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informačńı zdroje v souladu s Metodickým pokynem o dodržováńı etických princip̊u při
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Abstract

A reliable and informative performance evaluation of local feature detectors and descriptors
is a difficult task that needs to take into account many applications and desired properties of
the local features. The main contribution of this work is the extension of the VLBenchmarks
project which intends to collect major evaluation protocols of local feature detectors and
descriptors.

We propose a new benchmark which evaluates local feature detectors in the image retrieval
tasks and simple epipolar criterion for testing detectors and descriptors in the wide baseline
stereo problems. Using the extended benchmarks we investigate several parameters of the
local feature detection algorithms.

We propose a new algorithm for building a scale space pyramid which significantly im-
proves the detector repeatability in the case of apriori knowledge of the nominal Gaussian
blur in the input image. On the image retrieval tasks, we show that features with a small
value of the response function improve the performance more than features with small scale,
contrary to the observations in the geometry precision benchmarks. By altering the compu-
tation of the SIFT descriptor, we show that it is not necessary to weight the patch gradient
magnitudes when input images are similarly oriented and that for blob-like features increasing
the measurement region improves the performance.

Finally we propose an improvement of emulated detectors that allows finding new image
features with better geometric precision. We have also improved the classification time of
the emulated detectors and achieved higher performance than the handcrafted OpenSURF
detector implementation.

Abstrakt

Spolehlivé a dostatečně informativńı měřeńı výkonnosti detektor̊u zájmových oblast́ı neńı
snadným úkolem a záviśı jak na konkrétńı aplikaci, tak i na jejich požadovaných vlastnostech.
Hlavńım př́ınosem této práce je rozš́ı̌reńı open source projektu VLBenchmarks, který se snaž́ı
nashromáždit hlavńı protokoly pro měřeńı vlastnost́ı detektor̊u zájmových oblast́ı a jejich
deskriptor̊u.

V rámci práce jsme navrhli nový testovaćı protokol měř́ıćı výkonnost detektor̊u a deskrip-
tor̊u zájmových oblast́ı použitelných v systémech pro vyhledáváńı instanćı obraz̊u v rozsáhlých
databáźıch. Dále jsme navrhli jednoduché kritérium pro testováńı detektor̊u a deskriptor̊u ve
wide-baseline dvou-pohledových geometríıch. S pomoćı těchto nových testovaćıch protokol̊u
jsme prozkoumali několik nejd̊uležitěǰśıch parametr̊u algoritmů pro detekci zájmových oblast́ı.

Navrhli jsme nový algoritmus pro stavbu pyramid prostoru měř́ıtek, jenž zvyšuje opako-
vatelnost detektor̊u v př́ıpadě znalosti Gaussovského jádra, kterým byl obrázek rozmazán.
Na systému pro vyhledáváńı obraz̊u jsme ukázali, že při zahrnut́ı zájmových oblast́ı s nižš́ım
kontrastem, lze významněji zvýšit jejich přesnost, než při zahrnut́ı oblast́ı s menš́ı velikost́ı.
Ukazujeme ale, že toto neplat́ı pro př́ıpady použit́ı, kde je upřednostňovaná geometrická
přesnost detekce. Na př́ıpadě široce použ́ıvaného SIFT deskriptoru ukazujeme, že pokud
data, na nichž je poč́ıtán, neobsahuj́ı významné rotace, neńı potřeba vstupńı data deskrip-
toru vážit Gaussovským jádrem. S těmito protokoly jsme také změřili výkonnost detektor̊u a
deskriptor̊u z hlediska velikosti oblasti, která je použita pro výpočet deskriptoru. Ukazuje se,
že pro detektory isotropńıch oblast́ı se vždy dosáhne lepš́ıch výsledk̊u, pokud je do výpočtu
deskriptoru zahrnuto v́ıce kontextu detekované oblasti.

V posledńı části této práce navrhujeme vylepšeńı emulátor̊u detektor̊u zájmových oblast́ı,
které dovoluje detekovat nové typy zájmových oblast́ı a zvyšuje jejich geometrickou přesnost.
Také jsme významně zvýšili efektivnost těchto emulátor̊u tak, že dosahuj́ı vyšš́ı rychlosti
detekce, než z hlediska rychlosti pečlivě navržený OpenSURF detektor.
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Chapter 1

Introduction

In the field of computer vision, local image feature detection is an intermediate step of several
algorithms. It is used for representing an image by a set of well defined and well localised image
structures with an informative neighbourhood. Typically some set of measurements are taken
from the feature neighbourhood to form a descriptor. Image features and their descriptors
are used in many applications e.g. in multiple view geometry (e.g. image stitching, structure
from motion and 3D reconstruction), object recognition and image retrieval.

A local image feature is an image pattern which differs from its immediate neighbourhood.
They are interesting because they can provide a limited set of well localised and individually
identifiable anchor points. What they represent is not relevant so far as their location can
be determined accurately and in a stable manner over time. In multiple view geometry what
is important is their location (centre) as they are used for estimation of the scene model.
In other cases the set of local features and their descriptors can be used as a robust image
representation that allows to recognise objects and scenes without a need for segmentation.
In this case they do not have to be localised precisely since to analyse their statistics is more
important [41].

A detector is a tool that extracts features from an image (usually corners, blobs etc.). An
ideal extracted feature should have several properties such as repeatability, distinctiveness
(informativeness) and precise localisation. However, these properties change with the detec-
tor parameters not only depending on the type of features which it extracts, but also on a
particular implementation. This puts us in a difficult task how to properly measure these
properties. Existing and widely used performance evaluation protocols are limited to test
detectors only on planar scenes which does not address problems such as occlusion or depth
discontinuities. Also it does not directly address the properties required for image retrieval
where the feature localisation is not so important. This motivates our first goal which is
to make it easier to test any feature detector or descriptor algorithm not only with existing
tests but also with newly proposed benchmarks which would confront other use cases of these
algorithms. With this evaluation framework we would like to examine performance of feature
detectors and subsequently their descriptors in order to set their parameters depending on
their particular use.

Next goal of this work is to examine emulated feature detectors proposed in [38]. These
emulators offer a possibility to speed up several feature detector algorithms. In the original
article [37] they had been tested only with benchmarks consisting of planar scenes experiments.
Thus they are tested in the proposed new benchmarks in order to asses their performance
in retrieval and epipolar geometry tasks. Subsequently we train emulators of different local
image features and examine their properties.

3



1.1 Main contributions

One of the contribution is participation in VLBenchmarks framework which is an auxiliary
suite of tests for VLFeat computer vision library algorithms. We have finalised implementation
of existing evaluation protocols and proposed new evaluation protocols such as the Epipolar
geometry test and image retrieval benchmark. These tests has been implemented under
supervision of Andrea Vedaldi in Visual Geometry Group, University of Oxford during May
and August 2012. The VLBenchmarks project was presented as a part of a tutorial at ECCV
2012 in Firenze. Using VLBenchmarks software we have tested several properties of existing
detectors.

We propose a new algorithm to build a pyramid Gaussian scale space which allows to take
into account any nominal Gaussian blur in a processed image. With a-priory knowledge of
this blur it is able to increase repeatability of scale space local feature detectors significantly.

A new method to control number of detected features has been proposed by setting lower
initial scale. Employing VLBenchmarks tests we have found that for geometry precision tasks
it is better to increase the number of detections by detecting smaller features with lower initial
scale. However for retrieval tasks, features with lower response function threshold are more
advantageous than features with small scale. We have shown, that for some retrieval tasks,
where the scale of queried and database instances is similar, it is possible to decrease the
number of features in the database as the smallest features has got little impact to retrieval
system performance.

Last parameter examined is measurement region of a local feature used for descriptor
calculation. We show that for blob detectors, bigger measurement region generally improves
their performance mainly for planar scenes. This however does not hold for Harris and MSER
detector where the ideal measurement scale is limited. Also we have shown that for input
data without significant rotations descriptors are more distinctive without weighting.

In the last part we train new emulated detectors using different local image features than in
the original article. We have shown that it is also possible to train detectors with anisotropic
features however with the cost of worse rotation invariance. Using VLBenchmarks, newly
trained DoG emulated detector gains better geometric precision than the original Hessian-
Laplace emulator. Besides that we have improved the classification speed so that the emulators
achieve faster evaluation than SURF detector.

1.2 Structure of this thesis

In Chapter 2 we describe existing feature detection algorithms and their emulators. In the
next part, Chapter 3, existing evaluation protocols for feature detectors and descriptors are
described. Then we follow with description of our work on VLBenchmarks project in Chapter
4. Using this evaluation framework we examine detectors parameters in Chapter 5. In Chapter
6 we follow with description of improvements and tests performed with emulated detectors.
In the last part, Chapter 7, we summarise the results.
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Chapter 2
Local image features detection and

description

In this chapter we describe state of the art algorithms for local feature detection and descrip-
tion. Local image features can be divided based on the invariance to image transformations
or by the feature type. The major types of local features are blobs (LoG, DoG and Hessian),
corners (Harris) and regions (MSER). In the first section, we describe classes of invariance
to geometric transformations. Then we follow with a detailed description of feature detectors
which use scale space extrema of second order derivative operators as a tool to obtain both
feature location and scale. Then other feature detectors and main algorithms for feature de-
scription are briefly described. The local image feature detection can also be seen as a decision
process, we will show that it is possible to use machine learning techniques to emulate it. The
underlying theory for boosting and emulated detectors is described in the last part of this
chapter.

Notes on terminology In the text we use several terms for a local image feature. This
ambiguity arises from their different use. For some applications (3D reconstruction or camera
calibration) the spatial extent of the local image feature is not important and only the feature
location is used. The term interest point is then often used. In most applications, where the
regions has to be described, such that they can be identified and matched, one typically uses
term region instead of interest point [41, p. 182]. In this work we use the term local feature
or term frame, which will be described below.

2.1 Local image features and their invariance

Local image features are deterministic local image statistics (features) robust to several types
of image distortion factors such as viewpoint change or change of illumination [42], and which
differ from their immediate neighbourhood. By definition they are well localised to a compact
subset of an image which will be further referred as a region of the feature. The desired
property of the feature is an invariance to a particular parameter or function applied to the
original image domain.

Local features are detected with covariant local image feature detectors (detectors) which
select a number of distinctive image regions from the input image. The detector is covariant
with a particular family of transformations when the shape of detected image regions does
change with the image transformation [41, p. 181]. One way to obtain invariance of the local
features comes from the geometric, photometric normalisation [41] of the detected image
regions. The idea is that once the local image regions that were found under the image
distortion are normalised into a canonical shape, any measurement on the normalised regions
are invariant to the deformation. The image regions obtained by the local feature detectors
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Figure 2.1: Classes of the local image frames.

Frame class Attributes Covariant to
Disc Frame coordinates x0, scale (radius) σ Translations and scaling
Oriented Disc Frame coordinates x0, scale (radius) σ Translations, scaling

and single point z which defines orientation θ and rotation (similarities)
Ellipse Frame coordinates x0 and shape matrix Σ Translation and affinities

with three degrees of freedom up to residual rotations
Oriented Ellipse Frame coordinates x0 Translation and affinities.

and affine transformation A

Table 2.1: Attributes of image frame invariance classes.

are represented by geometric entities denoted as frames. A frame is a subset of the image,
defined by a set of attributes that uniquely specifies particular geometric shape, for example
disc or ellipse. A class of frames are frames that can be specified by the same set of attributes.

The overview of frequently used classes of local image feature frames is given in table 2.1
and visualised together with their attributes in Figure 2.1. This categorisation and description
of the frames is based on [42]. Let us now describe the properties of these frame classes:

Disc Compact subset of the image, Ω = {|x − x0| < r}, represents a circular region in the
image.

Oriented disc Set Ω (defined as above) and a point z which defines the major orientation
of the circular region. This major orientation can be also expressed by an angle θ, which is
the angle of the the line x0 × z.

Ellipse Frames defined by their centre x0 and the moment of inertia (covariance) matrix
(also further referred as second moment matrix).

Σ =
1

∫

Ω
1 dx

∫

Ω

(x− x0)(x− x0)
T dx (2.1)

The covariance matrix is positive semi-definite 2 × 2 matrix that can be visualised by an
ellipse [13] as:

(x− x0)
T Σ−1 (x− x0) = 1 (2.2)

Ellipse behaves similarly as a covariance matrix of image region under the affine transforma-
tions and is useful for intuitive prediction of the feature frame behaviour. This also is a reason
why we further refer to the covariance matrix as an ellipse matrix. For details and a proof
see [13, p. 5].

Oriented ellipse Oriented ellipses are defined by an affine transformation A which trans-
forms an oriented ellipse ΩC into an oriented unit disc AΩ = ΩC with orientation θ = 0
uniquely. This affine transformation is also further referred as de-normalisation matrix.
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The local feature detector is an algorithm that finds a mapping F from image domain I(x)
to attributed frames domain Φ, where the the detections are uniquely described by the values
of frame attributes.

2.2 Detection of local image features with scale space

The scale space based feature detectors search for a local feature in spatial and scale domains
of an image using some “distinctiveness” measurement (either a cornerness or a blob measure,
further noted as a response function). This is generally a search in a three dimensional space,
where the third dimension can be seen as a sampling of spatial frequency domain. The feature
detection can be divided into three steps:

1. The scale space extrema localisation Search of local extrema in the scale space of the
image response function.

2. Location refinement Sub-pixel localisation of the frame centroid and scale based on a
local optimisation.

3. Additional measurements that improves covariance of the detector. The image regions
obtained as local extrema in the scale space are uniquely determined by a disc frame
attributes (x,y, σ). The disc frame can be “upgraded” by further examination of the
image region to an oriented disc, ellipse or oriented ellipse. The ellipse frame can
be estimated by using Baumberg iteration [4]. The oriented frames can be obtained by
computing the dominant orientation of the image gradients in the normalized coordinate
frame [24].

2.2.1 Gaussian scale space properties

The Gaussian scale space is a multi-scale representation of the original image computed by
consecutive filtering of the input image. The consecutive application of a low pass Gaussian
filter allows to analyse lower resolutions of the image. The choice of the Gaussian filter among
the low pass filters is not random, it has been shown [21] that the Gaussian scale space is a
natural solution to a diffusion equation. The Gaussian scale space also holds several important
properties, as shift invariance, scale invariance, rotational symmetry and mainly non-creation
of local extrema or zero-crossings in the one-dimensional case (non-enhancement property)[23,
p. 3].

The Gaussian scale space is a continuous function L(x, σ) of some input image I(x) defined
as:

L(x, σ) = G(x, σ) ∗ I(x) (2.3)

where ∗ denotes a convolution of the input image and the Gaussian kernel:

G(x, σ) =
1

2πσ2
e−x

T
x/2σ2

(2.4)

The local feature detectors based on the Gaussian scale space use properties of second order
derivative operators. The amplitude of spatial derivatives

Lxiyj (·, σ) = ∂xiyjL(·, σ) = Gxiyj (·, σ) ∗ I(·) (2.5)

generally decrease with scale due to non-enhancing of local extrema property of the Gaussian
kernel. In order to be able to compare the derivatives across scales, the derivative operator
responses across the scales, the amplitude of Gaussian derivatives must be normalised by a
factor [22]:

L̂xiyj (·, σ) = σ(i+j)γL(·, σ) (2.6)

Where in the most cases ([24], [27]) the parameter γ is selected as γ = 1.
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2.2.2 The scale space implementation

The scale space is by definition a continuous function, however the input image is not of
infinite resolution. Therefore, a discrete approximation has to be made. The input image is
assumed to be pre-smoothed in the discretisation process by a Gaussian low pass filter with
some nominal standard deviation σn = 0.5. Due to computation efficiency, the scale space is
sampled into a finite number of scales by cascade convolution of the image using the Gaussian
kernel. This is possible thanks to the following property of the Gaussian kernel:

G(x, σ2) ∗G(x, σ1) ∗ I(x, y) = G

(

x,
√

σ2
1 + σ2

2

)

∗ I(x, y) (2.7)

This means that for computation of each successive layer of the scale space we can reuse the
previous layer. The scale space construction is made even faster by constructing a pyramid
where the scale space is divided into octaves v such that each following octave doubles the
scale of previous one. Scales are then sampled exponentially, such that after each octave, the
scale doubles:

σ = σ0 2v+
s
S s = 0, ..., S − 1 v = 0, ..., vmax (2.8)

Parameter σ0 = 1.6 is a scale of a pyramid base and was empirically set in [24, p. 10]
and represents the sampling frequency in the image domain (“given that extrema can be
arbitrary close together, there will be a similar trade-off between sampling frequency and rate
of detection” [24, p. 10]). The maximum number of octaves vmax is set to a value where the
longer size of the image is still bigger than 23. Each octave is down-sampled by factor 2.

2.2.3 Local image feature localisation

Local features are detected as local extrema of some response function Resp(x, σD). The
size of the searched local neighbourhood is usually 3 × 3 × 3. The definition of the response
function differs for each detector. The most widely used are:

Determinant of Hessian. For detecting distinctive features, the determinant of Hes-
sian [29] matrix measure is used. The Hessian matrix is defined as:

H(x, σD) =

(

Lxx(x, σD) Lxy(x, σD)
Lxy(x, σD) Lyy(x, σD)

)

, (2.9)

where values Lab(x, σD) are second order Gaussian derivatives of scale space values L(x, σD) (
σD is differential scale, also called local scale). The measure itself is defined as a determinant
of the Hessian matrix:

RespHess(x, σD) = σ2
D|H(x, σD)|, (2.10)

factor σ2
D is the normalisation factor of the second derivatives, in order to maintain scale

invariance of the response function across the scale levels. The determinant of Hessian re-
sponse can be computed efficiently by computing symmetric differences in a 3 × 3 window
around each pixel. The response function has three types of extrema which correspond to the
following types of Hessian features:

a) Bright blob when |H(x, σD)| > 0 and Lxx < 0. This feature correspond to “hill top”
blobs in image brightness.

b) Dark blob when |H(x, σD)| > 0 and Lxx > 0. This feature correspond to “valley”
blobs in image brightness.

c) Saddle point when |H(x, σD)| < 0 and Lxx > 0.
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Laplacian of Gaussian (LoG). The Laplacian of Gaussian response for blob detection is
defined as the trace of the Hessian matrix:

RespLoG(x, σD) = σDtrace(H(x, σD)) (2.11)

And the features can be of type:

a) Bright blob when RespLoG(x, σD) < 0

b) Dark blob when RespLoG(x, σD) > 0

Difference of Gaussian (DoG). The difference of Gaussian [24] is an approximation
of Laplacian of Gaussian. The advantage of this response is that, in the scale space, it is
computed without the convolution simply by subtracting the successive levels of scale-space:

RespDoG(x, σD) =
σD

∆
(L(x, σD +∆)− L(x, σD −∆)) (2.12)

Feature types are categorised in the same way as for the LoG response.

Scale adapted Harris response (Harris). The response function of the Harris corner
detector [27] is based on the second moment matrix of image gradients, also called an auto-
correlation matrix. It is defined as:

M(x, σD, σI) = σ2
DG(x, σD) ∗

(

L2
x(x, σD) Lx(x, σD)Ly(x, σD)

Lx(x, σD)Ly(x, σD) L2
y(x, σD)

)

(2.13)

where Lx are first order Gaussian derivatives with derivation scale σD. The outer products
of the gradients are averaged in the point neighbourhood with a Gaussian window of scale σI

(integration scale). The eigenvalues of this matrix represent the principal changes of image
intensities in two orthogonal directions. Their ratio is effectively computed with the Harris
corner measure:

RespHarr(x, σD) = |M(x, σD, σI)| − λ trace(M(x, σD, σI)), (2.14)

with typically λ = 0.04 and σI =
√
2 σD (in case of CMP implementation). Only response

function maxima are considered by the detector.
For scale estimation, the Laplace operator is usually used in a hybrid detector. Hybrid

detectors are described below.

