

emulable and analogously for graph coverings. What is the relationship in

the other direction? What happens for surfaces with higher genus? And

how about bounded treewidth?

Understanding emulations and coverings for various graph classes

could have an interesting impact from the algorithmic point of view. How-

ever, not being able to say much about the planar-emulable graphs, provid-

ing any sort of answer to the other questions seems as an ultimately difficult

task.

84

Bibliography

[1] D. Archdeacon, A Kuratowski Theorem for the Projective Plane, J. Graph

Theory 5 (1981), 243–246.

[2] A. Asadi, L. Postle, R. Thomas. Minor-minimal non-projective planar

graphs with an internal 3-separation, Electronic Notes in Disc. Math. 38

(2011), 69–75.

[3] J. Boyer, W. Myrvold, Stop minding your P’s and Q’s: A simplified O(n)

planar embedding algorithm, Prov. of the Tenth Annual ACM-SIAM

Symposium on Discrete Algorithms (1999), 144–146.

[4] M. Chimani, M. Derka, P. Hliněný, M. Klusáček, How Not to Char-

acterize Planar-emulable Graphs, Advances in Applied Mathematics 50

(2013), 46–68.

[5] M. Chimani, C. Gutwenger, K. Klein, OGDF: Open Graph Drawing

Framework, available online: <http://www.ogdf.com>.

[6] M. Derka, Planar Graph Emulators: Fellows’ Conjecture, Bc. Thesis,

Masaryk University, Brno, 2010.

[7] M. Derka, Towards Finite Characterization of Planar-emulable Non-

projective Graphs, Congressus Numerantium 207 (2011), 33–68.

[8] R. Diestel, Graph Theory III Springer Verlag, Heidelberg, New York,

2005.

[9] G. Ding, P. Iverson, Internally 4-connected projective graphs, manuscript,

2011, available online:

<https://www.math.lsu.edu/~ding/i4cproj.pdf>.

85

8. CONCLUSIONS

[10] G. Ding, P. Iverson, Quickly finding a splitter, 3rd Workshop on Graphs

and Matroids, July 2012, Maastricht, The Netherlands.

[11] G. Ding, Personal communication, May 2012 – February 2013.

[12] M. Fellows, Encoding Graphs in Graphs, Ph.D. Dissertation, Univ. of Cal-

ifornia, San Diego, 1985.

[13] M. Fellows, Planar Emulators and Planar Covers, Unpublished

manuscript, 1988.

[14] M. Fellows, Personal communication, June 2011 – March 2013.

[15] J.F. Geelen, P. Hliněný, G. Whittle, Bridging Separations in Matroids,

SIAM J. Discrete Math. 18 (2005), 638–646.

[16] H. Glover, J.P. Huneke, Cubic Irreducible Graphs for the Projective Plane,

Discrete Mathematics 13 (1975), 341–355.

[17] H. Glover, J.P. Huneke, C.S. Wang, 103 Graphs That Are Irreducible for

the Projective Plane, J. of Comb. Theory Ser. B 27 (1979), 332–370.

[18] P. Hliněný, Planar Covers of Graphs: Negami’s Conjecture, Ph.D. Disserta-

tion, Georgia Institute of Technology, Atlanta, 1999.

[19] P. Hliněný, 20 Years of Negami’s Planar Cover Conjecture, Graphs and

Combinatorics 26 (2010), 525–536.

[20] P. Hliněný, R. Thomas, On possible counterexamples to Negami’s planar

cover conjecture, J. of Graph Theory 46 (2004), 183–206.

[21] T. Johnson, R. Thomas, Generating Internally Four-Connected Graphs,

J. Combin. Theory Ser. B 85 (2002), 21–58.

[22] S. Kitakubo, Planar Branched Coverings of Graphs, Yokohama Math. J. 38

(1991), 113–120.

[23] B. McKay, Nauty, Version 2.4, available online:

<http://cs.anu.edu.au/people/bdm/nauty/>.

86

8. CONCLUSIONS

[24] W. Myrvold, J. Roth Simpler Projective Plane Embedding, Ars Comb. 75

(2005), 135–155.

[25] W. Myrvold, Personal communication, March 2012.

[26] S. Negami, Enumeration of Projective-planar Embeddings of Graphs, Dis-

crete Math. 62 (1986), 299–306.

