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Abstract

The thesis deals with the evaluation of mathematics information retrieval (IR).
It gives an overview of the history of regular IR evaluation, initiatives that are
engaged in this field of research as well as most common methods and measures
used for evaluation. The findings are applied to the specifics of mathematics
retrieval. This thesis also summarizes the state-of-the-art of MIaS math search
system, which is already being used in an international web portal. Latest
developments aiming towards the second version of the system are described.
In addition to participating in the international evaluation conference and
workshop, MIaS is tested for effectiveness and efficiency in this work. Measured
performance indicators are evaluated and future work is suggested accordingly.
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1 Introduction

In the world of the Internet and World Wide Web, which offers a tremendous
amount of information, an increasing emphasis is being given to searching
services and functionality. The founder company of the best known and most
widely used search portal, Google, was rated as world’s fourth biggest software
company1.

Currently a majority of web portals offer their own searching utilities, be it
better or worse. These are able to search for the content within the sites, mainly
text – the textual content of documents, annotations as well as the metadata
of various types of information. Searching for any other differently structured
data will not be very successful or is not currently supported.

Mathematical documents contain precisely such information. They are
mainly collected and offered to the general public through digital mathematics
libraries (DMLs). Such documents are of a scientific character and the mathe-
matics they contain hold significant information for the meaning of the whole
text. In most cases mathematics formulae cannot be described and searched for
in a few words, rather these formula supplement the meaning of the texts. This
indispensable information can not currently be searched for.

It is necessary to provide math-aware searching facilities within portals
that provide users with substantial amounts of mathematics. Its contribution
to the users of these portals and to the general public is undeniable, both in
the short and long-terms [27]. There are, however, several inherent obstacles.
Firstly, there is a wide diversity of mathematical notation formats used to
encode math information in the content. Scientists are used to straightforward
and powerful notation of TEX and its extensions, despite there being several
structured formats standardized for math information interchange between
machines, such as MathML. Secondly there can be significant ambiguity in
written mathematics, where one mathematical expression can have several
meanings. Such formulae need to be disambiguated, possibly through semantic
information, a practice that almost no author observes this when writing a
paper. On the contrary, a formula can be written in a countless variety of ways
while still conveying the same mathematical meaning.

There were several attempts to address these issues in the past which led to
the design and implementation of a solution for mathematics retrieval: Math-
Dex, LeActiveMath, MathWebSearch, LATEXSearch, EgoMath, MIaS. Each of
these employ different approaches. The most distinct of these is MathWeb-
Search as it is not based on full-text indexing. The systems differ in the type
of processed documents, internal representation of the data, query types and

1. Forbes Global 2000, 2010. 4 Jan. 2013
http://www.forbes.com/lists/2010/18/global-2000-10_The-Global-2000_

Rank.html
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1. INTRODUCTION

their languages [9]. There is no commonly accepted way to determine and
evaluate the correctness in searching using any of these systems and approaches,
although observing the retrieval process and the estimations based on the
designs of the systems can guide us in this.

The issue of evaluating information retrieval systems has become an integral
part of the field. Since the first measures were developed in the 1950s, it has been
a driving force in IR systems research and development. With several evaluation
initiatives having been devised, it has gained considerable momentum over
the years and the evaluation of retrieval of conventional information can be
considered standard. Special attention needs to be paid to non-standard data
like multi-lingual texts, geographical information, multimedia and indeed
mathematics. With the mathematical retrieval systems only being developed in
the last few years, the evaluation of this type of domain-specific retrieval is still
in its infancy.

This thesis is a continuation of my Bachelor thesis, Vyhledávaní v matema-
tickém textu [9], in which my math-aware searching system, Math Indexer and
Searcher (MIaS), was designed and developed. The thesis looks at the history,
initiatives and means of evaluating of information retrieval systems in general
and tries to apply it to math-awareness of systems with the aim of devising
suitable techniques to be used further in the thesis (Chapter 2 on the following
page). It then proceeds with innovations in the world of mathematical retrieval
since it was described in my bachelor thesis (Chapter 3 on page 21). It then
proceeds to describe further development, design and fine-tuning issues as well
as basic evaluation of the Web/MIaS system (Chapter 4 on page 24). The final
chapter evaluates the system in accordance with the findings from the previous
parts of the work (Chapter 5 on page 39).
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2 Information Retrieval Evaluation

Information retrieval (IR) is a key technology to access corpora of information
and to manage the knowledge contained in them. The first IR techniques were
developed in the late 1950s and today such search systems are in everyday
use by users. IR systems deal with analyzing, indexing and storing data and
with retrieving information according to each user’s current information need.
To evaluate an IR system means examining its effectiveness, that is whether it
satisfies the user’s information need, as well as performance (speed and storage
requirements) and usability.

2.1 History

The first IR evaluation questions arose shortly after their first design proposals.
The first measures, recall and precision, were proposed by Kent et al. in 1955 and
remain two basic measures used to date [21]. Later studies at Cranfield College
of Aeronautics from the late 1950s to the mid 1960s then set the standard for IR
evaluation which is used to this day, even though it was still pre-computer era.

Cranfield 1 subjected four different indexing schemes of how information
should be organized [19] which provoked many discussions. These then led to
the formulation of the Cranfield 2 Project which was a big step forward. One
of the many outcomes was to use combinations of words for searching (which
is the underlying principle of today’s word-based search engines). Another
achievement was the way queries and good answers for them were captured –
for each document an author was asked to formulate questions, to which his
paper was a good answer. This became the criterion for search engines. Methods
of this project again became the source of arguments and discussions, but
despite their limitations they survived in the field of IR and brought valuable
results to it [19].

SMART (System for the Mechanical Analysis and Retrieval of Text) was an
IR system developed at Cornell University in 1960s [20]. Many of the interesting
and important concepts were developed with SMART research and nowadays
form the basis of todays web-based search systems. SMART introduced the
notion of scoring function as well as the ranking of retrieved documents based
on it for displaying to the user. The system was based on the innovative vector
space model1 which is a multidimensional model. Is is used for representing
text documents with each dimension corresponding to a different term in
the document. The relevance of a term to a query is then computed as the
distance measure in the space. SMART computed vectors not by a binary

1. Vector space model. Wikipedia. 4 Jan. 2013
http://en.wikipedia.org/wiki/Vector_space_model
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2. INFORMATION RETRIEVAL EVALUATION

occurrence of terms in the document, but by combining term frequency (TF)
values with inverse document frequency (IDF) values. Another important step
was an application of relevance feedback from users which improve current or
subsequent searches [19].

The Medlars (Medical Literature Analysis and Retrieval Service) Demand
Search Service – predecessor of today’s Pubmed – was one of the first computer
based IR systems [19]. It searched in medical literature. Interesting thing about
this project were queries formulated only by expert searchers. Users communi-
cated their information needs to experts by mail or face-to-face. Queries were
run in batches at centralized server and the results were mailed back to the users
afterwards. The evaluation of Medlars was also interesting. There was an effort
for extensive analysis of failures in search – identifying relevant documents or
other way around, rejecting non-relevant ones.

Karen Spärck Jones from Computer Laboratory at Cambridge also experi-
mented in the IR field. She did not use her own test collection but used Clever-
don’s instead. During her experiments, she invented inverse document fre-
quency measure (IDF) which together with SMART’s term frequency (TF)
inspired future retrieval systems. Several deficiencies of Cleverdon’s docu-
ment collection occurred which led her to consider construction of suitable
test collections for IR. Unfortunately this idea was not researched until recent
involvement of TREC.

Later in the century, IR research started to focus on creating interactive
user-based search – search that is accessible to end-user and is not mediated by
search experts. Oddy and Belkin from the UK were involved in this research
in the 1970s when the system called Thomas was developed. It maintained
model of user interests. Oddy simulated real-user interaction and relevance
judgments from other projects. In the 1980s the project Okapi started to focus on
online access catalogs in libraries, which was the first sign of making computer-
based search system available to practically anyone. It implemented a simple
text search where queries were written into a box much like the ones today.
Additionally, Okapi users were asked to give relevance feedback judgments for
evaluation.

2.2 Initiatives

Research and development of IR systems, its methods and processes and its
evaluation became inseparable. There are three major initiatives that are con-
cerned in IR and its evaluation. Their purpose is to promote research, innovation
and development as well as to provide needed infrastructure for evaluation of
IR systems.

6



2. INFORMATION RETRIEVAL EVALUATION

2.2.1 TREC

Text REtrieval Conference (TREC)2 started in 1992 and it was the first large-scale
information retrieval evaluation initiative. It is co-sponsored by the National
Institute of Standards and Technology (NIST) and U.S. Department of Defense.
TREC claims the effectiveness of participating systems approximately doubled
in the first six years of the conference.

TREC consists of a set of tracks, i.e. areas of focus, in which particular re-
trieval tasks are defined. These tracks serve as an incubator for new research.
The first run of a track defines what the problem actually is and it provides
the infrastructure to support the research. Tracks also encourage robustness of
retrieval technologies – same techniques can be used in more tracks. Tracks are
also an invitation to a broader set of researchers interested in various fields of
retrieval. Some of the tracks held over the years have been [11]: question an-
swering, genomics, HARD (High Accuracy Retrieval from Documents), robust
retrieval, spam track, blog track, terabyte, legal, enterprise and a million query
track.

For each track, several tasks and the data used for them are agreed before-
hand by the track coordinators as well as the track participants. The data consist
of a collection of documents, a collection of search requests designated for
these documents and a set of relevance judgments for request-document pairs.
Documents and requests are distributed to participants which run their systems
over the collection and post back the results afterwards. Participants then learn
how they did with the challenges which is also a part of the conference itself.

One of the traditional tracks was the so-called ad-hoc track. It simulated
a user who would sit down in front of a search system and would conduct a
search against an existing collection of documents. The system returns a set of
results (nowadays assumed to be ranked and ordered) that the user consults.
For this model it is fundamental that the user be able to judge the relevance of
each returned result irrespective of the order of the results presented [19].

Ranking algorithms, which are a crucial part in the behaviour of modern
search engines, were also one of the main focuses of the ad-hoc task. Successful
modifications of SMART’s TF*IDF term presented at TREC helped to stimulate
further developments in ranking.

Other interesting research includes relevance feedback (RF). With RF imple-
mented the system learns characteristics of relevant documents only from the
requests. It is not an easy task to evaluate systems using RF; the first trials were
done by SMART. Okapi then used real users to evaluate RF ability – a user per-
formed a search, examined several top documents and performed subsequent
search. The user would then mark new documents that were relevant to their
query that were not included in the first set of results. TREC introduced routing

2. Text REtrieval Conference. National Institute of Standards and Technology. 4 Jan. 2013
http://trec.nist.gov/
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2. INFORMATION RETRIEVAL EVALUATION

and adaptive filtering tasks, which were based on RF. These tasks helped to
introduce machine learning practices into IR which over the years became
increasingly common [19].

TREC also addressed the issues of searching the Web. There are several pit-
falls in searching documents on the Web, the main one being the sheer amount
of pages, their heterogeneity and quality variation. Very Large Collection track,
Web Track and Terabyte Track tackled these issues. Linkage between pages has
started to be used for document ranking, and Google introduced its PageRank –
a query independent measure of the quality of web documents.

TREC’s evaluative collections contain millions of documents. The first TREC
collections consisted of newspaper articles. Collections for Terabyte Track was
made by crawling the US .gov domain.

2.2.2 CLEF

Different languages often need different approach and optimization methods
in retrieval. Conference and Labs of the Evaluation Forum3 (CLEF, formerly
known as Cross-Language Evaluation Forum) first took place in 2000. It fol-
lowed TREC’s model for evaluating, with the addition that it offered collections
in several languages, namely English, French, Spanish, Italian, German, Dutch,
Czech, Swedish, Russian, Finnish, Portuguese, Bulgarian and Hungarian.

Every year the topics are translated into several languages. Queries can be
written in one language and topics in different languages may be retrieved,
therefor queries need to be translated correctly to search within documents
written in different language. Search results are returned by participants and
are evaluated by native speakers of the tested language variations. Question-
answering track uses a number of questions answered correctly as the main
measure.

