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Introduction

In software analysis and verification there exist different ways of modelling be-

haviour of software components. Interface automata are one such modelling

technique that captures temporal interface requirements and provisions of com-

ponents. By doing so they allow detection of inconsitencies in models and by

extension incompatibilities of the modelled components themselves.

Among all the components there are many that may be used in parallel. Mod-

els of such systems are usually constructed for a fixed number of threads with

only a limited possibility of automation of the construction. This thesis attempts

to advocate on a theoretical level an approach dealing with a more general solu-

tion based on an extension of an accepted formalism of the interface automata

as it will be described in one of the following chapters. The key distinction from

other approaches is that chainable operations will be provided to allow construc-

tion of automata of arbitrary degrees of parallelism while harnessing possibilities

of optimisations of the product on the run provided by their iterative nature.

And doing so while still being able to operate the results as standard interface

automata and subject them to further parallelisation.

Attention will be paid to client-server architectures with multiple isolated

clients communicating with single server in parallel. The actual scale of positive

impact is, however, expected to be larger as there will be only a minimum of

assumptions made about the concrete type of architecture. Therefore other types

of components may benefit from the proposed operations and constructions. This

particular setting serves as the most natural motivation example only.

Parallelising an interface automaton amounts to guaranteeing that all possible

states and thread schedulings are covered by the resulting automaton. Different

views of what needs to be captured exist depending on communication specifics

involved in the composite system and type of abstraction applied for the creation

of the model. First the least restricted approach will be pursued and after in-

troduction of the basic principle a connection to operations that are in a way

related to modeling multi-threading in interface automata will be made. The

vision of optimisation possibilities may then provide further justification of the

proposed approach and its superiority to a naive alternative suffering from over-

approximation drawbacks.

The thesis is stuctured in the following manner. First a difference between

modelling single-threaded compositions of components and a natural extension to

multi-threaded compositions is explained on an abstracted example in Chapter 1.

After demonstrating the need for operations producing automata with replicated
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parts of interfaces a formal definition of the apparatus is given, starting with basic

definitions established in already existing materials (Chapter 2) and ending with

definitions fundamental to this thesis (Chapters 2 and 3). In the latter Chapter

a basic operation introducing new thread to an automaton is provided as well.

Next its properties are compared to an automaton constructed with standard

operations with aim to model parallel behaviour. In the process questionable

properties of the resulting models are identified and are addressed one by one

in Chapters 4 and 5. As a result a new operation is described and its effects

are illustrated in examples in Chapter 5. While these examples present parts of

models interesting from the theoretical point of view, the practical application

and target technologies used for implementation of modelled systems are provided

in Chapter 6. Chapter 7 relates the chosen approach to existing alternatives and

their formal background. In the end Chapter 8 suggests directions of further

analysis and extensions.
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1. Setting

Both the development and verification of modern software systems often make

use of models. In fact the two activities are closely related. Models in general

can be used to express abstracted designs of software units either with the aim to

generate the concrete detailed implementation afterwards or to allow reasoning

about correctness or other properties of a supplied implementation in a much

more fitting domain avoiding the need to consider irrelevant characteristics of the

modelled situation.

Interface automata are a well-established accepted formalism for specifying

behaviour models of systems. The increase of complexity of contemporary sys-

tems supports the convenience of having such models for these purposes. Complex

architectures often employ components that are composed together to produce

subsystems and by extension the complete system. Individual components can

be described by their required and provided interfaces along with assumptions

about their use. An interoperation of two or more components is captured by

composition of their models during which required interfaces of one are bound to

matching provided interfaces of the other. In its generality the formalism does not

provide a method of binding a concrete model with models of multiple instances

of interchangable components as it is required for modelling parallel access of the

mentioned components to the shared component. Although such models could

be constructed manually, it would not be a scalable solution to do so. Therefore

there is a need for a solution that could easily be automated.

Hereafter we would like to focus on manipulation with models rather than their

precise correspondence to the modelled implementation. Despite the interface

automata by themselves do not deal with parallelism in particular, they can be

used to capture parallel execution of a fixed degree. Components programmed in

common programming languages, however, often do not impose a concrete limit

to the number of threads. In fact there usually exists a single definition of a code

snippet or method that is being executed in numerous threads the number of

which is not known in advance.

As it has been already mentioned, the supporting example for the effort dedi-

cated to analysis of parallelism within interface automata is a client-server ar-

chitecture, a widely spread pattern utilised by for example web services. A

single-threaded server could often be described using a loop in which it processes

requests and returns responses. If there were one client or multiple clients the

requests of which were serialised discretely, so that all responses had been sent

before the next request was made, the model of the server could feature a single
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thread. This, however, describes only a limited number of servers in practice and

due to the growth of importance of parallelism for not only scalability the need

for more profound solution arises. In real servers processing of multiple requests

received in parallel is desired and is the reason for attempting to automatically

increase number of threads of the server with the least effort required from the

component’s designer to describe the automaton in question.