Sub-pixel/Sub-scale localisation

At higher levels in the scale space pyramid, it is important to localise the feature more
precisely as there the pixels correspond to large areas relative to the base image [6]. It is
supposed that the response function is smooth enough around the extrema that it can be
approximated with a 3D quadratic function. The 3D quadratic function is then fitted into a
3×3×3 neighbourhood of the local extrema and its peak is taken as a sub-pixel and sub-scale
location [6]. The function is expressed in a Taylor expansion (up to quadratic elements) of
the scale space function Resp(x, σ) with the origin in a location of the scale space extremum.

Resp(z) = Resp +
∂Resp

∂z

T

z+
1

2
zT

∂2Resp

∂z2
z (2.15)

Where vector z = (x′, σ′)T is the offset from the localised point. The location of the extremum
of this function ẑ, i.e. our solution offset can be obtained as:

ẑ =
∂2Resp

∂z2

−1
∂Resp

∂z
(2.16)

This is an easily solvable 3× 3 linear system. If the offset is bigger than ẑ > 0.6, it means
that the extremum lies closer to a neighbouring point, so the detected location is changed and
the optimisation is run again in an iterative procedure (in our case limited to maximum of
five steps) until the location is found stable. The final offset ẑ is added to the feature location.
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2.2.4 Low contrast and edge regions suppression

The second order derivatives based detectors fire on the edges, where at least one of the
second derivatives is high. To eliminate the edge responses which tend to be unstable under
geometric transformations1, the Hessian matrix H of the response function is used. Its eigen-
values (λmax, λmin) are proportional to the principal curvatures of the response function.
Because only the ratio between the eigen-values r = λmax/λmin is important, it can be
calculated as comparison of the trace and determinant of the Hessian matrix:

Tr(H)2

Det(H)
=

(λmax + λmin)
2

λmaxλmin
=

(r + 1)2

r
(2.17)

and only regions which fulfil the following condition

Tr(H)2

Det(H)
<

(r + 1)2

r
(2.18)

are preserved [24].
Also in order to suppress regions with low contrast, only regions with response higher than

a response function threshold Rt (also called peak threshold) are preserved.

2.2.5 Estimation of feature orientation

The local features detected in the scale space are assigned with a location and scale, and
represented by a disc frame that does not provide information about feature orientation.
However, the feature can be upgraded to an oriented disc to increase the invariance of the
descriptors computed on the detection. One of the ways how to find a robust orientation of
the feature is to exploit local gradients in the vicinity of the feature.

The gradient orientations θ(x) and magnitudesm(x) in a circular region with radius rwin =
1.5σ are computed (VLFeat SIFT2) at the closest scale level of the pyramid corresponding
to the detected scale of the feature. Then, the gradient orientation are weighted by gradient
magnitudes and collected in an orientation histogram additionally weighted by the gradient
magnitudes. Gradient magnitudes are weighted by a Gaussian kernel with σ = 1/3 rwin

in order to emphasise gradients closer to local feature’s centre. The number of bins of the
histogram is usually set to 36.

After smoothing the histogram values, in order to remove coarse peaks, local peaks within
80% of the global maxima are returned as the detected orientations. The maximum number of
extrema is usually limited to 4. In case the full affine invariance (oriented ellipse) is desired,
the orientation is computed on patch normalised to a unit disc, to allow affine covariant
measurements of the gradient orientations.

2.2.6 Hybrid detectors

We denote scale-space based detectors as hybrid, when the response function in the spatial
domain differs from the response function used to find the scale of the feature. The hybrid
detectors proceeds as folloe. First, a spatial local feature location is found using a non-
maxima-suppression in the 3× 3 neighbourhood on each scale level independently. Then, the
best scale is found an extremum of the second measure over all scales. Common combinations
of response functions used in the literature are Harris-Laplace [27] or Hessian-Laplace [29]
mainly for the good localisation of the corner-like features by the Harris response function.

2.2.7 Affine invariance

Baumberg [4] has shown, that a disc frame can be extended to an ellipse frame by an algorithm
called Baumberg iteration. This algorithm iteratively estimates the affine distortion of the

1Location on the edge is well defined only in the direction orthogonal to the edge.
2http://www.vlfeat.org/api/sift.html#sift-tech-detector-orientation
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gradients of the detected feature by computing a structure tensor with the second moment
matrix of image gradients, which is used as a measure of anisotropy. In each step, the inverse
square root of the second moment matrix is accumulated and the accumulated transformation
used as an estimate of affine distortion. The estimated affine transformation is then used to
normalise an image patch around the feature. The iteration continues, until sufficient isotropy
of the normalised patch is achieved. This iteration removes frames where the iteration does
not converge. This usually happens for too elongated features (such as edges). The result
of the iteration is an affine transformation that is fixed up to an unknown rotation3. This
rotation can be fixed as upright [31] (ellipse frame), or dominant orientation can be estimated
as described above to form an oriented ellipse. Detectors which use Baumberg iteration are
further referred with the -Affine suffix.

2.3 Other state of the art detectors

Besides the already introduced scale space detectors plentiful of other feature detectors exist.
We present a small selection of the most important ones.

MSER [26] Region detector based on a modified watershed algorithm with different sta-
bility criteria. In general it detects regions, however they are usually converted to ellipses
where the centre is defined as their centre of gravity and the shape is specified by moments
of the detected region interior. The scale of the ellipse is then usually twice the scale defined
by the moments. Generally it detects fewer regions but the detected features are naturally
affine invariant.

SURF [5] Speed Up Robust Features. The similarity invariant frame detector, which comes
with the SURF descriptor, detects frames using an approximation of the Hessian response with
box filters. The orientation of the frames is fixed using box filters. In some sense, it is similar
to emulated detectors, as the box filters resemble Haar features computed with assistance of
integral images. However, the particular filters are carefully engineered and their response is
used directly. The scale of the features is detected over a pyramid of box filter size which
partly resembles the scale space pyramid and it uses the same non-maxima suppression as the
scale space detectors, together with sub-pixel localisation.

FAST [34] A translation and rotation invariant corner detector (no scale invariance) which
uses a decision tree to classify a possible feature presence by comparing central pixel to its 12
pixel circular neighbourhood (in this sense it is somehow similar to local binary patterns). The
decision tree is learnt using machine learning techniques to achieve decision in the shortest
time. In comparison to other detectors, FAST simplicity brings fast detection though without
scale invariance.

BRISK [20] The detector used in this framework is an extension of the FAST detector
with a Gaussian scale space. A classical non-maxima suppression over the FAST score is
performed in order to locate the features in the scale dimension. Sub-pixel localisation is also
performed.

2.4 Local image feature description

The local feature descriptors provide a description invariant to the image transformation.
This can be achieved mainly by two means: either by descriptors invariant to the transfor-
mation e.g. rotation, or by descriptors that are not invariant to the transformation, however
computed on the neighbourhood normalised using the detected covariant frame. This two
approaches can be also combined. The geometric normalization proceeds as follows. At first,

3caused by the degree of freedom in the computing of the matrix square root
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the detection scale is multiplied by a magnification factor ν in order to obtain more distinc-
tive neighbourhood a feature’s measurement region. The measurement region of the feature is
then normalised (usually rotation or affine shape normalisation) to a small patch P (usually
of size 41 pixels) which is then used for calculation of an invariant descriptor.

Descriptors are robust image transformations which characterise the image brightness
structures and are invariant to photometric transformations. Let us introduce some of the
commonly used local feature descriptors:

SIFT [24] The SIFT descriptor is a 3D spatial histogram capturing the spatial distribution,
magnitude and orientation of the image gradients [43]. The image gradients are collected in
a 4 × 4 grid (to preserve spatial information) where each cell is described by a histogram
of image gradient orientations inside the cell. Each histogram is expressed by eight values
yielding a 4× 4× 8 = 128 values long descriptor. Thanks to this coarse spatial division, this
descriptor is robust to some errors in local feature position and orientation. Collected values
are then quantized to fit into one byte. The similarity measure is the Euclidean distance or
Hellinger distance (RootSIFT, [3]).

SURF [5] SURF descriptor is calculated with box filter similarly as the SURF features.
The spatial and orientation information is stored in a similar way as in SIFT. However the
descriptor is only 64 bytes long. The similarity measure used is usually the Euclidean distance.

BRIEF [7] (Binary Robust Independent Elementary Features). A binary vector which
consists of results of a certain number of pairwise (or n-wise) intensity comparisons in a
smoothed patch. The patch is sampled randomly with a bias towards the patch centre. The
advantage of binary descriptors is their small memory footprint as results of each comparison
are stored in a single bit. Similarity is computed with Hamming distance, which can be quickly
performed with an XOR operator and a processor instruction which counts the number of
zero bits.

DAISY [40] This descriptor collects its values by sampling orientation maps (gradients
of the patch in particular directions) by averaging values in a small neighbourhood with a
Gaussian kernel. Samples are taken on a circular pattern where the size of the averaged
neighbourhood increases with the circle radius. This creates a Daisy-like structure. This de-
scriptor was developed mainly for dense stereo matching. In [48], machine learning techniques
are used for learning to pick the best samples with a goal to form a compact and distinctive
descriptor.

LIOP [47] Instead of gradients, LIOP collects histograms of pixel orderings. First, it
divides image brightness values into several bins. In each bin, N pixel samples are taken on
a circular pattern around the centre of the feature and pixel intensities ordering are collected
into a histogram of N ! bins. Concatenated ordering histograms over all bins form the LIOP
descriptor. The similarity measure used is Euclidean distance, however as it is formed by
histograms, Hellinger distance may be used as well.

MROGH [10] Extension of LIOP descriptors where several LIOPs over different measure-
ment regions are collected into a single descriptor.

12
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Figure 2.2: The multi-scale sliding window approach to detection. A detection window is
swept through the image and an object vs. background classifier is evaluated at each position
and scale.

2.5 Emulated local feature detectors

The concept of emulated local image feature detectors has been introduced in [38]. It is based
on WaldBoost learning framework [37], applied to detection of the local image features. The
task is to learn a sequential classifier which is able to decide whether a given image sample
contains an image feature or not.

The key idea is, that some existing feature detection algorithm is used as a black box
algorithm performing a binary decision task. Running this algorithm on a big set of images it
provides a large amount of positive and negative samples for training of the classifier. Then
the classifier is used to emulate the black box algorithm of the feature detector. It detects
features in the image by classifying all rectangular regions (patches) of various sizes and
in various positions, by using a multi-scale sliding window technique. The sliding window
approach is illustrated in Figure 2.2.

Considering the size of the image and the number of possible scales, the sliding window
technique produces ample amount of patches which need to be classified. This task was first
solved in real time by Viola and Jones [44]. Based on the extensive research in the field of real-
time image detectors the emulated feature detectors use a Waldboost algorithm [37] to emulate
the Hessian-Laplace [27] and Kadir-Brady saliency detector [16]. The main advantage of the
emulated detectors is their speed, as the WaldBoost sequential classifier is able to eliminate
an ample amount of background patches by early decision.

In the following, we describe some basics about the WaldBoost sequential classifier and
RealBoost used for selection of the weak classifiers. Then, we continue with details related to
emulated local image feature detectors.

2.5.1 WaldBoost

WaldBoost is a meta algorithm, an extension of AdaBoost meta-algorithm [12], which allows
to make an early decision and therefore speed-up the classification. But instead of using a
cascade of separate strong classifiers as Viola and Jones [44], the number of measurements
needed is decided using a sequential probability ratio test.

Sequential probability ratio test Sequential probability ratio test (SPRT) is a statistical
framework developed for quality control in manufacturing proposed by Wald [46]. It is useful
for decision making when the number of samples is not known in advance. By continuously
collecting the data, the decision is postponed until sufficient information is available. The
advantage of this approach is that the decision can be made much earlier than in the case of
non-sequential, monotonic, algorithms.

Let x be an object with hidden state (class, label) y ∈ {−1,+1} which is not directly
observable. The hidden state is determined based on successive measurements x1, x2, . . .
and the knowledge of joint conditional probabilities p(x1, . . . , xt|y = c) of the sequence of
measurements x1, . . . , xt for x ∈ {−1,+1} and for all t. SPRT sequential strategy S∗ is
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Figure 2.3: The domain-partitioning weak classifier, also known as RealBoost weak classifier.
The response of features f(x) on a sample x is partitioned into bins j = 1, . . . ,K. The left-
most and right-most bins cover respective half-spaces. In each bin j, the response of the weak
classifier h(x) is learnt from the sum of positive (W j

+) and negative (W j
−) weights falling into

the bin. The sample weights are set according to AdaBoost learning strategy [12]. To avoid
numerical problems, a smoothing factor ǫ is used [35]. Adopted from [38].

defined as [46]:

S∗
t =











+1 if Rt ≤ B

−1 if Rt ≥ A

# if B < Rm < A

(2.19)

The symbol # stands for “continue”, i.e. do not decide yet. Rt is defined as a likelihood
ratio:

Rt =
p(x1, . . . , xt|y = −1)
p(x1, . . . , xt|y = +1)

(2.20)

And the constants A and B are set accordingly depending on the required probability of error
of first kind α (x belongs to +1 but is classified as −1) and probability of error of the second
kind β (x belongs to −1 but is classified as +1). It is generally difficult to estimate the values
of A and B. Wald [46] suggests to set them to their upper and lower bounds respectively:

A′ =
1− β

α
, B′ =

β

1− α
(2.21)

Following this decision, in [37] the t-dimensional space is projected into a one dimensional
space by a boosted strong classifier functionHt of length t and the likelihood ratio is estimated
as:

R̂t =
p(Ht(x)|y = −1)
p(Ht(x)|y = +1)

(2.22)

Moreover, Šochman and Matas [37, p. 4] shows that this projection sufficiently approximates
the R̂t. The strong classifier of length T is defined as:

HT (x) =

T
∑

t=1

ht(x) (2.23)

Where ht(x) are responses of the weak classifiers.

Weak classifier selection The RealBoost domain partitioning weak classifiers ht [35] are
used, each one based on a single (visual) feature ft (see Figure 2.3).

The input to the WaldBoost learning algorithm is a pool of samples P, a set of features F
and the bounds on the final false negative rate α and false positive weight β. In the learning,
the selection of the weak classifier is by far the most time consuming operation. Therefore only
a subset T of the samples pool P is used for selection of the weak classifier. In each round,
the already decidable samples in the pool are removed from the learning process and new
training set T is sampled. This process is called Bootstrapping. Details about the learning
with bootstrapping are shown in Algorithm 1.
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Algorithm 1 WaldBoost learning with bootstrapping, adopted from [38]

Input: Sample pool P = {(x1, y1), . . . , (xm, ym)};xi ∈ X , yi ∈ {−1,+1}, set of features F =
{fs} maximal false negative rate α and false positive rate β, number of weak classifiers T

1: Sample randomly the initial training set T from the pool P
2: Set A = (1− β)/α and B = β/(1− α)
3: for t = 1, . . . , T do
4: Choose best weak classifier ht by RealBoost [35] using F and T and add it to the

strong classifier Ht. See Figure 2.3.
5: Estimate the likelihood ratio according to eq. 2.22

6: Find thresholds θ
(t)
A and θ

(t)
B for Ht based on A, B

7: Bootstrap: Throw away samples from training set for which Ht ≥ θ
(t)
B or Ht ≤ θ

(t)
A

and sample new samples into the training set T using QWS+ [18]
8: end for

return strong classifier Ht and thresholds θ
(T )
A and θ

(T )
B .

...

T
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d

Object Object Object

Background Background Background

Object

Background

Image
0

don’t know don’t know
h1(x) h2(x) hT (x)

H1(x) HT−1(x) HT (x)

Figure 2.4: Pipeline of sequential binary classifier. Adopted from [17, p. 13].
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Figure 2.5: Learning scheme of feature emulator [38].
.

Sequential binary classifier The sequential binary classifier, as defined in [37], consists
of a set of weak classifiers as illustrated in Figure 2.4. A sequential classifier, denoted as
St, sequentially computes responses of weak classifiers h1(x) . . . ht(x) on input image patch
x. The responses ht(x) are summed up to the final response HT (x), the strong WaldBoost
classifier. The response HT (x) is then compared to the corresponding thresholds and it
is either classified positive or negative, or the next weak classifier is evaluated [38]. The
difference from the traditional AdaBoost strong classifier is that in any step, based on the
collected response, the final decision can be made. The sequential strategy is:

St(x) =











+1 if Ht(x) ≥ θ
(t)
B

−1 if Ht(x) ≤ θ
(t)
A

# if otherwise

(2.24)

If a sample x is not classified even after evaluation of the last weak classifier, a user defined
threshold γ is imposed on the real-valued response HT (x) [38].

2.5.2 Feature detector emulators

In the scheme proposed in [38], the existing local feature detection algorithms are approached
as black-box algorithms which perform a binary decision task. A scheme of the learning
process is shown in Figure 2.5. Negative samples are any image patches which are not detected
as local image features by the detector. For the emulators, the set F includes Haar-like features
proposed by Viola and Jones [44], plus a centre surround Haar-like features which has been
shown to be useful in blob detection. An advantage of Haar features is that they can be
efficiently evaluated using a integral image.

In the original articles, Hessian Laplace [27] and Kadir-Brady saliency [16] detectors are
emulated. For learning, same Haar features as in [44] are used together with centre surrounded
features which are useful for blob detection. Also, contrary to [37], feature responses are not
normalised by the window standard deviation since the image brightness contrast is important
for local image features. The classifier length is set to T = 20 as longer classifiers slow down
the evaluation and do not bring significant improvement in the performance [38, p. 155]. In
all experiments performed in [38], |T | = 10, 000, half positive and half negative samples.

Non maxima suppression An essential part of the detector is non-maxima suppression
algorithm. Here, instead of having a real-valued feature response over whole image, sparse
responses are returned by the WaldBoost detector. The accepted positions get the real-

valued confidence value HT (x), but the rejected positions have the “confidence” around θ
(t)
A ,

which makes these values incomparable, thus classical local non-maxima search cannot be
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used [38, p. 153]. Instead non-maxima suppression based on the overlap of the detected
local features is used. Non-maxima suppression in the emulated detector is based on joining
overlapped regions where the region with the highest response is preserved. This demands
precise confidence values for the accepted patches. Thus, the same asymmetric version of
WaldBoost as used in [37], i.e. setting β = 0. This is also motivated by fact that the error of
the first kind (missed local image features) is considered as more serious than the error of the
second kind (falsely detected feature). The decision strategy becomes:

Sm(x) =

{

−1 if Ht(x) ≤ θ
(t)
A

# if θ
(t)
A < Ht(x)

(2.25)

And samples are classified as positive when the response of the strong classifier HT (x) > γ,
where γ is user defined parameter, further referred as minimal confidence.

In case of the Hessian-Laplace emulator, the false negative rate α balances between the
trade-off of detector speed and precision as increasing α leads to faster evaluation. In [38], α
is set to 0.2 as a compromise.

