
CENTER FOR

MACHINE PERCEPTION

CZECH TECHNICAL

UNIVERSITY IN PRAGUE

M
A
S
T
E
R
’S

T
H
E
S
IS

Data Fusion for a Mobile

Exploratory Robot

Vladimı́r Kubelka

vladimir.kubelka@fel.cvut.cz

May 9, 2013

Thesis Supervisor: Michal Reinštein
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Abstract

A robust localization subsystem is a vital part of a mobile robot system; many high-level
functionalities depend on it (mapping, autonomous navigation, task planning, sensor
data postprocessing etc.) We propose a localization system for an Urban Search&Rescue
robot being developed as a part of the European research project NIFTi. We are
aiming for a higher grade of accuracy, fusing several sensor modalities to combine
their strong points. This fusion is done by means of an error state Extended Kalman
Filter and by advanced measurement preprocessing to ensure suppression of the drift
of the sensor modalities world coordinate frames. The proposed algorithm has been
extensively tested both by indoor and outdoor experiments (over 4 kilometers traveled
by the robot in demanding 3D environments with a high-precision reference). Finally,
to discover the true limits of the sensor modalities under realistic failure conditions,
several fail-case experiments have been performed and analyzed.
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Abstrakt

Robustńı lokalizace je jeden ze základńıch systémů každého mobilńıho robota, mnoho
daľśıch funkćı na ńı záviśı (mapováńı, navigace, plánováńı, pokročilé zpracováńı sen-
zorických dat . . . ) V této práci jsme navrhli systém lokalizace pro pr̊uzkumného a
záchranného mobilńıho robota vyv́ıjeného jako součást evropského výzkumného pro-
jektu NIFTi. Tento systém usiluje o vyšš́ı mı́ru přesnosti fúźı dat z r̊uzných sen-
zor̊u, využ́ıvaje jejich silné stránky. Tato fúze je realizována pomoćı algoritmu Ex-
tended Kalman Filter, pracuj́ıćıho s chybovým modelem systému, a pomoćı pokročilého
zpracováńı měřeńı, které potlačuje drift souřadných systémů jednotlivých senzorických
modalit. Algoritmus byl ověřen rozsáhlým experimentováńım ve vnitřńıch i venkovńıch
prostorech, robot urazil v́ıce než 4 kilometry v náročných podmı́nkách, to vše s vysoce
přesnou referenćı. Nakonec bylo pro zjǐstěńı skutečných možnost́ı jednotlivých sen-
zorických modalit provedeno několik experiment̊u simuluj́ıćıch podmı́nky, které zp̊usobovaly
jejich selháńı.
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Abbreviations

These are abbreviations used thorough this document:

R Robot coordinate frame
I Inertial Measurement Unit coordinate frame
N Navigation coordinate frame
O Odometry coordinate frame
ROS The Robot Operating System (www.ros.org)
SO(3) 3D rotation group
JPL Jet Propulsion Laboratory (USA)
ICP Iterative Closest Point
ODOM (Caterpillar Tracks) Odometry
VODOM Visual Odometry
IMU Inertial Measurement Unit
USAR Urban Search and Rescue (missions)
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Notation Convention

Basic notation conventions used to distinguish scalars and vectors and to notate rota-
tions and various multiplications:

x Scalar x
x Vector x = [x1, x2, x3]

T

x̂ Estimate of x
ẋ Time derivative of x
∆x Error associated with the vector x
||x|| Norm of the vector x
qB
A Quaternion q = [~qT , w]T = [x, y, z, w]T expressing a rotation from co-

ordinate frame A to frame B
(qB

A)
−1 Quaternion inversion of qB

A defined in the appendix B
ℜ(qB

A) A real part of the quaternion
C(q) 3× 3 Matrix C ∈ SO(3) expressing the same rotation the quaternion q

does, see eq. (A.10)
CB
A 3×3 Matrix C ∈ SO(3) expressing a rotation from the coordinate frame

A to the coordinate frame B
bx,A Bias of the value x expressed in the A coordinate frame
sx,A Scale of the value x expressed in the A coordinate frame
× Vector multiplication
⌊x⌋ Skew form of the vector x substituting vector multiplication: ⌊x⌋y =

( 0 −x3 x2

x3 0 −x1

−x2 x1 0

)

y = x× y

⊗ Quaternion multiplication following the JPL quaternion multiplication
proposal [1], definition in the appendix B

Ω(ω) Matrix used in the quaternion derivative [2]: Ω(ω) =
(

0 ω3 −ω2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0

)

∅N N ×N zero matrix
∅N×M N ×M zero matrix
IN N ×N identity matrix
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List of Symbols

These are symbols frequently used in equations thorough this document:

pN , ∆pN Position expressed in the N coordinate frame and its corresponding
error

qR
N Rotation quaternion expressing current attitude as a rotation from the

N frame to the R frame
δθ Error in attitude expressed as a rotation vector
vR, ∆vR Velocity expressed in the R coordinate frame and its corresponding

error
ωR, ∆ωR Angular rate expressed in the R coordinate frame and its corresponding

error
fR, ∆fR Specific force [3] measured in the I coordinate frame and expressed in

the R coordinate frame, its corresponding error
λ, ∆λ Visual odometry scale and its corresponding error
bω,I , ∆bω,I Bias of the angular rate sensors expressed in the I coordinate frame

and its corresponding error
bf,I , ∆bf,I Bias of the accelerometers expressed in the I coordinate frame and its

corresponding error
β, ∆β Odometry frame pitch (negative rotation around the y axis in the

North-West-Up convention) correction angle and its corresponding er-
ror

gN Gravitational acceleration expressed in the N frame; following our co-
ordinate frame axes convention (North-West-Up), it is gN = [0, 0, g]T

where g is approximately 9.81ms−2, depending on latitude and longi-
tude

Fc Continuous time state transition matrix
Fd Discrete time state transition matrix
Gc Noise coupling matrix
Qc System noise covariance matrix (continuous time form)
Qd System noise covariance matrix (discrete time form)
n(·) Continuous time noise term (a random variable with normal distribu-

tion and zero mean), associated with a state denoted in the subscript
σ(·) Standard deviation of the noise term associated with the state denoted

in the subscript
y(·),ŷ(·),∆y(·) Measurement vector, predicted measurement vector and innovation (or

measurement residual). All associated with measured value denoted in
the subscript

h(x),h′(∆x) Measurement and innovation functions y = h(x), ∆y ≈ h′(∆x)
H Innovation matrix
m(·) Continuous time measurement noise term (a random variable with nor-

mal distribution and zero mean), associated with a measured value
denoted in the subscript

x
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1. Introduction

The aim of this work was to design, implement and experimentally test a navigation
data fusion algorithm for an Urban Search&Rescue (USAR) robotic platform being de-
veloped as a part of the European research project NIFTi (see section 1.2). The purpose
of the fusion system is a robust localization of the NIFTi robot in harsh environments
the Search&Rescue missions typically take place in.

Robust localization and attitude determination with a sufficiently high rate is a cru-
cial component of the robot system since many high-level functionalities rely on it
(autonomous navigation or automatic return to the initial position, real-time 3D map
creation, obstacle traversing etc.) The current state of the art in localization and nav-
igation algorithms in the mobile robotics exploit many sensors available; these sensors
offer rich scale of information about the robot state (interoceptive sensors - angular
rate encoders attached to wheels or tracks, sensors monitoring states of joints in the
robot’s body, force and pressure sensors, inertial and magnetic sensors etc.) and about
the robot’s surroundings (exterioceptive sensors - various cameras: omni-directional,
stereo, IR, . . . ; laser range finders, sonars, radars etc.). Advanced miniaturization,
increasing computational performance and low power consumption of current CPUs
supported by parallelization offered by GPUs enables all the sensor data to be pro-
cessed by the robot’s system yet still leaving space for higher-level tasks. That opens a
new area of research concerning the fusion of all sensor data in such a way that would
be robust, multi-modal and exploiting strong points of the sensors.

Our system aims for higher order of accuracy while ensuring correct operation in
rough terrains including overcoming obstacles by fusing inertial measurements, odo-
metric data, visual odometry (3.4) and laser scanner data processed by the ICP algo-
rithm (3.3). The core of the fusion is realised by an error state Extended Kalman Filter
(EKF) inspired by [4, 5]. Since the NIFTi project robot was designed to operate in
unstructured environments such as collapsed buildings or tunnels blocked by mass car
accidents, localization in all three dimensions is vital for any realistic application. The
fusion system should be capable to optimally fuse the selected localization information
sources enhancing the overall accuracy. These requirements have been extensively ex-
perimentally verified (4 kilometers of distance traveled in total with a high-precision
reference).
This document is structured as follows: in the three following sections, the state

of the art in the localization sources is discussed more in detail (1.1) and the NIFTi
robotic platform is introduced (1.2) as well as the reference systems used (1.3) during
the experiments. In the following chapters, mathematical models describe the robot’s
dynamics (2) and the measurement preprocessing system (3). Then, the error state
EKF fusion algorithm is described (4) and tested on a large dataset of experiments (5).
Finally, the results are summed up in the last chapter (6).
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1. Introduction

1.1. State of the Art

The basic approach to localization in mobile robotics is a combination of wheel or track
velocity sensors with inertial measurements (angular rates and specific forces [3]). This
approach produces localization data with a high rate and it is relatively computationally
undemanding. However, as a dead-reckoning approach, it is prone to drift in position
and the heading angle (only the roll and pitch angles are observable [6] under the
condition of no retentively accelerated motion). In the case of skid-steered robots, the
situation is complicated by systematic inaccuracy in the velocity measurements [7, 8]
caused by slippage of the wheel or tracks. From these reasons, it is desirable to combine
the dead-reckoning approach with an exteroceptive sensors to suppress these drifts.

Precision of the localization can be improved by introducing camera and computer
vision algorithms resulting into visual odometry [9, 10] - an algorithm estimating con-
secutive camera poses in space based on image features (e.g. corners) co-observed by
the camera from these poses. The visual odometry algorithm possibilities have been ex-
tensively investigated since the Spirit and Opportunity Mars rover mission. The camera
types vary from a single lens cameras to multi-lens omni-directional cameras. Deter-
mined by the geometry of the task, the visual odometry exploiting images captured by
camera assembly with only one central point (concerns the NIFTi robot omni-camera
as well, Fig. 3.11) can determine positions of the camera only up-to-scale. To acquire
metric information, at least stereo-camera or a combination of a normal camera and an
IMU must be used. Independent on the camera type, visual odometry is not drift-free,
yet the state-of-the-art solutions reach accuracies below 1% of the final position error
relatively to the distance traveled. As mentioned earlier, applying these algorithms
in the mobile robotics was enabled by advance in computer technology, nevertheless,
more sophisticated variations as simultaneous localization and mapping using computer
vision is still difficult to implement on-board complying the weight and power consump-
tion requirements laid by mobile robotics.

Other sensors providing exteroceptive measurements are 3D scanners, whose minia-
turization enables them to replace sonars offering incomparably greater accuracy. Com-
monly used 3D scanners can be divided into two main groups. The first group (e.g.
Microsoft Kinect) projects structured light on the observed scene and combined with
computer vision techniques as depth from focus or depth from stereo, it provides stan-
dard color images enhanced with known depth of each pixel. An advantage of this
approach is a possibility of capturing a whole scene in one shot and therefore, the only
factor limiting attainable scanning frequency is the computational hardware perfor-
mance. The main drawback is the maximal range of the sensor, which is limited by
reach of the structured light emitter. Also, since the structured light operates at IR
wavelengths, it gets easily saturated by sunshine.

The second group - the 3D scanners estimate depth from the time a laser beam travels
between the scanner and the scanned object. These scanners show better performance
outdoors and their operational range is superior compared to the previous group. Their
drawback is a limited number of laser beams that are used in one time instant. Typically,
it is not more than 64 (Velodyne R© HDL-64E, Fig. 1.1 and 1.2), the NIFTi robot
is equipped with a SICK LMS-151 laser scanner (Fig. 1.4) emitting only one beam.
To obtain an omni-directional 3D scan, the laser beam is swept around by a high-
velocity revolving mirror (inner functionality of the sensor) scanning 3D points lying
in a plane, and the whole scanner has to be rotated in a perpendicular sense to the
mirror rotation to obtain a full 3D scan of the surrounding space (Fig. 1.5). Due to
the physical limitations of the servo which rotates the whole 3D sensor, the minimal

4



1.1. State of the Art

time period between two consecutive scans is in the order of seconds (3 seconds for
the NIFTi robot 3D scanner assembly). Laser scanners emitting several beams achieve
higher scanning frequencies, yet, the scanned point cloud is composed of several planes
corresponding to each laser beam. To create a denser 3D scan, the whole 3D scanner
can be periodically tilted achieving similar results as the one-laser-beam scanners, but
with higher frequency.

Figure 1.1. The Velodyne R© HDL-64E laser radar (lidar).
The sensor head emits and receives 64 laser beams while
rotating about its axis permitting up to 15 complete 3D
scans of its surroundings per second. Source: http://

velodynelidar.com/

Figure 1.2. A Velodyne R© HDL-64E lidar single 3D scan of a suburb street.
Source: velodynelidar.com

The algorithm processing the 3D data is called ICP (Iterative Closest Point) odometry
[11]. The ICP odometry iteratively matches new 3D pointclouds on the previous ones
creating a 3D map of the robot surroundings. Apart from the (monocular) visual
odometry, the resulting position estimates include metric scale. Correct function of
the algorithm is conditioned by sufficient amount of 3D features reachable by the 3D
scanner (i.e. large flat areas pose a problem), however, the NIFTi robot deployment
scenarios comply this requirement.

The output of the ICP algorithm is position relative to its inner 3D pointcloud map.
The main issue observed with the NIFTi robot is that it does not necessarily create a
correct map - while locally correct, the map as a whole tends to slightly twist or bend.

5
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1. Introduction

That causes a problem: the position and the attitude estimated by the ICP odometry
collide with other position information sources (visual odometry, track or wheel odom-
etry etc.). For aerial robots, Weiss [4] brings an idea of augmenting a system state
held by the fusion system with rigid transformations between these maps (coordinate
frames), but according to observability study he carried out, additional sensors are
needed to make these rigid transformations observable. Also, as our experiments have
shown, maps created by different localization systems do not necessarily differ only by
a rigid transformation, more complex deformations were observed (e.g. bending and
twisting) and it is not clear how would a local approximation by rigid transformation
affect the overall performance. From that reason, we have proposed to treat the ICP
and visual odometries as velocity rather than absolute position estimating algorithms
(3.3).

1.2. NIFTi Search&Rescue Robotic Platform

The robotic platform (Fig. 1.3) designed by a Swiss company BlueBotics has been
developed as a part of the European USAR research project NIFTi (www.nifti.eu).
The goal of the project is to investigate and develop means of a human-robot coopera-
tion; the robotic platform is used to test these new approaches experimentally. It was
designed to search at disaster or accident sites for victims and threads to the rescue
personnel. It cooperates with a UAV (unmanned aerial vehicle) communicating, among
others, each others position and thus, the localization subsystem is a vital part of the
whole system.

Figure 1.3. A prototype of the robotic platform Absolem; designed by BlueBotics (www.
bluebotics.ch) and developed by the NIFTi project.