An interface requirements of a simple single-threaded server, provided and

required actions and their mutual sequencing, could be modelled by a labelled

state transition system as it is illustrated in Figure 1.1. Individual transition

labels can be divided into input, output and internal actions denoted by ?, ! and

; respectively.

0 1

2

3

a;
b?

c!

d;

Replicable

Figure 1.1: Simplified server pattern

All interactions with the modelled component start in the initial state 0 de-

picted by a node with an oriented sourceless edge in Figure 1.1. There is only one

transition from 0 which models an action a being performed internally, be it some

server initialisation. From the state 1 it is either possible to terminate the server

by pursuing an edge labelled with d or accept a request b from a hypothetical

client followed by response c being emitted.

To be able to model parallel executions using interface automata it is required

that each transition separately is atomic. If this condition is satisfied any parallel

execution is equivalent to one serialised execution which interleaves transitions

from different threads.

A cartesian product of n copies (replicas) of sets of states forms a lattice whose

each dimension corresponds to execution in one particular copy of the replicated

section and any walk through this lattice captures one interleaving of transitions.

We would expect the model of two threaded variant of the previously men-

tioned server to look like Figure 1.2.
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0 1

21

22

21,2

3

a;

b?

b?

c!

c!

b?

b?

c!

c!

d;

Figure 1.2: Parallelised server

A nondeterministic choice of advancement from a particular state models

scheduling possibilities. In Figure 1.2 it can be seen that from state 1 there

originate two transitions that correspond to exactly one thread advancing. In

both the states 21 and 22 there is an action b? enabled, a transition from the

state labelled with the action exists, and that corresponds to an advancement of

the other thread than the one before. In the state 21,2 the two threads reached

their local state corresponding to state 2 of the original single-threaded model.

Alternatively we could require that each thread can move to the termination state

3 by replicating it for both the threads, the resulting automaton would be a bit

too large and inappropriate for demonstration so far, although in practice it is

a matter of what is expected behaviour of the component after replication.

The above examples are in fact interface automata, whose formal definition

will follow in the next chapter.
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2. Interface automata

Interface automata are a formalism modelling temporal aspects of input-output

behaviour of components. Individual paths within an automaton form assump-

tions about expected event sequences in a use of a component. Models of com-

posed systems then can be subjected to verification of compliance with assump-

tions made by individual components. The main focus is on open systems, i.e.

systems that can be further composed with other components, which is why

an optimistic approach is usually used to determine component compatibility.

Composition operation, inspired by development of component-based systems

in practice, is an act which interlinks two components so that their shared parts

of interfaces are matched together and synchronises executions in the two compo-

nents at the point of the link, which closely corresponds to emitting and absorbing

an event or in particular to calling and executing a method in modern program-

ming languages.

While pessimistic view would consider two components incompatible in case

a state where an action emitted by one component is not expected by the other

component is reachable in an environment, the optimistic view reflects reality

more closely by pronouncing two automata compatible if there exists an envi-

ronment that ensures all executions avoid reaching such illegal states. It would

be overly restrictive to disallow such a composition that can by proper handling

result in an error-free system.

2.1 Basic definitions

All the definitions in this section were taken from the article by Alfaro and Hen-

zinger [1].

Definition. Interface automaton P is
(
VP , V

init
P , AI

P , A
O
P , A

H
P , TP

)
where

VP is a set of states.

V init
P is a set of initial states.

AI
P is a set of input actions.

AO
P is a set of output actions.

AH
P is a set of hidden actions.

TP is a set of transitions from states to states performing an action.

The following must hold.
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V init
P ⊆ VP

∣
∣V init

P

∣
∣ ≤ 1

AI
P ∩ AO

P = ∅

AO
P ∩AH

P = ∅

AH
P ∩ AI

P = ∅

TP ⊆ VP ×AP × VP

We will further use the following designations.

AP = AI
P ∪ AO

P ∪ AH
P

AP(u) = {a |∃u′ : (u, a, u′) ∈ TP}

AI
P(u) = AP(u) ∩ AI

P

AO
P(u) = AP(u) ∩ AO

P

AH
P (u) = AP(u) ∩ AH

P

The motivation behind introduction of components is their composition into

larger systems. But obviously not all pairs of components can be used to pro-

duce a meaningful composite. The minimum that needs to be satisfied for two

automata that are about to be composed into one is that they agree on meaning

of individual actions. That is if they share an action then one of the automata

needs to consider it an input and the other an output action.

Definition. Two interface automata P and Q are composable if and only if

AH
P ∩ AQ

AP ∩ AH
Q

AI
P ∩ AI

Q

AO
P ∩ AO

Q







= ∅

To simplify formulations in future definitions it is helpful to bring up a desig-

nation for actions that have a special meaning for composition.

Definition. Let shared(P,Q) = AP ∩ AQ for any two interface automata P

and Q. Notice that for two composable automata this is exactly
(
AI

P ∩ AO
Q

)
∪

(
AO

P ∩AI
Q

)
.