Any two features are joined together if their overlap is higher than a given threshold s
(user defined parameter) and the feature with the higher response HT (x) is preserved. In
order to speed-up the computation, an overlap of two circles is approximated with a linear
function:

o =
r2

R2

(

1− dc
r +R

)

(2.26)

Where dc is distance between the centres of two circles, r the radius of the smaller circle and
R the radius of the bigger circle (r < R).
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Chapter 3
Evaluation of local image feature

detectors and descriptors performance

Measuring performance of local image feature detectors usually tests to what extent are
detected image regions prone to geometric and photometric transformations [29, p. 15]. The
way how the repeatable detections are determined may differ, in some cases it is based purely
on comparison of geometric location of the feature region, in other cases it uses feature
description as well. The performance of local feature descriptors is assessed using a simple
classifier based on similarity measure between the descriptors.

In the first section we introduce feature detectors benchmark based on homography ground
truth data. Then follows an overview of descriptor benchmarks which uses the same testing
data as homography detectors benchmark. Third section is dedicated to description of DTU
3D Robot benchmark which based on 3D model of several scenes measure performance of
feature detectors.

3.1 Homography transformation based benchmarks

In this section, we describe an evaluation protocol proposed in [29]. The evaluation protocol
is defined together with the datasets that tests detectors under various geometric and pho-
tometric image transformations. The geometric transformations are limited to homographies
(for homography definition see [14, p. 32]).

The repeatability of local feature detectors is in this benchmark measured by comparing
frames F(I) detected in the reference image I with corresponding frames F(J) detected in
the tested image J . A correspondence is a pair of image frames (a, b) : a ∈ F(I), b ∈ F(J)
established using a known image transformation H that transforms points from image J to
image I. The repeatability is then defined by the absolute number of correspondences and by
the relative ratio of corresponding features to number of detected features.

The process of measuring repeatability has following steps:

1. Measure the similarity score Sim(a, b) for each pair of image frames (a, b) ∈ F(I)×F(J).

2. Generate a set of tentative correspondences T by a matching strategy using the similarity
score.

3. Using a known homography H find a subset of corresponding frames C ⊆ T .

4. Calculate repeatability score as:

DetRep =
|C|

min{|F(I)|, |F(J)|} (3.1)
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Where similarity score Sim(a, b) can be based on features’ geometric location (repeatability
score) or can be defined as features’ descriptor similarity measure (matching score). In both
cases the features are matched using stable marriage algorithm described below.

3.1.1 Matching strategy

Once the similarity between the frames detected in two images is computed for all pairs, we
need to establish a set of tentative correspondences. The ideal matching strategy would find
a one-to-one assignment that maximise the overall similarity between the assigned frames.

In order to obtain the solution more quickly, a greedy approximation of the matching
is computed with Algorithm 2 which solves stable marriage problem. For certain geometric
similarity measures in case of severe misplacement of feature regions it is possible to discard
this pair of features from the matching. This is the reason why the Algorithm 2

Algorithm 2 SM(E,wab), Algorithm for solving stable marriage problem

Input: Edges E, and nodes defined as U = {a | ∃b, (a, b) ∈ E}, V = {b | ∃a, (a, b) ∈ E}
which are in a bipartite graph G = (U, V,E) and edge weights function w : E → R

Output: Matching M ⊆ E
1: Order list S∗ = (e1, e2, . . . ek) such that w(ei) > w(ei+1)
2: Label mv = FALSE, ∀v ∈ V
3: Label mu = FALSE, ∀u ∈ U
4: Matching M = ∅
5: for all i = 1 . . . k do
6: ei = (u, v)
7: if mu = FALSE ∧mv = FALSE then
8: mu = TRUE
9: mv = TRUE

10: M = M ∪ ei
11: end if
12: end for

3.1.2 Repeatability Score

The ground truth transformation used in [29] is a homography H between the reference and
testing image such that I(Hx) = J(x). This limits the testing datasets into set of images
with viewpoint change of planar surfaces or scenes transformed by rotation of camera around
optical centre. Hence it is not possible to measure robustness to occlusion etc.

The similarity score Sim(a, b), used to establish one-to-one correspondences is measured
as geometric overlap of an ellipse representation of a frame in the reference image and an
ellipse re-projected from the tested image using the homography between the images. Only
regions located in the part of scene visible in both images are taken into account. Formally
for a frame a = (xa,Σa), a ∈ F(I) and b = (xb,Σb), b ∈ F(J), the overlap is defined as:

Overlap(a, b) =
ΩΣa,xa

∩ ΩHTΣbH,Hxb

ΩΣa,xa ∪ ΩHTΣbH,Hxb

(3.2)

Where ΩΣ,x is an elliptical region with centroid x and covariance matrix Σ. The regions
are represented by ellipses so the local orientation in this measure is always ignored.

The overlap defined in Equation 3.2 is a function of the reference region size, i.e. the
frames with bigger scale can exhibit much higher spatial localisation error. In [29], frame
scale is normalised such that all frames from tested image are with scale σ:

NormOverlap(a, b, σ) =
ΩsΣa,xa

∩ ΩsHTΣbH,Hxb

ΩsΣa,xa
∪ ΩsHTΣbH,Hxb

, s =
σ2

√

|Σb|
(3.3)
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Usually the normalisation is to scale σ = 30. However then for small regions this yield
correspondences even when the original regions does not intersect each other.

Tentative correspondences Tr are obtained as:

Tr = SM(F(I)× F(J), NormOverlap) (3.4)

For a tentative correspondence (a, b) ∈ Tr to be considered a correspondence it must hold:

(a, b) ∈ Cr ⇐⇒ (a, b) ∈ Tr, 1−NormOverlap(a, b) < ǫ0r (3.5)

where ǫ0r is the maximal overlap error of two tentatively corresponding regions. Usually, the
overlap error threshold is set to ǫ0r = 40%. The repeatability score is then computed using
Equation 3.1.

To asses repeatability of detectors, it is also important to evaluate the absolute number of
correspondences. The detector can simply by covering the whole image with a large number
of regions of various sizes improve the repeatability. The ideal approach would be to limit the
number of detected regions to a certain number which is however generally hard to achieve
for all detectors. For many detectors there is not a single measurement of region quality
and also each detector detects different types of features. Graphs with relative and absolute
repeatability are given in order to compare the number of regions for each detector.

3.1.3 Matching Score

By definition, local features are regions which are distinctive. The matching score estimate
the distinctiveness of detected local features by using descriptors. This is closer to practice
where features are often accompanied by their descriptors.

The idea is to generate a set of tentative correspondences Td using the descriptor similarity
measure DSIM, Td as follows:

Tm = SM(F(I)× F(J),DSIM) ∩ Tr (3.6)

Note, that the features must be one-to-one matched not only by their descriptor distances
but also by their region overlaps1. Because there are no constrains on the minimal similarity
between descriptors, the search space cannot be pruned which makes the computation of this
measure rather slow.

For SIFT descriptors the similarity measure is negative Euclidean distance:

DSIM(a, b) = −‖D(a)−D(b)‖ (3.7)

Mapping D : I(Ω)→ R
d stands for a descriptor of frame a where d is a descriptor length.

Contrary to this definition, in some articles ([38]) the tentative correspondences are com-
puted only as:

T ′
m = SM(F(I)× F(J),DSIM) (3.8)

i.e. that only descriptor distances are matched.
The matching score is based on the region descriptors, thus to compute the frame over-

lap we use the measurement region which was used for descriptor calculation. We define
MROverlap(a, b, ν), measurement region overlap as:

MROverlap(a, b, ν) =
ΩΣaν2,xa

∩ ΩHTΣbν2H,Hxb

ΩΣaν2,xa
∪ ΩHTΣbν2H,Hxb

(3.9)

Usually the measurement regions size is set to ν = 3. The threshold on maximal overlap
error is set to constant ǫ0m = 50% and the correspondences are obtained as:

(a, b) ∈ Cm ⇐⇒ (a, b) ∈ Tm, 1−MROverlap(a, b, ν) < ǫ0m (3.10)

Matching score is then computed using Equation 3.1.

1This fact is not directly mentioned in the original article, however we have observed this when we have
tried to reproduce the results from this article.
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Figure 3.1: Categorisation of local image features in the descriptor benchmark from classi-
fication perspective. True Positives (TP) together with False Negatives (FN) are features
with sufficient overlap whereas matches are pairs whose descriptor distance is smaller than a
threshold.

3.2 Evaluation of feature descriptors

The previous benchmark has been designed mainly for testing local image feature detectors.
For testing the descriptors, Mikolajczyk and Schmid [28] propose slightly different framework
which tests the image descriptors from an image classification perspective where the goal of
the classifier is to classify each pair of image patches using image descriptors. It uses the same
datasets as the benchmark for testing detectors which means that the ground truth is defined
with homography between a reference image I and testing image J .

For pair of images I, J , related with a homography H, the input data for the classification
is a set of ordered pairs of image frames X ,X ⊆ F(I)×F(J) with labels Y : {1,−1} where for
x ∈ X , x = (a, b) label y = 1 signifies that Overlap(a, b) > 1 − ǫd or y = −1 otherwise and
ǫd is maximal overlap error. The task is to classify whether the pair of image frames are in
correspondence (positive sample) or are not corresponding, i.e. to find function Classify :
X → Ybased only on descriptors of the image frames.

The pairs x = (a, b) with label y = 1 are called correspondences (possible correct matches)
and pairs where Classify(x) = 1 are in the former article called matches, see Figure 3.1.
There are several variants of this benchmark described in [28] which differ in the matching
strategies:

Threshold-based matching In case of threshold based matching the classification is done
simply as:

Classifytb(a, b) =

{

1 if ‖D(a)−D(b)‖ < t

−1 otherwise
(3.11)

Where t is descriptor distance threshold. Correspondences are all frame pairs which fulfil
the overlap condition 3.11.

Nearest-neighbours matching In case of nearest-neighbour matching, the classification
function is defined as:

Classifynn(a, b) =







1 if b = arg min
bi∈F(J)

‖D(a)−D(bi)‖ ∧ ‖D(a)−D(b)‖ < t

−1 otherwise
(3.12)

This classification function achieves higher precisions as the particular value of descriptor
distances varies with image transformations. The nearest neighbours matching classifies as
a match only the closest descriptor below the threshold so there is smaller number of false
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Figure 3.2: Visualisation of viewpoints per categories in DTU Robot dataset [1].

matches [29, p. 1622]. Because for each frame from the reference image there can be only one
nearest neighbour, the set of correspondences is also defined differently, i.e. as a subset of
matches where the frames fulfil the overlap criterion.

Second closest matching The second closest matching strategy extends the nearest neigh-
bour strategy with a test, whether the distance ratio of the second closest and the closest de-
scriptor is under some threshold. It rejects matches which are too ambiguous. This strategy
has been proposed by [24]. The set of correspondences is the same as for nearest-neighbour
matching strategy.

The performance of the classifier is visualised with a precision-recall curve varying the
threshold of descriptor distances t. The precision and recall is defined as follows (for details
how positives and negatives are defined see Figure 3.1):

Precision =
#TP

#TP+#FP
=

#Correct matches

#Matches
(3.13)

Recall =
#TP

#TP+#FN
=

#Correct matches

#Correspondence
(3.14)

In the original article, the PR curve is slightly modified so that on x-axis is 1− Precision
and on y-axis is Recall as the PR curve drawn in this way is more intuitive to read and is
similar to the curves produced by the repeatability test.

3.3 DTU Robot 3D benchmark

DTU Robot 3D evaluation is a benchmark, proposed in [1], which compares the geometric
precision of feature detectors. Contrary to homography benchmarks, ground truth is defined
by a dense 3D stereo maps, which allows to find correspondences of points also in non-planar
scenes. The dataset was acquired with a camera mounted on an industrial robot hand which
provides very accurate camera positioning. Then the 3D model of the scene surface has been
computed using structured light (the structured light does not affect the image data). The
dataset contains 60 scenes of various objects (from model houses to fabric and vegetables) in
119 camera positions and 19 individual LED lightning. Camera positions are visualised in 3.2
and are grouped into three horizontal arcs and one linear path. All images are of resolution
1600× 1200px.

The correspondences are obtained based on three criteria which are visualised in Figure 3.3.
Having a pair of image frames (a, b), a ∈ F(I), b ∈ F(J), it is a valid correspondence when it
fulfils the following conditions:
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(a) (b)

(c)

Figure 3.3: Criteria for correspondences in DTU Robot dataset [1].

Reprojection error From the known camera positions and camera matrices, the 3D point
can be triangulated from the local feature centroid xa and xb. The triangulation is
computed using the linear solution produced by SVD [14, p. 312] (which minimises al-
gebraic error) and the geometric reprojection error is further optimised using Levenberg-
Marquardt algorithm [14, p. 314] to obtain optimised positions x̃a and x̃b. The repro-
jection error is then calculated as:

RepErr(a, b) = ‖xa − x̃a‖2 + ‖xb − x̃b‖2 (3.15)

Frame pair (a, b) is a correspondence when:

(a, b) ∈ A ⇐⇒ RepErr(a, b) < ǫrep (3.16)

Where ǫrep is maximal reprojection error usually set to ǫrep = 2.5px.

Consistence with scene surface In this criterion the 3D surface reconstruction is used. In
order to decide whether a pair of frames (a, b) ∈ B, the frame centre xa is reprojected
onto a scene surface. Then a box of size 3mm in the scene is reprojected to the tested
image and the correspondence is correct only when xb lies in this reprojected box.

Absolute scale consistence This condition tests whether the frame scales are consistent.
It is fulfilled only when:

(a, b) ∈ C ⇐⇒ max

{

σ′
a

σ′
b

,
σ′
b

σ′
a

}

< 2 (3.17)

Where σ′
a and σ′

b are scales of the detected features reprojected to the scene surface.
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Chapter 4
Improvements to VLBenchmarks project

In this chapter we describe our contribution to VLBenchmarks project. It has been mainly
motivated by the necessity of having easy and fast benchmark software to assess the perfor-
mance of various detectors and compare the results to the other state-of-the-art detectors.

Early version of the VLBenchmarks project, including parts presented in this work (Ho-
mography and Retrieval benchmark), has been presented at ECCV 2012 in Florence as a part
of the tutorial Modern features: advances, applications, and software1.

In this chapter we introduce the VLBenchmarks project and the state of the project
before our commitment. Then we follow with implementation details and improvements of
particular benchmarks. Among these benchmarks are two new benchmarks which has been
newly introduced (epipolar benchmark and retrieval benchmark).

4.1 VLBenchmarks

VLBenchmarks is a project implemented in Matlab and originally developed by Varun Gul-
shan and Andrea Vedaldi. Its main goal is to gather several benchmarks of computer vision
algorithms. The former version implemented only computation of the repeatability score of
local image feature detectors, see Section 3.1 for details. It contained wrappers for the original
evaluation protocol by Kristian Mikolajczyk and some basic management structures to down-
load detector binaries. It is important to note that the repeatability test implemented was
several times faster than the original implementation however yielded rather different results
than the KM test. The code of the original version is still available in public repository 2. In
our implementation the overall structure and most of the original code has been changed.

We have extended this project with additional tests. First, we have implemented matching
score computation from [29] and created a versatile framework which allows to easily include
new datasets, features extractors and evaluation benchmarks. Second, we have implemented
novel direct evaluation of feature detectors and descriptors for image retrieval (further de-
noted as retrieval benchmark) which mainly tests the distinctiveness of the detected regions
and their descriptors. Another frequent use-case of interest region detectors is in 3D scene
reconstruction pipelines where the precision of the feature location is crucial. For these cases
we have implemented simple epipolar geometry test where we measure number and ratio of
true correspondences in the set of tentative correspondences. The software was available as
an open source project, Anders Boesen Lindbo Larsen had contributed by including the DTU
Robot benchmark into the VLBenchmarks projects, which uses much more detailed ground
truth data than our epipolar geometry benchmark.

Finally we have extended the project with the tests proposed in [28] for testing the local
image features descriptors. Originally this test is limited for homography ground truth but it
was extended to use the epipolar geometry ground truth.

1https://sites.google.com/site/eccv12features/home
2https://github.com/varungulshan/VLFeat_benchmarks
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The architecture of the VLBenchmark project has been altered significantly in comparison
to the original code. The project has been divided into three packages of Matlab classes:

Benchmarks - Implementation of the benchmarks.

Datasets - Wrappers around datasets used in benchmarks.

Local Features - Wrappers around interest regions detectors and their description algo-
rithms.

The implementation of newly added features are also supports parallel processing and
results caching. The installation process has been improved so that all datasets and software
are downloaded, installed or compiled automatically on demand (simple dependencies between
the modules are also implemented).

The modifications described in this thesis were published and shared under BSD license
as a subsidiary project of VLFeat library. The latest version is available in GIT repository3.
Documentation with tutorials is available on the project website4. Some examples of the
new application programming interface of the benchmarks is presented in Appendix B, which
contains tutorials for repeatability and retrieval benchmarks.

In the following text we describe our contributions to the benchmark algorithms together
with the available datasets wrappers. In the end of this chapter we list all the implemented
wrappers of local image feature extractors.

4.2 Homography benchmarks

The homography benchmark was extended by the matching score calculation, for which we
needed to include the support of feature descriptors. The repeatability score calculation was
modified to closely resemble results of the original benchmark implemented by Mikolajczyk
et al. [29]. On top of that, we have significantly improved the evaluation speed and added
several new datasets.

4.2.1 Speed improvements

Similarly to the original implementation for calculating ellipse overlap (Equation 3.2) we use
the same numerical approach where the ellipse areas are sampled and overlap is approximated
as the ratio of overlapped samples. In the original code,the pairs taken into account, were only
limited by the distance of the frames centre and the size of feature regions (approximated by
a bounding box and maximal elongation based on eigenvalues of the ellipse). A new condition
is used in order to speed up the calculation, which compares the ratio of the regions areas
and used them as an upper bound of ellipse overlap.

The matching strategy that uses the stable bipartite matching of descriptors has been
implemented with an inefficient way by a naive algorithm with asymptotic computational
complexity bounded by O(n3), where n is the number of descriptors. Simple by sorting the
weights we got O(n2 log n2) algorithm and with another implementation improvements we
have achieved computation time in order of seconds instead of minutes for pair of images.

4.2.2 Comparison to original implementation

We have also finished implementation of wrappers of the original Mikolajczyk’s code to com-
pare our implementation to the original benchmark. The implementations we compared on
the datasets from [29] and the average relative errors are given in table 4.1. Note that the
relative error observed is usually caused by a single missed correspondence/match.

We have also compared the processing times which are given in table 4.2. The big difference
between the mean and median suggests that we have not only improved the constant factors,
but also overall complexity of the computation.

3https://github.com/vlfeat/vlbenchmarks
4http://www.vlfeat.org/benchmarks
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Repeatability [%] Matching score [%]
Average rel. error 0.33 0.15

Table 4.1: Average relative error in repeatability and matching score of the new implementa-
tion per image pair for all 120 image pairs (8 datasets per 5 image pairs for 3 detectors).

Repeatability mean/median [s] Matching score mean/median [s]
Original impl. 21.54 / 3.09 22.14 / 4
VLBenchmarks 0.7 / 0.45 3.15 / 1.37

Table 4.2: Mean and median of the processing times of old and new implementation of the
benchmark. Values measured for all 120 image pairs (8 datasets per 5 image pairs for 3
detectors).