CLEF also consists of several content specific tracks: ImageCLEF (combined
textual and graphic retrieval), iCLEF (interactive task track), domain specific
track, WebCLEF, GeoCLEF (geographic retrieval), VideoCLEF.

2.2.3 NTCIR

NTCIR4 stands for NII (Nation Institute for Informatics) Test Collection for
IR Systems and it is a series of evaluation workshops designed to enhance
research in Information Access (IA) technologies focusing on Asian languages.
Its first workshop was held in 1999. Several tracks are being held: ad-hoc track,
patent track, web and question answering track. Similarly to TREC and CLEF,

3. The CLEF Initiative. 4 Jan. 2013
http://www.clef-initiative.eu/web/clef-initiative/home

4. NTCIR Project. 4 Jan. 2013
http://research.nii.ac.jp/ntcir/index-en.html
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2. INFORMATION RETRIEVAL EVALUATION

collections for ad-hoc tasks consist of newspaper articles. The collection for
the Patent track consists of 7 million documents, and there are 1,200 search
topics that are made of refused patent claims. Web track collection comprises of
approximately 1 TB of pages crawled from the .jp domain.

2.2.4 MIR workshop, CICM 2012

Conferences on Intelligent Computer Mathematics (CICM) in the year 20125

hosted a workshop focused on mathematics information retrieval called MIR
2012 Workshop6. It was the first ever officially organized MIR event, and it
was conceived by assoc. prof. Petr Sojka (Masaryk University, Brno) and prof.
Michael Kohlhase (Jacobs University, Bremen) at CICM 2011.

Among several talks on mathematics retrieval, the most important part of
the workshop was MIR Happening – an informal friendly competition that
aimed to show the abilities of contestant math search systems in real time in
front of a live audience.

There were two different test collections both extracted from arXMLiv7

project:

∙ sandbox – 10,000 full arXMLiv documents;

∙ harvest – 177 files each containing 10,000 non-trivial formulae extracted
from arXMLiv documents.

These collections were injected with documents picked by three judges: prof.
James Davenport (University of Bath), Dr. Patrick Ion (Mathematical Reviews)
and Dr. Daniel Mayer (Jacobs University, Bremen). The injected documents
were the correct results for judges’ queries. The test document collection was
published to contestants several days before the actual conference. Contestants
had to index the documents and be prepared to query the system with judges’
information needs.

MIR Happening consisted of three differently intended tasks:

∙ Formula Search – formula-only queries searched in the harvest test col-
lection.

∙ Full-Text Search – text/formula queries searched in the sandbox collec-
tion.

5. CICM 2012. 4 Jan. 2013 http://www.informatik.uni-bremen.de/cicm2012
6. MIR 2012 Workshop. 4 Jan 2013
http://www.cicm-conference.org/2012/cicm.php?event=mir&menu=general

7. arXMLiv: Translating the arXiv to XML+MathML. The KWARC research group. 4 Jan. 2013
http://kwarc.info/projects/arXMLiv/
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2. INFORMATION RETRIEVAL EVALUATION

∙ Open Information Retrieval – natural language queries were left to the
system operators into translate to appropriate queries to retrieve specific
information.

Section 5.1 lists the queries prepared by the judges as they were released to
participating “contestants”. It was intended to measure precision and recall as
well as some efficiency measures for the queries performed in the tasks.

Two systems, MathWebSearch and MIaS, joined the friendly competition.
It turned out that the time dedicated for the Happening was not sufficient to
perform all queries of all tasks nor to measure stated effectiveness and efficiency
indicators. Trying to accomplish search tasks prepared by the judges was a great
lesson and very interesting experience for the contestants, judges, organizers
as well as the audience, as it invoked a good deal of discussion and interest.
Overall, the workshop was considered very successful and a good starting
point for the next event.

2.2.5 Math Task, NTCIR 2013

The 2013 NTCIR (see 2.2.3) conference8 will host the first math search task9 and
it is the first time a conference focused on IR evaluation provides its facilities
for this field of IR. The conference takes place in June 2013 in Tokyo, Japan.

NTCIR 2013 Math Task is divided into subtasks:

∙ Math Retrieval Subtask which is further divided, as it was at MIR 2012,
into Formula Search, Full-Text Search and Open Information Retrieval
tasks. A test document collection for this task consists of the initial 10,000
documents for a dry preparatory run and 100,000 documents for the
official run.

∙ Math Understanding Subtask which aims at extracting natural language
definitions of mathematical expressions. Document collection will consist
of 10 annotated documents for a dry run, 20–40 for the official run.

The task has several deadlines scheduled several months in advance of the
actual conference. Datasets were released in November 2012, search queries
a month later. Participants had two weeks to post results back to organizers.
Evaluation results are released 4 months before the conference for the partici-
pants to incorporate them into conference proceedings. The main organizes of
the task are Akiko Aizawa (National Institute of Informatics, Japan), Michael
Kohlhase (Jacobs University, Bremen), Iadh Ounis (University of Glasgow).

8. The 10th NTCIR Conference. 4 Jan. 2013
http://research.nii.ac.jp/ntcir/ntcir-10/index.html

9. NTCIR Pilot Task: Math Task. 4 Jan. 2013
http://ntcir-math.nii.ac.jp/
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2. INFORMATION RETRIEVAL EVALUATION

2.3 Evaluation in IR Systems

2.3.1 Collection

To measure the effectiveness of an information retrieval system in a standard
way, a test collection that is composed of three components is needed:

∙ Set of documents. A document collection must be representative for the
application in size and the type of documents. It can be the one a system
normally uses or it can be a sample from it or a similar collection.

∙ Set of information needs – queries. Queries should also be representative
for the particular application. These can be gathered from the actual
logs of what users search for, or they can be collected by interviewing
potential system users for examples. The size of the set of queries is
also very important. It can incorrectly resolve between correct and incor-
rect behaviour especially when evaluating two or more systems [4]. In
some applications a great number of test queries can be gathered, but to
establish relevance judgments for all of them imposes a constraint.

∙ Set of relevance judgments for pairs of documents and information
needs. These can be done by the users who are evaluating the system or
by a third party judges who have been properly instructed. In a binary
system there are only two possible relevance judgments: relevant and
non-relevant. If a system is evaluated by actual users a three-way system
can be proposed: relevant, possibly relevant and non-relevant. Possibly
relevant documents can be then assigned to either of the two remaining
groups depending on what effectiveness measures are used [4].

Basic approach to IR system effectiveness evaluation is built on a notion of
relevant and non-relevant documents. A document is relevant to an information
need if its content addresses the given information need. The documents in
the test collection are given binary judgments as to their being relevant or
non-relevant with respect to this query. This decision is referred to as the gold
standard or ground truth judgment of relevance [12]. Making these judgments
for every document-query pair consumes a lot of time and resources. Cranfield
experiments tried to complete exhaustive relevance judgments, while later
experiments judged only a subset of documents. The test collection and the set
of queries need to be a reasonable size to average the performance of a system,
despite it being more challenging to complete relevance judgments for larger
sets of documents and queries.

In a binary system a document is considered either relevant or non-relevant
to a query. Usually modern IR systems are ranked – some documents can be
highly relevant, others only slightly, some not at all. These systems use various
weights, factors and formulas to compute the level of relevance of a document

11



2. INFORMATION RETRIEVAL EVALUATION

to a certain information need. Results returned by these systems are ordered
according to their scores. To evaluate the correctness of a ranked result set is
naturally even more difficult than binary relevance statements.

When relevance judgments need to be created for a relatively large collection
usually only the top k documents retrieved are judged (for TREC, k is between
50 and 200 [4]). This method is also called pooling. Top k results from more than
one IR system are collected and unified into a pool which is manually judged
for relevance. A new system or an IR algorithm which did not contribute to the
original pool can however have problems with being evaluated correctly if it
returns completely different results than the original pool creator systems.

One valuable source of relevance judgments can be the logs of users’ actions.
Such a log usually consists of a complete query a user posted to a search
system, a list of top results that were returned and most importantly, records
of which items from the result list were clicked on [4]. When a snippet of the
document that matched a user’s query is shown together with a link to the
actual document, a user is able to evaluate the relevance of individual results
based on the snippet and chooses the most relevant one by clicking on it. This
approach obviously can not be as precise as regular relevance judgments, since
some clicks can be false positives. This can, however, be an interesting insight
into what a user finds relevant to their query.

2.3.2 Measures

Two basic measures for IR system evaluation with binary relevance classification
are precision and recall.

∙ Precision P is the fraction of retrieved documents that are relevant:

P =
(relevant documents retrieved)

(retrieved documents)

∙ Recall R is the fraction of relevant documents that are retrieved:

R =
(relevant documents retrieved)

(relevant documents)

The basic requirement is to have a system with very high precision and very
high recall, which is very difficult to achieve. It is very easy to obtain recall 1
– the system returns all documents for every query which also means that all
relevant documents are always returned. This would, on the other hand, lead
to an extremely low precision.

Precision and recall measures can be differently important in different envi-
ronments and situations. For example, web searchers demand high precision
results, as they expect most of the results on the first or first several pages
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to be relevant as they have no intention of looking through all of the results.
Conversely, some professional searchers demand high recall as they want to
retrieve most of the relevant documents in the collection and are willing to go
through the possibly all of the returned results.

The measure that combines precision and recall is called F-measure [18].
The general formula for the F-measure is:

F = (1 +β2)
P × R

β2P + R

Default balanced F-measure weighs precision and recall the same and is there-
fore computed as

F = 2 × P × R

P + R
.

In modern search applications, users tend to look only at a certain number of
top listed documents retrieved by an IR system. This is considered in evaluation
of search systems and it also comes in handy when there is a huge amount
of documents in test collections, where exhaustive relevance judgments is not
feasible. Recall-precision measures are calculated only for the top k documents
(usually 10 or 20).

Most of the IR systems produce ranked results. One way to measure a
ranked result set is to compute the recall and precision measures for every rank
position. By examining several top results, measured numbers can be displayed
in a recall-precision graph. The graph usually has a sawtooth shape – if the
(k + 1)th retrieved document is not relevant the recall stays the same but the
precision increases; if it is relevant both recall and precision increase.

An enhanced measurement to the one described above requires to calculate
the precision at fixed recall levels from 0 to 1, usually at 0.1 steps. This method
has the advantage that the effectiveness of the system is computed for all
relevant documents in the collection, not just the top k ones. It is difficult to
get these numbers from a basic recall-precision graph where numbers are not
calculated at standard recall levels. To get the recall-precision measures for
every recall level, interpolation is needed. Interpolated precision P at a recall
level R is defined as the maximum precision measured at any recall level higher
than R:

P = max P(R′)R′≤R

Interpolation removes the jiggles from the graph which consequently develops
a monotonically decreasing tendency.

Another method is to average the precision numbers of the ranks at which
relevant documents were found. The result is a single number which is based on
the rankings of all the relevant documents. This metric values as many relevant
documents to be returned as possible but at the same time it places weight on
highly ranked relevant documents [4].

13
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Measuring recall-precision numbers for the top k documents is unfeasible
when there are many documents relevant to a query or when relevant docu-
ments are spread across the ranking. One way to measure in such a situation is
to compute recall and precision for only a small number of certain rank posi-
tions. When comparing two or more result sets for one query it is sufficient to
calculate precision only – recall has the same tendency as precision compared to
another ranking. This method is called precision at p and it does not distinguish
differences between rankings at positions 1 to p. With this method a search task
focuses on finding most of the relevant documents at a given rank rather than
finding all relevant documents.

In some applications it is important to return relevant documents as close
as possible to the top rank, especially when users tend to look only at the top
few result entries. One measure useful in this situation is the precision at p
mentioned above. Another one is the reciprocal rank. This is useful mostly
when there is a single relevant document for a query. It is an inverse number of
the rank at which the relevant document was returned. It is more usual for the
mean reciprocal rank based on more queries to be computed [4]:

MRR =
1

|Q|
|Q|
∑
i=1

1

ranki
.