[27] S. Negami, The Spherical Genus and Virtually Planar Graphs, Discrete

Math. 70 (1988), 159–168.

[28] S. Negami, T. Watanabe, Planar Cover Conjecture for 3-Regular Graphs,

Journal of the Faculty of Education and Human Sciences, Yokohama

National University, Vol. 4 (2002), 73–76.

[29] J. Siek, L. Lee, A. Lumsdaine, Boost Graph Library Version 1.49, available

online <www.boost.org>.

[30] Y. Rieck, Y. Yamashita, Finite planar emulators for K4,5−4K2 and K1,2,2,2

and Fellows’ Conjecture, European Journal of Combinatorics 31 (2010),

903–907.

[31] S. G. Williamson. Math. Reviews, 94f:05141 (1994).

87

Appendix A

Lists of Generated Graphs

A.1 C3

• C
[0]
3 = C3

• C
[1]
3 = C

[0]
3 <8

{

0,2,5
3,6,7

}

,

in [6] referred to as C
[18]
3

• C
[2]
3 = C

[0]
3 <8

{

0,3,6
2,5,7

}

,

in [6] referred to as C
[19]
3

• C
[3]
3 = C

[0]
3 +{1, 8}+{2, 0},

in [6] referred to as C
[1]
3

• C
[4]
3 = C

[0]
3 D{0, 1, 2, 3, 4},

in [6] referred to as C
[2]
3

• C
[5]
3 = C

[0]
3 <2

{

3,5
1,8

}

−{3, 5} ≃ D2

• C
[6]
3 = C

[1]
3 +{4, 8},

in [6] referred to as C
[8]
3

• C
[7]
3 = C

[1]
3 +{1, 8},

in [6] referred to as C
[4]
3

• C
[8]
3 = C

[1]
3 +{1, 9}+{6, 0},

in [6] referred to as C
[6]
3

• C
[9]
3 = C

[2]
3 +{1, 8},

in [6] referred to as C
[11]
3

• C
[10]
3 = C

[2]
3 +{1, 9}+{2, 0},

in [6] referred to as C
[12]
3

• C
[11]
3 = C

[3]
3 +{4, 8},

in [6] referred to as C
[3]
3

• C
[12]
3 = C

[6]
3 +{0, 6}+{9, 1},

in [6] referred to as C
[5]
3

• C
[13]
3 = C

[6]
3 +{0, 7},

in [6] referred to as C
[21]
3

• C
[14]
3 = C

[6]
3 +{1, 8},

in [6] referred to as C
[25]
3

• C
[15]
3 = C

[8]
3 +{4, 9},

in [6] referred to as C
[10]
3

• C
[16]
3 = C

[9]
3 +{0, 7}+{9, 4},

in [6] referred to as C
[9]
3

• C
[17]
3 = C

[9]
3 +{4, 8},

in [6] referred to as C
[31]
3

• C
[18]
3 = C

[10]
3 +{4, 9},

in [6] referred to as C
[13]
3

• C
[19]
3 = C

[11]
3 +{0, 3},

in [6] referred to as C
[14]
3

• C
[20]
3 = C

[11]
3 +{0, 7},

in [6] referred to as C
[20]
3

• C
[21]
3 = C

[12]
3 +{0, 7},

in [6] referred to as C
[15]
3

88

A. LISTS OF GENERATED GRAPHS

• C
[22]
3 = C

[12]
3 +{4, 9},

in [6] referred to as C
[23]
3 ,C

[28]
3 , C

[34]
3

(the result was included multiple

times)

• C
[23]
3 = C

[12]
3 +{0, 3},

in [6] referred to as C
[26]
3 , C

[33]
3

(the result was included multiple

times)

• C
[24]
3 = C

[13]
3 +{1, 8},

in [6] referred to as C
[22]
3

• C
[25]
3 = C

[13]
3 +{1, 9},

in [6] referred to as C
[7]
3

• C
[26]
3 = C

[15]
3 +{3, 7},

in [6] referred to as C
[17]
3

• C
[27]
3 = C

[16]
3 +{0, 6},

in [6] referred to as C
[16]
3

• C
[28]
3 = C

[16]
3 +{1, 9},

in [6] referred to as C
[27]
3 ,C

[30]
3

(the result was included multiple

times)