The robot is equipped with the SICK LMS-151 laser scanner (Fig. 1.4,1.5), the Point-
Grey Ladybug R©3 omni-directional camera (Fig. 3.11), the X-Sens MTI-G inertial mea-
surement unit (IMU) and various internal state sensors (motor velocities sensors, angle
sensors measuring posture of joints, temperature sensors, . . . ). The computational
power is delivered by the Intel R© CoreTM2 Quad Mobile processor supported by an

6
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1.3. Reference Systems for Ground Truth Measurements

embedded Kontron R© PC. Connection to a human operator is realized by a dedicated
WiFi link, it can be teleoperated 4 hours using a single battery, which can be replaced
without turning the robot off when depleted.

Figure 1.4. The SICK
LMS-151 lidar at-
tached to the NIFTi
robot.

 

Figure 1.5. A room 3D point cloud scan acquired during the NIFTi robot SICK LMS-151
scanner calibration (not part of this work). Points are colored by the point X coordinate.

1.3. Reference Systems for Ground Truth Measurements

Two different reference systems were used during the experimental part of this work.
The first one was the Vicon Bonita IR marker tracking system installed in a dedicated
laboratory of the ETH Zürich. It consisted of 12 high-speed high-resolution cameras
(Fig. 1.6) capturing the whole laboratory and of small ball markers reflecting IR light
(1.7) attached to the body of the robot. This reference system, given that the markers
are observed by a sufficient number of cameras, reach sub-millimeter accuracy. The
position information was incorporated directly into the robot system and thus, each
reference sample is labeled by a time stamp corresponding to all other sensor measure-

7



1. Introduction

ments acquired at that time instant. The rate of the reference is approximately 80
Hz.
The second reference system was the Leica TS15 I theodolite (Fig. 1.8) automatically

tracking a prism marker (Fig. 1.9) attached to the robot. The horizontal and vertical
angle measurement accuracy is 5” (5/3600 degree), the distance measuring accuracy is
3 mm (in the continuous measuring mode) with range up to 1000m (if using the Mini
Prism). The theodolite was connected to a laptop via an RS-232 serial link continuously
registering the prism position (at 15Hz rate).

Figure 1.6. The Vicon Bonita
(www.vicon.com) cameras in-
stalled in the laboratory of the
ETH Zürich.

Figure 1.7. The IR light reflect-
ing markers used with the the
Vicon reference system. In
this picture, the markers have
been illuminated by the cam-
era flash.

8
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1.3. Reference Systems for Ground Truth Measurements

Figure 1.8. The Leica TS15 I theodolite
setup during the hallway experiment. It
is measuring the distance to the prism
attached to the robot with frequency of
15Hz. The measurement is sent to the
laptop via a RS-232 link. Similarly to
the Vicon system measurements, these
are published inside the robot system
being labeled with the current robot’s
system time.

Figure 1.9. The Leica GRZ101 360 De-
gree Mini Prism (3cm high). It
was attached to the robot to benefit
from the theodolite’s tracking function-
ality. (figure adopted from http://www.

surveyequipment.com/

9
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2. System Model

The object being localized - in our case, the NIFTi robot - is modeled as a rigid body
with a constant rate of change of angular rates and velocities (ω̇, ȧ = const.). Presence
of a constant gravitational acceleration is expected and incorporated into the system
model equations. No dissipative forces are considered.

There are four coordinate frames considered:

R(obot)
frame coincides with the defined center of the robot.

I(MU)
frame represents the inertial measurement unit coordinate frame as defined by its
manufacturer.

O(dometry)
frame represents the tracked gear frame of the robot.

N(avigation)
frame represents the world frame.

In all the coordinate frames, the North-West-Up axes convention is followed, with
the x axis pointing forward (or to the North in the N frame), the y axis pointing to the
left (or to the West) and the z axis pointing up. Rotations around each axis follow the
right-hand rule (Fig. 2.1).

Figure 2.1. Coordinate frame
axes convention. In the case
of the N frame, the X axis
points towards North, Y axis
to the West and the Z axis
points up.

x 

y 

z 

ωx 

ω
z
 

ω
y
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2.1. Non-Linear System Model

2.1. Non-Linear System Model

The fundamental part of the system are differential equations describing development
of its state in time. The state has been defined as

x =





























pN

qR
N

vR

ωR

fR
λ

bω,I

bf,I

β





























(2.1)

where pN is the position of the robot in the N frame, qR
N is a unit quaternion represent-

ing the attitude of the robot, vR is the velocity of the robot expressed in the R frame,
ωR is the angular rate, fR is the specific force, λ is the scale of the visual odometry,
bω,I and bf,I are the accelerometer and angular rate sensor biases expressed in the I
coordinate frame and β is the rotation of the O frame around the y axis.

The state of the robot modeled as a rigid body movement propagates in time accord-
ing to these equations [2, eq. 110], [12, eq. 5]:

ṗN = CT
(qR

N
)
vR (2.2)

q̇R
N =

1

2
Ω(ωR)q

R
N (2.3)

v̇R = fR − C(qR
N
)gN + ⌊vR⌋ωR (2.4)

ω̇R = 0 ḟR = 0 λ̇ = 0

ḃω,I = 0 ḃf,I = 0 β̇ = 0 (2.5)

where gN = [0, 0, g]T and Ω(ωR) in (2.3) is a matrix representing a quaternion and
vector product operation [2, eq. 108]. It is constructed as

Ω(ω) =









0 ω3 −ω2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0









(2.6)

In (2.5), time derivations of the angular rates and the specific forces are equal to zero
- usually, they are considered being an input rather than a state. However, we have
included them into the state vector and let the Kalman filter update them.
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2. System Model

2.2. Linear Error Model

To exploit benefits associated with small values of rotation, we define the error state
[4, eq. 3.25]

∆x =





























∆pN

δθ
∆vR

∆ωR

∆fR
∆λ

∆bω,I

∆bf,I

∆β





























(2.7)

whose components express difference between the true real-world value and our best
estimate, e.g.

pN = p̂N +∆pN (2.8)

where the p̂N is our best estimate of the true value. There is a complication with the
quaternion representing attitude because to combine two rotations, quaternion product
is defined instead of a simple sum. To express difference between the true value and
our best estimate, the error quaternion is defined [2, eq. 158]

δq = q⊗ q̂−1 (2.9)

which is for small errors in attitude approximately

δq ≈ [ ~δq
T
, 1]T (2.10)

where ~δq is the vector part of the δq. We can express this small rotation in a form of
a rotation vector [2, eq. 162] δθ:

δθ = 2 ~δq (2.11)

Having the error state defined, we can describe the error state propagation in time
the same way we did with the system state:

∆ṗN ≈ CT
(q̂R

N
)
∆vR − CT

(q̂R
N
)
δθ (2.12)

δθ̇ ≈ −⌊ω̂R⌋δθ +∆ωR + nθ (2.13)

∆v̇R ≈ ∆fR − ⌊C(q̂R
N
)gN⌋δθ + ⌊v̂R⌋∆ωR − ⌊ω̂R⌋∆vR + nv (2.14)

∆ω̇R = nω ∆ḟR = nf ∆λ̇ = nλ

∆ḃω,I = nb,ω ∆ḃf,I = nb,f ∆β̇ = nβ (2.15)

where the approximations in (2.12-2.14) remind the fact that some terms have been
neglected (∆×∆ ≈ 0, C(δq) ≈ I). The process of investigating the error propagation
is sometimes called perturbation analysis, see [13, pp. 46-47], [14]. Detailed derivation of
these three equations can be found in the appendix A. In contrast with the non-linear
time propagation equations, the error model equations incorporate noise terms n(·).
These noise terms model disturbances in the system as random variables, which drive
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2.3. Linear Error Model in Matrix Form

changes in the states. They are vital for the resulting Kalman filter tuning, since they
affect covariance of the states. Note that the position differential equation does not
incorporate any noise term, since there is expected no direct disturbance, that could
affect position directly.

A similar approach proposed by [4] treats angular rates and linear accelerations as
direct system inputs. We have chosen to treat them as a part of the system state, how-
ever, we were unable to define direct inputs, that would drive these states. Therefore,
the noise terms in the equations (2.13-2.14) express this uncertainty.

2.3. Linear Error Model in Matrix Form

The error model equations can be expressed in a compact matrix form

˙̃x = Fc∆x+Gcn (2.16)

where Fc is a continuous time state transition matrix, Gc is a noise coupling matrix and
n is a noise vector composed of all the n(.) terms. Putting all the equations together,
the Fc matrix looks like

F =

































∅3 −CT
(q̂R

N
)

CT
(q̂R

N
)

∅3 ∅3 ∅3×1 ∅3 ∅3 ∅3×1

∅3 −⌊ω̂R⌋ ∅3 I3 ∅3 ∅3×1 ∅3 ∅3 ∅3×1

∅3 −⌊C(q̂R
N
)gN⌋ −⌊ω̂R⌋ ⌊v̂R⌋ I3 ∅3×1 ∅3 ∅3 ∅3×1

∅3 ∅3 ∅3 ∅3 ∅3 ∅3×1 ∅3 ∅3 ∅3×1

∅3 ∅3 ∅3 ∅3 ∅3 ∅3×1 ∅3 ∅3 ∅3×1

∅1×3 ∅1×3 ∅1×3 ∅1×3 ∅1×3 0 ∅1×3 ∅1×3 0

∅3 ∅3 ∅3 ∅3 ∅3 ∅3×1 ∅3 ∅3 ∅3×1

∅3 ∅3 ∅3 ∅3 ∅3 ∅3×1 ∅3 ∅3 ∅3×1

∅1×3 ∅1×3 ∅1×3 ∅1×3 ∅1×3 0 ∅1×3 ∅1×3 0

































(2.17)

and the Gcn term is

Gcn =































∅3 ∅3 ∅3 ∅3 ∅3×1 ∅3 ∅3 ∅3×1

I3 ∅3 ∅3 ∅3 ∅3×1 ∅3 ∅3 ∅3×1

∅3 I3 ∅3 ∅3 ∅3×1 ∅3 ∅3 ∅3×1

∅3 ∅3 I3 ∅3 ∅3×1 ∅3 ∅3 ∅3×1

∅3 ∅3 ∅3 I3 ∅3×1 ∅3 ∅3 ∅3×1

0 0 0 0 1 0 0 0

∅3 ∅3 ∅3 ∅3 ∅3×1 I3 ∅3 ∅3×1

∅3 ∅3 ∅3 ∅3 ∅3×1 ∅3 I3 ∅3×1

0 0 0 0 0 0 0 1























































nθ

nv

nω

nf

nλ

nb,ω

nb,f

nβ

























(2.18)

The noise coupling matrix describes how particular noise terms affect the system
state. Each n(·) term is a random variable with Gaussian probability distribution.
Properties of these random variables are described by their covariances in the system
noise matrix Qc and since they are expected to be independent, the matrix Qc is
diagonal Qc = diag(σ2

θx
, σ2

θy
, σ2

θz
, σ2

vx
, σ2

vy
, · · · ) where σ is standard deviation.

2.4. Linear Error Model Discretization

The previous section describes the error model in the continuous time form, which
can’t be used for computer processing - the expectation of dt approaching zero can’t

13



2. System Model

be satisfied, there will always be some finite ∆t, therefore, we have to transform the
continuous equations (or rather the continuous matrix equation) to the discrete time
domain. To do so, we have decided to use the Van Loan discretization method [15]
instead of explicitly expressing the values of the discretized matrices as [5] did.
The Van Loan approach defines matrix M

M =

[

−Fc GQcG
T

∅ F T
c

]

∆t (2.19)

and claims that

N = eM =

[

. . . F−1
d Qd

∅ F T
d

]

(2.20)

From N , discretized system matrix Fd can be extracted. The discretized system noise
matrix Qd can be obtained by left multiplying the upper right part of N by Fd.
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3. Measurement Model

The previous chapter describes mathematical model of the system. However, such a
model is only an approximation of the real robot dynamics, moreover, it is impossible
to measure the system state exactly, there is always some uncertainty. Therefore,
even if a perfect model of the state was known, it would be impossible to initialize it
correctly. From these reasons, it is necessary to provide another source of information,
that continuously corrects the model of the system. In our case, this source are the
sensors attached to the robot that provide measurements of the current state of the
robot.

Generally, the measured value y can be described as a sum of a function h(x) of the
state x and of some random noise m caused by physical characteristics of the particular
sensor:

y = h(x) +m (3.1)

Similarly, using the same function h, we can express our prediction of the measured
value based on what is currently known about the system:

ŷ = h(x̂) (3.2)

There will surely be some difference ∆y = ŷ − y caused by imperfection in the state
estimate as well as by the sensor errors. Following the ideas from the previous chapter,
this difference can be expressed in terms of the error state ∆x (2.7):

∆y = y − ŷ = h(x)− h(x̂) +m

= h(x̂+∆x)− h(x̂) +m
(3.3)

In the case of h being linear, (3.3) becomes

∆y = h(∆x) +m (3.4)

however, the condition of linearity is not always fulfilled. Nevertheless, we will always
be able to approximate the behavior of h in some close proximity to the current state
x̂ by a similar function h′, which is linear in elements of x̂ such that

h(x̂+∆x)− h(x̂) ≈ h′(∆x)|x̂ = Hx̂∆x (3.5)

where Hx̂ is an innovation matrix projecting observed difference in measurement on the
error state elements.

3.1. Inertial Measurement Unit

The inertial measurement unit (IMU) is capable of measuring specific force [3] in all
three dimensions as well as angular rates, also along all three axes.

The specific force measurement is a sum of acceleration and gravitational force, but
the measurement also contains a bias, i.e. a constant or slowly changing value indepen-
dent of the actual acting forces, and noise, which is expected to have normal probability
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3. Measurement Model

distribution with a zero mean. All the values are measured in the IMU sensor coordinate
frame I. Therefore,

yf,I = fI + bf,I +mf,I (3.6)

where yf,I is the measurement, fI is the true specific force, bf,I is the sensor bias and
mf,I is the sensor noise.
Since the interesting value yf,I is expressed in the I frame, we define a constant

rotation matrix CI
R, which rotates vectors expressed in the R (Robot) frame to the I

frame. Translation between the I and R frames does not affect the measured values
directly, thus, it is not considered. Since the IMU is placed close to the R frame origin,
we neglect the centrifugal force induced by a rotation of the R frame and conditioned
by non-zero translation between the R and I frames. Nevertheless, using the rotation
matrix, we can express the measurement using the system state:

yf,I = CI
RfR + bf,I +mf,I (3.7)

where both fR and bf,I are elements of the system state. If we compare the measured
value and the expectation of the measurement, we can express the h function which is,
in this case, equal to the h′

yf,I − ŷf,I = ∆yf,I = CI
RfR + bf,I − CI

Rf̂R − b̂f,I +mf,I

= CI
R∆fR +∆bf,I +mf,I

(3.8)

and which can be expressed in the Hx̂∆x form as

∆yf,I =
[

∅3 ∅3 ∅3 ∅3 CI
R ∅3×1 ∅3 I ∅3×1

]

∆x+mf,I (3.9)

where the error state ∆x was defined in (2.7).
The angular rate measurement is treated identically; the output of the sensor is

yω,I = ωI + bω,I +mω,I (3.10)

where ωI is the angular rate, bω,I is the sensor bias and mω,I is the sensor noise.
Comparing to the expected measurement, a measurement residual is obtained:

yω,I − ŷω,I = ∆yω,I = CI
R∆ωR +∆bω,I +mω,I (3.11)

which can be expressed in the matrix form

∆yω,I =
[

∅3 ∅3 ∅3 CI
R ∅3 ∅3×1 ∅3 I ∅3×1

]

∆x+mω,I (3.12)

3.2. Caterpillar Tracks Odometry

The NIFTi robot (1.2) is equipped with caterpillar tracks and therefore, steering is
realized by setting different velocities for each of the tracks (skid-steering). The ve-
locities are measured by incremental optical angle sensors with approximate sampling
frequency of 15 Hz.
The problem of skid-steered odometry is described, among others, in [7, 16]. The

main problem associated with the caterpillar tracks is slippage, which is inevitable when
the robot turns. The slippage is affected by many parameters including the type and
local properties of the surface robot traverses and it is very difficult to model. The
authors of [7, 16] propose compensation for non-linear distribution of slippage between
the tracks, which was estimated experimentally.
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3.2. Caterpillar Tracks Odometry

Based on experience with our robot, we neglect the slippage making this assumption:

vO,x,simple =
vr + vl

2
(3.13)

θ̇O,simple =
vr − vl

D
(3.14)

where vO,x,simple is the robot forward velocity; the velocities in the Y and Z axes are
set to zero. The θ̇O,simple term is the angular rate of the robot about its Z axis, vl and
vr are track velocities measured by incremental optical sensors and D is the distance
between the tracks (Fig. 3.1). Although (3.14) provides angular rate measurement,
preliminary experiments have shown that its inaccuracy makes it unusable. From that
reason, we utilize only (3.13) for the fusion.