The composition of two interface automata synchronises executions of the two

captured systems at point where one automaton awaits an input action and the

other provides it. The rest of the transitions are carried out independently.

7



Definition. For two composable automata P and Q let P ⊗Q denote their

composition defined by:

VP⊗Q = VP × VQ

V init
P⊗Q = V init

P × V init
Q

AI
P⊗Q =

(
AI

P ∪ AI
Q

)
\ shared(P,Q)

AO
P⊗Q =

(
AO

P ∪ AO
Q

)
\ shared(P,Q)

AH
P⊗Q = AH

P ∪ AH
Q ∪ shared(P,Q)

TP⊗Q = {((u, v) , a, (u′, v))|(u, a, u′) ∈ TP ∧ a /∈ shared(P,Q) ∧ v ∈ VQ}∪

{((u, v) , a, (u, v′))|(v, a, v′) ∈ TQ ∧ a /∈ shared(P,Q) ∧ u ∈ VP}∪

{((u, v) , a, (u′, v′))|(u, a, u′) ∈ TP ∧ (v, a, v′) ∈ TQ ∧ a ∈ shared(P,Q)}

It is apparent that one automaton may emit an action in a state where the

other automaton does not accept it. Such states are called illegal.

Definition. Let illegal(P,Q) denote







(u, v) ∈ VP × VQ

∣
∣
∣
∣
∣
∣
∣

∃a ∈ shared(P,Q) ∧






a ∈ AI
P(u) ∧ a /∈ AO

Q(v)

∨

a ∈ AO
P(u) ∧ a /∈ AI

Q(v)












Definition. We call an interface automaton Q an environment for an interface

automaton P if

• Q is composable with R,

• Q is not empty (V init
Q 6= ∅),

• AI
Q = AO

P ,

• illegal(P,Q) = ∅.

Definition. Given two composable interface automata P, Q a legal environment

R for P ⊗Q is such that no illegal(P,Q)× VR is reachable in (P ⊗Q)⊗R. If

such environment exists we call P and Q to be compatible.

Although it may be considered obvious, let a cross product be defined, for

completness and to avoid misinterpretations, as follows

Definition. For two interface automata P, Q satisfying

AI
P ∩ AO

Q

AO
P ∩ AI

Q
(
AI

P ∪AO
P

)
∩ AH

Q
(
AI

Q ∪ AO
Q

)
∩ AH

P







= ∅
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we define cross product P ×Q by

VP×Q = VP × VQ

V init
P×Q = V init

P × V init
Q

AI
P×Q = AI

P ∪ AI
Q

AO
P×Q = AO

P ∪ AO
Q

AH
P×Q = AH

P ∪AH
Q

TP×Q = {((u, v) , a, (u′, v))|(u, a, u′) ∈ TP ∧ v ∈ VQ}∪

{((u, v) , a, (u, v′))|(v, a, v′) ∈ TQ ∧ u ∈ VP}

This way the result is again an interface automaton and any P can be powered

to any order.

2.2 Synchronisation

Because this thesis aims at examining possibilities of multi-threaded systems, it is

appropriate to address concepts used in parallel computations. Often for a com-

ponent there exist execution paths that cannot be interleaved without leading to

race conditions. Multi-threaded executions tend to make use of synchronisation

to enforce only permissible interleaving.

The notion of synchronisation is not incorporated in standard interface au-

tomata which may lead to unrealistic models or spurious claims of incompatibility

since acceptance of a synchronised method invocation in one thread may not be

permitted until all other threads leave the corresponding critical section.

The following proposes an extension to standard interface automata that al-

low a developer to annotate the component accordingly to the synchronisation

requirements. The intuition tells us that some of the states of the modelled sys-

tem are somehow related and may be considered in a group. We will call such

groups sections and they may be seen as blocks in programming languages or

some fractions of computation that share a common property of some kind. One

of such properties is mutual exclusion. In modern languages there are usually

ways to mark a specific piece of code accessible only to an owner of an exclusive

privilege, in other languages there is most likely another way to achieve the same

effect by using a library.

Definition. Synchronisation annotation (SV , CV ) for a set of states V is defined

by:

SV ⊆ V × V :







∀v ∈ V : (v, v) ∈ SV ,

∀v1, v2 ∈ V : (v1, v2) ∈ SV ⇔ (v2, v1) ∈ SV ,

∀v1, v2, v3 ∈ V : (v1, v2) ∈ SV ∧ (v2, v3) ∈ SV ⇒ (v1, v3) ∈ SV ,

9



CV ⊆
{
[v]

SV

∣
∣∀v ∈ V

}
,

ExcludeV (V1, V2) ⇔ ∃v1 ∈ V1∧∃v2 ∈ V2 : [v1]SV
∈ CV ∧[v2]SV

∈ CV ∧[v1]SV
= [v2]SV

,

where SV denotes a relation of being part of the same section, CV an arbitrary

subset of critical sections and ExcludeV relating sets of states that conflict with

each other at least in one pair of states.