4.2.3 Datasets

Among other features we have also implemented a “Synthetic dataset” which is able to gener-
ate new homography datasets by successively applying one or more geometric or photometric
transformations such as:

• Change of image scale

• Image rotation

• Change of affine camera viewpoint
(specified with longitude and latitude)

• Image noise (Gaussian, salt&pepper)

• Blur (Gaussian, median)

• Jpeg compression

• Gradient brightness transformations
(circular, linear)

All of these transformations can be parametrised by amount of distortion and arbitrary
combined for any input image and the transformed images are cached.

Besides that we have also implemented a wrapper of the Hannover Affine Dataset [9] which
adds some new challenging scenes with repeatable structures and also improves the precision
of the homography estimation for the VGG Affine dataset scenes [29].

4.3 Epipolar geometry benchmarks

So far presented benchmark is limited to test repeatability of the detection algorithms on
scenes which are related by a homography transformation. This means that the scenes are
planar and it is usually not possible to test robustness to occlusions or depth discontinuities.
Introduction of the non-planar scenes allows to better tune the size and shape of the mea-
surement region for computations of the local features descriptors. This is hard to achieve
on planar scenes, as the bigger measurement region always gathers more information without
the risk of contamination by the background clutter or occurrence of depth discontinuities.
This does not have to hold for 3D structured scenes where the local neighbourhood changes
more significantly with the viewpoint change.

To asses correspondence for non-planar scenes, we have proposed a simple epipolar geom-
etry test. The main goal was to create a benchmark which can be used for measuring spatial
precision of the local feature detectors. The benchmark also estimates the performance of the
local feature detectors in the 3D scene reconstruction and wide baseline matching, where the
precise geometric localisation significantly influences the results.

The epipolar geometry is a bilinear relation between two image projections xI ∈ R
3 and

xJ ∈ R
3 of a scene point X ∈ R

4 in image planes I and J . The image projections are bound
with an epipolar constraint [14, p. 245]:

xT
JFxI = 0, (4.1)
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where F is a fundamental matrix. This matrix can be interpreted as a transformation matrix
that transforms a point xI in the first image plane to a line eJ = FxI (epipolar line) in the
second image plane. The rest of the constraint xT

J eJ = 0 requires that the point xJ in the
second image lies on the epipolar line eJ .

In real scenes, the equation rarely holds even for the matching pairs of points due to
discretization noise and errors in localisation of the local features. To estimate a reprojection
error for a pair of points a Sampson error is used. Sampson error e2 is a first order Taylor
approximation of the reprojection error [14, p. 287, p. 314] defined as:

e2(F,xI ,xJ) =
ǫ2

‖J‖2 , ǫ = xT
JFxI , J =

[

∂ǫ

∂x
(1)
I

,
∂ǫ

∂x
(1)
J

,
∂ǫ

∂x
(2)
I

,
∂ǫ

∂x
(2)
J

]

(4.2)

where J is Jacobian matrix of the algebraic error ǫ and x = [x(1),x(2), 1]T .
The advantage of the Sampson error is that the 3D coordinates X of the point in the scene

do not have to be known or triangulated.
This error can be easily plugged into the detector and descriptor benchmarks described in

sections 3.1 and 3.2 by using it as a new geometrical similarity measurement Sim. So instead
of using the Overlap(a, b) we define a new frame similarity:

SampsonErr(a, b) = e2(F,xa,xb) (4.3)

For computation of tentative correspondences Sampson error is computed for all pairs (a, b) ∈
F (I)× F (J).

This benchmark is used for measuring precision of frame spatial location as the frame scale
or shape is ignored. It can be used both for evaluating detectors and descriptors, however in
case of descriptors the size of the measurement region affects descriptor matching performance.

Please note that the epipolar constraint 4.1 does not guarantee that all the correspondences
will be correct as any feature which is matched close enough to the epipolar line is considered
correct even when it is not detected on the same image structure. For this purpose a method
proposed in [30] would be more appropriate as it uses trifocal tensor constraint instead of the
epipolar constrain tha allows to restrict the projection of a scene point X in image planes of
three perspective cameras. However, most of the datasets are limited only to image pairs,
thus we have used only two images holding in mind that the ground truth is not bulletproof.

4.3.1 Datasets and ground truth

For testing the feature extractors we have used several stereo image pairs, which has been
collected by Lebeda et al. [19]5. The image pairs in this dataset are shown in Figure 4.1. It
contains scenes of planar objects but also highly structured scenes with repetitive patterns
(plant and leafs).

The datasets does not contain the ground truth fundamental matrix. The ground truth
was computed using the CMP WideBaseLine software, developed by Perďoch et al. [31]6. We
used all available affine detectors combined together (Hessian Affine, Harris Affine, MSER,
DoG) in order to sufficient coverage of image by correspondences and support better estimate
of the fundamental matrix. RANSAC algorithm with local optimisation [8] is then used to
find the fundamental matrix. Figure 4.2 shows the comparison of the performance of three
descriptors on a planar scene with an affine transformation and a scene with a significant
amount of occlusion. It can be seen that in the LIOP descriptor [49] it is much better than
SIFT on a planar scene, but worse on a structured scene.

4.4 DTU Robot 3D benchmark

This benchmark has been contributed to the VLBenchmarks project by Anders Boesen Lindbo
Larsen and is based on article [1]. As it is not our work, we only describe the way how it is

5Available at http://cmp.felk.cvut.cz/data/geometry2view/index.xhtml
6http://cmp.felk.cvut.cz/~wbsdemo/demo/
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Bookshelf Box Castle Corridor Plant Leafs Kyoto Kampa

Rotunda Shout Valbonne Graffiti Head Wall Wash Zoom

Figure 4.1: Image pairs in the CMP WBS dataset. It can be seen that some pairs are generally
a homography, i.e. pictures of planar objects, whereas other scenes contain 3D objects with
significant occlusions.
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Figure 4.2: Comparison of descriptor performances using CMP Hessian-affine on different
types of scene. In case of the Epipolar geometry LIOP descriptor does much worse than SIFT
descriptor, even when on planar scene it is vice versa.

included into our framework. We found this benchmark useful for tuning parameters of the
local feature detectors.

This benchmark is intended only to test the local feature detectors. On top of the epipolar
geometry benchmark the corresponding image frames must also have consistent scales. Be-
cause this benchmark uses three conditions for a correspondence it is hard to find a similarity
score which would be used for image frames matching. Therefore tentative correspondences
are generated as follows:

TDTU = SM(B ∩ C,−RepErr) (4.4)

meaning of the symbols used is described in section 5.2. The correspondences are then ob-
tained as:

CDTU = TDTU ∩ A (4.5)

repeatability, using this benchmark is the computed according to the original article as:

DetRepDTU =
|CDTU |
|F(I)| (4.6)

In the original article it is called recall, however in our framework, repeatability term fits
better.
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4.5 Descriptor evaluation

We have implemented the descriptor evaluation benchmark based on [28] closely following
the procedure depicted in section 3.2. Contrary to the original implementation, we compute
the precision and recall for each pair of image frames (a, b), not only for a limited sets of
thresholds. he computation time is slightly better than in the original implementation as it
benefits from faster way for computing frame overlaps. The most computationally expensive
step is the sorting of the cross-distances in the case of threshold based matching, respectively
computing the nearest neighbours in case of nearest neighbour matching (or second closest
matching as well). To find the nearest neighbours, we use rather fast implementation from
the Yael library7. Disadvantage of this library is that for the NN it supports only limited
subset of distance functions (L1 and L2-Norm).

4.6 Retrieval benchmark

The repeatability and matching score are performance measures which are relatively easy to
compute however they do not address some specific issues of retrieval systems. The avail-
able homography datasets are rather limited and often targeted to a particular geometric or
photometric transformation.

Our image retrieval setup consists of a simple image retrieval system which is based on
the framework proposed by [15]. The performance of the test is evaluated using a mean
average precision (mAP), proposed in [33]. The benchmark may be used as a performance
comparison of different detectors. The parts of the benchmark were developed with help of
Relja Arandjelovic.

4.6.1 Retrieval system design

The task of retrieval system is to obtain instances of an object from a large dataset of images.
The object sought is defined by the user as a bounding box in a query image. The process
of searching for the object instances in the database proceeds as follows. In the first step,
descriptors of all database images are computed and stored. Then descriptors from the query
image are extracted and the closest descriptors for each query descriptor are found using the
K-Nearest Neighbours, defined below. Based on the occurrence of the closest descriptors,
each database image gets a vote based on a simple voting criterion which uses normalised
descriptor distance.

Let the dataset of images consists of m images. Each image is described by a set of
descriptors nj , j = 1...m. All extracted descriptors are stored in a database as a collection
of descriptors Y = y1, ..., yi, ...yn. Let us denote the image where the descriptor yi has been
observed is as im(yi).

The descriptors detected in the query window are denoted as a set D(q). For each query
descriptor x ∈ D(q) the K-Nearest descriptors are obtained as:

Nk(x) = k − arg min
yi∈Y

d(x, yi) (4.7)

where d(., .) is the Euclidean distance. The r-th descriptor is denoted as Nr(x) therefore for
each query we get ranked list of descriptors Nk(x) = N1(x), ..., Nk(x).

Intuitively, the descriptors suggest the relevance of the sought object in the images where
they were computed. Thus, each descriptor y ∈ Nk(x) cast a vote for its image (image where
it has been detected). Then, all the votes for each image are added up and a the resulting list
of database images is sorted in the order of descending number of votes. Jégou et al. [15, p. 6]
observed that the performance of the system can be improved by weighting the votes of the
descriptors according to their distance to the query descriptor x. This weighting cannot use
the absolute distances d(x, y) as they vary across a particular query descriptor. Instead, the
vote of the descriptor is weighted by a value which expresses how much closer is the descriptor

7https://gforge.inria.fr/projects/yael/
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Figure 4.3: Example of 50-Nearest neighbours in Paris dataset for selected five local image
features..
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Figure 4.4: The weighting δk(x, y) of a vote of descriptor y = Ni(x) which is i-th nearest
neighbour of query descriptor x.

to the query descriptor than the most distant descriptor in Nk(x). Expressed mathematically,
the vote strength δk(x, y) is defined as:

δk(x, y) = max(d(x,Nk(x))− d(x, y), 0) (4.8)

The weighting is visualised in 4.4. Jégou et al. [15, p. 8] had shown that this voting criterion
is superior to other examined criteria as it models the distinctiveness of the descriptor w.r.t.
the other descriptors in the database.

The final score of an image b for a query q is calculated and normalised using Square Root
Normalisation (SRN) so that the score does not depend on the number of detected descriptors
in the image b or in the query q:

sa(q, b) =
1

√
nq
√
nb

∑

x∈D(q)

∑

y∈Nk(x)∩D(b)

δk(x, y) (4.9)

where D(a) is a set of all descriptors in image a and na = |D(a)|. The SRN leads to normal-
isation that assigns score sa(q, q) = 1 to the query image, for which all the descriptors are
matched to themselves. Based on this score a ranked list of database images is created.
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Figure 4.5: An example of mAP calculation for retrieved list of 6 images. The images labelled
as Junk (e.g.te bottom left image in the middle column) are ignored and do not influence the
precision nor the recall value.

4.6.2 The performance evaluation of the image retrieval system

To evaluate the performance of the image retrieval system, we use the Oxford Buildings [33]
dataset (5K version) and Paris Buildings [32] dataset. The datasets contains images of the
tourist landmarks in Oxford resp. Paris. The images were downloaded from Flickr using
corresponding tags together with many other unrelated images accidentally having the same
tag. The extensive ground truth is provided. For each landmark a three lists of images are
provided: Good images, where the whole object is visible, Ok where at least 25% of the object
is visible and Junk where only less than 25% is visible or there is some significant occlusion.
All other images are for the given landmark considered as having label Bad. Besides that the
database contains a set of distractors which does not contain any queried object.

For each query, set of positive samples is defined by the Good and Ok sets. Images in set
Junk does not affect the computed score (are ignored). The set of images with label Bad are
considered as negative examples. The precision of the retrieved list of images is calculated as
the ratio between the number of retrieved images in the positive set and the number of all
retrieved images. The recall is defined as a ratio between the number of retrieved images in
the positive set and the number of all images in the positive set. The average Precision (AP)
is defined as the area under the precision-recall curve. The ideal AP = 1, i.e. that the system
puts all positive instances in the front of the list. An example of mAP calculation is shown
in Figure 4.5. The mean Average Precision (mAP) is a mean of all average precisions over all
queries available in the dataset.

The above-mentioned image retrieval datasets contain thousands of image. To limit the
computation time in our benchmark, only subset of the dataset is used that contains all
images from the lists (Good, Ok and Junk) and a subset of images from the Distractors set of
images. This helps to keep the number of descriptors in the database Y tractable and makes
the evaluation faster. The subset of Distractors is generated by uniform random sampling,
with the sampling seed set by user.

4.6.3 Parameters of the retrieval system

The crucial parameter of the retrieval benchmark is k, the number of nearest neighbours
which is obtained for each query descriptor. Therefore, we have performed an experiment,
where the measured mAP and different types of features in order to test, whether all feature
detectors behave the same. The results are shown in Figure 4.6a. It can be seen that generally
all the tested algorithms behave similarly and in all cases the best results are obtained with
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k = 50, we use this value in all other experiments.
Another parameter which affects the results is the number of images from the Distractors

set. These images are used mainly as a source of distraction as they do not contain the object
instances. Intuitively, with less distractors, we obtain better score. To measure the influence
of the subset size, we have performed an experiment, where the mAP is measured on the
Oxford dataset, over 9 different seed values. The results of this experiment are shown in 4.6b.
We can see that all interest region detectors behave the same and with increasing number of
distractors, the score slowly decreases. Even in the tests repeated with different random seed,
the standard deviation of the score was not higher than ±0.6%.
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Figure 4.6: Influence of the internal parameters of retrieval benchmark on the mAP score,
measured on the Oxford 5K dataset with SIFT descriptors. Different SIFT descriptor im-
plementations and different measurement regions were used therefore, the absolute values of
mAP between detectors are not comparable. Results are averages of mAP over 10 random
seeds.

Implementation

The computationally most expensive step of the benchmark - the K-nearest neighbours was
implemented using the function of the Yael library8. We have considered the use of fast
approximated nearest neighbours library (FLANN), however we have found that their imple-
mentation in the VLFeat library is in some cases slower than exact NN in the Yael library.
Therefore we have decided to use precise NN and not blur our results with the FLANN ap-
proximations. After reducing the time for nearest neighbour search, the majority of evaluation
time is taken by computation of descriptors.

The computation of scores has been parallelised using the Matlab Parallel toolbox, which
uses multi-process paralellisation, in order to further speed up the computation, it is possible
to limit the number of images involved in one NN search. The overhead is then only in
the ordering of the retrieved nearest neighbours by their distances and keeping the closest k
features. The speed-up is mainly due to smaller memory requirements so that the data does
not have to be cached. This modification also allows the computation on computers with
smaller memory.

4.7 Miscellaneous improvements to VLBenchmarks

Among other features we have also improved the former project with the following features:

• Added several new detectors and descriptors (see the following text).

8https://gforge.inria.fr/projects/yael/
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• Added caching of the results and intermediate results (mainly detected local features).
This speeds up the computations and allows simple and fast experiments with the pa-
rameters because only the results affected by the changed parameters are recalculated.
The caching granularity may differ for the particular detector, descriptor or benchmark
parameters, the modification date of the detector’s binary or the input image.

• Rewritten installation system in order to support compilation of the required libraries
(e.g. OpenCV, VLFeat).

• New logging framework that allows to set different verbosity for each module.

• Parallelisation support.

4.7.1 Feature detection algorithms included in the benchmark

The modular design of the software allows to easily create wrappers around several feature
detection and description algorithms (and any combination of detector and descriptor). We
have included wrappers for several feature detector and descriptor implementations. Each
implementation supports different set of detector variants, level of invariance and available
descriptors. In the software, the following implementations are included.

CMP Detectors implemented mainly by Michal Perdoch and other members of Centre for
Machine Perception. The package is currently not publicly available and we use propri-
etary binaries. From scale-space detectors, it supports DoG, LoG, Hessian and Harris
response functions and affine shape of the features can be estimated using Baumberg
iteration. It does not have any hybrid detectors. It also contains MSER implementa-
tion [26]. From the descriptors it supports only the SIFT descriptor.

VGG Detectors used in evaluation by Mikolajczyk et al. [29]9. It supports Hessian-Laplace
and Harris-Laplace detector and their affine variants. On the website there is also the
MSER detectors implementation available which is identical with the CMP implemen-
tation, however it is usually referred as VGG MSER. From the descriptors, it supports
the SIFT descriptor but also many other mentioned in [28]. All algorithms are available
only in binary form.

VLFeat Open source library10. From the scale space detectors, it supports DoG and Hessian
responses and have also affine shape estimation procedures for detected features. From
the hybrid feature detectors it supports Hessian-Laplace and Harris-Laplace but also
Multiscale Hessian and Multiscale Harris where the non-maxima suppression is not
performed over scales. During our internship in VGG in Oxford in April and May 2012
I have helped with their implementation. From the descriptors is currently supported
is only the SIFT descriptor.

OpenCV Open source library11 provides a vast variety of similarity invariant detectors. In
VLBenchmarks we have prepared wrappers for their DoG, SURF and FAST detectors.
From the descriptors, wrappers are available for the SIFT and SURF.

Additionally, we have created wrappers for other descriptors such as LIOP [47] and
MROGH [10] were added together with the wrappers for the original implementation of SURF
detector by Bay et al. [5] which is also used in our experiments.

All wrappers has an automatic installation and compilation process. This has been rather
tricky task for the local image features algorithms which needs to link with the OpenCV
library. The Matlab, used for implementation of the framework is distributed as a binary
package, and dynamically linked to its own version of libstdc++ libraries. Therefore, each
binary which is invoked in Matlab has to be able to use the Matlab’s versions of standard

9http://www.robots.ox.ac.uk/~vgg/research/affine/
10http://vlfeat.org
11http://opencv.org
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library. The OpenCV wrappers compiled without taking this into account would use the
different version of libstdc++ library available in the operating system. This problem is
solved by compilation of OpenCV in the Matlab environment. In future we plan to distribute
compiled binaries in order to speed-up the installation process.

4.8 Possible future improvements

There are several ways how to improve the benchmarks implementation. Our code currently
lacks support for other similarity measures as it relies on the Yael kNN algorithm. Also Yael
library is supported only for Unix/Linux platforms whereas majority of the VLBenchmarks
code is multi-platform. The evaluation time of the Retrieval benchmark,can speed up by
utilization of approximated nearest neighbours.

There are several issues of the evaluation protocols that which has not been addressed
so far. For example, protocols that measure only the local image feature geometry, with
increasing number of features, the chance that a correspondence will be found by accident
increases. Some detectors it also return multiple detections around a single local feature.
Some sort of penalisation of this behaviour would be useful, however it is out of scope of this
work.
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Chapter 5
Experiments with detector parameters

selection

Development of local image feature detectors has been traditionally connected with some
form of tests which were used to both avoid code regression but also to set properly detector
parameters. Harris-Laplace and Hessian-Laplace detectors, and their affine-invariant vari-
ants has been tested with benchmarks for repeatability and matching score presented in [29].
Similarly, when in [24] the DoG detector and SIFT descriptor has been tested, experiments
has been performed by querying a database of descriptors built from 112 image which were
artificially rotated, scaled and corrupted with white noise. Though, it seems that parameters
of these algorithms has been set with tests based on planar data (data transformed by homog-
raphy). In this chapter we use benchmarks presented in the previous chapter to revise some
of selected detector parameters. Most of the parameters are bound to detectors which use
pyramid scale-space. Goal of this section is not to thoroughly compare all feature detectors
but in some cases we compare different implementations. Motivation in this is mainly avoid
interpretations which would show to be bound to a particular implementation of a detector.