To choose between the advanced odometry proposed by [7, 16] and our simple solu-
tion, we have performed several experiments, results of one of them are shown in Fig. 3.2.
We observed no significant performance improvement using the slippage-compensating
odometry algorithm and from that reason, we choose to continue using our simple so-
lution expecting that the localization errors observable in the Fig. 3.2 would be dealt
with by means of the fusion system we propose.

Even simplest experiments showed a necessity of a proper alignment of R and O
frames. Since the robot position is obtained by integration of velocity expressed in the
R frame, we define a rotation matrix CO

R :

vO = CO
RvR (3.15)

which expresses the vR in the O frame. In the case of the NIFTi robot, we observed a
minor misalignment of these two frames. It consisted of a rotation about the Y axis by
one degree. Although small, this rotation caused the estimated position to rise in the
Z direction constantly while the robot moved forward. We propose two approaches to
handle the CO

R . The first one handles it as a constant value and expects a calibration
to be performed. The second one handles it as a part of the system state and lets the
EKF to estimate it on-the-run. These two approaches are compared in the end of this
section.

3.2.1. Constant Transformation between the Odometry and the Robot
Frames

The Constant Transformation approach leads to simpler equations but requires cal-
ibration of the CO

R transformation. The measurement equations yield:

yv,O = CO
RvR +mv,O (3.16)

where yv,O is the linear velocity measured by the track odometry, expressed in the O
frame. Because of the linearity of this relation, the measurement innovation is

yv,O − ŷv,O = ∆yv,O =

= CO
RvR − CO

R v̂R +mv,O

= CO
R∆vR +mv,O

(3.17)

and expressed in the matrix form

∆yv,O =
[

∅3 ∅3 CO
R ∅3 ∅3 ∅3×1 ∅3 ∅3 ∅3×1

]

∆x+mv,O (3.18)
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D O frame 

Figure 3.1. Geometry of the (simple) caterpillar track odometry. vl and vr stand for measured
track velocities, vO,x and θ̇O correspond to (3.13) and (3.14). The O frame is depicted outside
the robot body for better clarity, its origin coincides with the tracked gear of the robot as
indicated by the black dashed line. This figure was adopted from [8]
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Figure 3.2. Comparing the odometry proposed by [7, 16] with the simple one proposed in
this work. To generate this output, our fusion algorithm was used instead of direct velocity
integration. (The average error is defined in the section 5)

3.2.2. Estimated Transformation between the Odometry and the Robot
Frames

The Estimated Transformation approach handles the transformation between the two
frames as a part of the system state and given a measurement (velocity measurement
originating from a laser scan, visual odometry or a similar exterioceptive sensor) that
makes this transformation observable, it is estimated by the EKF on-the-run with
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3.2. Caterpillar Tracks Odometry

no need for calibration.
The transformation is limited to only one rotation about the Y axis and thus, only

one variable representing angle is sufficient (the β angle and the ∆β error angle). This
simplification is determined by the robot construction, where the track gear is attached
to the robot body by joints with one degree of freedom - the rotation about the axis Y .
This connection shows a minor backlash corresponding to the one-degree misalignment.
In this approach, the rotation matrix CO

R yields

CO
R (β) =





cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ



 (3.19)

where the β is the the element of the system state. Then, the corresponding innovation
yields

∆yv,O = yv,O − ŷv,O +mv,O

= CO
R (β)vR − CO

R′(β̂)v̂R +mv,O

= CR′

R (∆β)CO
R′(β̂)(v̂R +∆vR)− CO

R′(β̂)v̂R +mv,O

= (CR′

R (∆β)− I)CO
R′(β̂)v̂R + CR′

R (∆β)CO
R′(β̂)∆vR +mv,O (3.20)

∆yv,O =

=





cos∆β − 1 0 sin∆β
0 0 0

− sin∆β 0 cos∆β − 1



CO
R′(β̂)v̂R

+





cos∆β 0 sin∆β
0 1 0

− sin∆β 0 cos∆β



CO
R′(β̂)∆vR +mv,O (3.21)

where R′ is a hypothetical coordinate frame constructed by rotating the O frame by
the estimated rotation. This form, however, is not suitable for the H matrix form. We
have to derive partial derivatives along the ∆x state at the system state estimate x̂.
The only non-zero partial derivatives are the ones along the ∆β and ∆vR

∂∆yv,O

∂∆β

∣

∣

∣

∣ ∆β=0
∆vR=[0,0,0]T

=





− sin∆β 0 cos∆β
0 0 0

− cos∆β 0 − sin∆β



CO
R′(β̂)v̂R

+





− sin∆β 0 cos∆β
0 0 0

− cos∆β 0 − sin∆β



CO
R′(β̂)∆vR

∣

∣

∣

∣

∣

∣ ∆β=0
∆vR=[0,0,0]T

=





0 0 1
0 0 0
−1 0 0



CO
R′(β̂)v̂R

(3.22)

similarly, the second partial derivative yields

∂∆yv,O

∂∆vR

∣

∣

∣

∣ ∆β=0
∆vR=[0,0,0]T

=





cos∆β 0 sin∆β
0 1 0

− sin∆β 0 cos∆β



CO
R′(β̂)

∣

∣

∣

∣

∣

∣ ∆β=0
∆vR=[0,0,0]T

= CO
R′(β̂)

(3.23)
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Finally, the linearized matrix form is

∆yv,O =



∅3 ∅3 CO
R′(β̂) ∅3 ∅3 ∅3×1 ∅3 ∅3





0 0 1
0 0 0
−1 0 0



CO
R′(β̂)v̂R



∆x+mv,O

(3.24)

3.2.3. Comparison of the Constant and the Estimated C
O
R Transformation

Approaches

To choose between the two approaches in determining the CR
O transformation, an ex-

periment was performed (Fig. 3.3). It consisted of robot passing through a straight
hallway 100m long. Under these conditions, we expected the β angle estimation to
work correctly resulting in the same value as the one obtained by calibration.

Figure 3.3. The Hallway experiment
setup in the Autonomous System Lab,
ETH Zürich. This experiment was
used to verify or to negate the β angle
on-the-run estimation, using the Leica
TS15 I (1.3) theodolite as a source of
reference. The conditions were ideal:
100m long hallway, perfectly leveled.

However, the value did not converge to the correct value and therefore, the position
estimate kept drifting (Fig. 3.4 and 3.5). Similar results were obtained for other ex-
periments. We conclude, that the condition of observability of the β angle was not
met. Since the measurement that was supposed to make it observable was velocity
provided by ICP (3.3), we analyzed its output in detail and discovered, that the direc-
tion of velocity expressed in the R frame is not accurate (the magnitude of the error
is approximately one degree) and moreover, the error was composed of a noise (that
was expected and the fusion algorithm would compensate it) and of a bias. This bias
made the β angle unobservable since the ICP velocity measurement is the only one
that provides this information (Visual Odometry position or velocity are not used for
reasons explained in the section 3.4).
The conclusion is that the constant transformation CR

O obtained by calibration
is used, leaving the estimation approach for further work, since it (potentially) offers
a more robust solution not demanding a user of the system to obtain the parameter
manually.
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Figure 3.4. Example of the β angle estimation during an indoor experiment hallway (see Ap-
pendix C). It is apparent in the left part of this plot that the estimate of β converges to an
inaccurate value (compare it with the constant, calibrated value). The right part of the plot
shows effect of this inaccuracy on the average error(5) against the Leica reference.
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Figure 3.5. Example of the β angle estimation effect on position (mainly the Z (Up) axis).
Although the β estimate error was relatively small (0.5◦) , the drift in the position is clearly
observable.
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3.3. Iterative Closest Point Laser Scan Matching Odometry

(ICP)

The ICP algorithm is used to estimate translation and rotation between every new
incoming laser scan of the robot surroundings and a laser point cloud map created
until that time from previously registered laser scans. This approach goes through a
rapid development these days, for a state-of-the-art study, see [11]. An example of a
real-world object represented by a point cloud is depicted in Fig. 3.6.

Figure 3.6. Testing environment scanned by laser, the resulting point cloud colored by eleva-
tion.

In this work, three approaches using these position measurements were proposed
and tested. All of them aim to use the measurement as a velocity rather than abso-
lute position from reasons mentioned in the section 1.2. The first proposed approach,
which is called incremental position approach, treats an ICP localization measurement
as a movement expressed in the N coordinate frame relative to the previous ICP mea-
surement. Its purpose is to overcome the extremely low scanning frequency and the
nonlinear behavior of the system during a single 3D scan. However, it is impossible
to correctly discretize the system equations respecting the system non-linear dynamics
and the scanning frequency at the same time and thus, corrections, that propagate to
the system state from this measurement tend to be inaccurate as well. The second
approach treats the ICP measurement as a velocity in the R frame (velocity approach)
and is expected to perform better for sensor biases estimation, which are not observ-
able directly. This approach expects the robot to move linearly between two ICP scans
(allowing a simultaneous arbitrary rotation), which is a strong assumption and also a
major drawback of this approach. The last approach - the trajectory approach tries
to overcome the assumption of a linear movement laid by the previous approach by a
sub-optimal usage of the estimated state to approximate a probable behavior of the
system between two consecutive ICP scans. The Trajectory Approach was chosen as
the final solution for reasons described in (3.3.4).

22
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3.3.1. Incremental Position Approach ICP Aiding

The incremental position aiding provides an increment in position and attitude relative
to the previous measurement step, while the position increment is considered in the
R frame and thus behaving as a velocity measurement independent of the current N
frame relationship to the ICP world frame (these two are expected to drift away since
the ICP is not drift-free while registering new parts of the point cloud map).

To express an increment in ICP position between ICP discreet times i − 1 and i
expressed in the R frame at the ICP discrete time i − 1 (Fig. 3.7), we remember the
position and attitude provided by the ICP in the previous ICP measurement time i− 1
and use them to evaluate the transformation:

∆pR,ICP,i = C(qR
N,ICP,i−1

)(pN,ICP,i − pN,ICP,i−1) (3.25)

Then, this increment is expressed in the N frame equivalent to the ICP world frame at
the system discrete time k′ ≡ (i− 1):

∆pN,ICP,i = CT
(qR

N,k′
)
∆pR,ICP,i (3.26)

The position increment measurement evaluated this way suppresses the effect of the
N and ICP world frames drift effect by ignoring it and thus behaving as a velocity
measurement in the R frame. Comparing this measurement with the predicted one at
the current system time k ≡ i:

∆y∆p,ICP = ∆pN,ICP,i − ∆̂pN,k +m∆p,ICP (3.27)

∆y∆p,ICP = ∆pN,ICP,i − (p̂N,k − p̂N,k′) +m∆p,ICP (3.28)

provides us a measurement residual, whose projection to the error state is

∆y∆p,ICP =
[

I3 ∅3 ∅3 ∅3 ∅3 ∅3×1 ∅3 ∅3 ∅3×1

]

∆x+m∆p,ICP (3.29)

Similarly, we process the attitude measurement relatively to the previous one to sup-
press the ICP world frame drift. To do so, we use the previous measurement to extract
rotation of the body frame between these measurements:

qR
N,ICP,i = qR

R′,ICP ⊗ qR′

N,ICP,i−1 (3.30)

qR
R′,ICP = qR

N,ICP,i ⊗
(

qR′

N,ICP,i−1

)−1
(3.31)

where qR
R′,ICP is the rotation that happened between the two consequent ICP measure-

ments. To provide it as a measurement, we apply this rotation to a stored estimated
attitude at the system time k′ ≡ i− 1:

yq,ICP = qR
R′,ICP ⊗ qR

N,k′ (3.32)

To express the measurement residual, we follow the error quaternion definition (2.9),
the error quaternion yields

δqICP,i = q̂R
N,k ⊗ (yq,ICP )

−1 (3.33)

where q̂R
N,k is the attitude estimate at the system time k ≡ i. We express this residual

rotation by means of a rotation vector δθICP,i

δθICP,i = 2 ~δqICP,i (3.34)

which can be projected onto the error state as

∆yδθ,ICP =
[

∅3 I3 ∅3 ∅3 ∅3 ∅3×1 ∅3 ∅3 ∅3×1

]

∆x+mδθ,ICP (3.35)
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Figure 3.7. Two consecutive ICP localization measurements (at discrete times i− 1 and i) in
the N frame. For incremental approach, knowledge of the previously estimated position and
attitude in time i− 1 is also necessary.