• C
[29]
3 = C

[18]
3 +{0, 7},

in [6] referred to as C
[32]
3

• C
[30]
3 = C

[24]
3 +{1, 9},

in [6] referred to as C
[24]
3 ,C

[29]
3

(the result was included multiple

times)

A.2 D2

• D
[0]
2 =

• D
[1]
2 = D

[0]
2 <9

{

1,3,5
4,6,7

}

,

in [6] referred to as D
[21]
2

• D
[2]
2 = D

[0]
2 +{0, 9}+{6, 1},

in [6] referred to as D
[1]
2

• D
[3]
2 = D

[0]
2

+{1,3}+{9,0}+{5,6}
+{9,8}+{4,7}+{9,2}

,

in [6] referred to as D
[11]
2

• D
[4]
2 = D

[0]
2 <3

{

4,5
0,9

}

−{4, 5} ≃ E2

• D
[5]
2 = D

[0]
2 D{1, 0, 3, 4, 2},

in [6] referred to as D
[19]
2

• D
[6]
2 = D

[0]
2 9{0, 2, 8},

in [6] referred to as D
[20]
2

• D
[7]
2 = D

[1]
2 +{0, 10}+{6, 1},

in [6] referred to as D
[5]
2

• D
[8]
2 = D

[1]
2

+{2,10}+{3,1}+{9,0}
+{5,6}+{9,8}+{4,7}

,

in [6] referred to as D
[3]
2

• D
[9]
2 = D

[1]
2 +{8, 10},

in [6] referred to as D
[9]
2

• D
[10]
2 = D

[1]
2 +{2, 9}+{1, 7},

in [6] referred to as D
[29]
2

• D
[11]
2 = D

[2]
2 +{2, 9}+{1, 7},

in [6] referred to as D
[15]
2

• D
[12]
2 = D

[5]
2 +{8, 9}+{7, 6},

in [6] referred to as D
[22]
2

89

A. LISTS OF GENERATED GRAPHS

• D
[13]
2 = D

[7]
2 +{2, 10},

in [6] referred to as D
[8]
2

• D
[14]
2 = D

[7]
2 +{2, 9}+{1, 7},

in [6] referred to as D
[16]
2

• D
[15]
2 = D

[9]
2 +{1, 7}+{9, 2},

in [6] referred to as D
[25]
2

• D
[16]
2 = D

[10]
2 +{0, 10},

in [6] referred to as D
[6]
2

• D
[17]
2 = D

[10]
2 +{8, 9}+{5, 6},

in [6] referred to as D
[18]
2

• D
[18]
2 = D

[11]
2 +{8, 9},

in [6] referred to as D
[23]
2

• D
[19]
2 = D

[12]
2 +{0, 9},

in [6] referred to as D
[24]
2

• D
[20]
2 = D

[13]
2 +{5, 7}+{9, 8},

in [6] referred to as D
[34]
2 ,D

[40]
2

(the result was included multiple

times)