In the first section the nominal image scale which defines Gaussian blur in the input image,
an almost forgotten parameter of the scale space is explored together with its properties.
The second parameter investigated in this chapter is response function threshold. Then the
behaviour of detectors with different initial scales is tested. The last part of this chapter is
devoted to properties of measurement region which is bridging feature detectors and their
descriptors.

For all the test presented in this section we have used SIFT descriptor as it had shown to
be the most universal one for all tasks. We have tried tests with other descriptors as well but
with similar results.
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5.1 Nominal image blur and scale space detectors

Continuous scale space-based feature detectors which additionally to the feature point location
detect also its scale (extent) usually examine evolution of local image feature response function
over scale, or in other sense, over a range of spatial frequencies. Yet some of the highest spatial
frequencies can be caused by noise.

Therefore the input image is filtered with a Gaussian kernel which corresponds to setting
initial scale σ0. Lowe [24, p. 9] experimentally measured that the best results are achieved by
σ0 = 1.6. The initial scale has two effects on the scale space. First, it limits the minimal scale
on which features can be detected, pruning out small features. Second, higher values help to
to fulfil the sampling theorem as it removes high spatial frequencies 1.

In most implementations of the scale space pyramid there is also hidden estimated nominal
scale of the input image σn which is commonly set to σn = 0.5 and often is not even adjustable
as user parameter. What if the image does not have the nominal scale of this value and is
blurred even more? This is the issue we would like to solve in this section. In the first part,
we show in detail how the pyramid scale-space is being built and our changes introduced
to reflect any nominal image blur. With these changes we are able to achieve much higher
repeatability as it is shown in Figure 5.5.

5.1.1 Analysis of the scale space pyramid building algorithm

The commonly used algorithm to build a scale space pyramid [24] is described in algorithm 3

Algorithm 3 Pyramid scale space building

Input: Input image I, nominal image scale σn, initial image scale σ0, num. of octaves O,
num. of octave layers S

Output: The scale space pyramid

1: Smooth the input image to initial scale L̂0,0(x) = G(x,
√

σ2
0 − σ2

n) ∗ I(x),
2: σ0,0 ← σ0

3: for all v ∈ 0, . . . , O do
4: dv ← 2v

5: for all s ∈ 1, . . . , S + 1 do
6: σs,v ← σ02

v+ s
S

7: L̂s,v(x) = G

(

x,

√

σ2
s,v

dv
− σ2

s−1,v

dv

)

∗ L̂s−1,v(x),

8: end for
9: L̂0,v+1(x) = L̂s+1,v(2 · x)

10: end for
11: return Scale space pyramid L̂s,v.

If the pyramid is build in this way, the upper layer of an octave can be directly down-
sampled to obtain first layer of the first octave. In practical implementations the layers in
the octaves does overlap by more than one level in order to perform reasonable non-maxima
suppression. In case when the image nominal scale σ′

n is higher than assumed σn = 0.5,
the first layer of the scale space is overly blurred with error ∆0 =

√

σ′2
0 − σ2

0 . As the image
smoothing increases, the scale error ∆s decreases exponentially as can be seen in Figure 5.1.
This means that the error is relatively higher for smaller features.

1This is in a way a design decision as the frequency characteristics of the Gaussian filter do not have
ideal low pass filter properties so with increasing σ0 we increase the cutoff when the pyramid layers are
down-sampled.
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Figure 5.1: Scale errors for features detected in Guassian scale-space for different nominal
image scale σn.

Overestimating nominal scale causes that scale of the detected features is bigger as it is
shown in Figure 5.1. You can see that in the case of σn = 3, the error in scale for features
from the first layer is of same magnitude as their size. This effects detector’s performance
as can be seen in Figure 5.2 where the increasing nominal image scale affects repeatability
(Equation 3.1) of features of all sizes (even features bigger than the nominal scale).

(a) Repeatability (b) Number of correspondences

Figure 5.2: Repeatability of original CMP Hessian detector per scale on increasingly blurred
boat 1 image [29]. Frames detected in the reference image are split into 5 intervals in their
scales such that each interval contains the same number of frames. Then repeatability and
number of correspondences per group is computed.

In order to tackle this problem we have improved Algorithm 3. The improvements are
described in algorithm 4, which is able to build correct scale-space for any σn, i.e. also when
σn > σ0. The CMP detector implementations were modified to reflect the new algorithm.
When σn < σ0, the Algorithm 3 blurs the image correctly in order to obtain the requested
initial scale. However in the cases when σn > σ0, we have observed that adjusting the initial
scale to the nominal scale (so that the original image can be used) does not lead to the same
sampling of the scale space. To achieve the same sampling, pyramid layers must be located
on the same scales independent on the nominal scale.

This can be seen in Figure 5.3 where the reference frames for repeatability experiment
(without normalisation) are computed with σ0 = 1.6 and tested against frames detected with
the same detector but with different initial scale. Note that the repeatability and mainly
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number of correspondences decreases. The most interesting part is the behaviour in interval
σ0 ∈ (1, 1.6) where the features with higher spatial frequencies are not filtered out. We can
see some small peaks which represent the layers of an octave 21/S . We can conclude that the
detector gains the best repeatability when the pyramid layers are located on the same scales.
With a different sampling the repeatability, which should be theoretically 100% decreases to
almost 80% in the tested image.

(a) Repeatability (b) Number of correspondences

Figure 5.3: Repeatability between frames detected in image boat with σ0 = 1.6 and frames
detected with different values of initial scale σ0 (x-axis).

Algorithm 4 Improved pyramid scale space building

Input: Input image I, nominal image scale σn, initial image scale σ0, num. of octaves O,
num. of octave layers S

Output: The scale space pyramid

1: if σ0 > σn then
2: Smooth the input image to initial scale L̂0,0(x) = G(x,

√

σ2
0 − σ2

n) ∗ I(x),
3: v0 ← 0, s0 ← 0
4: else
5: v0 ← ⌊log2(σn/σ0)⌋, s0 ← ⌊log21/S (σn/(σ02

v0))⌋
6: L̂s0,v0(x) = I(x)
7: end if
8: σs0,v0

← σ0

9: for all v ∈ v0, . . . , O do
10: dv ← 2v

11: for all s ∈ s0 + 1, . . . , S + 1 do
12: σs,v ← σ02

v+ s
S

13: L̂s,v(x) = G

(

x,

√

σ2
s,v

dv
− σ2

s−1,v

dv

)

∗ L̂s−1,v(x),

14: end for
15: L̂0,v+1(x) = L̂s+1,v(2 · x)
16: end for
17: return Scale space pyramid L̂s,v.

The algorithm 4 does not work straight forward for DoG detector, due to properties of
the DoG response which approximates Laplace of Gaussian s.t. [24, p. 6]:

G(x, kσ) = G(x, σ) ≈ (k − 1)σ2 ▽2 G (5.1)

In pyramid built by Algorithm 3 k and σ are constants. In case of pyramid built by Al-
gorithm 4 and the first two layers L̂s0,o0 and L̂s0+1,o0 the ratio between scales σs0,v0/σs0+1,v0
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is not equal 21/S and therefore the DoG response is not comparable to other layers. Unfor-
tunately this is not solvable by different feature response normalisation as in case of other
feature response functions. To solve this problem when σs0,v0

/σs0+1,v0
< 21/S , octave layer

L̂s0,o0 is skipped.

Another issue of this algorithm is a fact that the standard deviation of the Gaussian kernel
σ∆ =

√

σ2
0 − σ2

n) rather often gets smaller than 0.6 when the sampled discrete Gaussian kernel
starts to resemble more a derivation kernel. In these cases the image is simply copied. However
this causes that the repeatability and number of correspondences are rather uneven.

In Figure 5.4 you can see that for image blurred by Gaussian kernel with σ = 3, the
peak in repeatability is achieved when the nominal scale is set to σn = 3 which verifies our
algorithm.
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Figure 5.4: Repeatability between frames detected in an image bikes 1 and its version blurred
by Gaussian kernel with σ = 3px for detectors with varying parameter σn. It can be seen
that the maximum repeatability is achieved when σn = σ.

However the repeatability is not 100%. In Figure 5.5 it is shown how the repeatability
behaves with increasing image blur σ when nominal scale is set to σn = σ. The repeatability is
always around 90% which is much more than when the nominal scale of an image is assumed to
be constant. The repeatability value varies also due to fact that we are not able to construct
reliable Gaussian kernel with σ < 0.6. For σ < σ0 = 1.6 the number of correspondences
remains the same and then the number of correspondences decreases as more and more features
are filtered out. However the remaining features are not detected with wrong scale so the
repeatability remains high, plus we obtain little bit more correspondences in some cases.

To have more thorough understanding what is happening, in Figure 5.6 is shown how the
repeatability behaves per scale intervals. When compared to Figure 5.2, for frames with scale
higher than σ the repeatability remains around ideal 100%.

We have also tried several ways how to detect the nominal scale of an image, however
we have not found yet any robust enough algorithm for doing so as the blur can differ in
different parts of the images. We have also performed some tests with image blur caused
by non-focused images where the blur kernel resembles more a disc. In those cases it also
improved results but only to a certain extent.

Conclusions We have shown the significant influence of nominal input image blur to detec-
tor performance. The scale-space detectors gain the best performance when their scale-space
is built from the same initial scale and with adapted nominal scale. For that we have proposed
an improved algorithm for building a scale space which can with a prior knowledge of image
blur significantly improve detector’s repeatability.
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(a) Repeatability (b) Number of correspondences

Figure 5.5: Repeatability between the reference frames detected in image bikes 1 and frames
detected in bikes 1 with different Gaussian image blur with std. dev σ. Def. detector is
detector ignoring the σn parameter and New detector is detector with σn = σ. Computed
with Hessian detector.

5.2 The response function threshold

The response function threshold Rt is a minimal value of a response function (LoG, DoG,
Hessian etc.) of a detected feature. Main purpose of the response function threshold is
to filter out spurious local features which may arise from the stochastic processes in image
acquisition rather than structures observed in the scene. It directly affects the number of
detected features as it rejects features with low contrast.

Generally most of the authors which tried to measure feature detectors performance had
struggled with the response function threshold and other parameters which affect the number
of detected features. The number of detected features depends on the input image and also
on the detector implementation. Therefore authors ([27],[2]) usually choose to use the default
parameters of the detectors.

In this section we examine relation of the response function threshold to detector perfor-
mance. DTU Robot 3D benchmark is used to measure the geometric precision of the detector
and retrieval benchmark is used to measure the distinctiveness of the extracted features in
image retrieval task. To obtain more general results we have performed the tests with several
implementations of the local image feature detectors. Also when the implementations allow,
we include both similarity and affine invariant alternatives of the detected features in order
to see whether the behaviour is affected by affine iteration.

In CMP implementation of the detectors, the response function threshold is set directly as
expected standard deviation of noise of image brightness values, with exception of the DoG
approximation where it is set directly as the minimum difference of Gaussian value. In other
implementations its value is directly used against computed values and it does not account
different properties of the feature responses. In the case of the MSER detector [26], parameter
∆min, minimal margin of intensity values for a stable region is varied.

Epipolar geometry In this experiment we test the geometric precision of detected local
features. It is performed with the DTU Robot 3D benchmark (described in and ). We
test the detectors with varying response thresholds (or minimal margin for MSER detector)
and measuring the repeatability on two selected camera viewpoints against the reference
image. The reference image is captured with camera 0.5m away from the scene (Key frame
in Figure ). The first viewpoint, referred as Linear path is with camera 0.8, away from the
scene with camera in the same bearing and is used to measure detector scale invariance. The
second viewpoint, referred as Arc 2 the camera is on a circular path 0.65m away from the
scene and snaps the scene in angle of 25◦. The particular camera viewpoints tested against
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(a) Repeatability (b) Number of correspondences

Figure 5.6: Repeatability of CMP Hessian detector with scale space built with Algorithm
4. Repeatability is plotted per scale on increasingly blurred bikes 1 image. Local features
detected in the reference image are divided into 5 intervals in its scale such that each interval
contain the same number of features. Then repeatability per group is computed.

Arc 2

Linear path

Figure 5.7: First 10 scenes used for repeatability calculation and visualisation of selected
viewpoints.

the reference frame are visualised in figure 5.7. The repeatability has been averaged over the
first 10 scenes which include a variety of materials and structures. The scenes are shown in
figure 5.7.

In order to compare the detectors fairly, the repeatability is drawn in the plots as a function
of number of features which changes with response function threshold. For some algorithms,
such as RANSAC in wide baseline stereo, the fraction of inliers is important for its time to
converge as its stopping criterion depends only on that. Therefore, if we increase the number
of features but the repeatability remains the same, it does not benefit RANSAC and increases
processing time (but sometimes we want more absolute number of inliers as with that we can
obtain more precise model).

For the Arc 2 viewpoint the results are shown in Figure 5.8, measured values and detector
thresholds are shown in Table C.2. For all detectors, with increasing number of features, the
repeatability increases with exception of MSER detector where the repeatability remains the
same. Comparing feature responses, the best results are obtained with Hessian based feature
detectors.

In case of linear path viewpoint, the results are shown in 5.9, measured values and detector
thresholds are shown in Table C.1. In this case the response function threshold has small
effect on the detector performance, only in case of DoG and MSER features, with smaller
response function threshold the repeatability decreases. In case of MSER, with small margin
the stability function is more affected by noise which causes least stable estimation of region
extent. With DoG features the repeatability decrease more than for LoG features which it
approximates as with small thresholds the approximation error may have bigger influence.

Affine invariance usually make the results worse, which is similar to the results presented
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Figure 5.8: Detector repeatability in DTU Robot 3D benchmark as a function of average
number of detected features per image when varying response function threshold (or min.
margin for MSER). Repeatability was computed over first 10 scenes in Arc 2 dataset for the
viewpoint 25◦. Detector thresholds are shown in Table C.2.

in [1] and is caused by rather small affine transformations between the tested images and
additional degrees of freedom that need to be estimated by detector. From the implementation
point of view, VGG detectors, used in detector comparison [1] obtained the worst performance.

Image retrieval The results of image retrieval experiment (mAP ,defined in 4.6) as a func-
tion of average number of features per image are shown in Figure 5.10, measured values and
detector thresholds in Table . They are computed with the same detectors as in previous
experiment but accompanied by SIFT descriptor. Descriptor algorithm was set to use mea-
surement scale ν = 3 and without orientation assignment. The tests were performed with the
Oxford Buildings dataset [33].

From the results we can see that for all detectors there is a minimal number of features
required to successfully cover object instances which explains small mAP for small number
of features. When the number of features increases over 2000 the newly added features are
not improving the results significantly, with exception of DoG features where with the lowest
response function thresholds mAP decreases, similarly as in the epipolar geometry test.

From the invariance point of view it seems that the affine invariance improves the results
slightly only for hybrid detectors. In case of Hessian detectors, affine shape adaptation seems
only to decrease the number of features but does not the performance.

Contrary to epipolar geometry results, it seems that the VGG detectors give better results
than other implementations.
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Figure 5.9: Detector repeatability in DTU Robot 3D benchmark as a function average number
of detected features per image when varying response function threshold (or min. margin for
MSER). Repeatability was computed over first 10 scenes in linear-path dataset where camera
moves 0.3 metres away from the scene. Detector thresholds are shown in Table C.2.

Conclusions Our experiments show that for tasks, where the precise localisation of detected
features is at stakes, detecting more features with lower threshold can increase detector perfor-
mance. However, for DoG and MSER features there exists a limit where their scale invariance
deteriorate. In image retrieval there is a limit after which the new regions does not improve
retrieval system performance as the detected features become less distinctive.

5.3 Initial scale of scale space detectors

In this section we investigate performance of scale-space detectors dependent on initial scale
σ0 on the real scenes. This parameter sets the minimal scale of the features which can be
detected and similarly as response function threshold it affects number of detected features.

In [24], this parameter has been studied in case of DoG feature detector. With our tests we
broaden this study also to other feature responses and tested separately detector performance
in DTU Robot 3D benchmark and in retrieval benchmark, configured in the same way as
in previous section. Again, the detector performance is measured as a function number of
detected features. Contrary to the precious section, experiments are performed only with
CMP local feature detectors as they allow to set the value of σ0 parameter.

The results for image retrieval (Figure 5.11c) suggest that the initial scale does not affect
the performance. This is rather interesting observation as it means that features with small
scales has only little impact on the image retrieval system performance. However this seems
to be a consequence of the properties of the Oxford Buildings dataset where objects in query
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Figure 5.10: Detector mAP in Retrieval benchmark as a function average number of detected
features per image when varying response function threshold (or min. margin for MSER).
All descriptors has been computed using CMP SIFT implementation with measurement scale
ν = 3 and without orientation assignment. Results are computed on data from Oxford
buildings dataset with a subset of 100 “Bad” images and k = 50. Detector thresholds in
Table C.3.

and database images are usually of similar size. In cases where we do not demand robustness
to big scale changes, the higher value of σ0 can speed up the retrieval as removal of almost
one half of the features decreased mAP only by few percents.

In the geometry precision experiment (DTU Robot 3D), the behaviour is different. In
Figure 5.11a) and 5.11b) it can be seen that adding features with smaller scales improve
the repeatability much more than including features with small feature response. This holds
both for Arc 2 and Linear path datasets with exception of Hessian detector where the scale
invariance decreased performance of small features (may be caused by worse localisation of
saddle points).

With higher values of the initial scale, the repeatability decreases much faster than for
response function threshold. This is caused by fact, that all tested detectors localise blob-like
features in a scale space pyramid, where with increasing scale the precision of localisation
decreases.

Conclusions In some cases when the change of scale between two views is not overly ex-
tensive, it is worth to compute features of smaller scale than traditional σn = 1.6. They will
not only improve repeatability but it may increase the precision as small blob features are
better localised. In our experiments this increases detector performance more than adding
features with lower response function threshold. However in case of retrieval, small features
has little impact on detectors performance, especially in comparison to features added by
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Figure 5.11: Detector performance in DTU Robot 3D benchmark and Retrieval benchmark
plotted against average number of detected features per image when varying initial scale σ0.
In retrieval test, the values are computed with CMP SIFT descriptor, ν = 3 and without
orientation assignment. With the DTU robot dataset, repeatability is an average over 10
scenes. The size of the marker represents the initial scale and dashed lines are plotted results
varying response function thresholds.

lowering response threshold.

5.4 Size and shape of the window function of measure-

ment region

In this section we perform several experiments with the measurement region properties. Mea-
surement region is a part of the image used for computation of a feature descriptor. We
investigate how its size and shape influences the performance in case of SIFT descriptor.

Having detected features in the image, their neighbourhood is normalised into canonical
coordinate system into a patch of constant size and used for computing descriptors. Usually
the feature region scale is multiplied by a factor ν (measurement scale) in order to obtain
feature’smeasurement region. This leads to more discriminative power [29, p. 24] as it includes
more context around the feature location.