3.3.2. Velocity Approach ICP Aiding

The second approach to applying ICP measurements linearly interpolates the robot
position and attitude between these measurements. It is assumed that the robot moves
directly from the previous ICP measurement position to the current one with respect to
the N frame, rotating from the previous attitude to the current one by a single, constant
angular rate rotation. The measurement provided to the EKF fusion algorithm is then
the constant angular rate yωR,ICP and a velocity yvR,ICP expressed in the R frame as
well. These values can be generated with an arbitrary frequency, but only after the
latest ICP measurement arrives. This lays a requirement on the EKF algorithm, which
has to be able to rewind back into history and recompute the all the state estimates
since the previous ICP measurement. However, it is a common technique adopted by
many localization and mapping algorithms.
The essential part of this algorithm is to evaluate the correct rotation between the

two consecutive ICP measurements. For that, we utilize the native quaternion repre-
sentation, however, before evaluating the qR

R′,ICP rotation quaternion, we need to check
for the rotation to the rotation quaternion mapping issue. Every rotation (up to the
2π period) can be mapped onto two unit quaternions, q and −q. To obtain a correct
qR
R′,ICP rotation quaternion, we have to choose between these two that one, which is

closer to the other quaternion representing the second ICP attitude measurement. To
so that, we fix the first ICP quaternion qR′

N,ICP,i−1 and choose between the qR
N,ICP,i and

−qR
N,ICP,i following this rule:

qR
N,ICP,i :=

{

−qR
N,ICP,i if ||qR′

N,ICP,i−1 − qR
N,ICP,i|| > ||qR′

N,ICP,i−1 + qR
N,ICP,i||

qR
N,ICP,i otherwise

(3.36)
then, we get the qR

R′,ICP using equations (3.30) and (3.31). Note that we did not
apply the (3.36) rule in the previous Incremental Position Approach since we were not
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3.3. Iterative Closest Point Laser Scan Matching Odometry (ICP)

interested in the angular velocities causing the rotations. The angular velocity can be
extracted from the qR

R′,ICP (see [2, eq. 3,4]):

θRR′,ICP = 2arcsin ||~qR
R′,ICP ||

~qR
R′,ICP

||~qR
R′,ICP ||

(3.37)

ωR,ICP =
1

t(i)− t(i− 1)
θRR′,ICP (3.38)

where θRR′,ICP is a rotation vector equivalent to the quaternion qR
R′,ICP and t(i) and

t(i− 1) are times corresponding to the the discrete times i and i− 1 respectively. This
angular rate can be used directly as a measurement, the corresponding measurement
residual projection on the error state vector yields

∆yω,ICP =
[

∅3 ∅3 ∅3 I3 ∅3 ∅3×1 ∅3 ∅3 ∅3×1

]

∆x+mω,ICP (3.39)

To express an ICP velocity in the R frame, we first evaluate the velocity in the N
frame

vN,ICP =
pN,ICP,i − pN,ICP,i−1

t(i)− t(i− 1)
(3.40)

Transformation from the N frame to the R frame is composed of two rotations: qR′

N,ICP,i−1

and qR′′

R′,ICP (t) for arbitrary time t between the two consequent ICP measurements in
the discrete times i−1 and i. To express the second quaternion representing the partial
rotation between frames R’ and R”, we follow the equations [2, eq. 3,4] and use the
result from (3.38)

qR′′

R′,ICP (t) =





sin
(

||ωR,ICP ||(t−t(k′))
2

)

ωR,ICP

||ωR,ICP ||

cos
(

||ωR,ICP ||(t−t(k′))
2

)



 (3.41)

where t(k′) is the time of the previous ICP measurement corresponding to the ICP
discrete time i− 1. Then, the velocity expressed in the R frame is simply obtained by
a transformation

vR,ICP (t) = C
(qR′′

R′,ICP
(t)⊗qR′

N,ICP,i−1
)
vN,ICP (3.42)

which can be used directly as a measurement, whose projection onto the error state
vector yields

∆yv,ICP =
[

∅3 ∅3 I3 ∅3 ∅3 ∅3×1 ∅3 ∅3 ∅3×1

]

∆x+mv,ICP (3.43)

3.3.3. Trajectory Approach ICP Aiding

The Trajectory Approach improves the previous one by adding some knowledge about
the trajectory shape; the previous Velocity Approach assumed straight path between
every two ICP measurements. Experiments have shown that such an assumption may
show bad performance during more complex movements - we call it corner cutting.
However, since the knowledge of the trajectory shape is based on the fusion algorithm
estimated one, this solution leads to a suboptimal estimation. This issue is discussed
in the conclusion of this work.
The aim of this approach is to replace constant velocity in the N frame by a more

accurate guess. The idea is described by the Fig. 3.8. We assume, that the first
estimate of the trajectory (the output of the fusion algorithm between two consequent
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3. Measurement Model

ICP measurements) is locally very similar to the true trajectory. Thus, it is remembered
to be used as a guess around the first ICP measured pose. Then, it is duplicated and
aligned with the second ICP measured pose. The resulting trajectory is a weighted
average of the original and duplicated trajectory estimates, where the weights are linear
functions of time equal to 1 at the time of the associated ICP measurement and equal
to 0 at the time of the other ICP measurement.

The resulting trajectory is used as a source for the velocity evaluation in the N
frame by a simple differentiation of the position and division by time between samples.
Then, the we express the velocity in the R frame using an attitude estimated with the
original trajectory estimate. The velocity expressed in the R frame can be used as a
measurement, but again, the values for the time period between the two consequent
ICP measurements are known after the second ICP measurement arrives and thus, the
algorithm has to be able to rewind itself to the time of the first ICP measurement and
recompute the the time period including the new velocity measurements. The average

   

      

                      
 

                  
 

 

The original 

trajectory estimate 
The original 

trajectory estimate 

aligned with the 

second ICP pose 

measurement A weighted 

average resulting 

trajectory  

Figure 3.8. A sketch demonstrating the trajectory approach idea. A trajectory estimated from
other measurements before the ICP measurement arrival (dotted line) is duplicated (dashed
line) and aligned with the incoming ICP measurement and a weighted average (red solid line)
of these two trajectories is evaluated.

trajectory is constructed as follows: After the second ICP measurement arrives, we
first align the ICP world frame with our N frame by moving them both to make the
coordinates associated with the first ICP measurement (at ICP discrete time i− 1, or
system discrete time k′) equal to zero. Also, the ICP world frame is rotated to equalize
the attitude at the first ICP measurement and the estimated one:

p′
N,ICP,i−1 := [0, 0, 0]T

q′R
′

N,ICP,i−1 := q̂R
N,k′

p′
N,ICP,i = C

(q̂R
N,k′

⊗(qR′

N,ICP,i−1)
−1

)
(pN,ICP,i − pN,ICP,i−1)

q′R
N,ICP,i := qR

N,ICP,i ⊗
(

qR′

N,ICP,i−1

)−1
⊗ q̂R

N,k′

(3.44)
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3.3. Iterative Closest Point Laser Scan Matching Odometry (ICP)

where the non-dashed positions and attitudes are the original ones provided by the
ICP algorithm and the dashed ones are the translated and rotated ones. This initial
transformation is done to suppress the inevitable drift of the distinct world or N frames
(compare this to the Incremental Position Approach). To align the (a priori) trajectory
estimate (p̂N,l, q̂R

N,l, k′ < l < k), it is shifted until its first point lays in the origin
(there is no need for rotation because of the previous step):

p̂′
N,l = p̂N,l − p̂N,k′ (3.45)

where l is an index lying between k′ ≡ i − 1 and k ≡ i. Then, the same a priori
trajectory estimate is duplicated and aligned with the second ICP measured pose by
shifting it so the last point of the trajectory lies in the origin, rotating it to the ICP
attitude qR

N,ICP,i and finally shifting it so the last point of the trajectory coincides with
the ICP one:

p̂′′
N,l = C

(qR
N,ICP,i

⊗(q̂R
N,k)

−1
)
(p̂N,l − p̂N,k) + p′

N,ICP,i (3.46)

where p′
N,ICP,i was obtained in the equation (3.44). After these transformations, the

trajectories are combined by weighted averaging. The weight vectors w′
l and w′′

l have
the same lengths as the trajectory vectors p̂′

N,l and p̂′′
N,l respectively and their values

are linearly spaced from 1 to 0 and from 0 to 1 respectively. Each point of the final
weighted trajectory is obtained as

p̂′′′
N,l = p̂′

N,lw
′
l + p̂′′

N,lw
′′
l (3.47)

where the index l is k′ < l < k. There is also the vector of attitudes estimated a
priori, but we do not make any weighting since the main purpose of this approach is to
enhance position estimates. Also, it is not completely clear, how this weighting should
be done. Thus, when we need the attitudes for expressing velocity in the R frame, we
use the original a priori ones.

From the trajectory p̂′′′
N,l, it is simple to compute velocities in the R frame, we differen-

tiate the positions, divide the results by appropriate time increments and get velocities
v̂′′′
N,l. Note that by differentiating, we obtain only k − k′ − 1 velocity samples. From

practical reasons, we duplicate the first one to obtain a same number of the output
samples as the input samples, we assume that at frequencies close to 90Hz, this has a
negligible effect on the algorithm accuracy. Similarly to (3.42), we express the velocity
in the R frame

v̂′′′
R,l = C(q̂R

N,l
)v

′′′
N,l (3.48)

and it may be used directly as a measurement

yv,ICP,l := v̂′′′
R,l (3.49)

Then, the measurement residual projection onto the error state is identical to (3.43).
Concerning the attitude aiding, the same technique is used as the one used in the

Incremental Position Approach. It is for further discussion whether there might be
some similar way for enhancing the attitude estimation. However, the results indicate
that the current solution is accurate enough.

Practical experiments have shown a need for one more improvement in the Trajectory
Approach ICP Aiding measurements preprocessing. Since the output of the Trajectory
Approach is velocity rather than position, we can apply some nonholomic constraints
making assumptions about the robot movement. The reason to do that is the fact
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3. Measurement Model

that although the ICP is very accurate in measuring translation between consequent
measurements, the attitude measurement is not so accurate or more precisely, noise
in the pitch angle causes wrong estimates of the velocity expressed in the R frame,
resulting in a problem we call a climbing robot (the very same problem addressed in
3.2.3). Although we would expect a random walk behavior, the system tended to slowly
climb in the Z or Up axis. We have observed that while the robot moved forward on a
leveled plane, the pitch angle indicated by our algorithm was slightly above zero (cca.
0.6 degree), but the direction of the movement measured by the ICP tended to be
zero in average (that is the bias mentioned in 3.2.3). This small inaccuracy caused the
problem.
To correct it, we apply a simple constraint on the velocity expressed in the R frame:

it can happen only in a plane defined by X and Y axes of the O frame. Velocity vectors,
that do not comply this constraint (i.e. practically all of them) are rotated to the XY
O plane preserving their magnitude. Applying this constraint implies usage of the
Constant CR

O Transformation (3.2.1), since the other approach (3.2.2) observes results
of this velocity measurement. Using that approach would probably cause unstable
behavior of the whole fusion algorithm.
Applying the constraint is done as follows: The normal of the ODOM plane expressed

in the R frame yields

nXY,R =





cos(β) 0 sin(β)
0 1 0

− sin(β) 0 cos(β)









0
0
1



 (3.50)

where the angle β corresponds to the simplified rotation between the R and ODOM
frames discussed in the Caterpillar Odometry Aiding section. The rotation of the
velocity is done first by projection of the velocity vector into the XY plane

v̂′
R,l,constr = ⌊nXY,R⌋

(⌊

v̂′′′
R,l

⌋

nXY,R

)

(3.51)

and then rescaling it so the magnitude is preserved

v̂R,l,constr =
v̂′
R,l,constr

||v̂′
R,l,constr||

||v̂′′′
R,l|| (3.52)

while for v̂′′′
R,l = [0, 0, 0]T , the result is a zero vector as well, avoiding the singularity.

Finally, since we know the whole trajectory element in the time of these computa-
tions, we choose to eliminate noise in the velocity originating from differentiation by
a simple zero-phase filter realized by a two-way moving average filter. Its order was
experimentally set to 3.

3.3.4. Comparison of ICP Aiding Approaches

The figures 3.9 and 3.10 demonstrate typical performance of the three proposed ap-
proaches. The Incremental Position approach is the simplest one from both the im-
plementation and computation points of view; it does not require the algorithm to
recompute part of the measurements history. However, as the Fig. 3.9 shows, it creates
steps in the state estimation and it is unable to compensate for the drift in the Z axis.
To avoid the steps in the state estimation, the Velocity Approach was proposed. It

increases number of measurements by expressing the change in position as a constant
velocity. Yet, the idea of linear interpolation of the trajectory in order to be able to
express the velocity caused the corner cutting effect clearly visible in the Fig. 3.10.
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3.3. Iterative Closest Point Laser Scan Matching Odometry (ICP)

For the undesired effects of the two previous approaches, the Trajectory Approach

was proposed. It compensates the corner cutting effect, does not show the estimate
step behavior and moreover, it corrects the drift in the Z axis. For these reasons,
we choose this approach for the final fusion algorithm. However, it brings
two complications: a need to recompute the history of the state estimation since the
previous ICP measurement (typically 300 samples) and the fact that a state estimate
is used to modify a measurement. That contradicts the expectation of uncorrelated
measurements and leads to a sub-optimal solution. This issue stays open for further
discussion.
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Figure 3.9. Comparison of the three ICP aiding approaches effects on position estimation.
Note the apparent steps in the Z coordinate for the Incremental Position aiding approach.
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3.4. Monocular Visual Odometry

Visual odometry (VODOM) is an algorithm estimating translation and rotation of a
camera body based on images recorded by the camera. The basic principle is demon-
strated in the Fig. 3.12. A single scene is observed by a camera from distinct poses and
the goal of the visual odometry is to estimate these poses based on the images recorded
by the camera. For more detailed introduction into the problem, see [9, 10].
The NIFTi robot is equipped with an omni-directional PointGrey Ladybug R©3 camera

(Fig. 3.11), which composed 6 images captured by its 6 lenses to a panoramic picture.
According to the robot visual odometry implementation author Jǐŕı Divǐs and his super-
visor Tomáš Svoboda, using an omni-directional camera instead of a normal single-lens
one leads to a more robust motion estimation. A reason for that is the fact that a
significant number of the image features leave the field-of-view when a normal single-
lens camera moves or rotates. This is not an issue in the case of the omni-directional
camera which observes a whole scene around it. An example of the feature detection
in an omni-directional picture is displayed in the Fig. 3.13.

Figure 3.11. A PointGrey
Ladybug R©3 omni-directional
camera mounted on the NIFTi
Search&Rescue robot. It
captures images from its 6
cameras and composes them
into one panoramic picture.

However, modeling the set of the 6 physical cameras as a single omni-directional
one causes a scale of the scene around the robot to be unobservable i.e. translations
estimated by the visual odometry are relative to the first translation observed, whose
magnitude is always set to be 1. From this reason, the current implementation of the
fusion algorithm utilizes only the rotation part of the estimated motion, which is
not affected by the scale. Exploiting the translational part is left for further work with
the scale λ already being incorporated in the system state (2.1). Some conclusions
concerning the scale estimation can be found in [17].
The incorporation of the VODOM measurements into the fusion system is equiva-

lent to the ICP Trajectory Approach (3.3.3, the attitude aiding part), which incremen-
tally processes the incoming attitude quaternions following the equations (3.30 - 3.35).
The implementation of the VODOM attitude aiding is identical.
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3.4. Monocular Visual Odometry

Image 1 Image 2 

Figure 3.12. Visual odometry basic principle demonstration. A single scene is observed by
a camera from different (and unknown) poses, selected features are searched for in the im-
ages and if found, they are paired between these images. Finally, camera poses are esti-
mated based on geometrical constraints laid by these image features. (Picture adopted from
Davide Scaramuzza’s Visual Odometry Tutorial, http://robotics.ethz.ch/~scaramuzza/
Davide_Scaramuzza_files/publications/ppt/Visual_Odometry_Tutorial.pptm)

Figure 3.13. Panoramic picture composed of 6 images captured by the Ladybug R©3 omni-
camera in a laboratory of ETH Zürich with correspondences between two consequent
panoramic pictures as detected by the visual odometry algorithm implemented by Jǐŕı Divǐs
for the NIFTi robot. Each red line connects a feature detected in this picture and its new
position in the next frame. Directions of the lines indicate that the robot is moving forward.
(Color representation is not correct due to the debugging nature of this image)
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4. Extended Kalman Filter

The extended Kalman filter [18, 19], (Fig. 4.1) is a modification of the Kalman filter
[20] , i.e. optimal observer minimizing variances of observed states. This modification is
intended for systems which are non-linear yet the errors caused by this non-linearity can
be neglected compared to the errors induced by measurement and the system noise [21].
It is left without proof that local observability [22, p.60] of the observed states ensures
convergence of the estimation. For applications with no computational performance
limitations, higher order extended Kalman filter or unscented Kalman filter [23] can be
used - these modifications show faster convergence.