• D
[21]
2 = D

[13]
2 +{8, 10},

in [6] referred to as D
[35]
2

• D
[22]
2 = D

[14]
2 +{8, 9},

in [6] referred to as D
[4]
2

• D
[23]
2 = D

[15]
2 +{6, 7},

in [6] referred to as D
[17]
2

• D
[24]
2 = D

[15]
2 +{0, 10},

in [6] referred to as D
[33,36]
2

• D
[25]
2 = D

[16]
2 +{5, 6}+{9, 8},

in [6] referred to as D
[27]
2

• D
[26]
2 = D

[17]
2 +{0, 9},

in [6] referred to as D
[28]
2

• D
[27]
2 = D

[18]
2 +{6, 7},

in [6] referred to as D
[37]
2

• D
[28]
2 = D

[18]
2 +{5, 6},

in [6] referred to as D
[10]
2

• D
[29]
2 = D

[19]
2 +{2, 9},

in [6] referred to as D
[39]
2

• D
[30]
2 = D

[20]
2 +{2, 9},

in [6] referred to as D
[30,41]
2

• D
[31]
2 = D

[20]
2 +{4, 7},

in [6] referred to as D
[38]
2

• D
[32]
2 = D

[22]
2 +{5, 7},

in [6] referred to as D
[13]
2

• D
[33]
2 = D

[22]
2 +{5, 6},

in [6] referred to as D
[2]
2

• D
[34]
2 = D

[23]
2 +{0, 10},

in [6] referred to as D
[26]
2

• D
[35]
2 = D

[23]
2 +{0, 9},

in [6] referred to as D
[7]
2

• D
[36]
2 = D

[25]
2 +{0, 9},

in [6] referred to as D
[31]
2

• D
[37]
2 = D

[26]
2 +{1, 3},

in [6] referred to as D
[14]
2

• D
[38]
2 = D

[34]
2 +{0, 9},

in [6] referred to as D
[32]
2

• D
[39]
2 = D

[34]
2 +{3, 6},

in [6] referred to as D
[12]
2

90

A. LISTS OF GENERATED GRAPHS

A.3 K4,4−e

• K4,4−e[0] = K4,4−e

• K4,4−e[1] = K4,4−e[0]+{0, 4}, in[6] referred to as K4,4−e[1]

• K4,4−e[2] = K4,4−e[0]<1
{

0,4
5,6

}

, in[6] referred to as K4,4−e[7]

• K4,4−e[3] = K4,4−e[2]+{2, 7}, in[6] referred to as K4,4−e[23]

• K4,4−e[4] = K4,4−e[2]+{1, 7}, in[6] referred to as K4,4−e[22]

• K4,4−e[5] = K4,4−e[2]<4
{

2,7
3,8

}

, in[6] referred to as K4,4−e[45]

• K4,4−e[6] = K4,4−e[2]<2
{

0,5
4,6

}

, in[6] referred to as K4,4−e[44]

• K4,4−e[7] = K4,4−e[2]+{0, 5}, in[6] referred to as K4,4−e[21]

• K4,4−e[8] = K4,4−e[2]+{2, 8}+{1, 0}, in[6] referred to as K4,4−e[3]

• K4,4−e[9] = K4,4−e[8]+{1, 7}, in[6] referred to as K4,4−e[11]

• K4,4−e[10] = K4,4−e[8]+{3, 7}, in[6] referred to as K4,4−e[14]

• K4,4−e[11] = K4,4−e[8]+{2, 3}, in[6] referred to as K4,4−e[32]

• K4,4−e[12] = K4,4−e[8]+{0, 5}, in[6] referred to as K4,4−e[29]

• K4,4−e[13] = K4,4−e[12]+{3, 7}, in[6] referred to as K4,4−e[52]

• K4,4−e[14] = K4,4−e[13]+{5, 6}, in[6] referred to as K4,4−e[56]

• K4,4−e
[15] = K4,4−e

[11]+{1, 7}, in[6] referred to as K4,4−e
[57] and K4,4−e

[59]

• K4,4−e[16] = K4,4−e[11]+{3, 7}, in[6] referred to as K4,4−e[54]

• K4,4−e[17] = K4,4−e[16]+{1, 7}, in[6] referred to as K4,4−e[76]

• K4,4−e[18] = K4,4−e[16]+{5, 6}, in[6] referred to as K4,4−e[67]

• K4,4−e[19] = K4,4−e[15]+{4, 5}, in[6] referred to as K4,4−e[69]

• K4,4−e[20] = K4,4−e[10]+{5, 6}, in[6] referred to as K4,4−e[28]

91

A. LISTS OF GENERATED GRAPHS

• K4,4−e[21] = K4,4−e[10]+{1, 7}, in[6] referred to as K4,4−e[48]

• K4,4−e[22] = K4,4−e[9]+{4, 5}, in[6] referred to as K4,4−e[25]

• K4,4−e[23] = K4,4−e[7]<4
{

2,7
3,8

}

, in[6] referred to as K4,4−e[65]

• K4,4−e[24] = K4,4−e[7]+{2, 7}, in[6] referred to as K4,4−e[53]

• K4,4−e[25] = K4,4−e[7]+{2, 8}, in[6] referred to as K4,4−e[4]

• K4,4−e[26] = K4,4−e[7]<5
{

0,2,3
1,7

}

, in[6] referred to as K4,4−e[64]

• K4,4−e[27] = K4,4−e[7]+{1, 7}, in[6] referred to as K4,4−e[51]

• K4,4−e[28] = K4,4−e[27]+{2, 8}, in[6] referred to as K4,4−e[12]

• K4,4−e[29] = K4,4−e[27]<0
{

2,5
3,8

}

−{2, 5}, in[6] referred to as K4,4−e[66]