But setting the measurement region properly is a difficult task [50]. Setting it too small
may cause problems for small image features as it covers only small parts of the image and is
not sufficiently informative. Setting this region too big may cause problems with occlusions
as the measurement region can overflow imaged object boundaries and descriptor is then
calculated from values of its background. The background may significantly change with a
different viewpoint. Apart from that, with bigger measurement region we lose the details as

47



it is always re-sampled into a patch of constant scale. Additionally, with bigger measure-
ment region some regions get out of the image borders and also patch extraction takes more
computational effort (in case of its normalisation).

In the following, we explore the information entropy in the measurement region for different
type of features. Then, we examine properties of some existing detectors as even the scale of
detected features differ by detector implementations. Besides the extent of the measurement
region, for SIFT descriptor the extracted patch is also weighted by a Gaussian and we explore
what effect does this shape have on its performance.

5.4.1 Image patch entropy

How much information we need to describe the measurement region? To answer this question
we have computed information entropy of image intensity values for each pixel of a set of
extracted patches. This quantity represents the expected number of bits needed to unam-
biguously encode the information in each pixels. We would like to see how this value evolves
depending on the distance to the local image feature centre.

For set of patches P and a domain of possible brightness intensities I = {0 . . . 255},
probability of a pixel on position x having an intensity i ∈ I is defined as:

pr(x, i) =

∑

P∈P [P (x) = i]

|P| (5.2)

Where [·] stands for the indicator function. Entropy of a pixel at position x is computed
as:

H(x) =
∑

i∈I

− log2(pr(x, i)) · pr(x, i) (5.3)

For computation of the entropy we have used similarity invariant patches extracted from
1000 images from Distraction subset of the Oxford Buildings retrieval dataset. Because image
brightness intensities differ with the type of the interest point (LoG+ has usually brighter
centre than LoG-) we have computed the entropies splitting the features by their type. Then,
as we perform all experiments with the SIFT descriptor, we also compute pixel-wise entropies
of image gradient magnitudes and angles where their values are normalised into 255 bins
evenly covering their domain. Entropies of patches of some selected feature types are given
in table 5.1 where the dark versions of local image features are selected (entropies of bright
features look similar, only rotated by 180◦). Measurement region of these patches is extracted
for ν = 5 and the patch size is set to 69 in order to obtain the same discrete derivatives as for
standard SIFT measurement scale ν = 3 and patch size 41.

In Table 5.1 it can be seen that for all local image features area with the lowest entropy
is the detected interest region itself. This is because for the dark features the frame centre
is usually dark and with a positive gradient in direction outward of the frame centre. This
justifies why to set ν > 1. But the centre is still quite interesting as it defines whether it is a
dark of bright feature and it would theoretically add one more bit of entropy to its values.

As the regions size increases, image data has rather constant image entropy. In a way this
does not give us any upper bound on measurement scale and generally shows that the context
of the image region contains the majority of the information which makes the descriptor
distinctive.

5.4.2 Scale of image frames

During our first tests with measurement region we have observed that different feature detector
implementations detect different scales of the same image structures. This generally has two
causes. At first, it is the response function which is used for detecting the feature scale (usually
LoG, DoG or Hessian). But nevertheless it also differs by the particular implementation (e.g.
their Gaussian kernel approximations etc.).

That is why we have decided to investigate detector behaviour more closely. As a testing
feature we have chosen 2D Gaussian function (Equation 2.4) and as an etalon of its scale we
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. Hessian- LoG- DoG- MSER-
|P| = 425995 |P| = 789963 |P| = 127493 |P| = 425448

Table 5.1: Pixel-wise entropy of neighbourhood of selected local image features. Orientation
of the patch has been normalised using the maxima in gradient orientation histogram (see
2.2.5 for details, this is a reason for entropy asymmetry). The visualised regions correspond
to measurement region ν = 5 and size 91×91 pixels. The black box inside a patch correspond
to measurement region ν = 1.

took its standard deviation σ. Than for each detector’s detected features we pick the feature
with a centre closest to the Gaussian blob centre and we take detected scale σdet of this feature.
We have computed these values for a set of standard deviations Σ = {σ|σ = 1.6·2 i

6 , i ∈ 1, .., 28}
which correspond to Lowe’s pyramid with 6 layers per octave. Images with the Gaussian
function has been generated with cut-off= 8 to prevent any border effects. Then in a log space
we have fitted lines through the measured values using RANSAC and linear least squares line
fitting in order to obtain more robust results. Measured values and fitted lines for selected
detectors are shown in Figure 5.12.

From Figure 5.12 it can be seen that the detected scales differ significantly and there is
small correlation between detectors using same quantities for scale selection. However the
detectors which differ the most are OpenCV implementations where for their SURF detector
for unknown reason the frame scale is 8-times bigger than the Gaussian standard deviation.
Also in some cases the fitted line did not go through zero which means that there is some offset
in the detected scale. This may cause problems with detector scale invariancy. Numerical
values are given in table 5.2, offset is expressed as an intersection of the fitted line with x-axis.

This shows that a fair detector comparison is rather difficult as the scale of detected local
image features differ by implementation. As it will be seen in the further experiments, the
measurement region influence detector performance in most of descriptor tests. This is a
reason why we have decided to measure the ideal measurement scale quantitatively using
proposed benchmarks mainly for CMP implementation of detectors which seem to share
similar properties.
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Figure 5.12: Results of scale calibration of selected detectors. Cross markers represents
separate measurements and the and solid line is line fitted using RANSAC and least squares
optimisation on inliers using line to point distance in logarithmic coordinates.

5.4.3 Shape of the window function of measurement region

Besides the extent of measurement region, in case of SIFT descriptor the extracted patch is
usually weighted by a Gaussian with σ equal to one half the width of the patch window to
assign a weight to the magnitude of each sample point [24, p. 15]. Lowe claims that purpose
of this weighting is to avoid sudden changes in the descriptor with small changes of a position
of image feature centre and to give less weight to gradients which are further away. This
weighting function is visualised in Figure 5.3a.

From the source code of the publicly available CMP HessianAffine detector2 we have
observed that also another weighting window is used. It is basically the same Gaussian
function, but weight of pixels farther away from the patch centre than is the patch radius are
set to zero, probably to increase rotation invariance. This weighting is visualised in Figure 5.3b
and will be further referred as circular weighting. The third weighting which we use in our
experiments is no weighting, i.e. to use directly the computed gradient magnitudes.

Additionally to the extent of measurement region we would like to test the influence of
patch weighting to the descriptor performance. For this purpose we have extended the CMP
SIFT descriptor implementation with an option to set any patch weighting (shape). In the
following text we investigate influence of measurement region properties to epipolar geometry
tasks with epipolar geometry benchmark, then to retrieval tasks with the retrieval benchmark.

Epipolar geometry This test is carried out with the proposed epipolar benchmark (section
4.3) as it allows to see behaviour of a detector and descriptor on a particular wide baseline

2https://github.com/perdoch/hesaff
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Det. σdet/σ offset Det. σdet/σ offset
VLF DoG 1.25 0 SURF 2.75 0.07
CMP DoG 1.47 0.16 OpenCV SURF 8.68 0.07
OpenCV DoG 5.18 0.9 CMP LoG 1.27 0.01
Lowe DoG 0.88 0 VGG HessLap 1.74 0.04
CMP Hessian 1.12 0 VGG HarLap 1.9 0.15
VLF Hessian 1.6 0.01 VLF HarLap 1.02 0.02

Table 5.2: Ascertained relations between 2D Guassian standard deviation and detected scales
by selected detectors. These values has been computed by fitting a line and offset is the
intersection of fitted line with x-axis.

0

0.2

0.4

0.6

0.8

1

Gaussian Circular

Table 5.3: Examined patch weighting for descriptor calculation.

scene. For all cases we have computed frame orientations and the measured quantity is the
maximum precision of the nearest-neighbour classifier introduced in chapter 3, section 3.2, i.e.
ratio of correct nearest neighbour matches to the number of detected features in the reference
image. Results are shown in Figure 5.14.

In the results we can see one prevailing pattern which holds for all tested detectors. When a
detector performance rises with increasing ν, computing descriptor without weighting seems to
give the best results. Even in the case of significant scene rotation (Box, Valbonne), difference
between the weightings is minimal. But increasing ν the number of correct matches decreases,
the best weighting seems to be the circular window as it removes influence of image values
more distant from the local feature centre.

From the perspective of measurement region scale it seems that for blob-like features,
bigger ν rarely decreases the performance and if so, then only slightly in case of scenes with
significant occlusions (Leafs). In all cases the precision is monotone for σ < 5. Exceptions
are Harris and MSER features where the performance for non-planar scenes usually decreases
for ν > 5. It can be caused by a fact that MSER features are usually already of twice their
usual scale (we maintained the same setting as was used in [29]).

Image retrieval Second test with measurement scale is image retrieval benchmark. Again
we have varied the measurement scale and weighting. The results are shown in Figure 5.13.

Results shown in Figure 5.13 comply with the results in epipolar geometry. It seems that
for all blob detectors, increasing measurement region increases also descriptor performance.
Also as ν increases, circular weighting saturates later than no weighting variant. However it
has to be said that this dataset contains little rotations and generally buildings has planar
surfaces.

Again, Harris and MSER detectors are behaving in a different way. In case of Harris
detector its maxima is gained with ν = 3 but in case of MSER detector, smaller ν seems
generally better. Again we can see that cropping the patch lobes with circular weighting can
improve the results when the measurement region is too big.

The results presented in Figure 5.13 are computed assigning frame orientations. We have
computed the same graphs also with upright features but the shape of the curves remained
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Figure 5.13: Results on retrieval benchmark using different measurement regions and different
weighting functions. Right y-axis represent average number of extracted features per image
(visualised as dashed line per detector). Values are computed using CMP SIFT descriptor
implementation. Orientation of the patch is assigned with method presented by [24], max. 4
orientations per feature.

the same, only mAP has increased slightly.

Conclusions We have shown that from the information theory point of view, the least
information is contained inside the detected local image feature for all examined local feature
types. Therefore it is important to include sufficient context by increasing its scale to obtain
distinctive measurement region. We have shown that various detector implementations differ
in the detected scale for a Gaussian blob and therefore it is a difficult task to fairly compare
them. With the experiments we have shown that for blob-like local features, increasing the
measurement region size generally improve its performance and when no rotation of image
data is expected weighting of the measurement region is not necessary. For Harris and MSER
detector the size of the measurement region is more limited and the best results are usually
obtained with measurement scale ν = 3.
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Figure 5.14: Influence of measurement scale ν and measurement region weighting to the
number of inliers in epipolar geometry on selected scenes. The Sampson error threshold used
was set to the same value which was used for RANSAC inlier threshold when ground truth
was computed. 53
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Chapter 6
Improvements to emulated detectors

In this chapter experiments with emulated feature detectors are discussed. The emulated fea-
ture detectors has been described in section 2.5. In Šochman and Matas [38] two emulators
are examined - Hessian-Laplace and Kadir saliency detector emulators. In our experiments
we perform experiments with the emulated Hessian-Laplace and other blob-like image feature
detectors, leaving the emulated Kadir-saliency detector aside. All experiments has been per-
formed with the source code obtained from Šochman [36]. Training part of the classification
framework is implemented in Matlab and the classification itself in C++. With this code we
have been able, with minor differences, to reproduce results from [38].

Contributions presented in this work are:

1. Improved the classification speed optimizing linearised code and non-maxima suppres-
sion

2. Trained emulators of different feature types (DoG and Hessian local features).

3. Measured performance of emulators in image retrieval and epipolar geometry tasks.

4. Improved Hessian-Laplace emulator performance in homography transformation based
benchmarks.

First, some properties of the original Hessian-Laplace emulator are discussed and then
we show some improvements to the training process. Second, we train emulators of different
local image features and we show different properties of those emulators. Then we describe
improvements which lead to faster classification. In the last part, performance of the emulators
is evaluated in image retrieval and their geometric precision is measured with DTU Robot 3D
benchmark.

6.1 Improvements of Hessian-Laplace emulated detector

Emulator is obtained by training the WaldBoost classifier with patches extracted by some
local feature extraction algorithm, further referred as a teacher. The emulator presented
in [38] was trained with features detected by VGG Hessian-Laplace detector implementation.

Training samples are small image patches of constant size extracted from the image where
the local features has been detected. Region used for the patch is larger by a factor νWB

(measurement scale) than the original feature scale in order to include some context of the
detected feature. These regions are then transformed into a sample of constant size. In the
original implementation, nearest-neighbour interpolation has been used. We have replaced
it with bilinear interpolation which improved the results in homography based benchmarks.
The improvements are shown in Figure 6.1 and are compared to original Hessian-Laplace
emulator and the teacher in case of rotation and scale invariance. More results are shown in
Appendix D in Figure D.2 for repeatability and Figure D.2 for matching score.
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Figure 6.1: Repeatability and number of correspondences of the original Hessian-Laplace
emulator and Hessian-Laplace emulator with improved patch extraction using bilinear in-
terpolation. Compared to the performance of the teacher on artificially rotated and scaled
images. Repeatability is computed as an average over 7 images.

6.2 Emulation of different features

In this section we describe our experiments with emulators of different image features, such
as DoG and Hessian. First, we notice some properties of the local image features used for
training of the Hessian-Laplace detector from [38]. Then we explore possibilities to emulate
detectors of different feature types.

In the original article [38], the Hessian-Laplace emulated detector is trained with features
detected with the VGG implementation (introduced in Section 4.7.1). We have observed that
this implementation does not detect saddle points which are expected for the Hessian feature
response function (Equation 2.10). In Figure 6.2, detections of VGG Hessian-Laplace, CMP
DoG and CMP Hessian are shown. It can be seen that VGG Hessian-Laplace detects local
features in similar locations as CMP LoG and misses all saddle points detected by CMP
Hessian detector. Please note that VGG Hessian-Laplace also returns multiple detections per
maxima in the image brightness function.

(a) VGG Hessian-Laplace (b) CMP LoG
(c) CMP Hessian

Figure 6.2: Detected frames by VGG Hessian-Laplace, CMP LoG and CMP Hessian detectors.
It can be seen that VGG Hessian-Laplace misses all saddle points.

We have included support for training with any local image features detected by the CMP
detector implementations. We have decided to test the framework with Hessian features
including saddle points and with DoG features. In figure 6.2, it can be seen that features
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detected on a simple image brightness structures are different. For both the emulators we
extracted 2 · 105 features from Distractor images of Paris buildings retrieval dataset. Each
weak classifier has been trained with |T | = 10, 000. In the original detector, emulator is learnt
with patches extracted with measurement scale νWB = 2. We have set the measurement scale
for CMP detections to νWB = 3.5, coarsely based on the observations made in Section 5.4.2.
DoG features used for training has been detected with CMP DoG detector response threshold
10, Hessian features with threshold 20. These values has been selected empirically, based on
the repeatability score, however we did not have enough computational resources to perform
extensive experiments with other thresholds (training of one classifier takes around 12 hours).

In table 6.1 are shown the first Haar features of trained emulators. These features usually
give us some intuition how the detected feature looks like as the first feature should reject
the most of false samples. It is interesting to see, that for the Hessian emulated detector,
the centre surrounded Haar feature was not picked as the first feature. From the experiments
we have found that this is caused by saddle points. However this has big impact on both
the detector speed (on average Hessian emulator evaluates 2.12 features per window whereas
Blob emulators evaluates around 1.3 features per window).

Orig. VGG HesLap CMP Hessian CMP DoG
1.388 #F/Win 2.12 #F/Win 1.234 #F/Win

−92.51 −46.25 0.00 46.25 92.51
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−88.72 −44.36 0.00 44.36 88.72
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Table 6.1: First weak classifiers of trained emulators with the average number of evaluated
features per window. The average number of evaluated features is computed on a 21MPx
image.

In table 6.1, it can be seen that the first feature of DoG emulator is located more in
the patch centre. Also the average number of evaluated features per image decreased slightly.
During development we have tested the detector performance with classical repeatability test.
The results of rotation invariance dataset and boat dataset from [29] are shown in Figure 6.3.
In can be seen that the rotation invariance of the Hessian emulated detector is much worse
compare to the emulated DoG detector. Repeatability and matching score tested on other
datasets are shown in Appendix D in Figure D.3 and Figure D.4.

6.3 Speeding up the classification

In the section we describe modifications which lead to shorter classification time. The orig-
inal implementation is able to generate linearised code of the classifier. It leads to shorter
classification time because it misses the overhead of complicated class structure of the classi-
fier. Besides that, the linearised code is easier to optimise by the compiler as it exposes all
mathematical operations performed by the classifier and therefore its memory operations are
more transparent to the compiler.
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Figure 6.3: Repeatability and number of correspondences of the new DoG and Hessian de-
tector emulators. Compared to the performance of their teachers. Rotations invariance is
computed as with artificially rotated images as an average over 7 images.

Profiling the code, we have improved the classification speed even further. The most time
consuming parts were response calculation in the linear code and non-maxima suppression.
The changes we have made are:

• Linearised code of the classifiers computes in single precision instead of double precision.

• Improved memory allocation in non-maxima-suppression so that the needed data are
allocated ahead, not on demand. This lead to fewer calls of memory allocator.

• Because the standard deviation is not used for normalisation of Haar responses (as we
are not interested in low-contrast regions) we have removed it completely from the code
as it brings overhead in computation of another integral image.

• Non-maxima suppression is performed in single precision.

• Changes to the function for two circles overlap approximation - when the circle centres
are farther away than the sum of their radii, the circles cannot overlap.

Speed is compared with SURF detector [5] (in particular, OpenSURF1 open source imple-
mentation) and VLFeat DoG detector in a configuration that response is sampled with step of
2 pixels, which is a default setting for the original SURF detector. For DoG detector it means
that the responses are computed from the second octave. VLFeat DoG implementation has
been chosen as it allows to vary this parameter. In all cases the detectors has been configured
to detect similar number of features and time values are averaged over 16 images of various
scenes. The speed improvements are summarised in table 6.2.

For the 21 Mpx images, the improved emulators are almost 3-times faster then the original
version and they are more than 2-times faster than SURF detector. In addition, the speed
of the improved emulators varies less for different images, which is closer to the behaviour of
DoG and SURF detectors. This has been achieved thanks to improvements in non-maxima
suppression where the computation time depends on the number of detected features.

1http://www.chrisevansdev.com/computer-vision-opensurf.html
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Detector Image 640× 480 (0.3MPx) Image 3779× 5669 (21MPx)
Avg. time [ms] Avg. # feat Avg. time [s] Avg. # feat

OpenSURF 35± 1.5 120± 111 2.7± 0.11 3848± 4698
VLFeat DoG 42± 2 107± 64 4.5± 0.2 3367± 3028
WBE HesLap orig. 19± 12 91± 59 3.7± 2 3111± 3093
WBE HesLap fast 16± 4.4 91± 59 1.3± 0.31 3111± 3093
WBE DoG 15± 3.2 88± 54 1.3± 0.33 2748± 2631
WBE Hessian 20± 6.9 90± 59 1.4± 0.49 3002± 3006

Table 6.2: Processing speed of SURF, DoG, original emulator and the improved emulators
with faster classification time. Processing time is averaged over 100 measurements and is
shown together with the number of features. Detectors are configured to process only each
second pixel position and with thresholds to obtain similar number of features. Results
computed as average over 16 images with different scenes.

6.4 Emulator in the wild

Main design advantage of the emulators is their fast feature detection. However with an
disadvantage that it only emulates the feature detectors and makes a decision on rather crude
features. But how much these approximations affect the performance of the detector in real-
world tasks? This question we would like to answer using previously introduces benchmarks,
Retrieval and DTU Robot 3D benchmark (see Chapter 4).
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Figure 6.4: Performances of the emulated detectors and their teachers varying their response
function threshold or minimal confidence for emulated detectors (WBE), mAP measured on
Oxford buildings dataset. The values are computed with CMP SIFT descriptor, ν = 3 and
without orientation assignment.