 

         | ̂             

       | ̂      

 ̂       ( ̂            )                               

Prediction Step 

          ̂                                         
  ̂      ̂                                 

Update Step  

Figure 4.1. Standard EKF computation flowchart, in the prediction step, the a priori state
and the covariances are estimated, using the non-linear system equation f() and its linearized
matrix form F . In the update step, measurement residual ∆y is obtained by comparing the
incoming measurement z with its predicted counterpart. The residual covariance S and the
Kalman gain K are evaluated and used to update the state and covariance to obtain the a
posteriori estimates.

As indicated in the System Model chapter (2), the error state EKF is used in our
approach - the state of the system is expressed as a sum of the current best estimate
(x̂) and some small error (∆x). The only difference compared to the standard EKF is
that the linearized system matrices F and Q describe only the error state and the error
state covariance propagation in time rather than the whole state and state covariance
propagation in time. As explained in the chapter (2) and demonstrated in the Appendix
A, this makes the matrices F and Q much easier to express. A flowchart demonstration
the error state EKF computation is shown in Fig. 4.2.

The flowchart in the Fig. 4.2 can be decomposed into ten steps which also describe
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Figure 4.2. This flowchart illustrates the error state EKF algorithm implemented in our fusion
algorithm. Note that respecting the System Model chapter (2) the nonlinear system propa-
gation equation f is a function of the state x̂ only. Apart from the standard EKF, the F , Q
and H matrices were not obtained by a direct linearization of the system nonlinear equations
but as described in chapters 2 and 3.

the implementation of the error state EKF in the fusion sytem:

1. A new measurement (or measurements) arrive, there is a state estimate (x̂) and its
error covariance matrix (P ) available from the previous step (or from the initialization
if this is the first iteration)

2. The state estimate x̂ is propagated in time using the nonlinear system equations

3. Continuous form of F and G matrices are evaluated based on the x̂

4. The Van Loan discretization is used to evaluate the discrete form of F and Q

5. The error state covariance matrix P is propagated in time (based solely on the
previous knowledge of the system)

6. Expected measurements are compared with the real ones, the difference is expressed
in a form of a measurement residual ∆y

7. An innovation matrixH expressing the measurement residual as a linear combination
of the error state components is evaluated

8. Using the a priori estimate of P , H and variance of the sensors signals R, the Kalman
gain matrix K is computed

9. The error state ∆x is evaluated using the Kalman gain and the measurement resid-
ual, the a posteriori estimate of the error state covariance matrix P is evaluated as
well

10. The a priori state estimate x̂ is corrected by the estimate of the error ∆x
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4. Extended Kalman Filter

4.1. Innovation Matrix H Construction

The cycle of the error state EKF could be repeated each time a single measurement
arrives, yet, for performance reasons, we choose to group the measurements by the
incoming IMU measurements, replacing the measurement times by the IMU ones. Each
time a measurement arrives that is not an IMU one, it is delayed until the next IMU
measurement arrives. The maximal time error caused by this grouping is 1/(2 · 90)s
and thus it can be neglected compared to the measurement periods - the second fastest
measurement is the track odometry measurement, which is generated with frequency
of 15Hz. To group the measurements, they are stacked into one z′ vector in a defined
order. In the same order, the innovation matrix H ′ is constructed by stacking up the
H matrices defined in the chapter 3. Finally, the measurement noise covariance matrix
R′ is constructed as a diagonal one from the m(·) terms defined in the chapter 3.

The overall system including the error state EKF loop and the measurement sources
is depicted in (Fig. 4.3).
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Figure 4.3. The overall system block schematics.

4.2. Application of the ICP Trajectory Aiding Approach

The ICP Trajectory Aiding Approach (3.3.3) minor drawback is the fact that it gener-
ates measurements for the time period that precedes the last incoming ICP measure-
ment. To be able to use these measurements, the initial system state at the time of
the previous ICP measurement is remembered as well as all the non-ICP measurements
that arrived since that point. When the new ICP measurement arrives, the velocity
measurements are generated and the whole time period between the ICP measurements
is recomputed applying them. The cost of this approach is doubling the computation
performance requirements.
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This chapter analyses performance of the proposed fusion system. There are two metrics
used, the first one, Final Position Error expressed in % of the total experiment length
is often used in literature to give a basic idea about the localization approach accuracy.
It is defined as

erel =
||pl − pref,l||

distance travelled
(5.1)

where l is the index of the last position sample pl with the corresponding reference po-
sition pref,l. The second metric, which provides more integral characteristics is Average
Position Error defined as

eavg(l) =

∑l
i=1 ||pi − pref,i||

l
(5.2)

where 1 < l < (total number of samples). We prefer this metric, since it accounts errors
along the whole trajectory. If we provide an output of this metric as a single number
we assume l = total number of samples.

Three sections follow, each one analyses the algorithm performance from a different
point of view, the first one analyses in detail two selected experiments which illustrate
capabilities of the fusion algorithm in three-dimensional environment with slippages
and for the outdoor experiment, moving people and relatively long distance travelled
(260m). The second section takes in account standard conditions experiments and
makes statistics over these experiments for different combinations of modalities. The
third section analyses situations where the experiment environment causes one or sev-
eral fusion modalities to fail and impacts of these failures on the fusion algorithm
performance.
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5.1. Evaluation of Selected Experiments

5.1.1. 3D Structure Crossing with Caterpillar Tracks Slippage

This experiment simulated an unstructured environment with a slippery surface (Fig. 5.1)
the robot had to traverse. Since the purpose of the NIFTi robot are Search and Rescue
missions, such environments can be expected (e.g. collapsed buildings full of debris and
dust that impairs traction on smooth surfaces such as exposed concrete walls or floors,
mass traffic accidents with oil spills etc.).
While traversing the slippery surface, the basic track odometry inevitably failed with

the tracks moving with significantly diminished traction. From that reason, trajectory
(Fig. 5.2, yellow lines) and the state estimates resulting from the IMU and ODOM
fusion showed unacceptable error growth (Fig. 5.3). Nevertheless, adding other modal-
ities significantly improved the localization accuracy. The resulting state estimates for
combination of all modalities are shown in Fig. 5.4, 5.5 and 5.6. The algorithm was
capable to compensate for the track odometry failure and provided reliable trajectory
estimate.

Figure 5.1. A part of the 3d
structure used during this ex-
periment. The robot is climb-
ing up the wooden surface,
which deteriorates the traction
to the point the robot slides
back down with each trial
to steer. The reference sys-
tem Vicon captures the whole
scene.
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Figure 5.2. Trajectories resulting from the three fusion modalities combinations. Note that the
the green trajectory corresponding to the IMU+ODOM+ICP combination can be improved
by adding the visual odometry attitude measurements (resulting in the red one).
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IMU+ODOM+ICP+VODOM. The angular rate sensor biases are initialized during a
10-second initial calibration (the robot is left steady and the mean values of the angular rate
signals are obtained).
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5.1. Evaluation of Selected Experiments

5.1.2. Outdoor Experiment

This experiment took place on the Clausiusstrasse street (Fig. 5.7) in Zurich next to the
main ETH building. The purpose of this experiment was to test the ICP and VODOM
performance in an open area. While the VODOM performs better outside because
of the camera features behaving closely to the camera geometrical model, the ICP -
compared to a closed room - missed a significant amount of spatial information (the
laser range is limited approximately to 50 meters, there is no ceiling etc.). The Leica
theodolite provided reference during this experiment.

Figure 5.7. The experiment setup in the
street, the Leica reference theodolite is
just being set up.

The outcome (and the shape of the trajectory) is displayed below (Fig. 5.8 – 5.12)
demonstrating the improvement of performance by adding the modalities. The basic
dead-reckoning combination showed drift in the yaw angle caused by the angular sensor
noise integration. That one could be corrected by adding the VODOM attitude mea-
surements correcting this drift (visual odometry is not drift-free, yet performs better
than the angular rate integration). Still, that enhanced combination suffered from the
inaccurate track odometry velocity measurements (the green line in the Fig. 5.8). That
problem was corrected by adding the ICP modality into the fusion scheme resulting
into the best localization estimates.
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Figure 5.8. Trajectories resulting from different modalities combinations.
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Figure 5.9. Comparison of the three combinations in terms of the average error. Apparently,
the solution shows increasing error for all of the modalities combinations, yet the last one
performs best.
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Figure 5.12. Attitude estimates for the best fusion modalities combination
(IMU+ODOM+ICP+VODOM ).
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5. Evaluation

5.2. Fusion Algorithm Performance under Standard Conditions

To verify the fusion algorithm performance, experiments with standard conditions were
selected (i.e. experiments in the Vicon laboratory with the standard robot system
setup traversing the 3D structure or driving on a flat ground; all outdoor and indoor
experiments with the Leica reference), four fusion modalities combinations were chosen:
IMU + ODOM, IMU + ODOM + VODOM, IMU + ODOM + ICP and IMU +
ODOM + VODOM + ICP and using the metrics (5.1, 5.2), statistical performance
was obtained. The results are shown in the Tables (5.1 – 5.4), the group of all selected
experiments was divided into two groups by the reference type.
Summing up the results, the Vicon laboratory experiments (Table 5.1 and 5.2) came

out well while using the ICP localization in one of the last two combinations. Results of
these were comparable, the standard deviation ranges intersected. The results for the
IMU+ODOM+VODOM and IMU+ODOM were slightly worse and again, comparable
taking standard deviation ranges in account. From this Vicon laboratory set of experi-
ments, we concluded that the main improvement brought by the fusion system was the
ability to correct slippage of the caterpillar tracks by the ICP position measurement
modality.
Analyzing the Leica reference experiments (Tables 5.3 and 5.4), we observed strongly

diminished performance while using the VODOM modality. It needs to be said that
the environments these experiments were performed in were far from the ideal ones
for the visual odometry algorithm (except for the street experiments, where the visual
odometry worked perfectly). The indoor environments cause geometrical problems
because for the visual odometry implemented for the omni-directional camera, it is
desirable that all image features lay as far from the camera as possible. The outdoor
experiments were performed in a park (Fig. 5.13) and such an environment complicates
feature pairing between consequent camera images because of all the repetitive textures
as leaves, branches etc.

Figure 5.13. The outdoor ex-
periment setup in the park be-
low the main ETH building in
Zürich.

However, the visual odometry implementation for the NIFTi robot is still being
improved. Nevertheless, the fusion algorithm, given the right fusion modalities used,
shown average position error comparable to the size of the robot which was a threshold
for considering the localization successful - especially for the outdoor experiments in
the park with the gravel paths and steep stairs.
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5.2. Fusion Algorithm Performance under Standard Conditions

Final Position Error in % of the Distance Travelled

Exp. Distance
Traveled
[m]

Exp. Du-
ration [s]

Odometry,
IMU

Odometry,
IMU,
VODOM

Odometry,
IMU, ICP

All

0.1 29.69 162 1.79 1.29 0.78 1.09
0.2 47.42 254 2.17 4.09 1.71 0.97
0.3 36.52 186 1.99 2.52 0.36 0.48
0.4 48.74 244 3.15 2.74 0.50 0.13
0.5 29.40 237 2.22 2.14 0.42 0.51
1.1.a 82.10 585 2.51 6.19 0.90 4.71
1.1.b 74.64 452 2.05 3.55 0.98 1.10
1.2.a 74.65 387 1.70 1.53 2.28 0.90
1.3.a 30.57 194 1.98 2.74 1.59 1.75
1.3.b 26.58 287 2.67 2.05 1.90 1.07
1.3.c 26.57 236 1.53 1.98 0.77 0.86
1.3.d 26.96 208 1.25 2.47 0.95 1.79
1.3.e 29.13 211 1.27 1.35 0.88 1.11
1.3.f 26.35 180 1.37 1.49 0.94 2.58
1.4.g 40.23 240 6.58 7.01 0.88 1.04
1.8.a 21.01 167 5.26 5.05 0.61 0.68
1.8.b 19.04 209 5.94 5.91 0.55 0.78
2.1.a 10.95 405 3.44 2.78 2.15 2.04
2.1.b 8.65 238 2.87 2.76 1.36 1.44
2.2.a 9.36 284 4.14 3.46 1.83 1.78
2.2.b 9.02 282 2.90 3.18 2.73 2.61
2.3.a 10.82 308 3.79 3.24 1.43 1.39
2.3.b 9.45 237 5.36 5.40 2.66 2.60
2.5.b 12.75 204 2.65 3.04 2.66 3.43
2.5.c 7.81 179 1.58 1.70 2.82 3.12
2.5.d 10.85 165 3.85 4.45 3.25 1.66
3.7.a 10.83 163 2.36 1.85 0.62 0.63
3.7.b 12.79 237 15.42 14.86 2.48 2.52
3.7.c 12.07 239 28.42 26.32 2.89 3.36

Averages and Standard Deviations 4.21± 5.39 4.38± 4.98 1.51± 0.89 1.66± 1.07

Table 5.1. Table summing up selected fusion modalities combinations performance when used
in the fusion system. The metric is the Final Position Error expressed in percents of the
overall distances travelled during each experiment. The experiments are labelled by their
IDs, description of each one can be found in the appendix C
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5. Evaluation

Average Position Error [m]

Exp. Distance
Traveled
[m]

Exp. Du-
ration [s]

Odometry,
IMU

Odometry,
IMU,
VODOM

Odometry,
IMU, ICP

All

0.1 29.69 162 0.31 0.36 0.08 0.14
0.2 47.42 254 0.57 0.94 0.36 0.21
0.3 36.52 186 0.38 0.51 0.11 0.11
0.4 48.74 244 0.66 0.66 0.13 0.09
0.5 29.40 237 0.16 0.16 0.05 0.06
1.1.a 82.10 585 0.78 3.26 0.31 2.43
1.1.b 74.64 452 0.87 1.13 0.29 0.36
1.2.a 74.65 387 0.69 0.67 0.51 0.39
1.3.a 30.57 194 0.31 0.34 0.17 0.19
1.3.b 26.58 287 0.38 0.49 0.22 0.28
1.3.c 26.57 236 0.18 0.22 0.11 0.14
1.3.d 26.96 208 0.17 0.30 0.14 0.20
1.3.e 29.13 211 0.16 0.31 0.12 0.15
1.3.f 26.35 180 0.22 0.32 0.23 0.21
1.4.g 40.23 240 0.88 0.90 0.18 0.37
1.8.a 21.01 167 0.33 0.30 0.08 0.08
1.8.b 19.04 209 0.38 0.38 0.06 0.06
2.1.a 10.95 405 0.15 0.14 0.14 0.15
2.1.b 8.65 238 0.10 0.10 0.10 0.09
2.2.a 9.36 284 0.12 0.13 0.09 0.09
2.2.b 9.02 282 0.13 0.13 0.12 0.12
2.3.a 10.82 308 0.15 0.15 0.09 0.09
2.3.b 9.45 237 0.27 0.27 0.12 0.12
2.5.b 12.75 204 0.15 0.17 0.16 0.25
2.5.c 7.81 179 0.08 0.08 0.07 0.08
2.5.d 10.85 165 0.36 0.34 0.15 0.16
3.7.a 10.83 163 0.22 0.23 0.06 0.07
3.7.b 12.79 237 1.06 1.06 0.14 0.15
3.7.c 12.07 239 1.93 1.94 0.17 0.18

Averages and Standard Deviations 0.42± 0.40 0.55± 0.66 0.16± 0.10 0.24± 0.43

Table 5.2. The same experiments as in the table 5.1 but using the Average Position Error
metric. Note that the results are similar comparing the first two and the last two modalities
combinations. In this case, the units of the metric are meters, we can therefore compare the
results to the size of the NIFTi robot, which is approximately 1 meter long - the average
error of the localization is well below the size of the robot.
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5.2. Fusion Algorithm Performance under Standard Conditions

Final Position Error in % of the Distance Travelled

Exp. Distance
Traveled
[m]

Exp. Du-
ration [s]

Odometry,
IMU

Odometry,
IMU,
VODOM

Odometry,
IMU, ICP

All

basement 1 120.62 825 2.08 36.73 1.83 38.71
basement 2 175.67 853 1.37 11.44 2.42 5.96
hallway
straight

159.42 738 1.10 14.10 0.43 7.69

street 1 135.18 584 2.78 0.81 0.24 0.80
street 2 259.86 992 9.74 0.50 0.26 0.28
park big loop 145.31 918 2.65 48.98 1.03 33.57
park small
loop

88.20 601 1.94 67.95 1.25 43.45

park straight 99.29 560 1.20 62.61 0.62 50.92
2 floors 238.28 1010 9.10 2.18 0.58 2.56
2 floors op-
posite

203.23 1107 3.23 56.67 0.51 52.05

Averages and Standard Deviations 3.52± 3.19 30.2± 27.3 0.92± 0.72 23.6± 22.0

Table 5.3. Relative error for the Leica-referenced experiments. The unflattering values in
the VODOM columns are probably caused by the environments unsuited for the VODOM
localization algorithm. The errors originating from low number of paired features probably
lead to behavior described in the 5.3.2 fail case.