By letting CV = ∅ we can manipulate interface automata as if there was no

notion of synchronisation.

0 1 2 3 4
a b c d

S1 C1 S2

Figure 2.1: Annotated interface automaton

Example 1. The annotation depicted in Figure 2.1 corresponds to

S = {(0, 0) , (1, 1) , (1, 2) , (1, 3) , (2, 1) , (2, 2) , (2, 3) , (3, 1) , (3, 2) , (3, 3) , (4, 4)} ,

C = {{1, 2, 3}} .

In this simple example it can be seen that Exclude relates sets containing

states from the same critical section. Suppose we had a multi-threaded automa-

ton, whose states encode states of individual threads. If we were about to add

yet another thread Exclude could help us determine whether a compound state

was valid, not allowing two threads to be found in the same exclusive state, in

the resulting automaton.

As it may have been slightly indicated in the previous example, to be able to

take synchronisation into account it is important that states of a multi-threaded

automaton can be decomposed into original substates.

Definition. State decomposition function or simply decomposition function DV1,V

shall denote a mapping

DV1,V : V → P(V1)

whose particular images depend greatly on the context in which the domain V

was constructed. The intuition behind such functions should be that

∀v ∈ V1 : DV1,V1
(v) = {v}

10



and for all domains composed from V1 the decomposition should reflect the struc-

ture of composite state in regard of elementary states.

Example 2. For V1 = {0, 1, 2} and V = {(0, 0) , (0, 1) , (0, 2) , (1, 0) , (1, 2) , . . .}

the DV1,V is most naturally of form

DV1,V((0, 0)) = {0}

DV1,V((0, 1)) = {0, 1}

DV1,V((0, 2)) = {0, 2}

DV1,V((1, 0)) = {0, 1}

DV1,V((1, 2)) = {1, 2}
...

Figure 2.2 illustrates how decomposition function may relate composite states

to elementary states of its components; not all mappings are captured for better

comprehensibility.

P

0 1 2
a b

P × P

0, 0 1, 0 2, 0

0, 1 1, 1 2, 1

0, 2 1, 2 2, 2

a b

a b

a b

a

b

a

b

a

b

DVP ,VP×P

DVP ,VP×P

Figure 2.2: Demonstration of the meaning of state decomposition function

Depicting multiple threads requires us to consider an automaton whose states

encode states of each thread and that performs scheduling of the threads by

interleaving their transitions. Because of the synchronisation it is possible to

consider only some states and only some transitions.

As in the case of composition even with replication there are limitations to its

operands. It is not reasonable to allow to combine any two interface automata
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into a multi-threaded solution.

Synchronisation itself may seem to give rise to compatibility conflicts by dis-

allowing acceptance of a synchronised method call of a suspended thread while

another thread is still holding the lock simply because there is no notion of sus-

pension. States at beginning of critical sections in particular would often lead

to illegal states in the parallelised automaton, because of a common occurance

of method calls starting a critical section. In the spirit of optimistic approach

it is not necessary to consider this a malicious and broken feature, but, in fact,

it makes such situations distinguishable. It is possible to extract states from

the set of all illegal states if the output action in question is blocked for the

concrete thread by not acquiring lock beforehand. This reflexes reality in many

systems where the particular method is called but waits for the lock before ac-

tually advancing into the critical section. Notice that attempting to parallelise

an automaton whose initial state is critical results in an empty automaton. It is

not reasonable to design such models. With this approach it is possible to define

models of situations where there is no thread holding more than one lock at a

time.

2.3 Unmodelled behaviour

Not all language features are going to be supported by our models. One such

example are exeptions. We consider important mentioning this decision to avoid

later confusion. Even though exception handling falls into a group of common

mechanisms present on many platforms, it is one of those features that may

make a control-flow very messy. In the realm of components it can be argued that

components are designed in such a way that they do not seem to throw exceptions

observable from the outside. Therefore rendering the support for modelling them

unnecessary.
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3. Iterative composition

The basic definitions have the deficiency of not allowing for a formal repetitive

composition as all shared actions become internal and the composite automaton

is inherently incomposable with any of its components which makes sense as long

as there is no need for unbound transitions being added beside the already bound

transitions.

This is, however, in conflict with the goals of this thesis. To be able to replicate

functionality of a component it is necessary to allow coexistence of bound and

unbound transitions utilising the same actions. It is possible to bind each thread

of a server with one particular client separately and combine them into a final

multi-threaded solution afterwards. But that does not characterise the most

general type of parallel executions, although we will consider it later as well. For

now it is important to consider a general approach to be able to compare the

result to the most straighforward and possibly naive parallelised automata. To

overcome the problem of mutually disjoint sets of actions we need to revisit the

original definitions.

3.1 Relaxed interface automata

The composition of interface automata is very restrictive about which pairs of in-

terface automata are composable. The reason is the composition and by extension

the interface automata themselves.