Because setting a response function threshold (or minimal confidence for the emulators) is
not a simple task, we have performed similar tests as in Section 5.2, which deals with response
function thresholds of common feature detectors.

In the Retrieval benchmark (Figure 6.4), newly trained Hessian-Laplace emulator has
generally the same performance as the original Hessian-Laplace emulator. It is interesting to
see that the emulators over-perform their teacher, VGG Hessian Laplace. However, emulated
Hessian and DoG feature detectors perform much worse in this task compare to their teachers.

Next set of tests with the minimal confidence and feature response thresholds has been
made with DTU Robot 3D benchmark which tests precision of feature localisation. Results are
shown in Figure 6.5. Again, Hessian-Laplace emulators over-performs their teacher and newly-
trained Hessian-Laplace emulator has got similar results as the original emulator, contrary to
its improved performance on planar scenes.
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Figure 6.5: Performances of the emulated detectors and their teachers varying their response
function threshold or minimal confidence for emulated detectors (WBE). Repeatability com-
puted with the DTU Robot 3D dataset, repeatability is an average over 10 scenes. Tested
camera viewpoint for the Arc 2 path is 25◦ and 0.8m for the Linear path.

For the DoG and Hessian emulators, their teachers have better performance mainly for the
Linear path, showing that the scale invariance of the emulators is worse than their teachers.
However, for the DoG emulator with the lowest confidence threshold and Arc 2, it has better
repeatability than any tested algorithm in this chapter. In order to investigate these results
more, we have measured detector repeatability for all viewpoints in the DTU Robot 3D
benchmark. The results are shown in Figure 6.6. From the results measured on Linear
path it seems that the new emulators has worse scale invariance than their teachers and the
Hessian-Laplace emulators. But in the Arc 2 viewpoint, DoG emulator still outperforms other
detectors for viewpoints more distant from the reference frame. This is even more interesting
considering that the emulator does not have any sub-pixel localisation. We have not found
what is the reason of this behaviour so this remains an open question.

When comparing the emulated detectors with SURF detector, SURF has got generally
better scale invariance and has similar performance as CMP DoG detector in both geometric
precision and in image retrieval task. Especially in the image retrieval it clearly outperforms
the emulated detectors. The worse scale invariance of the emulators may be caused by missing
sub-scale localisation.

.
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Figure 6.6: Performances of the emulators their teachers in DTU Robot benchmark. Re-
peatability is an average over first 10 scenes. Dashed lines are number of correspondences.

6.5 Dead ends

We have explored several ways which promised to give some improvements either in speed
or in performance of the emulated detectors. However many of them did not lead to any
significant improvements. Among these experiments were:

• Use of SURF-like integer scale pyramid [5] with its 3×3×3-neighbourhood non-maxima
suppression using confidence as a feature response. Motivation for this was mainly a
computational complexity as the non-maxima suppression used in the current imple-
mentation is rather high. However using this pyramid leads to rapid decrease in the
repeatability even when the same scale-sampling has been used.

• Artificial rotation of image patches. This again leads to decrease in repeatability, both
in rotation and scale invariance of the emulator.We have found out that the extracted
patches itself are enough for sufficient rotation invariance.

• Randomly moving the patches in space or scale similarly as in Kálal [17] in order to
bridge the spatial and scale-space sampling lead also to worse emulator performance.

6.6 Future work

The boosting process can be improved using some more robust optimisation techniques than
the used in Real-Boost. Among them are techniques which emerged from the view on Boosting
as a Gradient descent optimisation in function space [25] (AnyBoost). This observation allows
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to optimise over different cost functions than just the negative exponential, e.g. standard
logistic function which allows to use Boosting in multiple instance learning as in [45]. However
we have not found solution to a problem how to extend the AnyBoost framework to the
RealBoost way of domain partitioning, which are used, and are rather important part of the
algorithm. We suppose that mainly the multiple-instance learning can bring some significant
improvements as it also picks the best context of the features.

In the current state the training stage with 200 · 103 training samples and 5 · 103 training
samples per weak classifier and the training process takes whole 12 hours. The training
time makes any experiments rather difficult and improving this, for examples using similar
improvements as in Kálal et al. [18] would be an useful addition to the emulators framework.

In this work we have not performed experiments with different response function thresholds
of the teacher detectors. This may offer further improvements to the performance of DoG
and Hessian emulators.

We have also been able to train emulator of Kadir saliency features. However we have
not noticed any significant improvements to the emulator presented in [38]. Also mAP of the
emulated Kadir saliency detector in the Retrieval benchmark was lower compared to other
emulators. But these features may be complementary to the blob features which can be useful
in some classification tasks.

Conclusions We have been able to speed up the classification time of the emulators so that
the emulated detectors are faster than OpenSURF detector. Then we have trained emulators
with new types of local image features, such as DoG and Hessian images features, and we have
shown that the rotation invariance of the decreases when trained with anisotropic features
such as saddle points. We have shown that the emulated feature detectors gain worse scale
invariance than other scale space based image feature detectors and also has worse results
in the image retrieval tasks. But surprisingly, in tasks where the scale of the scene does not
change, emulated detectors gain comparable performance.

62



Chapter 7
Conclusions

The reliable and fair performance evaluation of the local feature detectors and descriptors is a
difficult task that needs to take into account many applications and desired properties of the
local features.The prospected framework started as VLBenchmarks project which intended
to gather image feature detector benchmarks. We have finalised implementation of the de-
tectors previously included in the project and included other important evaluation protocols
traditionally used for feature detector and descriptor testing. Additionally we have proposed
a new image retrieval benchmark which evaluates detectors in this particular application of
local features on standard retrieval datasets. To asses the geometric precision we propose a
simple epipolar geometry criterion based on Sampson’s reprojection error which allows to test
detectors in wide baseline stereo problems and extends the homography based benchmarks.
Other improvements were merely technical such as inclusion of other homography datasets or
including support for results caching, parallel processing and automatic installation process
for several image feature detector and descriptor implementations. This project, with the
improvements presented in this work, has also been presented in ECCV 2012 tutorial to the
computer vision community.

We have proposed new algorithm for building a scale space pyramid for images with any
nominal Gaussian blur. It shows, that when apriori known nominal image blur is compensated
with nominal scale, it significantly improves repeatability of the scale-space based detectors.
With an algorithm for image blur estimation this technique can be used to improve feature
detection in blurred images.

A popular way how to tune detector performance is to adjust minimal threshold on the
feature response function value as it has direct impact on the number of detected features.
We have found that when the scale-space detector sought property is the geometric precision,
better results can be gained by including smaller features. However, in image retrieval tasks,
features with smaller response threshold are having higher influence on the performance. It
has shown that when geometric precision is at stakes, CMP and VLFeat implementation gain
better results and Kristian Mikolajczyk’s detectors are more capable in image retrieval tasks.

We also measured the feature detector and descriptor performance w.r.t. to the size
and shape of the window function of the feature’s measurement region. We proposed a
computation of the pixel-wise entropy of a patch, which revealed that the most informative
part is the immediate neighbourhood of the feature and the feature centre is less informative.
The comparison of detector implementations has shown to be a difficult task as there are
several inconsistencies in feature scale detection. We have proposed a robust method to
measure the relation between Gaussian blob standard deviation and the detected feature scale
and have shown that for some implementations the reported scale is in some cases more than
8-times higher than the standard deviation. By testing several detector implementations we
found that in tasks where the rotation invariance is not important, weighting the measurement
region by a window function is not necessary. Ideal measurement region size differs for blob,
corner and MSER-like features. For blob-like features, increasing the measurement region
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improves the detector performance both in matching and image retrieval tasks but after
certain size the performance saturates. On the other side, MSER and Harris detectors have
a clear limit for the measurement region size.

In the last part of this work, we have presented several improvements to the emulated
detectors. We have successfully trained emulators of different local feature detectors and im-
proved the training process. In the case of the Difference of Gaussian feature emulator, it gains
better geometric precision than the original Hessian Laplace emulated detector. Additionally,
we have significantly reduced the classification time, and thus improved the main advantage
of the emulators. With these improvements emulators became faster than the OpenSURF
hand-crafted detector implementation.
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Appendix A
Contents of Enclosed CD

Enclosed CD holds source code of VLBenchmarks project in its last public version and in
version used for computing the presented results (as some of the features has not been yet
released) together with recipes of the experiments performed in this work. Then it contains
source code of feature emulators, source code of adapted CMP detector and source code of
this thesis.

In the following table the directory structure of the CD is summarised:

Folder/File Description
src_vlb/ Source code of VLBenchmarks
src_emul/ Source code of detector emulators
src_cmp_det/ Source code of CMP detector with improved pyramid building
doc/ Source code of this thesis
thesis.pdf Text of this thesis

Table A.1: Directory structure of enclosed CD.
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Appendix B
VLBenchmarks tutorials

In this appendix we present tutorials which were created for VLBenchmarks project1. Main
purpose of these tutorial is to introduce the application programming interface of the project.

VLBechmarks is a MATLAB framework to evaluate feature detector and descriptors (fur-
ther referred as feature extractors) automatically. Benchmarking your own features is as
simple as writing a single wrapper class. Then VLBenchmarks takes care of downloading the
required benchmarking data from the Internet and running the evaluation(s). The framework
ships with wrappers for a number of publicly available features to enable comparing to them
easily. VLBenchmarks has a number of functionalities, such as caching of intermediate results,
that allow running benchmarks efficiently.

Repeatability benchmark

The repeatability benchmark reimplements the protocol introduced by Mikolajczyk et al.
[29]. It defines two feature extractor tests. The first test measures the feature extractor
repeatability. The repeatability measures to what extent do detected regions overlap exactly
the same scene region by comparing detected features in two images of the same scene. It is
based only on the feature geometry.

The second test computes the matching score that includes also the local features descrip-
tors. The second test helps to asses detected regions distinctiveness in planar scenes.

In this tutorial, it is shown how to perform both tests together with visualisation of the
computed scores.

Image features detection

VLBenchmarks contains a few built-in image feature extractors such as VLFeat SIFT, VLFeat
MSER, VLFeat Covdet and a random features generator. Each feature extractor is represented
by a MATLAB object which unifies the feature detection. All these feature extractors are
implemented in a Matlab package localFeatures. For example, an instance of a class of
VLFeat SIFT feature extractor can be obtained by:

sift = localFeatures.VlFeatSift() ;

The feature extractor object manages the values of feature extractor parameters. Default
values are set in the constructor of the object however any parameter can be changed. For
example we can create VLF-SIFT feature extractor with different peak threshold parameter.

thrSift = localFeatures.VlFeatSift(’PeakThresh’,11);

Let’s generate a test image.

1http://www.vlfeat.org/benchmarks
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ellBlobs = datasets.helpers.genEllipticBlobs();

ellBlobsPath = fullfile(’data’,’ellBlobs.png’);

imwrite(ellBlobs,ellBlobsPath);

To extract features from an image, each feature extractor implements method extractFeatures.

siftFrames = sift.extractFeatures(ellBlobsPath);

bigScaleSiftFrames = bigScaleSift.extractFeatures(ellBlobsPath);

The detected features can be visualises with their regions using vl_plotframe function.

imshow(ellBlobs);

sfH = vl_plotframe(siftFrames,’g’);

bssfH = vl_plotframe(bigScaleSiftFrames,’r’);

legend([sfH bssfH],’SIFT’,’Big Scale SIFT’);

The detected frames are visualised in Figure B.1.

Figure B.1: SIFT frames detected on a test image using different peak threshold.

The feature extractors cache the detected features in a cache, thus when you run extractFeatures
again, features are loaded from the cache. You can disable caching by calling feature extractor
method obj.disableCaching().

Repeatability test

The feature extractor repeatability is calculated for two sets of feature frames FRAMESA and
FRAMESB detected in a reference image IMAGEA and a second image IMAGEB. The two
images are assumed to be related by a known homography H, mapping pixels in the domain of
IMAGEA to pixels in the domain of IMAGEB. The test assumes static camera, no parallax,
or moving camera looking at a flat scene.

A perfect co-variant feature extractor would detect the same features in both images
regardless of a change in viewpoint (for the features that are visible in both cases). A good
feature extractor will also be robust to noise and other distortion. The repeatability is the
percentage of detected features that survive a viewpoint change or some other transformation
or disturbance in going from IMAGEA to IMAGEB and is calculated only based on the frames
overlap. For detail about this test see [29].
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For measuring feature extractors repeatability there is a class RepeatabilityBenchmarks().
To measure the repeatability as it is defined in [29] the benchmark object needs the following
configuration:

import benchmarks.*;

repBenchmark = RepeatabilityBenchmark(’Mode’,’Repeatability’);

To test a feature extractor, benchmark object has a method —testFeatureExtractor—.
The remaining parameters can be obtained from the VGG Affine dataset class which contains
sets of six images with known homographies. Let’s take the graffiti scene:

dataset = datasets.VggAffineDataset(’Category’,’graf’);

Now we define set of feature extractors which we want to test.

mser = localFeatures.VlFeatMser();

featureExtractors = {sift, thrSift, mser};

And finally loop over the feature extractors and selected images.

imageAPath = dataset.getImagePath(1);

for detIdx = 1:numel(featureExtractors)

featExtractor = featureExtractors{detIdx};

for imgIdx = 2:dataset.numImages

imageBPath = dataset.getImagePath(imgIdx);

tf = dataset.getTransformation(imgIdx);

[rep(detIdx,imgIdx) numCorr(detIdx,imgIdx)] = ...

repBenchmark.testFeatureExtractor(featExtractor, tf, ...

imageAPath,imageBPath);

end

end

This loop can be easily executed in parallel using parfor. Computed results are usually plotted
in a graph showing together repeatability and number of correspondences.

detNames = {’SIFT’,’SIFT PT=10’,’MSER’};

plot(rep’.*100,’LineWidth’,2); legend(detNames);

...

plot(numCorr’,’LineWidth’,2); legend(detNames);

...

The matching score and number of correspondences is shown in Figure B.2.

Displaying the correspondences

It is useful to see the feature frames correspondences. Let’s see what correspondences have
been found between the features detected by VLF-SIFT feature extractor in the first and the
third image. We can get the cropped and reprojected features and the correspondences itself
by:

imgBIdx = 3;

imageBPath = dataset.getImagePath(imgBIdx);

tf = dataset.getTransformation(imgBIdx);

[r nc siftCorresps siftReprojFrames] = ...

repBenchmark.testFeatureExtractor(sift, tf, imageAPath,imageBPath);

The repeatability results are also cached, thus the data are loaded from cache and nothing is
recalculated for successive calls. To visualise the correspondences call:

imshow(imread(imageBPath));

benchmarks.helpers.plotFrameMatches(siftCorresps,siftReprojFrames,...

’IsReferenceImage’,false,’PlotMatchLine’,false);

The correspondences are drawn in Figure B.3.
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Figure B.2: Feature extractors Repeatability and number of correspondences for the graffiti
dataset.

Figure B.3: Frame correspondences between first and third image from the graffiti dataset
using the SIFT feature extractor.

Matching score

The computation of the matching score differs from the repeatability score. The one-to-one
correspondences are not only based on the feature frames geometry (overlaps) but also the
distance in the descriptor space. Therefore the feature extractor must be able to extract
feature descriptors. This is not the case of MSER feature extractor, so it has to be coupled
with a feature extractor which supports descriptor calculation. Unfortunately none of the
built-in descriptors is affine invariant so only similarity invariant SIFTs is used.

mserWithSift = localFeatures.DescriptorAdapter(mser, sift);

featureExtractors = {sift, thrSift, mserWithSift};

The matching benchmark object can be constructed.

matchingBenchmark = RepeatabilityBenchmark(’Mode’,’MatchingScore’);

The rest is the same as for repeatability.

matching = zeros(numel(featureExtractorss),dataset.numImages);

numMatches = zeros(numel(featureExtractorss),dataset.numImages);

for detIdx = 1:numel(featureExtractorss)
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featExtractor = featureExtractorss{detIdx};

for imgIdx = 2:dataset.numImages

imageBPath = dataset.getImagePath(imgIdx);

tf = dataset.getTransformation(imgIdx);

[matching(detIdx,imgIdx) numMatches(detIdx,imgIdx)] = ...

matchingBenchmark.testFeatureExtractor(featExtractor, ...

tf, imageAPath,imageBPath);

end

end

detNames = {’SIFT’,’SIFT PT=10’,’MSER with SIFT’};

plot(matching’.*100,’LineWidth’,2); legend(detNames);

...

plot(numMatches’,’LineWidth’,2); legend(detNames);

...

The matching score and number of correspondences is shown in Figure B.4.
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Figure B.4: Feature extractors Matching score and number of correct matches for the graffiti
dataset.
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Image retrieval benchmark tutorial

The image retrieval benchmark tests feature extractors in a simple image retrieval system.
The retrieval benchmark closely follows the work Jégou et al. [15]. First a set of local features
is detected by selected feature extractor, and described using selected descriptor. To find
most similar features it employs a K-Nearest neighbours search over descriptors from the all
dataset images. Finally, a simple voting criterion based on K-nearest descriptors distances is
used to sort the images (for the details c.f. [15]).

The dataset used in the evaluation consists of a set of images and a set of queries. Set of
ground truth images for each query is split into three classes ’Good’, ’Ok’, ’Junk’. For each
query, the average precision (area under the precision-recall curve) is calculated and averaged
over all queries to get mean Average Precision (mAP) of the feature extractor.

Feature extractors algorithms comparison

The main purpose of this benchmark is to compare the feature extraction algorithms. In this
tutorial we have selected feature extractors, which are part of the VLFeat library:

featExtractors{1} = VlFeatCovdet(’method’, ’hessianlaplace’, ...

’estimateaffineshape’, true, ...

’estimateorientation’, false, ...

’peakthreshold’,0.0035,...

’doubleImage’, false);

featExtractors{2} = VlFeatCovdet(’method’, ’harrislaplace’, ...

’estimateaffineshape’, true, ...

’estimateorientation’, false, ...

’peakthreshold’,0.0000004,...

’doubleImage’, false);

featExtractors{3} = VlFeatSift(’PeakThresh’,4);

The first two image feature extractors are affine covariant whereas the third one is just simi-
larity invariant and is closely similar to Lowe’s original SIFT feature extractor (DoG detector,
in fact). All local features are described using by SIFT descriptor.

To perform the image retrieval benchmark we defined a subset of the original ’The Oxford
Buildings’ dataset to compute the results in a reasonable time.

dataset = VggRetrievalDataset(’Category’,’oxbuild’,...

’OkImagesNum’,inf,...

’JunkImagesNum’,100,...

’BadImagesNum’,100);

The subset of Oxford buildings contains only 748 images as only a part of the ’Junk’ and
’Bad’ images is included. ’Bad’ are images which does not contain anything from the queries.
The original dataset consist of 5062 images.

Now an instance of a benchmark class is created. The benchmark computes the nearest
neighbours over all images. This can be too memory consuming, however the search can be
split into several parts and the results merged. The parameter ’MaxNumImagesPerSearch’
sets how many images are processed at one KNN search. For the call:

retBenchmark = RetrievalBenchmark(’MaxNumImagesPerSearch’,100);

The estimated memory consumption is approximately:
100× 2000× 128× 4 ∼ 100MB of memory
Given each image contains around 2000 features on average, each feature is described by

128 bytes long descriptor and the fact that the used KNN algorithm works only with single
(4 Byte) values.