Another method which is called discounted cumulative gain is based on
graded relevance judgments. Grades gain several values from “bad” to “perfect”
and are assigned to several top rank positions. Discounted cumulative gain at
rank position p is computed as:

DCGp = rel1 +
p

∑
i=2

reli

log2 i

where reli is the graded relevance for a document at rank position i.
As mentioned above, an IR system is evaluated using not one but many

queries. When we have calculated the average precision for every query, we
can also compute arithmetic average of these numbers to get the final figure.
It is called mean average precision. It is a single number that summarizes the
effectiveness of a search engine. While it is easily readable, in some applications
it provides little information and can not replace the recall-precision tables or
graphs that it is based on.

Described above are measures for evaluating the effectiveness of IR systems
which assesses how well the system works in finding relevant documents in a
collection and in not returning non-relevant ones. There is also a performance
side of the evaluation – efficiency evaluation. Efficiency evaluation can only be
performed after the system has been set up to work in certain recall-precision
levels.
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Efficiency is measured by several indicators. Queries per second, or through-
put, is a single-number metric that can help users in planning their query load
but also indicates to system administrators whether the system runs on a suf-
ficiently powerful hardware. Another measure is elapsed indexing time. It is
the amount of time needed to create a complete index of some collection with
a certain system setup. Slightly different metric is CPU indexing time, which
is the amount of processing time needed to complete the indexing of some
documents irrespective of parallelism, if used. Another IR efficiency metric is
query delay. It is the amount of time that elapses between sending a user query
and displaying the results back to the user. The last of the most commonly
used metrics is index size. It is a space occupied by a document index of some
collection. Usually, there is an effort to minimize the index footprint.

Similarly to the recall and precision, we demand systems to have a high
throughput but very low latency. In a real system, throughput is not a variable
but a requirement. There are two variables: latency and hardware cost [4].

2.4 Math-Awareness Evaluation

The previous section provided an overview of the most common techniques
for evaluating the standard IR systems that have been developed over several
decades. We learned they are quite versatile and in their general form can be
used to evaluate possibly any type of retrieval system. In image, video or for
example audio retrieval, one can still judge the relevance of one media sample
to another sample and therefore perform any type of evaluation based on recall
and precision and their derived metrics as described in the previous section.
The main question then becomes one of judging the relevance of a piece to some
whole, to be able to capture the ground truth so it can be assumed in further
evaluation.

With mathematics, however, this is quite challenging to accomplish. Let us
compare a math search to a conventional text search. Imagine a user searching
for the keyword dog. The system returns a set of results. It is quite easy to
evaluate the relevance of each result to the query. We can, for example, search
the document linearly word-by-word to see, whether the returned document
contains the query keyword. A more complicated example would be synonym
search. When a user searches for a word, say beautiful, in a synonym search the
system can also find documents containing words wonderful, stunning, lovely,
nice, etc. The original word does not need to be contained in the document.
Instead, for each word, the system uses a dictionary of words and its synonyms
and when a user posts a query, the system expands the word in the query and
adds its synonyms to it for the system to be able to search for any word from
the list of synonyms. To evaluate such a search a similar dictionary is necessary,
ideally a perfect one with all possible synonyms for each word in test queries.
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We could then again search word-by-word for any of the synonyms to a query
keyword and establish relevance judgments for the set of results.

Now let’s try to search mathematics and evaluate the results. Let us say that
a math-aware system is queried for a simple expression a + b. A system, de-
pending on its math processing algorithms, could return only documents with
occurrences of the exact same expression but also an expression with different
variables x + y, which is semantically the same. Other system, however, could
return results containing exact matches and matches with varied operators
a − (−b), which is also mathematically equivalent. Systems work differently
because of their different architecture and math preprocessing techniques. To
evaluate these systems, a ground truth needs to be established – a relevance
judgment for documents in the collection with respect to the query a + b. To
complete exhaustive relevance judgments we need to check every formula in
all the documents and verify its mathematical equality against the query. This
can not be done in the same way as it can in regular IR evaluations.

In a document, a formula is analogous to a sentence in natural language.
Both consist of smaller tokens – words in a sentence, subformulae in a formula.
Analogically to a text search in which single words are searchable, we want to
be able to search for subtrees of a formula right down to atomic entities, such
as identifiers, operators and numbers. When querying a system with formula
a + b, we could expect documents containing this formula as a part of some
other formula to be returned. For example a document with fraction 1

a+b could
be relevant to our information need. This further complicates the evaluation.

A document D is relevant to a query Q if any of the subformulae f1, f2, f3,
, . . . , fn contained in the document D is mathematically equal to any of q1, q2,
, q3, . . . , qn formulae contained in the query Q:

DrelQ{ f ∈ D|q ∈ Q| f ≡ q}
Based on this assumption, the relevance of a document to a query formula

can be judged. In our example, documents containing either formula a − (−b)
or x + y, but also, for example, a + 2b − b, as well as an indefinite number of
other expressions that are mathematically equal to the query formula a + b,
would be considered relevant. This is a very challenging task to do.

It is near to impossible for any human, no matter how mathematically
proficient, to produce a reasonable amount of relevance judgments for math
query–math-contained document pairs. A human approach is suitable for cre-
ating only very small test collections. The best way possible to accomplish
accurate relevance judgments would be to employ a computer algebra system.
Such a system, among many other capabilities, is able to decide for any two for-
mulae whether they are equal or not. Since it is a computer program, it would
probably be possible to automate it in order to create an evaluative collection.
However, this approach does not support finding matching subformulae na-
tively, therefore extraction of all subformulae from all document’s formulae
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would be needed. Compared to manual human elaboration this approach is
still suitable.

There are several capable computer algebra systems. One of the best known
is Maple10. Among a great deal of applications it is also used for evaluating
user answers against preset correct answers in math tests. Another system is
Wolfram Mathematica11 which too has a vast range of applications.

To help us determine whether a query formula or it’s similar form is con-
tained in a document we can make use of other systems computing similarity of
objects. They work mostly heuristically and are usually focused only on specific
form of similarity. As a matter of fact, every math-search engine is based on
such a system – MIR systems need to know whether a formula in some form
is contained within a document. In more general, this naturally holds also for
any IR system. For instance, in MIaS it is an M-term (see 4.2.7) computing
facility. These methods are in essence the ones we need to evaluate and they
are usually limited, so it cannot be used for setting the ground truth, however,
using one system’s formula-similarity computations could in some cases help
us in evaluating other systems.

Another approach could use a system that calculates the similarity of im-
ages (Google Images12, Mufin13) of rendered formulae. Of course, this could
in no way achieve full mathematical equality but the similarity based on a
formula and subformula structure could be evaluated. This raises a question of
employing such an approach in a MIR system itself. The same naturally applies
for employing computer algebra and other systems which can decide if two
formulae are equal or not or at least similar.

Described above are some possible methods for automatically building a
test corpus for a math aware IR system. It could lead to extensively evaluated
relevance judgments for every query-document pair. Especially when used in
co-operation with computer algebra system, we could probably declare it as
fully mathematically correct. This is similar to Cranfield’s ambition to create
extensively evaluated test corpora, which turned out to be deprecated. That
also applies to math evaluated test collection.

Extensive relevance judgments supporting full mathematical equality would
unquestionably test math IR system application’s accuracy. In some cases full
mathematical equality in a search system and its evaluation is not needed. Say
a user wants to find the exact occurrences of the expression 16/2. In such a case,
they does not want all the occurrences of the number 8 to be returned.

There are several use cases in which math search can be useful:

10. Maple. Maplesoft. 4 Jan.2013 http://www.maplesoft.com/products/maple/
11. Wolfram Mathematica. Wolfram. 4 Jan. 2013
http://www.wolfram.com/mathematica/

12. Google Images. Google. 4 Jan. 2013 http://images.google.com/
13. The MUFIN Project. 4 Jan. 2013 http://mufin.fi.muni.cz/tiki-index.php
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1. to find out in which context and applications a formula is used,

2. to recall a document on a piece of expression,

3. to find out whether and where a similar construction has already been
used,

4. to specify and narrow down text search results,

5. to simply put in a formula and see what a system finds.

These application depend on the type of a user currently using the system. It
can be a professional mathematician, professionals in fields such as physics,
engineering, biology, a student of mathematics or a completely random non-
math user, which is however not very likely. The design of math search systems
should consider these most probable use scenarios and so should its evaluation.
Otherwise the system could be evaluated perfectly suited to applications that
are never actually used and therefore unusable.

2.4.1 Devising a Test Collection

There are several ways to construct a test collection:

∙ A set of documents is selected, a judge reads over them and then cre-
ates several queries that he knows should be answered by some of the
documents. This approach is similar to basic approach in regular IR,
developed by Cranfield. It consumes a lot of resources and never can
produce a large test collection.

∙ A set of documents is selected and a judge injects it with documents that
has been already established to be relevant to questions the judge has
also prepared. This approach is better for constructing larger collections,
but it can never be known whether there are any other documents in the
collection that should also be returned. The system should return the
specific document that this query asked for among its top results.

∙ A set of documents and queries are prepared independently. Top k results
need to be evaluated by a judge for false positives. False negatives will
not be detected.

∙ A set of queries is evaluated against a set of documents using a computer
algebra system. As described in the previous section the parameters of
an evaluating system need to be carefully set up for relevance judgments
to be useful for a particular application.
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These methods in some way correspond to math search use cases stated in the
previous section. For instance, if we want to recall a document on a piece of
a formula that we already have, we want this document to be among the top
results and ignore the others. Evaluations based on injected document seem
appropriate. If we would like to see only what a system returns for a query, an
exhaustive evaluation matches this case.

Test collection is an essential part in evaluation of information retrieval
systems. While in regular IR it is possible for a non-specialist in the topic, even a
system developer, to build such a collection, in mathematics IR it is quite impor-
tant to have a mathematician’s knowledge to help to create the collection. The
knowledge in the field of mathematics can substantially help to improve much
needed semantic orientation of the test suite and consequently influence the
semantic orientation of the search systems themselves. A non-mathematician,
usually a system developer, primarily focuses on a structural and similarity
correctness of matched formulae and does not place much importance on the
true meaning of the query and its expected results. While this is not necessarily
a bad approach, in MIR it is only one of the use cases.

2.4.2 Measures

An important issue when evaluating a MIR system concerns the effectiveness in-
dicators to be measured. For better usability MIR systems should return ranked
results which is one of the parameters for the measures used. They are also
dependent on the type of test collection we have prepared following possible
creation techniques mentioned in the previous section which are further linked
to the possible use cases. If an exhaustively judged collection is available, recall-
precision and their derived measures can be computed for an arbitrary number
of top documents. If we are limited to relevance judgments for only several top
documents, we can use measures that make use of this limitation, precision
at p being one of them. However, if we have a test collection with injected
to-be-returned documents, most probably only one for a query, it is possible to
make use of reciprocal rank which scores system’s performance in returning
the only relevant document there is for a query. Otherwise, recall-precision
numbers, F-measure, average precision at certain ranks and precision at p can
be calculated for top k results. Generally in IR evaluation and especially in MIR
the lower the k the less power-consuming and less difficult the evaluation.

Measuring and evaluating efficiency is also important in the IR, especially
with MIR where an additional complexity in the processing methods of math-
ematics can place an extensive load on some of the system resources. During
the indexing of the document base, CPU can be loaded heavily which together
with hard drive speed, the amount and speed of RAM memory can significantly
affect the final indexing time. It is therefore important to measure it. After
indexing there can be a lot of tokens in the index stored, especially if the system
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expands formulae from the documents and stores variations of them in the
index which puts a high demand on the storage space. A system that is not
based on a full-text core can require a lot of RAM to function properly when
searching. Hence it is also important to be aware of performance figures as
they can affect the scalability of the whole search solution both in terms of the
storage space as well as the query time.
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3 Recent Advances in Math Retrieval

My bachelor thesis in 2010 [9] explored different efforts in developing MIR
systems that were ongoing at that time. Methods, data structures, data formats
and querying possibilities were described, compared and finally summarized
in one table, which was subsequently extended with my approach, the new
MIaS system [23]. This chapter aims at exploring further developments in the
mathematical information retrieval world since its last summary. Changes in
previously stated systems as well as a system, which was not mentioned in [9]
are described here.