Average Position Error [m]

Exp. Distance
Traveled
[m]

Exp. Du-
ration [s]

Odometry,
IMU

Odometry,
IMU,
VODOM

Odometry,
IMU, ICP

All

basement 1 120.62 825 3.31 20.69 0.65 17.09
basement 2 175.67 853 6.19 22.47 2.68 10.74
hallway
straight

159.42 738 2.77 11.76 0.37 7.23

street 1 135.18 584 2.14 0.99 0.41 0.57
street 2 259.86 992 8.92 2.21 0.50 0.83
park big loop 145.31 918 1.79 29.51 0.72 21.38
park small
loop

88.20 601 1.55 28.20 0.59 19.48

park straight 99.29 560 0.57 46.70 0.83 47.86
2 floors 238.28 1010 7.83 4.76 0.51 3.98
2 floors op-
posite

203.23 1107 3.87 45.01 1.33 42.63

Averages and Standard Deviations 3.90± 2.82 21.2± 16.6 0.86± 0.70 17.2± 16.6

Table 5.4. Average position error statistics regarding the experiments referenced by the Leica
system. The metric confirms that the visual odometry performed significantly worse than
other modalities.
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5. Evaluation

5.3. Fail-Case Analysis

In this last section of the Evaluation chapter, we intentionally made some of the fusion
modalities fail and observed the overall fusion system response. The aim was to discover
the true limits of the system under realistic failure conditions. In the last section (5.3.5),
we also analysed several ICP localization algorithm features and their impact on the
fusion

5.3.1. Unintended Robot Frame Motion

In this experiment, the robot was pushed and pulled on a trolley through the laboratory
(Fig. 5.14) to cause the track odometry to fail completely as shown in Fig. 5.15 and
5.16.

In the case of a simple dead-reckoning combination IMU+ODOM, the robot esti-
mated no changes in position. However, adding other modalities compensated this and
the resulting average error changed from 1.8m to 8cm. Nevertheless, this result was
conditioned by a proper function of the ICP algorithm, which partially relies on the po-
sition estimates provided by the odometry system of the robot - in this case, we moved
the robot very slowly to allow the ICP to stitch laser scans correctly even though the
odometry system provided incorrect position estimates.
In the case of higher velocities i.e. bigger distances between consecutive laser scans,

the ICP would fail to converge.

Figure 5.14. There
is a trolley be-
neath the robot,
which is pushed
forward through the
laboratory.

46



5.3. Fail-Case Analysis

 

0 50 100 150 200 250
-2

0

2

4
P

o
si

ti
o

n
 X

[m
] Effect of Fusion Modalities Combinations on Position

0 50 100 150 200 250
-2

0

2

4

P
o

si
ti

o
n

 Y
[m

]

0 50 100 150 200 250
-0.05

0

0.05

P
o

si
ti

o
n

 Z
[m

]

time [s]

 

 

Fusion of IMU,ODOM,ICP,VODOM

Fusion of IMU,ODOM

Vicon Reference

Figure 5.15. The position estimated by the simple dead-reckoning combination IMU+ODOM
compared to the fusion of all localization sources.
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both combinations of the modalities.
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5. Evaluation

5.3.2. Blocked Camera

This experiment simulated partial loss of the field of view of the omni-camera; the most
probable cause would be dirt or dust, which must be taken in account in the case of a
search&rescue robot. One of the omni-camera lenses was blindfolded (Fig. 5.17) and
the robot was navigated over the 3D structure.

Figure 5.17. One lens of the omni-camera has been blindfolded to simulate worsen visual
conditions or a view blocked by dust or dirt.

In this case, the insufficient number of image features caused the visual odometry
to estimate incorrect attitude. This attitude propagated into the state estimate and
made the fusion algorithm fail (Fig. 5.18 – 5.20). Although the fusion algorithm had
proven to be robust against the track odometry failures so far, it was found sensitive
to attitude measurement errors, originating both in the VODOM and ICP modalities.
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Figure 5.18. The trajectory deteriorated by a faulty VODOM measurement.

48



5.3. Fail-Case Analysis

 

80 82 84 86 88 90 92 94 96 98 100
-20

0

20

40
R
ol
l[°
]

Effect of Fusion Modalities Combinations on Attitude

80 82 84 86 88 90 92 94 96 98 100
-100

-50

0

50

Pi
tc
h[
°]

80 82 84 86 88 90 92 94 96 98 100
-200

0

200

Y
aw
[°
]

time [s]

 

 
Fusion of IMU,ICP,ODOM

Fusion of IMU,ICP,ODOM,VODOM

Vicon Reference

Figure 5.19. Comparison of attitude estimated using the whole fusion scheme including the
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IMU+ODOM measurements [6], they converge back to the correct value. However, the yaw
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Figure 5.20. The effect of the faulty VODOM measurement on the average error, compared
to the fusion scheme excluding the VODOM.
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5.3.3. Laser Scanner Outages

Although the robot is otherwise mechanically robust, the rotational mechanism of the
laser rangefinder assembly is actually its bottleneck prone to malfunction in harsh
conditions. This fail case simulates outages in generating 3D pointclouds; the ICP
algorithm stops generating measurements in that case and waits for a new laser scan
to come. The fusion algorithm was designed and tested for ICP measurement period
3 seconds; this experiment tested its performance for ICP measurement outages longer
than 40 seconds (vertices of the blue trajectory in the left part of the Fig. 5.21 are the
ICP position measurements).
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Figure 5.21. 3D plots of the sparse ICP position measurements (left) and the impact of the
ICP modality added into the fusion scheme (right).

The fusion algorithm dealt with the laser outages satisfactorily. Although sparse, the
ICP modality diminished average error of the position estimate compensating for the
track odometry slippage (Fig. 5.22).
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Figure 5.22. The two modalities combinations effect on average error.
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5.3. Fail-Case Analysis

5.3.4. Moving Object and Limited Laser Range

This experiment was performed to analyze the impact of faulty ICP position measure-
ments on the fusion system performance. However, to obtain reference data, we were
forced to perform it in the Vicon laboratory, which is almost a perfect environment for
the ICP localization. To make it generate faulty measurements, we artificially reduced
the laser maximal range to two meters preventing it from reaching ceiling and walls of
the room. Also, a big board (Fig. 5.23) was moved back away from the robot after it
got into the robot’s laser scanner range (artificially set to the two meters) confusing
the ICP algorithm - this was supposed to simulate dynamically changing environment.
The step in the ICP position measurement is visible in the 3D plot in the Fig. 5.24.

Figure 5.23. The big paper board
was held on one spot until the robot
reached it and then moved back
away from the robot as depicted
here. This artificial moving wall
confused the ICP localization.

Although we caused this ICP localization failure artificially, a failure like this might
occur in areas filled with smoke or dust, both impenetrable by the laser beam. The mov-
ing wall may represent moving rescue workers or firemen at the place of the deployment
of the robot.
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Figure 5.24. 3D plot with an apparent erroneous step in the ICP position measurement.

The results of the experiment showed similar results as in the VODOM failure sce-
nario. The fusion algorithm - at its current implementation - could not handle these

51



5. Evaluation

crucial ICP failures, it accepted them and propagated into the system state. The result
were undesired errors in localization (Fig. 5.25 and 5.26).
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Figure 5.25. Effect of the ICP faulty position measurement propagating into the fusion algo-
rithm. Note the ICP position measurement affecting the position estimate for the complete
fusion scheme. The error in the Z coordinate is caused by applying the nonholomic constraint:
the robot moved in parallel with its O frame, which was not leveled at that moment.

 

50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

time[s]

A
v

er
ag

e 
E

rr
o

r[
m

]

Effect of Fusion Modalities Combinations on Average Error

 

 

Fusion of IMU,ODOM,VODOM

Fusion of IMU,ICP,ODOM,VODOM

Figure 5.26. The ICP faulty position measurement affecting the average position error devel-
opment. The black arrow marks the time we moved the big paper board.
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5.3. Fail-Case Analysis

5.3.5. Deformations of the ICP Map

The final fail case describes a standard ICP localization algorithm issue in some envi-
ronments, when it gradually drifts (bends) while building its inner point cloud map. It
is not entirely clear what features of the environment cause (or amplify) these deforma-
tions; an example is shown in the Fig. 5.27. The experiment was performed in the ASL
building on two floors, the robot was navigated through two hallways making a circle
over the two floors. In this case, the reference was the Leica theodolite, registering the
robot’s position on the upper floor (similar experiment setup to the one depicted in
Fig. 3.3).

Figure 5.27. The ICP localization algorithm inner point cloud map. The twisting is apparent
after coloring the points by their distance from the map origin. The structures at the ends of
the corridors are two staircases. They should be parallel, but we observe a counter-clockwise
twist of approximately 10 degrees.

Although the ICP position and attitude measurements error relative to the original
coordinate frame grew with distance traveled from the original position, our approach
to the fusion of the modalities treating them as velocities compensated for this error
as it is apparent in Fig. 5.28 and 5.29. We observed this ability to straighten up the
trajectory on the outdoor experiments as well. We consider this property one of the
main contributions of the fusion system.
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5. Evaluation
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Figure 5.28. 3D plots of the trajectory of the experiment in the ASL building (ETH Zürich).
It compares the bent trajectory of the original ICP localization (blue), the output of the
fusion system (ref) and the Leica reference position (black, available only on the top floor
and in the further staircase)
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Figure 5.29. The attitude comparison, the ICP attitude shows the drift in the roll angle -
an interesting fact is, that it twists back (almost) to the original value, although the robot
returned through a different corridor.
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6. Conclusion

In this work, we have designed a localization algorithm for a mobile Urban Search&Rescue
robot NIFTi. The localization algorithm fuses several sensor modalities exploiting their
strong points (high rate of the track odometry, independence of the visual odometry,
local metric accuracy of the ICP odometry). This fusion is done by means of the error
state EKF, treating all sensor measurements as velocities rather than absolute posi-
tions or attitudes. Such an approach deals with the drift of the world frames of the
sensor modalities. While designing this algorithm, we have benefited from the previous
experience in this area (see Appendix E).
Performance of the designed algorithm has been extensively tested both by indoor and

outdoor experiments (over 4 kilometers traveled), comparing the algorithm output with
the high-precision reference provided by the Vicon and Leica reference systems. The
experiments have proven ability of the fusion algorithm to correct the track odometry
errors caused by slippages, to overcome outages of the laser scanner and to correct
the ICP pointcloud map deformations. On the other hand, sensitivity to erroneous
attitude measurements originating both from the visual odometry and from the ICP
odometry was detected. Still, given an adequate sensor modality combination, the
average position error was comparable to the size of the robot; that was our threshold
to consider the solution successful.

There are several issues left for the future work. The main issue to be solved is the
automatic sensor modality failure detection and resolution which was well outside the
scope of this thesis and according to the state of the art, it provides unresolved challenge
in the whole robotic community. Apart from the failure detection and resolution, the
proposed estimation of the R and O frames transformation would relieve the robot user
from manually calibrating it, yet, another (unbiased) source of the velocity measurement
must be provided for it to work correctly. Such a source might be the visual odometry,
whose scale has been already incorporated into the system state. However, a stable
scale estimation must ensured, which is another issue left for the future work.
The algorithm was implemented and tested in the MATLAB environment, neverthe-

less, the code was written so it would be simple to reimplement it C++ for the Robot
Operating System.
All the points of the submission of this thesis were successfully fulfilled except for a

minor change; the final C++ implementation will be realized by our colleagues at the
ETH.
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A. Linear Error Model Equations Derivation

This appendix goes through the error model derivation in detail. Note that we leave
out coordinate frame indices in derivations for better legibility.