Definition. A relaxed interface automaton P is a tuple

(
VP , V

init
P , AI

P , A
O
P , A

H
P , T

I
P , T

O
P , T H

P

)

for which
V init
P ⊆ VP

|V init
P | ≤ 1

T I
P ⊆ VP × AI

P × VP

T O
P ⊆ VP × AO

P × VP

T H
P ⊆ VP × AH

P × VP

It should be clear that it is because we do not impose any limitations on action

sets that we need to distinguish meanings of individual transitions. The reason

why we still keep three sets of actions is that they are easier to use than extracting

the same information from the transition sets first. And more importantly not

all the actions need to be used in transitions while being part of the interface,

therefore such information cannot be captured only by the transition sets.
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Every interface automaton P corresponds to exactly one relaxed automaton Pr =
(
VP , V

init
P , AI

P , A
O
P , A

H
P , T

I
P , T

O
P , T H

P

)
.

T I
P =

{
(u, a, v) ∈ TP

∣
∣a ∈ AI

P

}

T O
P =

{
(u, a, v) ∈ TP

∣
∣a ∈ AO

P

}

T H
P =

{
(u, a, v) ∈ TP

∣
∣a ∈ AH

P

}

If we use a standard interface automaton P in context where a relaxed interface

automaton is expected we assume Pr instead.

Example 3. In a standard automaton it would not be possible to depict a sys-

tem such as the one in Figure 3.1, where two transitions in different roles share

a common action label.

0 1 2
a a

∈ T I
P

∈ T O
P

Figure 3.1: Relaxed interface automaton

3.2 Replication

Definition. Replication function RP1
for a relaxed interface automaton P, its

state decomposition DVP1
,VP

and synchronisation annotation NVP1
denotes a func-

tion complying with the following constraints. For

RP1

(
P, DVP1

,VP
, NVP1

)
=

(
Q, DVP1

,VQ

)

VQ =
{
(v, v1) ∈ VP × VP1

∣
∣¬ExcludeVP1

(
DVP1

,VP
(v) , {v1}

)}

V init
Q = VQ ∩

(
V init
P × V init

P1

)

AI
Q = AI

P ∪ AI
P1

AO
Q = AO

P ∪AO
P1

AH
Q = AH

P ∪ AH
P1

T I
Q =

{

((v, v1) , a, (v
′, v1))

∣
∣
∣
∣
∣

v1 ∈ VP1
∧ (v, a, v′) ∈ T I

P ∧

¬ExcludeVP1

(
DVP1

,VP
(v′) , {v1}

)

}

∪
{

((v, v1) , a, (v, v
′
1))

∣
∣
∣
∣
∣

v ∈ VP ∧ (v1, a, v
′
1) ∈ T I

P1
∧

¬ExcludeVP1

(
DVP1

,VP
(v) , {v′1}

)

}
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T O
Q =

{

((v, v1) , a, (v
′, v1))

∣
∣
∣
∣
∣

v1 ∈ VP1
∧ (v, a, v′) ∈ T O

P ∧

¬ExcludeVP1

(
DVP1

,VP
(v′) , {v1}

)

}

∪
{

((v, v1) , a, (v, v
′
1))

∣
∣
∣
∣
∣

v ∈ VP ∧ (v1, a, v
′
1) ∈ T O

P1
∧

¬ExcludeVP1

(
DVP1

,VP
(v) , {v′1}

)

}

T H
Q =

{

((v, v1) , a, (v
′, v1))

∣
∣
∣
∣
∣

v1 ∈ VP1
∧ (v, a, v′) ∈ T H

P ∧

¬ExcludeVP1

(
DVP1

,VP
(v′) , {v1}

)

}

∪
{

((v, v1) , a, (v, v
′
1))

∣
∣
∣
∣
∣

v ∈ VP ∧ (v1, a, v
′
1) ∈ T H

P1
∧

¬ExcludeVP1

(
DVP1

,VP
(v) , {v′1}

)

}

DVP1
,VQ

=
{(

(v, v1) , DVP1
,VP

(v) ∪ {v1}
)∣
∣(v, v1) ∈ VQ

}

Example 4. The replication itself is a simple operation taking into account

synchronisation constraints implied by critical sections as shown in Figure 2.1

with one critical section C1.

It should be straightforward to verify that one step of replication results in

the automaton in Figure 3.2.

0, 0 4, 0

0, 4 4, 4

1, 0 2, 0 3, 0

0, 1

0, 2

0, 3

1, 4 2, 4 3, 4

4, 1

4, 2

4, 3

a b c d

a

b

c

d

a b c d

a

b

c

d

Figure 3.2: Replicated interface automaton

If we restrain to replicating one thread multiple times we can introduce a more
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natural way to formulate the replication process. The following definition grants

us a sequence of automata with an increasing number of threads.

Definition. Let

R0
P1

(
NVP1

)
= ( ε

︸︷︷︸

P0

, {∅ 7→ ∅}
︸ ︷︷ ︸

DVP1
,VP0

)

R1
P1

(
NVP1

)
= RP1

(
P0, DVP1

,VP0
, NVP1

)

=
(
P1, DVP1

,VP1

)

R2
P1

(
NVP1

)
= RP1

(
P1, DVP1

,VP1
, NVP1

)

...