3.1 EgoMath v2

The main focus of the EgoMath system is on enabling math searching in se-
mantically poor, real-world documents by supporting similarity searches. It
is enabled mainly by two algorithms – augmentation which produces several
more or less generalized representations for one formula, and an ordering algo-
rithm which finally orders operands in augmented formulae to get canonical
representations. Expressions are indexed like normal words in TEX-like postfix
notation to avoid using parenthesis. EgoMath version 2 was released in 2011.
The new version is based on the reimplementation of most of the system compo-
nents [14]. The new implementation offers new features such as the ranking of
results which is very important. Configuration for math processing algorithms
was moved to separate XML files which allows the system to have its behaviour
quickly adjusted for different document collections. The web interface was also
reimplemented and is now able to display snippets showing matched formula
representations in both its original and its derived form. EgoMath v2 focuses on
being a complete package and aims for a simpler administration of the system
and the indexes through its web UI. The new system is now able to perform
indexing several times faster than its predecessor [14].

To demonstrate Egomath’s orientation on searching web-based math doc-
uments an attempt to index math pages from Wikipedia.org was made. More
than 28,000 math articles were extracted with about 240,000 mathematical
elements [14]. TEX formulae were converted to MathML by LATEXML converter1.

Unfortunately the published web interface2 is down at the moment which
raises questions about the project’s future development.

1. LaTeXML: A LaTeX to XML Converter. 4 Jan. 2013 http://dlmf.nist.gov/LaTeXML/
2. EgoMath. 4 Jan. 2013 http://egomath.cythres.cz:8080/egomath/
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3.2 DLMF Search

Digital Library of Mathematical Functions3 (DLMF) is a web counterpart to the
NIST Handbook of Mathematical Functions, a project of the National Institute
of Standards and Technology (NIST) [15]. Its goal is to provide a reference for
researchers and other users in applied mathematics and many other research
fields who daily encounter special functions in the course of their work.

Such a portal needs a math search functionality to help users to manage
the amount of mathematical knowledge served. Despite the development of
the DLMF search since 2006 it was not covered in [9]. It has been designed to
follow several general but important goals [28]. To allow a similarity search,
a query relaxation is used. It modifies and adds new similar query terms to
an existing query. Query relaxation also covers basic forms of equivalence
in terms of commutativity and associativity. The system ranks relevance of
matched terms based on their nature – definitions rank the highest, followed
by theorems, function names rank higher than variable names etc. The system
indexes enriched metadata of equations and expressions so that it can search
for these objects by their natural language expression. Hit highlighting is also
supported to give the user a quick clarification of why the document was
matched. Fragments for displaying to the user are stored in the secondary index
for a better search time response. Fragment index is queried in search time
to retrieve appropriate excerpts for the query and fine-grained elements are
highlighted [13].

The system follows general math-aware search system design and feature
suggestions, however, the DLMF search system is serving a closed environment
with predictable data and metadata. It would therefore be interesting to see
what modifications it would need in order to index and search real world
documents. The user interface of the system seems functional and sufficient.
There are few options to search for a page, equation, figure or a table.

3.3 MathWebSearch

As summarized in [9] MathWebSearch is a system that differentiates itself from
other approaches by not being based on full-text indexing engine and by focus-
ing primarily on semantics of formulae contained in the documents by making
use of their semantic markup. This can be a problem since most of today’s pa-
pers do not contain semantically enriched formulae. However MathWebSearch
indexes documents from arXMLiv [25] project which heuristically converts
LATEX encoded documents to combined presentation-content MathML.

MathWebSearch uses substitution trees to index mathematical expressions.
Substitution tree is a tree-like structure where the root node is a generic term

3. Digital Library of Mathematical Functions. NIST. 4 Jan. 2013 http://dlmf.nist.gov/
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and every child node represents one or more substitutions of one of the terms [7].
By the nature of this solution and with the help of four types of queries Math-
WebSearch introduces: instantiation queries, generalization queries, unification
queries and variation queries, and it also supports the equivalence of expres-
sions up toα-equivalence [7].

The new version, MathWebSearch 0.5, introduces changes in how substitu-
tions are applied in the substitution trees. Every node in the tree now represents
one substitution that is always applied to the left-most free variable which
simplifies the lookup of the right substitution [8]. New version also brings
RESTful public HTTP API which decouples the server and the client side of the
application which communicate through mws-namespaced XML structures [16].

MathWebSearch developers have also started to deal with evaluation, how-
ever only the efficiency of the system is measured. The system is evaluated
using arXMLiv collection of documents that were converted with no errors con-
taining ca. 115 million expressions. Query times and memory usage have been
reported as performance indicators with respect to the document collection
size [8]. Based on the evaluation of the memory requirements of MathWeb-
Search, main focus of the developers now became creating a distributed system.

3.4 Summary

There is not much development going on in the mathematical area of IR. Only a
few projects are kept alive, mainly those that are employed on narrowly focused
portals within a closed data environment such as LeActiveMath and DLMF
search. Other systems’ main development focus is on increasing precision
and accuracy and increasing applicability by developing a better user and
inter-machine interfaces. This is mainly because the number of possible real
applications for the MIR system is much smaller than for the text search that
is used by millions of people every day. Another reason may be the lack of an
evaluation framework and background for this type of search which suppresses
competitive development for the benefit of users. This is expected to improve
in the near future with math search evaluation workshops starting to occur (cf.
Sections 2.2.4 and 2.2.5).

Math Indexer and Searcher system has been also evolving in many areas as
is described in detail in the next chapter.
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4 Development of the MIaS System

Math Indexer and Searcher (MIaS) is a math-aware information retrieval system
that was developed and first described as a part of my bachelor thesis [9]
called Vyhledávání v matematickém textu (Searching Mathematical Texts). It
researched existing approaches to math searching to date and based on the
findings designed and developed its own solution for real world usage. It
aimed to be used in environments with large document bases as those in
digital mathematic libraries such as EuDML [26] or DML-CZ. Math processing
functionality used in MIaS was subsequently integrated into EuDML’s search
system1.

The system as described and provided in [9] was in its very first version,
and further development was needed to accomplish the stated goals. Some of
the work done was partially described in [23, 10, 24] together with proposals
of future work, only some of which was undertaken. This chapter aims at
bringing all the development since the system’s first description to one place
and describes the changes and new features in appropriate depth. This chapter
also invoked further mainly implementational changes to the system in the
refactoring area, the goal of which along with functional improvements is to
create a new version of the system.

4.1 System Summary

MIaS is a math-aware full-text based search system. It enables users to search for
mathematical formulae and expressions contained within indexed documents
encoded in the MathML [3] format. It is a Java-based server application and is
coupled with a web interface, WebMIaS. This eases the use of the system and is
able to bring functionality of the MIaS to the wide public. The application was
built on top of the state-of-the-art full-text indexing system Lucene2 (current
version 3.6.2). Mathematical preprocessing part (4.1) is built as an extension
and can be easily plugged into other Lucene or Solr based systems and with
few modifications possibly to any full-text search engine.

The general overview of the system’s components and its workflow is
displayed in Figure 4.1. The operation of the system can be split into two
phases. Offline indexing of files is started by assigning an appropriate document
handler. Handlers treat different types of documents differently according to the
need for the collection. Indexing continues by preprocessing mathematics and
analyzing text contained in a document and finishes by storing all generated

1. Advanced Search. EuDML. 4 Jan. 2013 http://eudml.org/search.action
2. Apache Lucene. The Apache Software Foundation. 4 Jan. 2013
http://lucene.apache.org/core/
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mathematical and textual tokens in an index. In the second phase the system is
queried in real time by users. This phase handles user input very similarly to
the indexing phase, generates math and text query tokens which are connected
to a final query with which the system searches the index.

Figure 4.1: Overview of the MIaS system components and workflow
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Most of the design decisions and implementation details are described
in [10]i. However, the class and the package structure has changed rapidly. The
whole application was moved towards being more object oriented. For a better
understanding of the program’s classes and their interactions, refer to the class
diagrams (Figures B.2 and B.3) and the component diagram (Figure B.1) in
Appendix B on page 54.

4.2 Math Processing

Special attention is being paid to the processing of math formulae so as to
enable similarity searches – users are able to retrieve not only exact matches
for their queries but also equal formulae written differently up to a certain
level of mathematical equivalence, similar formulae and subformulae. The
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system is full-text based, therefore handling all sorts of problems with matching
mathematical expressions needs to be underpinned in the preprocessing stage.
The matching of tokens is then left to well-established conventional full-text
search. Expressions are processed in several steps, functions. Every function
creates modified formulae which are more generalized than the original one.
Every formula is assigned a weight which denotes its distance from the original
form extracted from a document. This weight enables the system to rank the
results and order hits accordingly from the most relevant to the least. A detailed
overview of the preprocessing of math is displayed in Figure 4.2. There are five
methods currently carried out in the math preprocessing module: canonical-
ization, ordering, unification of variables, unification of constants and finally
MathML attributes handling.

Figure 4.2: Math preprocessing
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4.2.1 Canonicalization

Documents containing mathematics can originate from different sources, i.e.
generated by different LATEX (and possibly other formats) to MathML converters.
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The notation can therefore vary slightly depending on the converter used. MIaS
converts MathML expressions into string tokens which means that any changes
in notation will cause incorrect behaviour. Canonicalization turned out to be
a very important preprocessing method in the workflow. Ideal canonicalizer
would be able to convert different, but semantically eqivalent MathML formu-
lae generated from different sources to one canonical representation. This is
crucial when a MIR system aims at indexing documents from different sources.
Additionally, there is usually a converter on the user input side of the system
to ease the input of queries; at the same time a system might by able to accept
copy-pasted MathML. All these indexing and querying inputs need to be canon-
icalized to one representation which is then handled by the core. MIaS has so far
indexed documents with MathML generated by LATEXML but users of WebMIaS
are able to input LATEX queries which are converted by a converter. As well, they
can directly paste MathML. Experiments with using the UMCL library [1] as a
canonicalizer turned out to be unsuccessful and showed that it is not a simple
task. This led a team at Masaryk University to develop its own solution mainly
for the use of MIaS [5]. Description of the canonicalization tool is beyond the
scope of this work. It is important to apply the same canonicalization on input
documents during indexing as well as on user input in the searching phase.

4.2.2 Ordering

An ordering algorithm is a form of unifying two formulae with the same
structure but with permuted operands. The simplest example where search
engines can benefit from this type of method is an expression 5+ x searchable by
a query x + 5. MIaS currently orders operands of the commutative operations,
addition and multiplication. The method traverses the structure bottom-up and
uses the names of MathML elements that denote the operands to order them
alphabetically. If two operands have the same element name, linear strings of
the already sorted subtrees is constructed and compared for order.

4.2.3 Tokenization

When a user searches for a formula he expects to find not only an exact whole
match but also formulae which contain his query as a part. Consider a query
1
x2 for which an appropriate result can be

∫ 1
x2 dx. Tokenization is a method

in MIaS math preprocessing which extracts subformulae from a formula. It
traverses the formula’s tree depth-first down to single variables, numbers and
operators. All retrieved expressions are added to a list and passed for further
preprocessing. A configuration parameter here is the maximum depth which
the system retrieves sub-expressions from. There can be a decision that says
that expressions retrieved from, for example, the tenth level and deeper are
barely relevant to the whole document and for this reason, such expressions do
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not need to be indexed. Such configurations can have a noticeable impact on
the system’s scalability in terms of index size and indexing time. MIaS currently
indexes all expressions from all depth levels, including single variables and
numbers, excluding single operators.

4.2.4 Unification Methods

To enable searching for similar expressions there are currently two formula
unification methods used. The unification of variables is a substitution of all
variables (values of MathML element <mi>) for unified symbols. A simple
example of the benefits of this method is the query a + b that matches the
expression x+ y in the index. Unification of variables takes bound variables into
account which means α-equivalence is provided. A downside of this approach
is that the <mi> MathML element denotes not only variables, but generally any
identifier that can be found in a formula – constant names, function identifiers
and other special symbols that can have established meaning in the field. Stand-
alone identifiers (expressions with one identifier element) are not unified.