• K4,4−e[30] = K4,4−e[27]+{4, 6}, in[6] referred to as K4,4−e[58]

• K4,4−e[31] = K4,4−e[30]+{2, 8}, in[6] referred to as K4,4−e[26]

• K4,4−e[32] = K4,4−e[31]+{1, 4}, in[6] referred to as K4,4−e[33]

• K4,4−e
[33] = K4,4−e

[31]<1
{

5,7
6,8

}

−{5, 7}−{4, 6}, in[6] referred to as K4,4−e
[39]

• K4,4−e[34] = K4,4−e[33]+{1, 4}, in[6] referred to as K4,4−e[19]

• K4,4−e
[35] = K4,4−e

[33]<5
{

0,3
2,9

}

−{0, 3}−{2, 8}, in[6] referred to as K4,4−e
[75]

• K4,4−e[36] = K4,4−e[33]+{2, 9}, in[6] referred to as K4,4−e[40]

• K4,4−e[37] = K4,4−e[36]+{1, 7}, in[6] referred to as K4,4−e[55]

• K4,4−e[38] = K4,4−e[36]+{1, 4}, in[6] referred to as K4,4−e[6]

• K4,4−e[39] = K4,4−e[38]+{1, 7}, in[6] referred to as K4,4−e[16]

• K4,4−e[40] = K4,4−e[39]+{4, 6}, in[6] referred to as K4,4−e[42]

• K4,4−e[41] = K4,4−e[37]+{6, 8}, in[6] referred to as K4,4−e[27]

• K4,4−e[42] = K4,4−e[37]+{4, 6}, in[6] referred to as K4,4−e[68]

92

A. LISTS OF GENERATED GRAPHS

• K4,4−e
[43] = K4,4−e

[42]+{6, 8}, in[6] referred to as K4,4−e
[70] and K4,4−e

[74]

(the result was included multiple times)

• K4,4−e
[44] = K4,4−e

[35]+{0, 3}+{2, 10}+{7, 5}+{6, 9}+{4, 1}+{2, 8}, in[6]

referred to as K4,4−e[35]

• K4,4−e[45] = K4,4−e[44]+{4, 6}, in[6] referred to as K4,4−e[73]

• K4,4−e[46] = K4,4−e[44]

• K4,4−e[47] = K4,4−e[45]

• K4,4−e[48] = K4,4−e[34]+{5, 7}+{6, 9}, in[6] referred to as K4,4−e[37]

• K4,4−e[49] = K4,4−e[48]+{4, 6}, in[6] referred to as K4,4−e[62]

• K4,4−e
[50] = K4,4−e

[29]+{6, 8}, in[6] referred to as K4,4−e
[38] and K4,4−e

[77]

(the result was included multiple times)

• K4,4−e[51] = K4,4−e[29]+{3, 9}+{2, 0}, in[6] referred to as K4,4−e[20]

• K4,4−e[52] = K4,4−e[51]+{6, 8}, in[6] referred to as K4,4−e[5]

• K4,4−e[53] = K4,4−e[51]+{4, 6}, in[6] referred to as K4,4−e[30]

• K4,4−e
[54] = K4,4−e

[53]+{6, 8}, in[6] referred to as K4,4−e
[41] amd K4,4−e

[71]

(the result was included multiple times)

• K4,4−e
[55] = K4,4−e

[54]+{0, 4}, in[6] referred to as K4,4−e
[61] and K4,4−e

[72]

(the result was included multiple times)

• K4,4−e[56] = K4,4−e[52]+{0, 4}, in[6] referred to as K4,4−e[17]

• K4,4−e
[57] = K4,4−e

[50]+{0, 4}, in[6] referred to as K4,4−e
[60] and K4,4−e

[63]

(the result was included multiple times)

• K4,4−e[58] = K4,4−e[58]+{3, 9}, in[6] referred to as K4,4−e[34]

• K4,4−e[59] = K4,4−e[28]+{1, 4}, in[6] referred to as K4,4−e[50]

• K4,4−e
[60] = K4,4−e

[26]+{2, 5}, in[6] referred to as K4,4−e
[36] and K4,4−e

[43]

(the result was included multiple times)

93

A. LISTS OF GENERATED GRAPHS

• K4,4−e[61] = K4,4−e[25]+{3, 7}, in[6] referred to as K4,4−e[15]