Rn
P1

(
NVP1

)
= RP1

(

Pn−1, DVP1
,VPn−1

, NVP1

)

The sequence of automata with an increasing degree of parallelism will be

used later to compare two approaches to replication.

3.3 Composition

Before we relate the replication process to other means of parallelisation of in-

terface automata, a composition with other automata should be considered. The

main scenario in mind which led to this thesis was the ability to replicate parts

of interface automata that are later composed with other automata.

It is necessary to define an adequate composition operation as we formally

deviated from standard interface automata. To be able to later compare the newly

defined composition with its standard preimage we will harness the possibilities

of relaxed automata to postpone binding of input and output transitions of the

two operands.

Definition. For interface automaton P1, two relaxed interface automata P, Q

and decomposition function DVP1
,VP

we define composition
(
P, DVP1

,VP

)
⊗′ Q =

(
R, DVP1

,VR

)
by

VR = VP × VQ

V init
R = V init

P × V init
Q

AI
R = AI

P ∪AI
Q

AO
R = AO

P ∪ AO
Q

AH
R = AH

P ∪ AH
Q

T I
R =

{
((vP , vQ) , a, (v

′
P , vQ))

∣
∣vQ ∈ VQ ∧ (vP , a, v

′
P) ∈ T I

P

}
∪

{(
(vP , vQ) , a,

(
vP , v

′
Q

))∣
∣vP ∈ VP ∧

(
vQ, a, v

′
Q

)
∈ T I

Q

}
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T O
R =

{
((vP , vQ) , a, (v

′
P , vQ))

∣
∣vQ ∈ VQ ∧ (vP , a, v

′
P) ∈ T O

P

}
∪

{(
(vP , vQ) , a,

(
vP , v

′
Q

))∣
∣vP ∈ VP ∧

(
vQ, a, v

′
Q

)
∈ T O

Q

}

T H
R =

{
((vP , vQ) , a, (v

′
P , vQ))

∣
∣vQ ∈ VQ ∧ (vP , a, v

′
P) ∈ T H

P

}
∪

{(
(vP , vQ) , a,

(
vP , v

′
Q

))∣
∣vP ∈ VP ∧

(
vQ, a, v

′
Q

)
∈ T H

Q

}

DVP1
,VR

=
{(

(v, vr) , DVP1
,VP

(v)
)∣
∣(v, vr) ∈ VR

}

Example 5. The operation unlike its standard variant basically does not rec-

ognize compatibility of the two operands. In Figure 3.3 it can be seen that the

composite simulates a system where the two automata run alongside without

being affected by each other.

0 1
a ∈ T I

⊗′ 0 1
a ∈ T O

︸ ︷︷ ︸

0, 0 0, 1

1, 0 1, 1

a a

a

a

∈ T OT I ∋

Figure 3.3: Relaxed composition

Similarly to defining a sequence of automata with increasing degree of replica-

tion, it will prove useful to denote automata with an arbitrary number of threads

and composition counterparts bound to individual threads.

Definition.

EP1

(
P, DVP1

,VP
, NP1

,Q
)
= RP1

(
P, DVP1

,VP
, NP1

)
⊗′ Q

E0
P1

(
NVP1

,Q
)

= ( ε
︸︷︷︸

R0

, {∅ 7→ ∅}
︸ ︷︷ ︸

DVP1
,VR0

)

E1
P1

(
NVP1

,Q
)

= RP1

(
R0, DVP1

,VR0
, NVP1

)
⊗′ Q

=
(
R1, DVP1

,VR1

)

E2
P1

(
NVP1

,Q
)

= RP1

(
R1, DVP1

,VR1
, NVP1

)
⊗′ Q

...

En
P1

(
NVP1

,Q
)

= RP1

(

Rn−1, DVP1
,VRn−1

, NVP1

)

⊗′ Q
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3.4 Relation to standard interface automata

It is important to realise that we did not deviate from standard interface automata

too much. Hence the following definition and lemma.

Definition. Let P be a relaxed interface automaton, then we define an operation

standardise such that standardise(P) = Q

VQ = VP

V init
Q = V init

P

AI
Q = AI

P \ AO
P

AO
Q = AO

P \ AI
P

AH
Q = AH

P ∪
(
AI

P ∩ AO
P

)
∪
(
AO

P ∩AI
P

)

TQ =
{
(u, a, v) ∈ T I

P

∣
∣a /∈ AH

Q

}
∪

{
(u, a, v) ∈ T O

P

∣
∣a /∈ AH

Q

}
∪

{
(u, a, w)

∣
∣(u, a, v) ∈ T I

P ∧ (v, a, w) ∈ T O
P

}
∪

{
(u, a, w)

∣
∣(u, a, v) ∈ T O

P ∧ (v, a, w) ∈ T I
P

}
∪

T H
P

The operation standardise can be used to convert a relaxed interface automa-

ton to a standard interface automaton by performing binding of transitions that

has been postponed or did not happen for other reasons. The following lemma

explores effects of relaxed composition and subsequent standardisation.