Similar to variables, numbers are also unified in MIaS by simply substituting
them for one unified symbol. This allows the system to match expressions with
different numbers, which can be handy when a user does not remember an
exact number or, for example, makes a mistake in the decimal part. In some
cases, however, this can be too much of a generalization. Stand-alone numbers
are as well not unified.

4.2.5 Attributes Handling

Attributes of some MathML elements can considerably affect the semantics of
formulae. In Presentation MathML it is, for example, a mathvariant attribute,
which defines the font style for an element. MIaS therefore indexes expression
in both versions – with and without such attributes, allowing matches with
matching attributes to rank higher.

4.2.6 Weighting and Fine Tuning

Ranking hits is one of the most important aspects in the search process. Hit
ranking designates the order of search results and can have considerable a affect
on the perceived quality of the system. MIaS depends on a fine tuned hit scoring
function of a conventional text search (i.e. TF-IDF) and adds a math-specific
parameter to it and argues with [29].

The methods described in Section 4.2 produce formulae that are more gen-
eralized than their original forms. MIaS indexes all versions of math expression
that are generated in the process, which also means that all these expressions
can be matched when searching. The system needs to discriminate between
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these matches based on their generalization level. More generalized formulae
are assigned a lower weight so they appear lower in the results than less gener-
alized formulae hits. There needs to be a metric which defines the distance of a
formula from its unmodified untokenized form.

Every formula that is processed by MIaS holds a weight value which defines
the distance from its original formula. It is a number within the interval (0, 1⟩
and since the ordering method does not lose any information from the formula,
the original ordered representation has a weight of 1. Math preprocessing
methods that generalize formulae in some way (tokenization, unifications,
attributes handling) use a factor by which they multiply the weight of an input
expression and assigns the new weight to a newly produced representation.

Devising the values for these factors is not a trivial task and there is probably
no generally suitable set of values. They are and should be dependent on
the type of documents and their field of study. The value of the numbers in
formulae in applied physics can, for example, be very different from theoretical
mathematics.

In MIaS, values of these coefficients are static across all different possible
document bases since there has been no need to make them adjustable so far.
However, making them so for indexing different corpora is easily achievable.
Current values have been determined by an empirical approach with the help
of a tool that was specially developed for this purpose (see Table 4.1 on the
next page). In this tool several inputs can be specified: a query formula, several
formulae to be indexed and searched in as well as values for every factor in
math weighting function. As a result, weights of indexed formulae and final
scores of hits can be inspected.

Several considerations came out from the experiments with different weight
coefficients and these differ from the original ideas in [9]. The factor used by the
tokenization method (Section 4.2.3) which is applied when a subformula from
the next level is extracted still remains at 0.5 as well as the coefficient used by the
unification of variables (Section 4.2.4) which is 0.8. The main differences from
the original model is that MIaS now considers unification of numbers more
information-loosing than variables unification; its coefficient has a value 0.6.
This means that an exact match is more relevant than a match of an expression
from one level higher with both variables and numbers unified, but is still
less relevant than expressions with only one unification method applied. Also
MIaS now places a strong emphasis on the complexity of the original formula
in which a match was found. The idea is that a match in the expression that
is more complex, i.e. has more elements, is less relevant than in a formula
with fewer elements. The difference from the original model, where every
formula in its original form was assigned a starting weight 1, is that the starting
weight is an inverse number of the square root of the number of nodes that the
formula consists of [23]. This causes overall weights of indexed expressions
to be considerably smaller, but it does not affect inter-formula comparisons
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Table 4.1: Example of application of weighting function on several formulae. The
query is a+ 3 – all queried expressions are a+ 3, id1 + 3, a+ const, id1 + const.

Formula Indexed Expressions Score Matched

a + 3
0.25=[a + 3], 0.2=[id1 + 3], 0.175=[a, 3, +],
0.125=[a + const], 0.1=[id1 + const]

2.7
0.1[id1 + const] +
0.25[a + 3] + 0.2[id1 + 3] +
0.125[a + const]

b + 3
0.25=[b + 3], 0.2=[id1 + 3], 0.175=[b,+, 3],
0.125=[b + const], 0.1=[id1 + const]

1.2
0.1[id1 + const] +
0.2[id1 + 3]

a + 5
0.25=[a + 5], 0.2=[id1 + 5], 0.175=[a,+, 5],
0.125=[a + const], 0.1=[id1 + const]

0.9
0.1[id1 + const] +
0.125[a + const]

c + 10
0.25=[c + 10], 0.2=[id1 + 10],
0.175=[c,+, 10], 0.125=[c + const],
0.1=[id1 + const]

0.4 0.1[id1 + const]

1
a+3

0.16667=[ 1
a+3 ], 0.13334=[ 1

id1+3 ],

0.08333=[1, a + 3], 0.06666=[id1 + 3],
0.08334=[ const

a+const ],
0.04167=[+, 3, a, a + const],
0.06667=[ const

id1+const ], 0.05833=[a + const],

0.04667=[id1 + const]

0.89996

0.03333[id1 + const] +
0.08333[a + 3] +
0.06666[id1 + 3] +
0.04167=[a + const]

1
b+3

0.16667=[ 1
b+3 ], 0.13334=[ 1

id1+3 ],

0.08333=[1, b + 3], 0.06666=[id1 + 3],
0.08334=[ const

b+const ],
0.04167=[+, 3, b, b + const],
0.06667=[ const

id1+const ], 0.05833=[b + const],

0.04667=[id1 + const]

0.39996
0.03333[id1 + const] +
0.06666[id1 + 3]

1
a+5

0.16667=[ 1
a+5 ], 0.13334=[ 1

id1+5 ],

0.08333=[1, a + 5], 0.06666=[id1 + 5],
0.08334=[ const

a+const ],
0.04167=[+, 5, a, a + const],
0.06667=[ const

id1+const ], 0.05833=[a + const],

0.04667=[id1 + const]

0.3
0.03333[id1 + const] +
0.04167[a + const]

1
c+10

0.16667=[ 1
c+10 ], 0.13334=[ 1

id1+10 ],

0.08333=[1, c + 10], 0.06666=[id1 + 10],
0.08334=[ const

c+const ],
0.04167=[+, 10, c, c + const],
0.06667=[ const

id1+const ], 0.05833=[c + const],

0.04667=[id1 + const]

0.19 0.03333[id1 + const]
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because it is applied to all of them. Another innovation the handling function
for the weight of the attributes (Section 4.2.5). It takes an opposite approach to
the other unification methods and increases the weight of the expressions that
retain their important attributes.

To summarize, there are 4 coefficients in MIaS which affect the resulting
weight of indexed expressions:

∙ level coefficient l = 0.5,

∙ variable unification coefficient v = 0.6,

∙ number unification coefficient c = 0.8,

∙ attribute coefficient a = 1.2.

There is a number of possible combinations in how we want to compute
the distance of the generalized formulae from the original formula and have
the results ordered accordingly. And there are many criteria to be considered
when determining the values of the factors. In formula words, an expression
composed of n nodes found in a certain level within an original formula is
indexed with a final weight

w =
llevel(1 + Cv + Vc + vc + Aa)

n

where C, V and A are values 0 or 1 depending on whether a formula has its
constants unified (C = 0), variables unified (V = 0) and whether it contains
important attributes (A = 1). See Table 4.1 on the preceding page for details.

4.2.7 M-terms

The final stage in the preprocessing of the mathematics contained in documents
is producing character strings representing formulae so they can be stored by
the indexing core. MIaS transforms MathML XML nodes to linear strings using
brackets and prefix notation. For example a formula 1

x2 with its Presentation
MathML representation

<math>

<mfrac>

<mn>1</mn>

<msup>

<mi mathvariant="bold">x</mi>

<mn>2</mn>

</msup>

</mfrac>

</math>
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is rewritten to mfrac(mn(1)msup(mi[mathvariant=bold](x)mn(2))).
Every formula in MIaS is coupled with a weight that was computed during

the preprocessing. Ordered pairs of string representations of formulae and their
weights – (string formula, weight) – we call M-terms. They might be usable not
just for indexing and searching but also for other applications. In fact they are
just another representation of formulae in documents and can even be encoded
together with regular MathML within an appropriate tag.

Scalability experiments showed that the size of the index can be considerably
lowered by substituting MathML element names, attribute names and common
attribute values, which are constantly repeating in expressions, with single
characters based on a dictionary. MIaS uses such a dictionary to compact the
string representations of formulae. The resulting form of the previous example
after applying the dictionary is F(N(1)J(I[V=B](1)N(2))).

4.3 Searching

When a user writes and posts a query to the system it is important it passes the
same processing as in the indexing phase for the system to be able to match
indexed tokens, whether it is stemming regular text or transforming query
formulae to M-terms. There is however one exception in the processing of math
– query formulae are not tokenized. Tokenization gives the system the ability
to find a match inside an expression, formulae are therefore tokenized before
they are indexed. This behavior is unwanted when searching. A user is most
probably not expecting to find subparts of his queried formula but conversely,
wants his expression to be found inside different formulae.

Several (4 or 5) M-term representations of each query formula are produced
during preprocessing. Generated weights are not used and only formulae
strings connected to the textual part of the query are passed to the searching
core in the following manner: (formula1 ∨ . . .∨ formulan) ∧ (term1 ∨ . . .∨
termn). Users can override this default query composition by manually stating
preferences for query tokens to occur in the matched documents by using AND
and OR operators.

In Section 4.2.6 a weighting scheme for indexed formulae was described.
The final scores of matched and retrieved formulae are completely finalized
when searching. MIaS additionally sets the boost for query formulae according
to their complexity. This has two reasons: one is to counterbalance text and
formula parts of the query since matched expressions can be indexed with
relatively low weight, and secondly to balance weights between different query
formulae. The bigger a formula in the query, the bigger weight it should have
in the resulting score of matched documents – the boost factor is the number of
the query expression’s nodes.
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The final scores of matched documents are computed based on several
factors. When searching for mathematical formulae, their precomputed indexed
weights need to be considered in the score of the document. With MIaS being
built on the top of Lucene indexing engine, it makes use of that scoring function3

(described in detail at [6]) and adds another parameter to it – weight wt of the
term t if t is a formula. The final scoring function which computes the score of
a hit document d by query q with each query term t is as follows:

score(q, d) = coord(q, d) · queryNorm(q) ·
· ∑

t in q

(

tf (t in d) · avg(wt) · idf (t)2 · t.getBoost() · norm(t, d)
)

If a document contains the same formula more than once (each occurrence can
have a different weight assigned), the average value of all the weights is taken
into consideration, therefore avg(w).

4.4 MathML Processing

MIaS aims to process real world documents. It was primarily focused on Pre-
sentation MathML markup, which can be relatively easily converted from the
format most used by authors, namely TEX and its variations. Its biggest advan-
tage, availability, is negated by several downsides. For machine processing it
contains a lot of unnecessary markup which is used mainly for nice rendering.
There is very little semantics in the encoded formulae, i.e. element <mi>f</mi>
can not be told whether it is a variable or a function name or the name of some
constant. One can hardly tell arguments of an operator or a function.

There are many initiatives focusing on putting more semantics into elec-
tronic documents. Several different markups have been developed for this
purpose (S-TEX, OpenMath for mathematics, Content MathML, etc.). With this
effort, the quality of tools which are able to work with semantics is improving.
Documents are being enriched with metadata and semantics in general. Such
tools are also converters of mathematical notation, for example LATEXML which
is able to produce mixed Presentation and Content MathML from LATEX sources.
With the help of this tool, a corpus of semantically enriched scientific documents
is being built by converting the arXiv corpus [25].

To extend precision coming from the semantic character of Content MathML,
MIaS expanded its capabilities and is now able to index Content MathML in
the same way as its presentational part. Versatility in the XML processing in the
math preprocessing module showed no exhaustive effort was needed to achieve

3. Class Similarity. Apache Lucene. 4 Jan. 2013 http://lucene.apache.org/core/3_6_
1/api/core/org/apache/lucene/search/Similarity.html
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this. Preliminary tests indicate indexing Content MathML has a canonicalization
effect, since there is a smaller possibility to generate different structures due to
the lack of semantically unnecessary elements. M-terms produced from Content
MathML trees come into effect exactly when Presentation MathML M-terms do
not match due to some slight differences.