Finally we can run the benchmark:

76



for d=1:numel(featExtractors)

[mAP(d) info(d)] =...

retBenchmark.testFeatureExtractor(featExtractors{d}, dataset);

end

Even having a subset of the Oxford buildings dataset, it takes a while to evaluate the bench-
mark for selected feature extractors. The feature extraction for a single image takes several
seconds so overall the feature extraction takes approximately:

3× 748× 3 = 6732s ∼ 2h
Giving you a plenty of time for a coffee or even a lunch. Fortunately if you have setup

Matlab Parallel Computing Toolbox running this benchmark with open matlabpool can run
feature extraction and KNN computation in parallel.

Both the features and partial KNN search results are stored in the cache so the computa-
tion can be interrupted and resumed at any time.

Average precisions

The results of the benchmark can be viewed at several levels of detail. The most general result
is the mean Average Precision (mAP), a single value per a feature extractor. The mAPs can
be visualises in a bar graph:

detNames = {’VLF-heslap’, ’VLF-harlap’, ’VLFeat-SIFT’};

bar(mAP);

The mean average precision is shown in Figure B.5 (a).

VLF-heslap VLF-harlap VLF-SIFT

mAP 0.721 0.772 0.758

Note, that these values are computed only over small part of the Oxford Buildings dataset,
and therefore are not directly comparable to the other state-of-the-art image retrieval systems
run on the Oxford Buildings dataset. On the other hand this benchmark does not include any
quantisation or spatial verification and thus is more focused on comparison of image features
extractors.

An important measure in the features extractors comparison is a number of descriptors
computed for each image, or average number of features per image. The average numbers of
features can be easily obtained using:

numDescriptors = cat(1,info(:).numDescriptors);

numQueryDescriptors = cat(1,info(:).numQueryDescriptors);

avgDescsNum(1,:) = mean(numDescriptors,2);

avgDescsNum(2,:) = mean(numQueryDescriptors,2);

It can be seen that the selected set of feature extractors produce similar number of features
with the selected settings:

VLF-heslap VLF-harlap VLF-SIFT

Avg. Descs. 1803.822 1678.195 1843.202

Avg. Query Descs. 892.582 869.255 853.582

To get better insight where the extractors differ, we can plot the APs per each query.
These values are also contained in the info structure. For example the APs for the first 15
queries can be visualised by:

queriesAp = cat(1,info(:).queriesAp); % Values from struct to single array

selectedQAps = queriesAp(:,1:15); % Pick only first 15 queries

bar(selectedQAps’);
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(b) Average precisions of the feature extractors
over the first 15 queries.

Figure B.5: Average precision of the tested feature extractors.

And the results are shown in Figure B.5 (b).
As you can see there are big differences between the queries. For example query number 8

as it is a query where the SIFT feature extractor gets much worse than other algorithms. Let’s
investigate the query number 8 in more detail. In the first step, we can show the precision
recall curves.

Precision recall curves

The precision-recall curves are not part of the results but they can be easily calculated using
the rankedListAp static method.

queryNum = 8;

query = dataset.getQuery(queryNum);

for d=1:numel(featExtractors)

% AP is calculated only based on the ranked list of retrieved images

rankedList = rankedLists{d}(:,queryNum);

[ap recall(:,d) precision(:,d)] = ...

retBenchmark.rankedListAp(query, rankedList);

end

% Plot the curves

plot(recall, precision,’LineWidth’,2);

The precision recall curves are shown in Figure B.6 (a).
In this graph it can be seen that a VLF-SIFT (DoG + SIFT descriptor) achieved lower AP

score because one of the first ranked images is wrong, therefore the area under the precision
recall curve shrinks significantly.

We can check it by showing the retrieved images.

Retrieved images

The indices of the retrieved images are stored in info.rankedList field. It contains indices
of all dataset images sorted by the voting score of each image. The details of the voting
scheme can be found in the help string of the retrieval benchmark class or in [15]. To asses
the performance of the feature extractor, let’s inspect the query number 8.

image(imread(dataset.getImagePath(query.imageId)));

% Convert query rectangle [xmin ymin xmax ymax] to [x y w h]

box = [query.box(1:2);query.box(3:4) - query.box(1:2)];

rectangle(’Position’,box,’LineWidth’,2,’EdgeColor’,’y’);
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(a) 8th query precision-recall curves of the tested
feature extractors.

(b) Query image of the 8th query with the query
bounding box.

Figure B.6: Precision recall curves and the query image of the 8th query.

The query image is shown in Figure B.6.
Having the ranked list we can show the retrieved images for all feature extractors.

rankedLists = {info(:).rankedList}; % Ranked list of the retrieved images

numViewedImages = 20;

for ri = 1:numViewedImages

% The first image is the query image itself

imgId = rankedList(ri+1);

imgPath = dataset.getImagePath(imgId);

subplot(5,numViewedImages/5,ri);

subimage(imread(imgPath));

end

Images retrieved by the VLFeat Hessian Laplace are shown in Figure B.7.
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Figure B.7: First 20 retrieved images by VLFeat Hessian Laplace feature extractor.
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Appendix C
All results for response function

threshold experiments

In this appendix, results of experiments varying response threshold, discussed in Section 5.2,
are given. In the enclosed tables it is possible to see that the definition of response function
value differ significantly per local image feature detector implementation.

In Table C.1 and C.2 are results of DTU Robot 3D experiment which tested detector
geometric precision. These values are plot in Figure 5.9 and 5.8.

In Table are results with Retrieval benchmark. These values are plot in Figure 5.10.
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VLF DoG thr. 1 2 3 4 5 6 7 8 10

Avg. num feat. 3343 2569 2006 1551 1190 937 733 573 351
Repeatability [%] 0.45 0.46 0.46 0.46 0.45 0.44 0.44 0.44 0.43
MSER min. marg. 1 2 5 10 20

Avg. num feat. 3081 2376 1353 597 162
Repeatability [%] 0.42 0.46 0.45 0.42 0.37
CMP LoG thr. 6 8 10 14 17 20 25 30

Avg. num feat. 3249 2792 2423 1829 1495 1215 868 629
Repeatability [%] 0.47 0.48 0.48 0.48 0.47 0.47 0.46 0.46
CMP DoG thr. 1 2 3 4 5 6 7 8 10

Avg. num feat. 2917 2182 1668 1273 965 743 571 435 256
Repeatability [%] 0.44 0.46 0.46 0.45 0.45 0.44 0.44 0.43 0.43
Vgg HarLapAff thr. 1e+02 1e+03 5e+03 1e+04

Avg. num feat. 1380 1274 828 597
Repeatability [%] 0.37 0.37 0.35 0.34
VLF HarLap thr. 2.5 5 1 2 4 8 1.6 3.2

Avg. num feat. 2894 2335 1795 1292 866 541 311 144
Repeatability [%] 0.39 0.38 0.37 0.37 0.35 0.37 0.36 0.33
VLF HarLapAff thr. 2.5 5 1 2 4 8 1.6 3.2

Avg. num feat. 2894 2335 1795 1292 866 541 311 144
Repeatability [%] 0.36 0.36 0.35 0.34 0.33 0.34 0.35 0.32
VGG HesLapAff thr. 1e+02 2e+02 5e+02 1e+03 2e+03 3e+03

Avg. num feat. 4898 3550 1904 977 405 200
Repeatability [%] 0.44 0.42 0.39 0.37 0.33 0.3
VLF Hessian thr. 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.005 0.007 0.01

Avg. num feat. 3327 2385 1795 1408 1133 931 662 394 201
Repeatability [%] 0.5 0.5 0.51 0.51 0.51 0.5 0.51 0.5 0.5
VLF HessLap thr. 0.002 0.0025 0.003 0.0035 0.004 0.005 0.007 0.01 0.02

Avg. num feat. 2982 2236 1740 1383 1134 801 447 211 NaN
Repeatability [%] 0.44 0.43 0.43 0.42 0.42 0.41 0.41 0.39 0.41
VLF HessAff thr. 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.005 0.007 0.01

Avg. num feat. 3327 2385 1795 1408 1133 931 662 394 201
Repeatability [%] 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.45 0.46
CMP Hessian thr. 6 7 8 9 10 12 14 16 18 20

Avg. num feat. 4331 3597 2993 2500 2098 1486 1061 757 552 412
Repeatability [%] 0.5 0.49 0.49 0.49 0.49 0.48 0.49 0.47 0.47 0.46
CMP HessAff thr. 6 7 8 9 10 12 14 16 18 20

Avg. num feat. 3042 2595 2222 1907 1637 1210 897 664 495 377
Repeatability [%] 0.48 0.48 0.47 0.47 0.47 0.47 0.47 0.45 0.45 0.44

Table C.1: Detector repeatability in DTU Robot 3D benchmark as a function of average
number of detected features per image when varying response function threshold (or min.
margin for MSER). Repeatability was computed over first 10 scenes in Linear path dataset
for the viewpoint 0.5m distant from the reference camera position.
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VLF DoG thr. 1 2 3 4 5 6 7 8 10

Avg. num feat. 3629 2791 2180 1689 1318 1036 791 600 366
Repeatability [%] 0.38 0.38 0.37 0.35 0.34 0.33 0.33 0.32 0.32
MSER min. margin 1 2 5 10 20

Avg. num feat. 3731 2862 1591 680 175
Repeatability [%] 0.36 0.37 0.35 0.35 0.33
CMP LoG thr. 6 8 10 14 17 20 25 30

Avg. num feat. 3595 3092 2664 2005 1631 1330 947 665
Repeatability [%] 0.41 0.4 0.4 0.39 0.38 0.37 0.37 0.36
CMP DoG thr. 1 2 3 4 5 6 7 8 10

Avg. num feat. 3161 2377 1806 1372 1049 799 595 448 265
Repeatability [%] 0.39 0.38 0.37 0.36 0.36 0.35 0.34 0.34 0.35
Vgg HarLapAff thr. 1e+02 1e+03 5e+03 1e+04

Avg. num feat. 1454 1321 857 623
Repeatability [%] 0.32 0.32 0.31 0.3
VLF HarLap thr. 2.5 5 1 2 4 8 1.6 3.2

Avg. num feat. 3159 2464 1834 1306 870 541 309 142
Repeatability [%] 0.4 0.39 0.39 0.37 0.36 0.34 0.33 0.33
VLF HarLapAff thr. 2.5 5 1 2 4 8 1.6 3.2

Avg. num feat. 3159 2464 1834 1306 870 541 309 142
Repeatability [%] 0.36 0.36 0.35 0.34 0.32 0.32 0.31 0.33
VGG HesLapAff thr. 1e+02 2e+02 5e+02 1e+03 2e+03 3e+03

Avg. num feat. 5217 3728 1951 1002 407 199
Repeatability [%] 0.38 0.37 0.34 0.31 0.27 0.22
VLF Hessian thr. 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.005 0.007 0.01

Avg. num feat. 3439 2453 1834 1435 1143 934 662 392 199
Repeatability [%] 0.49 0.47 0.46 0.45 0.45 0.44 0.45 0.44 0.44
VLF HessLap thr. 0.002 0.0025 0.003 0.0035 0.004 0.005 0.007 0.01 0.02

Avg. num feat. 3017 2256 1751 1386 1134 798 444 210 NaN
Repeatability [%] 0.46 0.45 0.43 0.43 0.42 0.42 0.42 0.4 0.36
VLF HessAff thr. 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.005 0.007 0.01

Avg. num feat. 3439 2453 1834 1435 1143 934 662 392 199
Repeatability [%] 0.44 0.42 0.41 0.4 0.4 0.39 0.4 0.38 0.39
CMP Hessian thr. 6 7 8 9 10 12 14 16 18 20

Avg. num feat. 4688 3903 3261 2734 2268 1558 1098 771 559 415
Repeatability [%] 0.43 0.42 0.42 0.41 0.41 0.4 0.39 0.39 0.39 0.39
CMP HessAff thr. 6 7 8 9 10 12 14 16 18 20

Avg. num feat. 3334 2841 2435 2089 1776 1264 924 674 502 382
Repeatability [%] 0.41 0.4 0.39 0.39 0.39 0.38 0.38 0.38 0.37 0.37

Table C.2: Detector repeatability in DTU Robot 3D benchmark as a function of average
number of detected features per image when varying response function threshold (or min.
margin for MSER). Repeatability was computed over first 10 scenes in Arc 2 dataset for the
viewpoint 25◦.
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VLF DoG thr. 0 2 4 6 8 10

Avg. num feat. 2637 1738 1196 800 522 333
mAP 0.73 0.75 0.73 0.65 0.6 0.51
MSER min. margin 1 2 5 10 20

Avg. num feat. 2448 2045 1284 693 279
mAP 0.83 0.83 0.82 0.78 0.69
CMP DoG thr. 0 2 4 6 8 10

Avg. num feat. 2336 1452 968 629 399 246
mAP 0.74 0.76 0.73 0.67 0.59 0.51
CMP LoG thr. 7 9 12 15 20

Avg. num feat. 2095 1903 1645 1420 1104
mAP 0.78 0.78 0.77 0.76 0.74
Vgg HarLapAff thr. 1e+02 5e+03 1e+04 5e+04

Avg. num feat. 1416 864 617 177
mAP 0.77 0.69 0.61 0.36
VLF HarLap thr. 5 2 4 1.6 3.2

Avg. num feat. 3470 2329 1750 771 425
mAP 0.67 0.61 0.58 0.47 0.37
VLF HarLapAff thr. 5 2 4 1.6 3.2

Avg. num feat. 3416 2293 1724 761 420
mAP 0.68 0.62 0.58 0.46 0.38
VGG HesLapAff thr. 5e+02 1e+03 2e+03 3e+03

Avg. num feat. 1427 741 283 129
mAP 0.76 0.67 0.52 0.39
VLF Hessian thr. 0.0025 0.0035 0.005 0.007 0.01

Avg. num feat. 4000 2933 1997 1301 748
mAP 0.72 0.69 0.65 0.6 0.54
VLF HessLap thr. 0.0035 0.005 0.007 0.01 0.02

Avg. num feat. 6098 3947 2432 1311 256
mAP 0.62 0.58 0.55 0.49 0.29
VLF HessAff thr. 0.0025 0.0035 0.005 0.007 0.01

Avg. num feat. 3889 2853 1944 1268 731
mAP 0.71 0.68 0.63 0.59 0.54
VLF HessLapAff thr. 0.0035 0.005 0.007 0.01 0.02

Avg. num feat. 6013 3894 2402 1296 254
mAP 0.64 0.6 0.57 0.51 0.3
CMP Hessian thr. 7 9 12 15 20

Avg. num feat. 2962 2212 1436 935 452
mAP 0.78 0.76 0.71 0.64 0.55
CMP HessAff thr. 7 9 12 15 20

Avg. num feat. 2238 1754 1207 820 416
mAP 0.74 0.72 0.67 0.61 0.52

Table C.3: Detector mAP in Retrieval benchmark as a function average number of detected
features per image when varying response function threshold (or min. margin for MSER).
All descriptors has been computed using CMP SIFT implementation with measurement scale
ν = 3 and without orientation assignment. Results are computed on data from Oxford
buildings dataset with a subset of 100 “Bad” images and k = 50.
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Appendix D
Evaluation of emulated detectors with

homography based benchmarks

In this appendix, we give complete results of the emulated detectors, presented in Chap-
ter 6, evaluated with most of the datasets introduced in Mikolajczyk et al. [29]. Some of
the Mikolajczyk’s datasets has been replaced with their variants from [9], which offer more
precise ground truth homographies. The repeatability score (see 3.1.2) and matching score
(see 3.1.3) has been evaluated. Matching score has been computed matching only descriptors
(see Equation 3.8) same as it is done in Šochman and Matas [38].

Results for Hessian-Laplace based emulators are given in Figure D.2 and Figure D.2,
results for DoG and Hessian based emulators in Figure D.3 and Figure D.4.
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(g) Synthetic scale
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(h) Synthetic rotation

Figure D.1: Repeatability and number of correspondences (see Section 3.1.2) of the original
Hessian-Laplace emulator and Hessian-Laplace emulator with improved patch extraction using
bilinear interpolation. Compared to the performance of the teacher VGG Hessian-Laplace.
Results with the synthetic datasets (see Section 4.2.3) computed as an average over 7 images.

86



1.12 1.38 1.9 2.35 2.8
0

500

1000

1500

2000

2500

3000

#
 C

o
rr

e
s
p
o
n
d
e
n
c
e
s

1.12 1.38 1.9 2.35 2.8
10

20

30

40

50

60

70

Scale changes

R
e
p
e
a
ta

b
ili

ty
 [
%

]

(a) Boat [29]

2 3 4 5 6
0

1000

2000

#
 C

o
rr

e
s
p
o
n
d
e
n
c
e
s

2 3 4 5 6
0

50

100

Increasing blur

R
e
p
e
a
ta

b
ili

ty
 [
%

]

(b) Bikes [9]

20 30 40 50 60
0

500

1000

1500

2000

#
 C

o
rr

e
s
p
o
n
d
e
n
c
e
s

20 30 40 50 60
0

20

40

60

80

Viewpoint angle

R
e
p
e
a
ta

b
ili

ty
 [
%

]

(c) Graffiti [9]

2 3 4 5 6
0

500

1000

1500

#
 C

o
rr

e
s
p
o
n
d
e
n
c
e
s

2 3 4 5 6
20

40

60

80

Decreasing light

R
e
p
e
a
ta

b
ili

ty
 [
%

]

(d) Leuven [29]

2 3 4 5 6
0

500

1000

1500

2000

2500

#
 C

o
rr

e
s
p
o
n
d
e
n
c
e
s

2 3 4 5 6
0

10

20

30

40

50

Increasing blur

R
e
p
e
a
ta

b
ili

ty
 [
%

]

(e) Trees [29]

60 80 90 95 98
0

500

1000

1500

2000

2500

#
 C

o
rr

e
s
p
o
n
d
e
n
c
e
s

60 80 90 95 98
0

20

40

60

80

100

JPEG compression %

R
e
p
e
a
ta

b
ili

ty
 [
%

]

(f) UBC [29]

0.50 0.75 1.00 1.25 1.50 1.75
0

1000

2000

#
 C

o
rr

e
s
p
o
n
d
e
n
c
e
s

0.50 0.75 1.00 1.25 1.50 1.75
0

50

100

scale 

R
e
p
e
a
ta

b
ili

ty
 [
%

]
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(h) Synthetic rotation

Figure D.2: Matching score and number of correct matches (see Section 3.1.3) of the original
Hessian-Laplace emulator and Hessian-Laplace emulator with improved patch extraction using
bilinear interpolation. Compared to the performance of the teacher VGG Hessian-Laplace.
Results with the synthetic datasets (see Section 4.2.3) computed as an average over 7 images.
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(g) Synthetic scale
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Figure D.3: Repeatability and number of correspondences (see Section 3.1.2) of the new DoG
and Hessian detector emulators. Compared to the performance of their teachers. Results with
the synthetic datasets (see Section 4.2.3) computed as an average over 7 images.
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Figure D.4: Matching score and number of correct matches (see Section 3.1.3) of the new DoG
and Hessian detector emulators. Compared to the performance of their teachers. Results with
the synthetic datasets (see Section 4.2.3) computed as an average over 7 images.
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