Lemma 1. For two composable interface automata P, Q, any decomposition

function DVP1
,VP

and relaxed interface automaton R such that
(
P, DVP1

,VP

)
⊗′ Q =

(
R, DVP1

,VR

)
:

R′ = standardise(R) = P ⊗Q

Proof. It is apparent from constructions in standard composition and the relaxed

composition that the sets of states and initial states are the same.

If an action was shared by the two automata then it ended in both input

and output sets of the composite and meanwhile no other action could have been

in the two sets at the same time because it would have to be in both sets of

one of the operands which cannot be true due to them being standard interface

automata. Also no overlap with internal actions could have occured. Therefore

for actions we get

AI
R′ =

(
AI

P ∪ AI
Q

)
\
(
AO

P ∪AO
Q

)

=
(
AI

P ∪ AI
Q

)
\ shared(P,Q)
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AO
R′ =

(
AO

P ∪ AO
Q

)
\
(
AI

P ∪AI
Q

)

=
(
AO

P ∪ AO
Q

)
\ shared(P,Q)

AH
R′ = AH

P ∪AH
Q ∪

(
AI

P ∩ AO
Q

)
∪
(
AO

P ∩AI
Q

)

= AH
P ∪AH

Q ∪ shared(P,Q)

By analysing the rules for construction of transition sets we can verify that some

conditions are sufficient for a transition to be placed in both the compared au-

tomata P ⊗Q and R′. Specifically

(vP , a, v
′
P) ∈ T I

P ∧ (vQ, a, vQ) ∈ T O
Q ⇒

(
(vP , vQ) , a,

(
v′P , v

′
Q

))
∈ T H

P⊗Q ⊆ TP⊗Q

⇒ ((vP , vQ) , a, (v
′
P , vQ)) ∈ T I

R∧
(
(v′P , vQ) , a,

(
v′P , v

′
Q

))
∈ T O

R

⇒
(
(vP , vQ) , a,

(
v′P , v

′
Q

))
∈ TR′

describing hidding of an action absorbed by the first operand after being emitted

by the other, similarly for the opposite direction

(vP , a, v
′
P) ∈ T O

P ∧ (vQ, a, vQ) ∈ T I
Q ⇒

(
(vP , vQ) , a,

(
v′P , v

′
Q

))
∈ T H

P⊗Q ⊆ TP⊗Q

⇒ ((vP , vQ) , a, (v
′
P , vQ)) ∈ T O

R ∧
(
(v′P , vQ) , a,

(
v′P , v

′
Q

))
∈ T I

R

⇒
(
(vP , vQ) , a,

(
v′P , v

′
Q

))
∈ TR′

The only other origination of an internal transition is copying the unshared tran-

sitions from the left operand

(vP , a, v
′
P) ∈ T H

P ∧ vQ ∈ VQ ⇒ ((vP , vQ) , a, (v
′
P , vQ)) ∈ T H

P⊗Q ⊆ TP⊗Q

⇒ ((vP , vQ) , a, (v
′
P , vQ)) ∈ T H

R ⊆ TR′

or the right operand

(
vQ, a, v

′
Q

)
∈ T H

Q ∧ vP ∈ VP ⇒
(
(vP , vQ) , a,

(
vP , v

′
Q

))
∈ T H

P⊗Q ⊆ TP⊗Q

⇒
(
(vP , vQ) , a,

(
vP , v

′
Q

))
∈ T H

R ⊆ TR′

Likewise it is necessary to reflect the remaining transitions that are not shared

(vP , a, v
′
P) ∈ T I

P ∪ T O
P ∧

a /∈ shared(P,Q) ∧ vQ ∈ VQ

⇒ ((vP , vQ) , a, (v
′
P , vQ)) ∈ TP⊗Q

⇒ ((vP , vQ) , a, (v
′
P , vQ)) ∈ TR′

(
vQ, a, v

′
Q

)
∈ T I

Q ∪ T O
Q ∧

a /∈ shared(P,Q) ∧ vP ∈ VP

⇒
(
(vP , vQ) , a,

(
vP , v

′
Q

))
∈ TP⊗Q

⇒
(
(vP , vQ) , a,

(
vP , v

′
Q

))
∈ TR′
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If none of the above prerequisites hold for a, vP , v′P , vQ, v′Q, it can be seen

that ((vP , vQ) , a, (v
′
P , vQ)),

(
(vP , vQ) , a,

(
vP , v

′
Q

))
,
(
(vP , vQ) , a,

(
v′P , v

′
Q

))
do not

fall into TP⊗Q nor into T I
R ∪ T O

R ∪ T H
R which is a superset of TR′ therefore the

standard automata have equal sets of transitions.