From the implementational point of view, presentation-sourced M-terms
are stored in the different document’s index field than content-sourced terms
fields. Document mathematics is processed in the two-pass fashion; in each one,
a different MathML part is processed. The same weighting factors are used for
both encodings, which remains subject to further evaluation.

When querying the system it tries to retrieve both types of MathML from
the query by subsequently passing it to MathTokenizer with different MathML
type parameter (similar to the indexing phase) and depending on the result, it
searches corresponding document fields for matches. To be able to have queries
in Content MathML, there needs to be a powerful converter on the user side,
such as LATEXML. Previously used Tralics is incompatible in such a setup. Of
course, users can still copy and paste Content MathML from a different source
when building their query.

4.5 Other Features

One of the important properties of an IR system which aims to be used in
real world is a high level of user comfort. A system can perform excellently
in retrieving relevant documents, but when a user has problem accessing and
consuming such a system’s capabilities, the system can be perceived negatively.
There are many ways and features how to accomplish a good level of usability
as we can see on todays most used search services.

4.5.1 Generating Snippets

One such a feature is match highlighting and displaying a snippet of a document
where important matches to query terms occurred. It gives the user a quick
glimpse on what parts of his query were found in a document, and it is also
an instrument for early evaluation of document’s relevance. Without match
fragments a system can return only a document title for each hit, possibly some
metadata and a few of the first sentences as an excerpt of its content. These data
may not be representative and may not justify why this document is a hit. It is
left to the user to evaluate relevance of the results by going through them.

There are several possible strategies for snippet generation. The first is to
store the original terms in the index – they can be retrieved quickly in search
time and displayed to the user but only in the form of separate words that
matched portions of the query. Another downside of this approach is the
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space requirements for the index. A different approach is to store document
fragments in a separate index, match document is re-queried at search time in
the fragments index to retrieve snippets of significant matches. The upside of
this approach is that there are not any additional I/O operations to retrieve
snippets, but the shortcoming is a very large secondary index, usually larger
than the primary one [29]. The third approach, as implemented by MIaS, is
to index terms with their positions in the original document. When retrieving
results, the system needs to open the source document, lookup matched term
by its position and generate a snippet. This slows down hit list generation, but
requires no additional storage.

The MIaS system is capable of showing match snippets to the user. As
opposed to regular text search, math preprocessing changes the visual of ex-
pressions quite heavily (consider Section 4.2.7), so it can not implement the first
of the solutions described above. MIaS opted for the third solution and since
it weighs every formula, when a query hits a document the most significant
terms can be easily retrieved together with their positions. The position is a
sequence number of a hit formula among other document formulae; other doc-
ument terms are not considered. Derived and extracted M-terms hold the same
position information as their original formula, therefore when a query matches
a subformula, the system can only highlight the whole original formula.

When retrieving search result terms which caused a document to match,
they are ordered according to their weight. Two most significant terms are
located in a document by their position and they are added to the final snippet
with surrounding fragments. These surroundings extend to the start or the end
of the sentence, or to the next or previous XML structure within a sentence.
This is for the resulting snippet not to be very large as this can be disturbing
to look at the results page. A possible improvement to this solution would be
to index a unique identifier of each expression, for example an id attribute, for
the search-time parser to be able to search for the right formula more quickly.
MIaS however does not rely on every document source to have such identifiers,
therefore it uses positions of formulae terms.

4.5.2 Optimisations

Initial scalability tests [23] showed there is room for the system to scale better
with an increase in the number of documents. As a result of many little opti-
mizations, MIaS is now able to use the computing potential of today’s machines
by using parallelization. The system uses threads for preparing and prepro-
cessing documents, especially for the most time consuming preprocessing of
math formulae. As writing to the index is a write I/O operation using only
one resource, it is not able to be done in more than one thread. The results of
preprocessing from individual threads are returned to the main thread which
creates the index. The system therefore needs to spawn a preset number of
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threads and poll them in a cycle to see whether they have finished. This creates
an overhead but still makes an advantage to a single threaded application.

Another effort was to optimize the size of the index. Since MIaS indexes
several generated representations for each math expression it creates demands
to the index storage capacity that are out of the ordinary for regular text indexes.
One step is to compact the final form of M-terms (see 4.2.7). The second step is
to use a number data type with the smallest possible range for storing weights.
This may seem an insignificant amount, but using 2 byte short number instead
of 4 byte float number, which MIaS uses for weight, creates a 4 GB difference
when 2 billion formulae are indexed, as is contained in about 300k arXMLiv
documents.

A similar optimization was also performed to reduce the storage require-
ment of input documents. Several thousands of files can occupy a large storage
space. MIaS was adapted to this and is able to process documents in a com-
pressed state. FileExtDocumentHandler is able to detect if the received file
is a zip file, open it and get input streams of files contained within and handle
them as normal files according to their extension. So far, there was no need to
handle different file types more strongly.

4.6 Web Interface

The MIaS Project is meant to be usable with real world documents and also fo-
cuses on being easy to use for real world users. For this purpose a web interface
called WebMIaS has been developed. Technically it is a separate Java project
which includes MIaS and uses it for searching previously created indexes.

It uses a simple and straightforward interface for writing queries – only one
input text box, where users can write text and math queries at the same time.
Very first version of WebMIaS [9] only accepted math in MathML notation, later
modifications allowed posting TEX which were converted on-the-fly by Tralics.
A user had to specify the notation by selecting one from the select menu. The
latest version is able to auto-detect TEX math that is surrounded in $ signs, and
converts it on-the-fly by more powerful LATEXML. For even better usability, TEX
queries are converted on-the-fly to presentation MathML by the SnuggleTeX4

converter and rendered for visual verification by MathJax5.
Another new feature is that one instance of WebMIaS is able to search in

multiple indexes by selecting an index from the menu. This is useful if we do not
want to mix different document bases into one index. It was used extensively
during the development by comparing results for the same queries in different

4. SnuggleTeX. School of Physics & Astronomy, The University of Edin-
burgh. 4 Jan. 2013 http://www2.ph.ed.ac.uk/snuggletex/documentation/

overview-and-features.html

5. MathJax. 4 Jan. 2013 http://www.mathjax.org/
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indexes, but it is believed to be useful for regular use as well. A downside of
this feature is that there is only one version of MIaS behind the interface so it
can not be used to test different indexes created by different versions of the
programs used, e.g. MIaS or MathMLCanonicalizer.

The appearance of the result list is essentially unchanged from its first
version. One result entry consists of a document title, which in case of arXMLiv
documents is a hyperlink to its original arXiv resource. There is also a hyperlink
pointing to the local document that was used for indexing. Then there is a
final score of matched documents for comparison mainly for development
purposes. The main addition to the appearance of result entries and to the
system’s usability is a snippet highlighting the most significant matches in
the document (see Section 4.5.1). Formulae in the snippets are rendered using
MathJax3. Furthermore debugging information has been added to the interface
showing the Lucene form of the query and a detailed explanation of every hit
document. It is activated by checking the “debug” checkbox.

Search services of MIaS can also be accessed remotely since WebMIaS among
its web interface also supports a RESTful web service for searching. One can
basically use the searching as he would using the web interface by providing
several parameters to the service: a string containing the query, index number to
search in, starting offset and a limit for the number of the results to be returned.
The service returns searching time, the total number of hits and a set of hits
each consisting of title, id, additional info and a match snippet.

The additional web service that used MIaS which was initially a separate
project was incorporated into WebMIaS in order to have a more integrated
module instead of several little ones. This web service was called MIaS4Gensim
and it allowed remote callers to transform MathML formulae to MIaS weighted
M-terms and vice-versa. It was mainly used for experiments with Gensim simi-
larity computational software [17] to include mathematics into its computations,
however we believe that this functionality may also be useful for other appli-
cations. The interface is very simple: for given MathML formula the service
returns a list of pairs consisting of M-terms string and a weight floating point
number.

To improve the accessibility of WebMIaS, OpenSearch [2] standard is sup-
ported. OpenSearch is a set of formats and rules which a search engine is
described by in order to be easily queried by, possibly automatic, clients. Search
results are then easily shareable across the web. To be OpenSearch compatible a
system needs to publish OpenSearch description XML document in which sev-
eral information are stated: name of the search engine, contact to the developer,
tags describing the system, language, input and output encoding and most
importantly, examples of queries and the parameters which can be posted by
clients. Most common parameters are search terms, start index number (index
of a first result a client wants to retrieve) and limit (the number of documents
to return). The document is extensible with custom elements which have to be
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prefixed with a declared namespace prefix and the namespace url must point
to a custom descriptive document.

4.7 Refactoring and Packaging

The system has been considerably refactored to make the scattered source
code created by ad-hoc development of new features, more consistent and
readable. This affected mainly the searching part of the system where a lot of
the important functionality was initially added to the WebMIaS client. Now it
has been moved to the MIaS core, which exposes more readable and easy to use
API. Also since canonicalization is now an integral part of math preprocessing,
several methods in MathTokenizer which tried to prepare and canonicalize the
formulae by themselves are left out as well as some of the core methods were
simplified.

The whole creation of Lucene documents in MIaS has been revised as well.
This has been done mainly to support zip files and for different types of inputs
to be easily addable in the future. FileExtDocumentHandler is a strategy to
create Lucene documents which are indexed. There is a DocumentSource inte-
face, which represents the source of the input data. It can be a file (FileDocument)
or a zip file entry (ZipEntryDocument). Different sources have different meth-
ods for accessing their input streams. Implementations of MIaSDocument need
to access these methods in order to extract all the needed information from
the source. Additionally, every DocumentSource implements a creation of a
default Lucene document.

MIaS and WebMIaS applications are packaged as standalone jar and war
Java applications. Their build, dependencies as well as packaging is managed
using Maven system6. MIaS still accepts commands for indexing and searching
from a command line. WebMIaS needs a web container for running. These two
applications are referential implementations of a math-aware Lucene-based
search system and are not expected to be deployed as a standalone application
on the production level, however, it is possible. The first version of the system
was created in the course of my Bachelor thesis. The second version will be the
first publicly distributed version. This work has moved the application very
close to this milestone.

It is more likely that only math processing capabilities of the system will
be used in some productions which use Lucene or Solr, similarly to EuDML.
This module (see Section 4.2), called MIaSMath, was therefore packaged sep-
arately and is distributed together with the API documentation for Lucene
implementation as well as with Solr integration guidelines.

6. Apache Maven Project. The Apache Software Foundation. 4 Jan. 2013
http://maven.apache.org/
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5 Evaluation

In Chapter 2 we looked at the history of IR evaluation. Methods and measures
that has been established throughout the years were described in Section 2.3.
None of them, however, have been applied to mathematics IR so far. The
first ever collection that aimed to evaluate math IR systems’ efficiency was
MREC [10] and the results of the MIaS system have been reported [23]. The
collection that is also applicable for evaluating the effectiveness was created for
the MIR Happening, but none of the measures have been reported so far.

We outlined different use cases and scenarios in math retrieval and linked
them to the techniques for creating test collections as well as the measures that
could be observed. We learned that to create a useful collection, mathematician’s
knowledge should be participating to be introduced into the collection or to the
evaluation process.

Considered the things mentioned above any ambitions to create an own
collection for the evaluation of MIaS were dropped. With the increasing interest
in MIR and its evaluation (Sections 2.2.4, 2.2.5) it also feels redundant to try to
create the test suite at own effort. This work leverages the collection created for
the MIR happening. Despite it not being very large it can show basic properties
of a system underlined with some of the basic measures, more so if they have
not been computed at the happening.

The MIR-sandbox collection, which is used for evaluation, consists of 10,000
non-trivial math documents extracted from arXMLiv corpus. The set of queries
devised by three mathematicians is divided into three categories as described
in Section 2.2.4 with one difference – formula search queries are also searched
in the sandbox collection, since provided matching documents are found in
this collection as well. There are two groups of these three types of queries.
Every query from the first group has a matching document in the sandbox
collection. The second group consists of open-ended queries for problems that
the mathematicians found interesting, but for which no matching document is
known to be found in the collection. These were not carried at the MIR 2012
happening.