A.1. Position Error Differential Equation

Starting with the first nonlinear equation (2.2)

ṗN = CT
(qR

N
)
vR

we remind that the error quaternion has been defined as (2.9)

δq = q⊗ q̂−1

therefore, the true value of the attitude quaternion can be expressed as a multiplication
of the best estimate and the error quaternion

q = δq⊗ q̂ (A.1)

Following the the idea of an error state x̃ = x − x̂, the position is composed of the
best estimate and the error position

p = p̂+∆p (A.2)

The quaternion q expresses rotation from the N frame to the R frame, the position p is
expressed in the N frame and the velocity v is expressed in the R frame. If we express
the time derivative of (A.2), we can use the nonlinear expression (2.2)

ṗ = ˙̂p+∆ṗ (A.3)

∆ṗ = ṗ− ˙̂p (A.4)

∆ṗ = CT
(q)v − CT

(q̂)v̂ (A.5)

After substitution from (A.1) and similarly to (A.2) but with velocities, we get

∆ṗ = CT
(δq⊗q̂)(v̂ +∆v)− CT

(q̂)v̂ (A.6)

Now, since we follow the JPL quaternion multiplication rule proposal [1], the rotation
can be split respecting the order of the quaternion multiplication

∆ṗ = (C(δq)C(q̂))
T (v̂ +∆v)− CT

(q̂)v̂ (A.7)

∆ṗ = CT
(q̂)C

T
(δq)(v̂ +∆v)− CT

(q̂)v̂ (A.8)

After expanding the equation, we get

∆ṗ = CT
(q̂)(C

T
(δq) − I)v̂ + CT

(q̂)C
T
(δq)∆v (A.9)

where I is a 3×3 identity matrix. We simplify this equation following approach similar
to [24], namely equations (6-12). The idea is approximating the (CT

(δq) − I) term by
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A.2. Attitude Error Differential Equation

vector multiplication ⌊δθ⌋, where the δθ is the rotation vector defined in (2.11). The
quaternion δq = [x, y, z, w]T represents a small error rotation, thus, x, y and z are close
to zero and w is almost 1 [2, eq. 161]. Therefore,

CT
(δq) =





1− 2y2 − 2z2 2(xy + zw) 2(xz − yw)
2(xy − zw) 1− 2x2 − 2z2 2(yz + xw)
2(xz + yw) 2(yz − xw) 1− 2x2 − 2y2





T

(A.10)

can by approximated as

CT
(δq) ≈





1 2z −2y
−2z 1 2x
2y −2x 1





T

(A.11)

neglecting all xy, yz, zx, x2, y2 and z2 terms and substituting w = 1. Then,

CT
(δq) − I ≈





0 −2z 2y
2z 0 −2x
−2y 2x 0



 (A.12)

is actually a vector multiplication expressed in the matrix multiplication form





0 −2z 2y
2z 0 −2x
−2y 2x 0



 = 2













x
y
z











 (A.13)

Since the [x, y, z]T term is accordingly to (2.10) and (2.11) the vector part of the quater-
nion - which is equal to 1

2δθ - we conclude that

CT
(δq) − I ≈ 2⌊ ~δq⌋ = ⌊δθ⌋ (A.14)

Using this approximation, we can rewrite (A.9) to

∆ṗ ≈ CT
(q̂)⌊δθ⌋v̂ + CT

(q̂)C
T
(δq)∆v (A.15)

which is equivalent to

∆ṗ ≈ −CT
(q̂)⌊v̂⌋δθ + CT

(q̂)C
T
(δq)∆v (A.16)

only reversing the vector multiplication order (x× y = −y× x). If we consider CT
(δq) ≈

I since the very small error rotation, we obtain the final form of the position error
differential equation

∆ṗ ≈ −CT
(q̂)⌊v̂⌋δθ + CT

(q̂)∆v (A.17)

which is suitable for the EKF since partial derivatives are easy to express from this
equation.

A.2. Attitude Error Differential Equation

Expressing attitude error differential equation from the non-linear form:

q̇ =
1

2
Ω(ω)q (A.18)
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A. Linear Error Model Equations Derivation

closely follows approach in [2, eq. 165-177]. The derivation starts with the error quater-
nion definition:

q = δq⊗ q̂

∣

∣

∣

∣

d

dt
(A.19)

q̇ = ˙δq⊗ q̂+ δq⊗ ˙̂q (A.20)

and since we are interested in ˙δq, we substitute for q̇ and ˙̂q from (A.18):

1

2

[

ω
0

]

⊗ q = ˙δq⊗ q̂+ δq⊗

(

1

2

[

ω̂
0

]

⊗ q̂

) ∣

∣

∣

∣

−
1

2

(

δq⊗

[

ω̂
0

]

⊗ q̂

)

(A.21)

˙δq⊗ q̂ =
1

2

([

ω
0

]

⊗ q− δq⊗

[

ω̂
0

]

⊗ q̂

)

∣

∣⊗q̂−1 (A.22)

˙δq =
1

2

([

ω
0

]

⊗ δq− δq⊗

[

ω̂
0

])

(A.23)

where ω̂ = ω − ∆ω according to the error state definition. If we substitute for ω, we
get

˙δq =
1

2

([

ω̂ +∆ω
0

]

⊗ δq− δq⊗

[

ω̂
0

])

(A.24)

=
1

2

([

ω̂
0

]

⊗ δq− δq⊗

[

ω̂
0

])

+
1

2

[

∆ω
0

]

⊗ δq (A.25)

=
1

2

([

−⌊ω̂⌋ ω̂
−ω̂T 0

]

· δq−

[

+⌊ω̂⌋ ω̂
−ω̂T 0

]

· δq

)

+
1

2

[

∆ω
0

]

⊗ δq (A.26)

=
1

2

[

−2⌊ω̂⌋ ∅3×1

∅1×3 0

]

· δq+
1

2

[

∆ω
0

]

⊗ δq (A.27)

≈
1

2

[

−2⌊ω̂⌋ ∅3×1

∅1×3 0

]

· δq+
1

2

[

−⌊∆ω⌋ ∆ω
−∆ωT 0

]

·

[

~δq
1

]

(A.28)

=
1

2

[

−2⌊ω̂⌋ ∅3×1

∅1×3 0

]

· δq+
1

2

[

∆ω
0

]

+O(|∆ω||δq|) (A.29)

Neglecting the second order terms, we can write

˙δq =
d

dt

[

~δq
q4

]

≈
d

dt

[

1
2δθ
1

]

≈

[

−⌊ω̂⌋ ~δq + 1
2∆ω

0

]

≈

[

−1
2⌊ω̂⌋δθ +

1
2∆ω

0

]

(A.30)

and by expressing the time derivative of δθ, we obtain

δ̇θ ≈ −⌊ω̂⌋δθ +∆ω (A.31)

which corresponds to (2.13).

A.3. Velocity Error Differential Equation

Velocity is described by differential equation (2.4):

v̇R = fR − C(qR
N
)gN + ⌊vR⌋ωR

which will be used to express the velocity error differential equation. The same way we
did in (A.4), we express the time derivative of ∆v as

∆v̇ = v̇ − ˙̂v (A.32)
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A.3. Velocity Error Differential Equation

and substitute from (2.4) knowing that v = v̂ +∆v and f = f̂ +∆f . We obtain

∆v̇ =(f̂ +∆f)− C(δq⊗q̂)g + ⌊v̂ +∆v⌋(ω̂ +∆ω)

− f̂ + C(q̂)g − ⌊v̂⌋ω̂
(A.33)

We split the right part of the equation into corresponding term pairs

∆v̇ =

((f̂ +∆f)− f̂) }⋆

+ (−C(δq⊗q̂)g + C(q̂)g) }†

+ (⌊v̂ +∆v⌋(ω̂ +∆ω)− ⌊v̂⌋ω̂) }⋄ (A.34)

and simplify them separately to keep clarity. The first two terms (⋆) can be simplified
into

(f̂ +∆f)− f̂ = ∆f (A.35)

The second part (†) is simplified similarly to the approach in sub-section A.1

−C(δq⊗q̂)g + C(q̂)g = (−C(δq) + I)C(q̂)g

≈ ⌊δθ⌋C(q̂)g

= −⌊C(q̂)g⌋δθ

(A.36)

and finally the third part (⋄)

⌊v̂ +∆v⌋(ω̂ +∆ω)− ⌊v̂⌋ω̂ = (⌊v̂⌋+ ⌊∆v⌋)(ω̂ +∆ω)− ⌊v̂⌋ω̂

= ⌊v̂⌋ω̂ + ⌊v̂⌋∆ω + ⌊∆v⌋ω̂ + ⌊∆v⌋∆ω − ⌊v̂⌋ω̂

= ⌊v̂⌋∆ω + ⌊∆v⌋ω̂ + ⌊∆v⌋∆ω

= ⌊v̂⌋∆ω − ⌊ω̂⌋∆v + ⌊∆v⌋∆ω

≈ ⌊v̂⌋∆ω − ⌊ω̂⌋∆v

(A.37)

where in the last step the product of two error terms is neglected. Finally, by summing
the three simplified parts, we obtain the velocity differential equation

∆v̇ ≈ ∆f − ⌊C(q̂)g⌋δθ + ⌊v̂⌋∆ω − ⌊ω̂⌋∆v (A.38)
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B. Quaternion Multiplication and Inversion

Definition

The quaternion product is defined according to [1] as

q⊗ p =









q4p1 + q3p2 − q2p3 + p1p4
−q3p1 + q4p2 + q1p3 + q2p4
q2p1 − q1p2 + q4p3 + q3p4
−q1p1 − q2p2 − q3p3 + q4p4









(B.1)

The quaternion inversion is defined according to [1] as

q−1 =









−q1
−q2
−q3
q4









(B.2)

while it is left without proof that

q−1 ⊗ q = q⊗ q−1 =









0
0
0
1









= qidentity (B.3)
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C. List of Experiments
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The Experiments: X.Z.(a,b,c)
● X:

○ 1: The Structure A
○ 2: The Pile
○ 3: No structure, just the Vicon room
○ 3: The Leica in the Hallway
○ 4: The Building without reference
○ 5: Outside without reference

● Z:    Experiment serial number
● (a,b,c...):  Optional repetition

ReRunning the 20130307

Experiment ID 0.1

Description Big squares

Conditions tested #General performance

Expected time 8 min

Start / End [hh:mm] 16:17/16:20 not repeated

Notes 1st round 16:18, 2nd 16:19

Experiment ID 0.2

Description Big squares opposite direction

Conditions tested #General performance

Expected time 8 min

Start / End [hh:mm] 16:31/16:33 try again: 20130325_17:05/17:09

Notes first time no data stored



Experiment ID 0.3

Description Random path I

Conditions tested #General performance

Expected time 8 min

Start / End [hh:mm] 16:34/16:37 try again: 20130325_17:10/17:13

Notes including backward path from 16:35 and spot turn 16:36

Experiment ID 0.4

Description Random path I  opposite direction

Conditions tested #General performance

Expected time 8 min

Start / End [hh:mm] 20130325_17:14/17:18

Notes

Experiment ID 0.5

Description Backlash/Tilt of Platform

Conditions tested #General performance

Expected time 2 min

Start / End [hh:mm] 20130325_17:23/17:27

Notes



The Structure A Experiments

Experiment ID 1.1.a

Description Up the nonslippery slope, cross the structure, turn around, down to
the carpet, repeat 5 times

Conditions tested #General performance

Expected time 8 min

Start / End [hh:mm] 20130326_12:12/12:21

Notes Condition #11

Experiment ID 1.1.b

Description Up the nonslippery slope, cross the structure, turn around, down to
the carpet, repeat 5 times

Conditions tested #General performance

Expected time 8 min

Start / End [hh:mm] 20130326_12:22/12:30

Notes Condition #11

Experiment ID 1.2.a

Description Up the nonslippery slope, cross the structure, turn around, down to
the carpet, repeat 5 times, driving backwards

Conditions tested #General performance

Expected time 8 min

Start / End [hh:mm] 20130326_12:33/12:40

Notes Condition #11



Experiment ID 1.3.a

Description Up the nonslippery slope, cross the structure, turn around, down to
the carpet, repeat 3 times, halogen light on  stationary

Conditions tested #8,9

Expected time 10 min

Start / End [hh:mm] 20130326_14:07/14:10

Notes Condition #11

Experiment ID 1.3.b

Description Up the nonslippery slope, cross the structure, turn around, down to
the carpet, repeat 3 times, halogen light on  stationary

Conditions tested #8,9

Expected time 10 min

Start / End [hh:mm] 20130326_14:15/14:18

Notes Condition #11

Experiment ID 1.3.c

Description Up the nonslippery slope, cross the structure, turn around, down to
the carpet, repeat 3 times, halogen light on  moving

Conditions tested #8,9

Expected time 10 min

Start / End [hh:mm] 20130326_14:24/14:28

Notes Condition #11



Experiment ID 1.3.d

Description Up the nonslippery slope, cross the structure, turn around, down to
the carpet, repeat 3 times, halogen light on  moving

Conditions tested #8,9

Expected time 10 min

Start / End [hh:mm] 20130326_14:30/14:33

Notes Condition #11

Experiment ID 1.3.e

Description Up the nonslippery slope, cross the structure, turn around, down to
the carpet, repeat 3 times, halogen light off  control experiment

Conditions tested #8,9

Expected time 10 min

Start / End [hh:mm] 20130326_14:47/14:50

Notes Condition #11

Experiment ID 1.3.f

Description Up the nonslippery slope, cross the structure, turn around, down to
the carpet, repeat 3 times, halogen light on (stationary)  main
lights off

Conditions tested #8,9

Expected time 10 min

Start / End [hh:mm] 20130326_14:53/14:56

Notes Condition #11



Experiment ID 1.4.a

Description Up the structure, cross it, down to the carpet, around, up again and
so on, twice, reduced laser radius & moving obstacle

Conditions tested #4,10

Expected time 10 min

Start / End [hh:mm] 20130326_16:32/16:36

Notes Condition #11,  Moving artificial wall within the laser range, laser
range reduced to 3.5m

Experiment ID 1.4.b

Description Up the structure, cross it, down to the carpet, around, up again and
so on, once, reduced laser radius & moving obstacle

Conditions tested #4,10

Expected time 10 min

Start / End [hh:mm] 20130326_16:38/16:41

Notes Condition #11, Moving artificial wall within the laser range, laser
range reduced to 3.5m

Experiment ID 1.4.c

Description Up the structure, cross it, down to the carpet, around, up again and
so on, 5 times around, reduced laser radius & moving obstacle

Conditions tested #4,10

Expected time 10 min

Start / End [hh:mm] 20130326_16:44/16:50

Notes Condition #11, Moving artificial wall within the laser range, laser
range reduced to 3.5m



Experiment ID 1.4.d bad data

Description Up the structure, cross it, down to the carpet, around, up again and
so on, 5 times around, reduced laser radius

Conditions tested #4,10

Expected time 10 min

Start / End [hh:mm] 20130326_17:00/17:06     csv_files: 17:32:15

Notes Condition #11, laser range reduced to 3m

Experiment ID 1.4.e bad data

Description Up the structure, cross it, down the slippery slope, close the loop, up
again and so on, 3 times around, reduced laser radius

Conditions tested #4,10, 1

Expected time 10 min

Start / End [hh:mm] 20130326_17:07/17:12 csv_files: 17:42:42

Notes Condition #11, loop closed 3x, laser range reduced to 3m

Experiment ID 1.4.f bad data

Description Up the structure, cross it, down the slippery slope, close the loop, up
again and so on, 3 times around, reduced laser radius  opposite
direction (up the slippery slope first)

Conditions tested #4,10, 1

Expected time 10 min

Start / End [hh:mm] 20130326_17:13/17:18      csv_files: 17:47:08

Notes Condition #11, loop closed 3x, laser range reduced to 3m



Experiment ID 1.4.d second try

Description Up the structure, cross it, down the slippery slope, close the loop, up
again and so on, 3 times around, reduced laser radius

Conditions tested #4,10, 1

Expected time 10 min

Start / End [hh:mm] 20130327_11:06/11:10

Notes Condition #11, laser range reduced to 3m

Experiment ID 1.4.e second try

Description Up the structure, cross it, down the slippery slope, close the loop, up
again and so on, 3 times around, reduced laser radius

Conditions tested #4,10, 1

Expected time 10 min

Start / End [hh:mm] 20130327_11:11/11:17

Notes Condition #11, loop closed 3x, laser range reduced to 3m

Experiment ID 1.4.f second try

Description Up the structure, cross it, down the slippery slope, close the loop, up
again and so on, 3 times around, reduced laser radius  opposite
direction (up the slippery slope first)