• K4,4−e[62] = K4,4−e[25]+{1, 4}, in[6] referred to as K4,4−e[18]

• K4,4−e[63] = K4,4−e[4]+{2, 7}, in[6] referred to as K4,4−e[49]

• K4,4−e[64] = K4,4−e[4]+{4, 5}, in[6] referred to as K4,4−e[31]

• K4,4−e[65] = K4,4−e[1]+{1, 7}, in[6] referred to as K4,4−e[9]

• K4,4−e[66] = K4,4−e[1]+{1, 2}, in[6] referred to as K4,4−e[2]

• K4,4−e[67] = K4,4−e[1]+{0, 5}, in[6] referred to as K4,4−e[8]

• K4,4−e[68] = K4,4−e[67]+{1, 7}, in[6] referred to as K4,4−e46[]

• K4,4−e[69] = K4,4−e[68]+{4, 6}, in[6] referred to as K4,4−e[47]

• K4,4−e[70] = K4,4−e[66]+{1, 7}, in[6] referred to as K4,4−e[10]

• K4,4−e[71] = K4,4−e[66]+{3, 7}, in[6] referred to as K4,4−e[13]

• K4,4−e[72] = K4,4−e[71]+{4, 5}, in[6] referred to as K4,4−e[24]

A.4 Violating splits of K4,4−e

There are two graphs with K4,4−e minor for which a violating split exists —

the graphs K4,4−e
[44] and K4,4−e

[45]. In both cases, they lead to a subdivision

of a graph isomorphic to K4,4−e
[35]. The particular violating splits are listed

below.

• K4,4−e[44]<0
{

2,8
3,10

}

−{2, 8}−{3, 10}−{1, 4}−{2, 5}−{6, 9}−{7, 9}

• K4,4−e[44]<0
{

2,8
3,10

}

−{2, 8}−{3, 10}

• K4,4−e[44]<1
{

4,8
6,9

}

−{4, 8}−{6, 9}−{0, 2}−{3, 10}

• K4,4−e[44]<3
{

4,6
0,10

}

−{0, 10}−{2, 5}−{2, 8}

• K4,4−e[44]<3
{

4,6
0,10

}

−{0, 10}−{2, 5}−{2, 8}−{7, 9}−{1, 4}−{1, 6}

• K4,4−e[44]<5
{

7,9
2,10

}

−{2, 10}−{7, 9}−{0, 3}−{1, 6}−{2, 8}

94

A. LISTS OF GENERATED GRAPHS

• K4,4−e[45]<5
{

7,9
2,10

}

−{2, 10}−{7, 9}−{0, 3}−{1, 6}−{2, 8}−{4, 8}

• K4,4−e[45]<7
{

4,6
5,9

}

−{4, 6}−{5, 9}−{1, 6}−{2, 10}−{4, 8}−{0, 2}−{0, 3}

• K4,4−e[45]<7
{

4,6
5,9

}

−{5, 9}−{1, 6}−{2, 10}−{4, 8}−{0, 2}−{0, 3}

• K4,4−e[45]<8
{

0,2
1,4

}

−{0, 2}−{1, 4}−{3, 10}−{6, 9}−{2, 5}−{5, 7}

• K4,4−e[45]<9
{

1,6
5,7

}

−{1, 6}−{4, 8}−{5, 7}−{0, 2}−{2, 10}−{3, 10}

• K4,4−e[45]<9
{

1,6
5,7

}

−{1, 6}−{4, 8}−{5, 7}−{0, 2}−{2, 10}−{3, 10}−{4, 6}

95

	Introduction
	Basic notion
	 Graphs and their structure
	 Topological properties of graphs
	 Planar graphs
	 Projective plane

	Problem and current position of the field
	 Role of internal 4-connectivity and methodology

	Proof of Theorem 3.17
	Technical details and principles of generating
	 Addition extensions
	 Vertex splitting
	 Special extensions
	 Representing the graphs and use of the canonical form
	 Searching for minors
	 Heuristic for minor search

	Generated results
	 K4,4-e
	 K1,2,2,2
	 B7
	 C4
	 C3, D2
	 E2
	 K4,5-4K2
	 Analysis of the generated graphs

	Cubic graphs
	Conclusions
	Lists of Generated Graphs
	 C3
	 D2
	 K4,4-e
	 Violating splits of K4,4-e