Even though the system was already queried with the queries from the
collection at the happening, a lot of work has been done since then. Evaluation
in this work captures the state of the system at the end of writing this thesis.
Detailed analysis is shown to explain why each of the queries did or did not
match a designated target document. Open information retrieval query is not
tried as it is an extremely hard problem (see Appendix C) and needs to be tested
with the cooperation of the query’s author.
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5.1 Queries

Queries are shown in source TEX notation as well as in their rendered forms.
The question marks in front of some formula elements denote query variables.
It means that the element may not be present in the document in that exact
form. Queries in MIaS do not need to specify explicitly which variables are
query variables. MIaS searches for their exact as well as unified form implicitly.
The name of the correct result document file is displayed under each query.

5.1.1 Formula Search

1. Recollect a historical formula, such as:

TEX: \sqrt{2} = 1 + \frac{1}{3} + \frac{1}{3\dot 4} ? -

\frac{1}{3\dot 4\dot 34}

Math:
√

2 = 1 + 1
3 +

1
34̇
− 1

34̇3̇4
Result: f005795.xhtml

The above query returns no results. After a look into the correct result
document, we see that the formula that should match our query is written
differently. It uses regular dots as times operator and therefore 3.4 and 3.4.34
were converted as a single number “three point four” and a senseless “three
point four point thirty-four”. There is no smaller piece of the expression specific
enough to retrieve the desired document.

After querying the original TEX form of the formula \sqrt{2}=1+\frac
{1}{3}+\frac{1}{3.4}-\frac{1}{3.4.34}, the correct result is returned.

2. Retrieve instances matching:

TEX: B_{p+n} = B_n + B_{n+1} \bmod p \ \text{for all}\

n=0,1,2,\dots

Math: Bp+n = Bn + Bn+1(mod p) for all n = 0, 1, 2, . . .
Result: f005794.xhtml

Presuming the visual form of the query is the form we want to find, there is
already a problem in the query. It uses a macro \bmod to typeset mod in roman.
We need to substitute it with \mathrm.

Even after the substitution, no results are found. We need to look in the
correct document. There are several problems causing the differences between
the query and the formula in the document. There is an ≡ sign in the document
instead of equal sign in the query. The whole formula from the document is
strangely structured; elements from the beginning until the n = 0 part are
encapsulated in one mrow leaving out other elements that are on the same
logical level. And there is also a sentence ending dot contained as the last
element of the formula.
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In the content part of the query there is wrongly an <and/> element placed
in front of the <equivalent/> element. Also, there is a similar problem with
the formula being split through n = 0, 1, 2, . . . into two separate structures.
Finally, the ... is converted to <ci>normal-...</ci>.

The differences mentioned above cause searching for the whole formula
impossible. Querying only for the part B_{p+n} returns the correct result at
position one.

3. Find examples of the use of the below metric:

TEX: S(g)= \frac{s(g)-s_{\text{min}}}{s_{\text{max}}-s_

{\text{min}}}

Math: S(g) = s(g)−smin
smax−smin

Result: f005796.xhtml
The above query return no results. The reason is the incorrect use of the \

text command to output roman letters in the formula. The converter generates
<mtext></mtext> element which is wrong as “max” and “min” are identifiers
in this formula. Changing \text for \rm creates the correct query and finds
the desired result at position one as the only result.

4. Find Cardy’s formula:

TEX: \frac{3\Gamma(2/3)}{\Gamma(1/3)}\eta^{1/3}\,\rule

{0pt}{10pt}_2 F_1(1/3,2/3,4/3;\eta)

Math: 3Γ(2/3)
Γ(1/3)

η1/3
2F1(1/3, 2/3, 4/3; η)

Result: f005692.xhtml
The given query does not find any result. Even removing suspicious part

\rule{0pt}{10pt} or trying to search for the subformulae 3Γ(2/3)
Γ(1/3)

or 3Γ(2/3)

does not retrieve the satisfactory result. A look into the desired document shows
that not even remotely similar formula is contained in it. This is most probably
a mistake in the test collection.

5. Retrieve instances matching:

TEX: a?x^2+b?y^2

Math: ax2 + by2

Result: f004977.xhtml
The query returns two results none of which is the correct document. The

actual variables in the document are x1 and x2 and additionally, the query is
only a subpart of the original expression p1 = ax2

1 + bx2
2 + ε1. The formula is

not found for two reasons. MIaS can not unify a variable with an index to a
simple variable; x + y is unified to id1 + id2 but x1 + x2 is unified to id11 + id12
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which is different from the expression structure point of view. The other reason
is that the query is not a logical subpart of the original formula – searching only
for two of the three addends is impossible in MIaS.

6. Retrieve instances matching:

TEX: \frac{e^2+3}42^{?l\choose 2}?n^?l

Math: e2+3
4 2(

l
2)nl

Result: f004150.xhtml
The query finds the correct document as the only result. The Presentation

MathML part of the query caused the match with the document. There are
differences in the Content MathML: l\choose 2 in the query is converted to

<apply>

<csymbol>binomial</csymbol>

<ci>l</ci>

<cn>2</cn>

</apply>

while in the document there is an empty element <ci/> instead of the
<csymbol>binomial</csymbol>.

7. Retrieve instances matching:

TEX: ?P\in \sum_{i=1}^r \Z ?{P_i}

Math: P ∈ ∑
r
i=1 ZPi

Result: f004102.xhtml
The query uses a macro to typeset the number set Z. After the extraction of

the macro, the query becomes P\in \sum_{i=1}^r \mathbb{Z} {P_i},
but still does not found the document. Again, there are several differences
preventing the match. The query converter encloses the ZPi part into additional
<mrow></mrow> element, which seems correct as it is a single parameter of
the sum function. The Content MathML part of the query does not help the
situation. There is a <in/> element as opposed to <ci>∈</ci> element in
the document, which are both valid forms. The other difference is that there is
correctly a Z in the query, but only simple Z in the document Content MathML.

Searching for the largest single structural unit which does not cause any
troubles, ∑

r
i=1, causes the system to return 1,045 results, first of which is the

correct document.
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5.1.2 Full-text Search

Handle the following textual queries:

1. Where can I find the formula for free cumulants in terms of the symmetric
group?

Result: f005793.xhtml
Query: “free cumulants” AND “symmetric group”

The only result is the correct document.

2. Aren’t there some newer special polynomials involved?

Result: f005793.xhtml
The question here is the intention of the query author: whether the query is
only a supplementary question to the first one or a completely new one asking
about any newer special polynomials.

Query: “free cumulants” AND “symmetric group” special polynomials
If we only add the keywords “special” and “polynomials” to the first query
to verify whether the document talks about any special polynomials, the only
correct document is still returned with the verification of the keywords being
highlighted.

Query: special polynomials
The query returns 2,373 results; the correct document at position one.

Query: “special polynomials”
Returns only one result f000391.xhtml but it must be verified with a mathemati-
cian to determine if it is relevant to the information need.

3. Also, Kerov polynomials and zonal polynomials

Result: f005793.xhtml
Query: “Kerov polynomials”
The only result is the correct document.

The judges copy of the MIR Happening instructions document wrongly
states f005795.xhtml as the correct result for the first two full-text queries. A
look into the document shows it does not mention any cumulants or symmetric
groups.

5.2 Effectiveness

We will consider a search successful even if the query was not exactly the same
as in the specification document, partly because not all of the notational details
were correct and partly because we think the query does not find a complete
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match in order to retrieve the desired document. We will omit the incorrect
fourth formula search query in the effectiveness calculations.

We can compute basic precision and recall values with the presumption
there was always only one relevant document per query as we do not have
the resources needed to judge the relevance of other documents in cases when
more than one document were retrieved.

Table 5.1: Results of the queries with their precision and recall

Query Results retrieved Relevant docs retrieved Precision Recall

Formula 1 0 0 0 0
Formula 2 207 1 0.0048 1
Formula 3 1 1 1 1
Formula 5 0 0 0 0
Formula 6 1 1 1 1
Formula 7 1,045 1 0.00096 1
Full-text 1 1 1 1 1
Full-text 2 1 1 1 1
Full-text 3 1 1 1 1

Based on these measurements, the average precision of the system is 0.56
and the average recall is 0.78. The combined balanced F-measure of the system
therefore is

F = 2 × 0.56 × 0.78

0.56 + 0.78
= 0.65

Since the test collection is the type of collection with injected correct docu-
ments, the reciprocal rank seems to be a more appropriate measure.

Table 5.2: Results with the rank and the reciprocal rank of the correct result

Query Correct result rank Reciprocal rank

Formula 1 0 0
Formula 2 1 1
Formula 3 1 1
Formula 5 0 0
Formula 6 1 1
Formula 7 1 1
Full-text 1 1 1
Full-text 2 1 1
Full-text 3 1 1

44



5. EVALUATION

If the MIaS retrieved the correct result, it had the rank 1, which promises a
good overall score. The mean reciprocal rank for the system then is:

MRR =
0 + 1 + 1 + 0 + 1 + 1 + 1 + 1 + 1

9
= 0.78

The character of the collection and the character of the result sets for the
queries are unsuitable for computing any other measures. For example precision
at p requires more results to be retrieved and their relevance judged.

5.3 Efficiency

Efficiency of the MIaS system with the above stated effectiveness level was
measured using the NTCIR corpus consisting of 100,000 documents. The mea-
surement was made on a on 448 GiB RAM, eight 8-core 64bit processors Intel
XeonTMX7560 2.26 machine using 64 threads for the preprocessing of the in-
dexed documents. The measured data are displayed in Table 5.3.

Table 5.3: Measured data for the efficiency evaluation

Indexing times [min] Formulae Index Av. query time [ms]
Docs. Wall clock Total CPU Input Indexed size [GB] Core Total

10,000 28.8 159.7 7,327,283 155,192,904 3,1 188.2 495.4
20,000 58 325.2 14,736,285 311,258,718
30,000 85.1 474.2 21,877,907 463,281,808
40,000 111.5 616.1 29,299,122 618,586,152
50,000 146.1 821.8 36,801,976 779,487,671 15 182.5 484.1
60,000 177.1 999.4 44,179,606 938,538,811
70,000 203.1 1,143.6 51,394,938 1,088,869,124
80,000 231.5 1,306.6 58,633,240 1,241,466,398
90,000 261.2 1,475.4 66,065,698 1,398,541,881

100,000 291.8 1,649.0 73,428,180 1,556,839,999 30 199.1 601.9

Figures 5.1, 5.2 and 5.3 show the measurements and their reliance on the
number of the input documents.

In order to compute average query times, the times of MIR Happening
queries were measured on 10k, 50k and 100k document indexes. The query set
consisted of 7 math and 4 text queries, some of which did and some of which
did not find any results. Core search time is the time needed for the full-text core
to return the hit documents. Total query time is the core search time plus any
additional time needed to display the results, i.e. retrieving details about the
hit and extracting snippets. In the current setup with TEX to MathML converter
converting queries on the client side through a web service, approximately
1 extra second is added to every query. This is not shown in the above table and
the diagrams as it is a constant which is subject to further optimization.
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Figure 5.1: Indexing times
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Figure 5.2: Input and indexed formulae and index size (right Y axis)

5.4 Conclusion

In this Chapter the effectiveness and efficiency of the MIaS system was evalu-
ated. We discovered, that despite the canonicalization the system is still quite
sensitive to the formulation of queries. This is because the canonicalizer so far
normalizes only different variations of the correct notations, but does not fix
errors and inappropriate uses of TEX or MathML elements on the input. For this
we have not yet devised a solution.

After correcting the queries, the system performed, we think, quite well. In
7 of the 9 queries it retrieved the desired document at the first position; most
of the time it was the only result as well. This led to a mean reciprocal rank of
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Figure 5.3: Average query times

0.78 and an average combined balanced F-measure 0.65. The best way to know
whether these numbers are good enough or not would be to compare them
with another system. This will be done at the NTCIR math task.