Conditions tested #4,10, 1

Expected time 10 min

Start / End [hh:mm] 20130327_11:17/11:22

Notes Condition #11, loop closed 3x, laser range reduced to 3m



Experiment ID 1.4.g

Description Up the structure, cross it, down the slippery slope, close the loop, up
again and so on, 3 times around, reduced laser radius  control
experiment

Conditions tested #4,10, 1

Expected time 10 min

Start / End [hh:mm] 20130327_11:25/11:29

Notes Condition #11, loop closed 3x, laser range is no longer reduced

Experiment ID 1.6.a

Description Up the structure, cross it, down to the carpet, around, up again and
so on, 5 times around, blindfold some camera lenses

Conditions tested #11

Expected time 10 min

Start / End [hh:mm] 20130326_16:02/16:09

Notes visual odom died at the beginning, 16:09 laser died

Experiment ID 1.6.b

Description Up the structure, cross it, down the slippery slope, close the loop, up
again and so on, 3 times around, blindfold some camera lenses

Conditions tested #11, 1

Expected time 10 min

Start / End [hh:mm] 20130327_11:30/11:33

Notes 11:33 laser died



Experiment ID 1.6.c

Description Up the structure, cross it, down the slippery slope, close the loop, up
again and so on, 3 times around, blindfold some camera lenses

Conditions tested #11, 1

Expected time 10 min

Start / End [hh:mm] 20130327_11:37/11:41

Notes visual odom died

Experiment ID 1.7.a

Description Up the structure, cross it, down the slippery slope, close the loop, up
again and so on, 3 times around, pause the laser scanning

Conditions tested #3,14,1

Expected time 10 min

Start / End [hh:mm] 20130327_11:45/11:50

Notes

Experiment ID 1.7.b

Description Up the structure, cross it, down the slippery slope, close the loop, up
again and so on, 3 times around, pause the laser scanning 
opposite direction (up the slippery slope first)

Conditions tested #3,14, 1

Expected time 10 min

Start / End [hh:mm] 20130327_11:52/11:56

Notes



Experiment ID 1.8.a

Description Go forward and hit the obstacle by one track, simulating the common
autonomous navigation scenario, go back & hit again, repeat 5x

Conditions tested #13, 1

Expected time 5 min

Start / End [hh:mm] 20130327_11:58/11:12:01

Notes

Experiment ID 1.8.b

Description Go forward and hit the obstacle by one track, simulating the common
autonomous navigation scenario, go back & hit again, repeat 5x

Conditions tested #13, 1

Expected time 5 min

Start / End [hh:mm] 20130327_12:02/12:05

Notes

Experiment ID 1.9.a

Description Around the the whole structure, including the slippery surface, 15min
around, changing the speed occasionally

Conditions tested #1,2

Expected time 8 min

Start / End [hh:mm] 20130327_12:09/12:24

Notes visual odom died, not complete bag file due to limited hard disk
space



Experiment ID 1.9.b

Description Around the the whole structure, including the slippery surface, 15min
around, changing the speed occasionally  opposite direction

Conditions tested #1,2

Expected time 8 min

Start / End [hh:mm] 20130327_12:43/12:59

Notes laser died at the end (12:59), visual odom died

Experiment ID 1.10.a

Description Go up the slippery slope, make the robot slip intentionally, when it’s
back down, go around to make the odometry work, then try to climb
up again and make it slip again.

Conditions tested #1,2

Expected time 5 min

Start / End [hh:mm]

Notes 20130327_14:18/14:21

Experiment ID 1.10.b

Description Go up the slippery slope, make the robot slip intentionally, when it’s
back down, go around to make the odometry work, then try to climb
up again and make it slip again.

Conditions tested #1,2

Expected time 5 min

Start / End [hh:mm] 20130327_14:21/14:25

Notes



Experiment ID 1.10.c

Description Go up the slippery slope, make the robot slip intentionally, when it’s
back down, go around to make the odometry work, then try to climb
up again and make it slip again.

Conditions tested #1,2

Expected time 5 min

Start / End [hh:mm] 20130327_14:26/14:29

Notes



The Structure Pile Experiments

Experiment ID 2.1.a

Description Go up the pile, down the pile, once

Conditions tested # 1,2,...?

Expected time 7 min

Start / End [hh:mm] 03/28:   11:17 / 11

Notes Using flippers

Experiment ID 2.1.b

Description Go up the pile, down the pile, once

Conditions tested # 1,2

Expected time 7 min

Start / End [hh:mm] 11:25

Notes Flippers, video recorded

Experiment ID 2.2.a

Description Go up the pile, turn around, down the pile, once

Conditions tested # 1,2

Expected time 7 min

Start / End [hh:mm] 11:30/

Notes Video recorded



Experiment ID 2.2.b

Description Go up the pile, turn around, down the pile, once

Conditions tested # 1,2

Expected time 7 min

Start / End [hh:mm] 11:36 / 11:40

Notes

Experiment ID 2.3.a

Description Go up the pile, turn around, down the pile, once, net all over the
pile

Conditions tested # 1,2

Expected time 8 min

Start / End [hh:mm] 11:47 11:52

Notes Video recorded

Experiment ID 2.3.b

Description Go up the pile, turn around, down the pile, once, net all over the
pile

Conditions tested # 1,2

Expected time 8 min

Start / End [hh:mm] 11:53 11:57

Notes



Experiment ID 2.4.a

Description Go up the pile, turn around, down the pile, once, net all over the
pile, reduced laser range

Conditions tested # 1,2,4,10

Expected time 8 min

Start / End [hh:mm] 12:03 / 12:08

Notes Partially recorded on the video

Experiment ID 2.4.b

Description Go up the pile, turn around, down the pile, once, net all over the
pile, reduced laser range

Conditions tested # 1,2,4,10

Expected time 8 min

Start / End [hh:mm] 12:08 / 12:12

Notes

Experiment ID 2.5.a

Description Perform the nonzero roll movement experiment somehow,
reduced laser range

Conditions tested #1,2,4,10 General performance

Expected time 5 min

Start / End [hh:mm] 12:13/12:19

Notes



Experiment ID 2.5.b

Description Perform the nonzero roll movement experiment somehow

Conditions tested #1,2, General performance

Expected time 5 min

Start / End [hh:mm] 12:20/12:25

Notes

Experiment ID 2.5.c

Description Perform the nonzero roll movement experiment somehow

Conditions tested #1,2, General performance

Expected time 5 min

Start / End [hh:mm] 12:31/12:34

Notes Just wood cubes, one track on them, so the robot is rolled, recorded
on video, the structure had gaps between the cubes, so they moved

Experiment ID 2.5.d

Description Perform the nonzero roll movement experiment somehow

Conditions tested #1,2, General performance

Expected time 5 min

Start / End [hh:mm] 12:37/12:39

Notes Just wood cubes, one track on them, so the robot is rolled, recorded
on video, the structure held this time



No Structure Needed

Experiment ID 3.1.a

Description Put the robot on a trolley and pull it slowly

Conditions tested # 5,6

Expected time 5 min

Start / End [hh:mm] 12:46/12:50

Notes no turns, INSO constraint on

Experiment ID 3.1.b

Description Put the robot on a trolley and pull it slowly

Conditions tested # 5,6

Expected time 5 min

Start / End [hh:mm] 12:53/13:00

Notes no turns, INSO constraint on

Experiment ID 3.2.a

Description Put the robot on a trolley and pull it as fast as the robot would move
by itself

Conditions tested # 5,6

Expected time 5 min

Start / End [hh:mm] 14:43/14:44

Notes no turns, INSO constraint on



Experiment ID 3.2.b

Description Put the robot on a trolley and pull it as fast as the robot would move
by itself

Conditions tested # 5,6

Expected time 5 min

Start / End [hh:mm] 14:47

Notes no turns, INSO constraint on

Experiment ID 3.3.a

Description Put the robot on a trolley and pull it slowly

Conditions tested # 5,6

Expected time 5 min

Start / End [hh:mm] 14:51/14:54

Notes with turns, INSO constraint on

Experiment ID 3.3.b

Description Put the robot on a trolley and pull it slowly

Conditions tested # 5,6

Expected time 5 min

Start / End [hh:mm] 15:00/ 15:03

Notes with turns, INSO constraint off



Experiment ID 3.4.a

Description Put the robot on a trolley and pull it as fast as the robot would move
by itself

Conditions tested # 5,6

Expected time 5 min

Start / End [hh:mm] 15:05/15:06

Notes with turns,  INSO constraint off

Experiment ID 3.4.b

Description Put the robot on a trolley and pull it as fast as the robot would move
by itself

Conditions tested # 5,6

Expected time 5 min

Start / End [hh:mm] 15:08/15:15:09

Notes with turns, INSO constraint on

Experiment ID 3.4.c

Description Put the robot on a trolley and pull it as fast as the robot would move
by itself

Conditions tested # 5,6

Expected time 5 min

Start / End [hh:mm] 15:11/15:13

Notes with turns, INSO constraint on, medium velocity (look at the vicon
data)



Experiment ID 3.5.a

Description Put the robot on a trolley, go a circle

Conditions tested # 5,6

Expected time 5 min

Start / End [hh:mm] 15:16/15:18

Notes with turns, INSO constraint on, medium velocity (look at the vicon) , 2
rounds

Experiment ID 3.5.b

Description Put the robot on a trolley, go a circle

Conditions tested # 5,6

Expected time 5 min

Start / End [hh:mm] 15:19/ 15:20

Notes with turns, INSO constraint on, fast, 2 rounds

Experiment ID 3.5.c

Description Put the robot on a trolley, go a circle

Conditions tested # 5,6

Expected time 5 min

Start / End [hh:mm] 15:25/

Notes with turns, INSO constraint off, medium speed, 2 rounds



Experiment ID 3.5.d

Description Put the robot on a trolley, go a circle

Conditions tested # 5,6

Expected time 5 min

Start / End [hh:mm] 15:29/ 15:31

Notes with turns, INSO constraint off, fast, 2 rounds

Experiment ID 3.6.a

Description Put the robot on a trolley sideways, laser pointing inside,  go a circle

Conditions tested # 5,6

Expected time 5 min

Start / End [hh:mm] 15:32/15:35

Notes with turns, INSO constraint off, medium, 2 rounds

Experiment ID 3.6.b

Description Put the robot on a trolley sideways, laser pointing inside,  go a circle

Conditions tested # 5,6

Expected time 5 min

Start / End [hh:mm] 15:36/15:38

Notes with turns, INSO constraint on, medium, 2 rounds



Experiment ID 3.7.a

Description Robot crossing a pallet

Conditions tested # ?

Expected time 5 min

Start / End [hh:mm] 15:43/15:45

Notes INSO constraint on, on video, on a trolley  unstable

Experiment ID 3.7.b

Description Robot crossing a pallet

Conditions tested # ?

Expected time 5 min

Start / End [hh:mm] 15:47/15:51

Notes INSO constraint on, on video, pallet on a wood brick, brick:25cm,
brick+pallet = 29 cms.

Experiment ID 3.7.c

Description Robot crossing a pallet

Conditions tested # ?

Expected time 5 min

Start / End [hh:mm] 15:54/15:59

Notes INSO constraint on, on video, 2 pallets on a wood brick, brick:25cm,
brick+pallet = 29 cms.



Experiment ID 3.8.a

Description Return home

Conditions tested # ?

Expected time 5 min

Start / End [hh:mm] 16:01

Notes stairs, elevators and so on...



The Leica Experiments:

The Reference Testing and Validation  Exps

Experiment ID combined_run_starts_leveled_replayICP

Description Basic basement hallway run

Conditions tested Reference system function

Expected time 1015 min

Start / End [hh:mm] 04/09 17:16

Notes Screws position
by Leica (in the leica coord frame):

1: Ea.= 0.2389  , No.= 1.1628   ,Ev.=1.2973
2: Ea.= 0.1615  , No.= 1.0202  ,Ev.= 1.2976
3: Ea.= 0.1593  , No.=  0.9842 ,Ev.= 1.3186
4: Ea.= 0.4654  , No.= 0.8136  ,Ev.= 1.3099

Perform the initialization and go straight
forward (just to see that the frames are
aligned.
prizm:
Ea.= 0.1249  , No.= 1.0051  ,Ev.= 1.1074



Experiment ID straight_run_starts_tilted_replayICP

Description Start tilted, repeat the previous trajectory

Conditions tested # Reference System, Initialization, ICP
function

Expected time 10 min

Start / End [hh:mm] 04/09 17:43

Notes Same as for the 0.1:

1: Ea.= 0.6866  , No.= 2.4372  ,Ev.=1.3111
2: Ea.= 0.6293  , No.= 2.2849  ,Ev.= 1.2910
3: Ea.= 0.6332  , No.= 2.2426  ,Ev.= 1.2992
4: Ea.= 0.9600  , No.=  2.1248 ,Ev.=
1.2543

but choose different attitude, preferably with
nonzero roll and pitch.

Experiment ID hallway

Description Going straight through the ASL floor corridor

Conditions tested # ICP map twisting

Expected time 10 min

Start / End [hh:mm] 04/12 15:20

Notes Screws saved in the leica export protocol

Experiment ID street1

Description The street next to the CLA building, a
rectangular trajectory

Conditions tested # ICP map twisting, VODOM performance

Expected time 10 min

Start / End [hh:mm] 04/12 15:57

Notes Screws saved in the leica export protocol



Experiment ID street2

Description The street next to the CLA building, a
rectangular trajectory, repetition

Conditions tested # ICP map twisting, VODOM performance

Expected time 10 min

Start / End [hh:mm] 04/12 16:13

Notes Screws saved in the leica export protocol

Experiment ID big_circle

Description The park under the polyterrasse, longer loop
including two stairs

Conditions tested # ICP map, VODOM performance

Expected time 15 min

Start / End [hh:mm] 04/15 10:27

Notes Screws saved in the leica export protocol

Experiment ID circle

Description The park under the polyterrasse, shorter
loop

Conditions tested # ICP map, VODOM performance

Expected time 15 min

Start / End [hh:mm] 04/15 10:09

Notes Screws saved in the leica export protocol



Experiment ID straight

Description The park under the polyterrasse, forth and
back on a leveled path

Conditions tested # ICP map, VODOM performance, the rising
robot issue

Expected time 5 min

Start / End [hh:mm] 04/15 09:54

Notes Screws saved in the leica export protocol

Experiment ID return home

Description Return from the park to the lab, long outdoor
stairs along the polymensa, crossing street,
walking people...

Conditions tested # Everything

Expected time 20 min

Start / End [hh:mm] 04/15 10:44

Notes No reference, laser died

Experiment ID two_floors:first run

Description Going through two floors of the CLA building
in a loop, reference on the upper floor and
the closer staircase (partially)

Conditions tested # ICP map bending

Expected time 20 min

Start / End [hh:mm] 04/18 08:42

Notes Screws in the log file



Experiment ID two_floors:second run

Description Going through two floors of the CLA building
in a loop, reference on the upper floor and
the closer staircase (partially), opposite
direction

Conditions tested # ICP map bending

Expected time 20 min

Start / End [hh:mm] 04/18 09:02

Notes Screws in the log file



D. Contents of the Compact Disc

The CD attached to this thesis contains:

• A pdf copy of this thesis

• The experimental dataset with photo-documentation

The final C++ implementation will be published when the NIFTi project finishes.
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