Our efficiency evaluation showed that the system’s properties are reasonable
in terms of both indexing and query times. When using multiple threads, the
total CPU time needed to index a document collection can be at least halved;
in our case the wall clock time was five times shorter than the total CPU
time. The diagrams show that the system scales linearly in terms of indexing
time and index storage requirements with respect to the rising number of
documents and the number of the formulae contained in them respectively. The
factor of indexed documents to the number of input documents is averaged
at about 42, which means there are 42 formulae generated and indexed for
one input formula. This factor has doubled since the last measurements [23]
which is caused by indexing both Content and Presentation MathML. The same
applies to the index size. The index size is above average compared to the
regular text indexing, which is caused mainly by the indexed-input formulae
factor.

The query time, however, has quite a stable character. As can be seen in
the diagram 5.3, the average core query time increased only by about 10 ms
from searching 10k documents to searching 100k documents. This is only a 5%
increase in the query time when there is a 1000% increase in the number of
documents searched. What slows the queries down is the conversion of TEX
parts of the queries and retrieval of the match snippets. This can be optimized
by changing the strategy of retrieving resources from the outside of the system
which will result in better user comfort and will be subject to further evaluation.
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6 Conclusion

Information retrieval is a key technology in accessing the vast amount of data
there is on todays World Wide Web. It is also one of the key technologies in
knowledge management. Developments in information retrieval began already
in the pre-computer era and still continue today. The evaluation of IR has been
an integral part of IR development. It is the moving force which influences the
advances in the field. Several annual conferences that deal exclusively with
information retrieval testify to the dynamism of the field.

Mathematics retrieval is a new type of information retrieval. It focuses on
searching structured mathematical data to simplify the knowledge management
in specialized portals that provide this type of information. The evaluation of
MIR has not been dealt with until very recently. Raising interest in MIR and its
evaluation has so far resulted in two organized events in the fashion of already
established evaluation practices in other types of IR.

This work overviews the history of IR and its evaluation as well as the
techniques that have been developed. Effectiveness evaluation is based on the
notion of relevant and non-relevant documents with respect to a query. The key
to evaluate an IR system is to devise an evaluation collection composed of a
document collection, a collection of queries and the relevance judgments for
the pairs of documents and queries. This basic scheme can by applied to any
type of retrieval including mathematics. The main difference is the preparation
of the test collection since evaluating the relevance of mathematics can be done
only by mathematicians.

The development of Math Indexer and Searcher, a MIR system, is summa-
rized in this thesis. It was created as a part of my bachelor thesis and has been
evolving since then. It was already integrated into real production system –
the EuDML search1, and further deployments are expected in the future as
the system will go public open-sourced. One of the goals is to have MIaSMath
including MathTokenizer included in the official Lucene Contrib distribution2.
A lot of work has been done in the course of writing this thesis, mainly to
organize and refactor the code that has become shattered during two years of
ad-hoc development. Also a lot of work has been done in order for the system
to perform as well as possible for the MIR Happening as well as the NTCIR
math task.

This can be observed in Chapter 5. MIaS has been evaluated using the MIR
Happening test collection. A detailed analysis of the effectiveness as well as
the efficiency evaluation is provided. The results of the NTCIR math task will

1. Advanced Search. EuDML. 4 Jan. 2013 http://eudml.org/search.action
2. Lucene Contrib. The Apache Software Foundation. 4 Jan. 2013
http://lucene.apache.org/core/3_6_2/lucene-contrib/index.html
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6. CONCLUSION

provide comparable results across several different systems and should confirm
the good performance of MIaS.

MIaS is a referential implementation of a mathematical search build on the
top of the full-text indexing library Lucene. In this respect, it could also improve
the usability mainly for system administrators, as the indexing phase of the
system is still operated from a command line. Making the whole application
web-based with easily understandable interface for index administration and
system configuration would be a welcome improvement. But the main goal is
to make the math processing part of the system as robust, effective and efficient
as possible. There is still a lot of work to be done in order to achieve this. Our
focus is now primarily on the canonicalizer which should make the system less
vulnerable to different types of inputs.

Other future work includes exploiting semantic information for searching,
using text as well as extracting text descriptions of formulae in order to disam-
biguate them [22]. Making personalized searches is very popular these days.
MIaS could personalize the searching according to user’s previous attempts as
well as the similarity of the results that have been further explored. There is
already a functional technology for computing document similarity including
mathematics that could be integrated into MIaS [17]. Imminent work includes
the evaluation of the NTCIR math task results which is expected to result in
more detailed tasks to increase the system’s F-measure. A conversion to the
newest version of Lucene, 4.0, which promises improved search performance
as well as index compression will be another step. Relevant information about
the system, latest news, links to working demos as well as relevant publications
are located on the project webpage https://mir.fi.muni.cz/mias.

With many future plans to make the system as good as possible, with an
already existing integration and with more to come, Math Indexer and Searcher
aims to become the first widely used mathematical search system.
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A Electronic attachments

thesis_text.zip ...PDF and source files of the thesis

MIaS.zip ...Math Indexer and Searcher
apidocs/ ...Javadoc documentation
example/ ...Working setup of MIaS including example docu-

ments
src/ ...Source code
target/ ...Built application
pom.xml ...Maven configuration file
readme.txt ...Instructions for configuring and running MIaS

MIaSMath.zip ...Math processing functionality of MIaS extracted
as a standalone library

apidocs/ ...Javadoc documentation
lib/ ...Dependency libraries
src/ ...Source code
target/ ...Built jar archive
pom.xml ...Maven configuration file
readme.txt ...Instructions for integrating MIaSMath into Solr

WebMIaS.zip ...Web client for searching with MIaS
apidocs/ ...Javadoc documentation
src/ ...Source code
target/ ...Built war archive
pom.xml ...Maven configuration file
readme.txt ...Instructions for configuring WebMIaS
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B MIaS Design

A component structure is displayed in the diagram below. MIaS is the main
application with indexing and searching capabilities. It is composed of four
packages for searching, indexing, math content preprocessing and document
handling. Math preprocessing uses an external library MathMLCanonicalizer.
Both Searching and Indexing are clients of Lucene full-text library API. Web
client WebMIaS uses MIaS API for searching and exposes a port for searching
to the outside world.

Figure B.1: Web/MIaS component diagram

The class diagram (split into two diagrams for a better readability) shows
the inner structure of the packages and interaction between the classes. While
the first diagram omits the contents of the cz.muni.fi.mias.math package,
the second diagram omits the other packages’ contents.
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B. MIAS DESIGN

Figure B.2: MIaS class diagram 1
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B. MIAS DESIGN

Figure B.3: MIaS class diagram 2
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C MIR Happening Judges Copy

Displayed below is a verbatim copy of the document produced by the judges for
the MIR Happening as it was published to the contributors after the Happening.
Extracted part contains all evaluation tasks queries.

2 Evaluation Tasks

This section contains the official MIR2012 challenges, each of which has a designated article
expected to be retrieved from the MIR2012 sandbox.

2.1 Formula Search (Automated)

Challenge 2.1.1. Recollect a historical formula, such as:

TEX \sqrt{2} = 1 + \frac{1}{3} + \frac{1}{3\dot 4} ?- \frac{1}{3\dot 4\dot 34}}

Math
√
2 = 1 + 1

3 + 1
34̇
− 1

34̇3̇4

Example: http://arxmliv.kwarc.info/files/1010/1010.4331/1010.4331.xhtml

Sandbox: f005795.xhtml

But was the last operator a plus(+) or a minus(-) sign ?

Judge: Dr. Patrick Ion

Challenge 2.1.2. Retrieve instances matching:

TEX B_{p+n} = B_n + B_{n+1} \bmod p \ \text{for all}\ n=0,1,2,\dots

Math Bp+n = Bn +Bn+1 (mod p) for all n = 0, 1, 2, . . .

Example: http://arxmliv.kwarc.info/files/1008/1008.1573/1008.1573.xhtml

Sandbox: f005794.xhtml

Judge: Dr. Patrick Ion

2
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Challenge 2.1.3. Find examples of the use of the below metric:

TEX S(g) = \frac{s(g)-s_{\text{min}}}{s_{\text{max}}-s_{\text{min}}}

Math S(g) = s(g)−smin

smax−smin

Example: http://arxmliv.kwarc.info/files/1203/1203.5158/1203.5158.xhtml

Sandbox: f005796.xhtml

Judge: Dr. Patrick Ion

Challenge 2.1.4. Find Cardy’s formula:

TEX \frac{3\Gamma(2/3)}{\Gamma(1/3)}\eta^{1/3}\,\rule{0pt}{10pt}_2

F_1(1/3,2/3,4/3;\eta)

Math 3Γ(2/3)
Γ(1/3) η

1/3
2F1(1/3, 2/3, 4/3; η)

Example: http://arxmliv.kwarc.info/files/0909/0909.4499/0909.4499.xhtml

Sandbox: f005692.xhtml

Judge: Dr. Daniel Meyer

3
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Challenge 2.1.5. Retrieve instances matching:

TEX a?x^2+b?y^2$

Math ax2 + by2

Example: http://arxmliv.kwarc.info/files/0812/0812.0067/0812.0067.xhtml

Sandbox: f004977.xhtml

Similarly for cx2 + dy2, i.e. c?x^2+d?y^2

Notes: This is complicated for two reasons.

• The actual variables are x1 and x2, not x and y (as it happens, a etc. are the same).

• We actually have ax2
1 + bx2

2 + ǫ1x1x2, with the possibilities of ǫ1 being either zero or non-zero
(and cx2

1 + dx2
2 + ǫ2x1x2 similarly).

Judge: Dr. James Davenport

Challenge 2.1.6. Retrieve instances matching:

TEX \frac{e^2+3}42^{?l\choose 2}?n^?l

Math e
2+3

4
2(

l

2
)nl

Example: http://arxmliv.kwarc.info/files/0801/0801.2554/0801.2554.xhtml

Sandbox: f004150.xhtml

Notes: The subtlety is that n, l are α-convertible, also called “query variables”, but e is not, as it is a

constant.

Judge: Dr. James Davenport

4
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Challenge 2.1.7. Retrieve instances matching:

TEX ?P\in \sum_{i=1}^r\Z ?{P_i}

Math P ∈
∑r

i=1 ZPi

Example: http://arxmliv.kwarc.info/files/0712/0712.3704/0712.3704.xhtml

Sandbox: f004102.xhtml

Notes: The subtlety is that P and Pi are independently α-convertible, i.e. they are distinct “query

variables”

Judge: Dr. James Davenport

2.2 Full-Text Search (Automated)

Challenge 2.2.1. Handle the following textual queries:

• Where can I find the formula for free cumulants in terms of the symmetric group?

• Aren’t there some newer special polynomials involved?

Example: http://arxmliv.kwarc.info/files/1010/1010.4331/1010.4331.xhtml

Sandbox: f005795.xhtml

• Also, Kerov polynomials and zonal polynomials

Example: http://arxmliv.kwarc.info/files/1005/1005.0316/1005.0316.xhtml

Sandbox: f005793.xhtml

Judge: Dr. Patrick Ion

5
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2.3 Open Information Retrieval (Semi-Automated)

Challenge 2.3.1. Retrieve instances matching:

TEX f_1(x_1,\ldots,x_n)<0\land f_2(x_1,\ldots,x_n)<0

Math f1(x1, . . . , xn) < 0 ∧ f2(x1, . . . , xn) < 0

Example: http://arxmliv.kwarc.info/files/0801/0801.0586/0801.0586.xhtml

Sandbox: f004115.xhtml

or conceivably: f1(x1, . . . , xn) < 0 ∧ f2(x1, . . . , xn) ∧ · · · ∧ fm(x1, . . . , xn) < 0.

Notes: This is complicated for several reasons. The text talks about “f1σ10, . . . , fmσm0”, so one has
to

• realise that “,” is “∧”;
• infer “f1(x1, . . . , xn)” from “f1” and the earlier fi ∈ K[x1, . . . , xn];

• infer “f1 < 0” from “f1σ10” and the earlier σ ∈ {<,=, >}m (where σ = (σ1, . . . , σm) is wholly
implicit).

In fact, this is a remarkably hard problem, and a related question would be “what mathematically

sensible queries will retrieve the opening paragraph of this paper?”

Judge: Dr. James Davenport

6
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