The benefit to switching to relaxed automata is that after producing a com-

posite we can still manipulate it and modify it by replication and composition

which was not possible in the same way with standard interface automata. Fur-

ther more it can and will be shown that such an iterative approach produces

similar results that could be obtained with standard automata provided that the

number of iterations was known in advance.

Theorem 2. For composable interface automata P1, Q

En
P1

(
NVP1

,Q
)
≃1 Rn

P1

(
NVP1

)
⊗′ (Q×Q . . .×Q)

︸ ︷︷ ︸

Qn

=
(
R,DVP1

,VR

)
,

standardise(R) =2 Rn
P1

(
NVP1

)
⊗Qn,

meaning of which is that if we produce an automaton of an arbitrary degree of

parallelism by the proposed operations using relaxed interface automata as an in-

termediate form of the model, we get an automaton that is up to the standardis-

ation equivalent to what we could produce by naive parallelisation of a particular

degree.

Proof. We will show (1) by induction. Straight from the definition the following

is true

E1

P1

(
NVP1

,Q
)
≃ R1

P1

(
NVP1

)
⊗′ Q1.

Now if for some i (induction hypothesis):

Ei
P1

(
NVP1

,Q
)
=

(

Ri, DVP1
,VRi

)

≃ Ri
P1

(
NVP1

)
⊗′ Qi =

(

R′
i, DVP1

,V
R′

i

)

we show that the same holds for i+ 1 by establishing an isomorphism.

States

Suppose a bijection between states of Ri and states of R′
i

vRi
↔ (vPi

, vQi) = vR′
i

it is possible to construct a bijection for states of Ri+1 and R′
i+1

((vRi
, vP1

) , vQ) ↔ ((vPi
, vP1

) , (vQi , vQ))
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We know that decomposition functions from i-th step return the same sets

for states of Ri and R′
i and because the composition does not affect the

sets which states decompose to, we can conclude that decomposition of the

R′
i state is determined only by vPi

.

((vRi
, vP1

) , vQ) ∈ VRi+1

m

¬ExcludeVP1

(

DVP1
,VRi

(vRi
) , {vP1

}
)

m

¬ExcludeVP1

(

DVP1
,VPi

(vPi
) , {vP1

}
)

m

((vPi
, vP1

) , (vQi, vQ)) ∈ VR′
i+1

Thanks to knowing that the decomposition functions behave the same and

that composition employs full cross product during construction of the set

of states, and given the partial states come from the automata in question,

the presence of a state in one automaton is bound to presence of its image

in the other.

Similarily a state ((vRi
, vP1

) , vQ) of Ri+1 is initial if and only if all vRi
, vP1

and vQ are initial. The state vRi
is initial if and only if (vPi

, vQi) is initial

and then in turn both the vPi
and vQi are initial. Clearly in such a setting

also (vPi
, vP1

) and (vQi , vQ) are initial. That is the necessary and sufficient

condition for vR′
i+1

to be initial.

((vRi
, vP1

) , vQ) is initial ⇔ ((vPi
, vP1

) , (vQi , vQ)) is initial

Actions

Because the sets of actions grow in regard to inclusion monotonically A•
P1

⊆

A•
Ri

during replication and composition and because actions sets of powers

of any interface automaton are constant

AI
Ri

= AI
P1

∪AI
Q = AI

R′
i

AO
Ri

= AO
P1

∪AO
Q = AO

R′
i

AH
Ri

= AH
P1

∪ AH
Q = AH

R′
i

Transitions

Once again we assume notation: vRi
↔ (vPi

, vQi) , v′Ri
↔

(
v′Pi

, v′
Qi

)

The constraints are based on how T ’s are constructed during replication

and composition.
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Any transition in the composite Ri+1 is of form

(
((vRi

, vP1
) , vQ) , a,

((
v′Ri

, v′P1

)
, v′Q

))
∈ T •

Ri+1

and appears if and only if it is a transition of one of its components as it

can be seen from the construction of transition sets during both operations.

Thus it holds that

((
vRi

, a, v′Ri

)
∈ T •

Ri
∧ vP1

= v′P1
∧ vQ = v′Q

)

∨
(
vRi

= v′Ri
∧
(
vP1

, a, v′P1

)
∈ T •

P1
∧ vQ = v′Q

)

∨
(
vRi

= v′Ri
∧ vP1

= v′P1
∧
(
vQ, a, v

′
Q

)
∈ T •

Q

)

and for each clause we construct an equivalent clause that needs to hold for

the other composite, yielding

((
(vPi

, vQi) , a,
(
v′Pi

, vQi

))
∈ T •

R′
i
∧ vP1

= v′P1
∧ vQ = v′Q

)

∨
((

(vPi
, vQi) , a,

(
vPi

, v′
Qi

))
∈ T •

R′
i
∧ vP1

= v′P1
∧ vQ = v′Q

)

∨
(
(vPi

, vQi) =
(
v′Pi

, v′
Qi

)
∧
(
vP1

, a, v′P1

)
∈ T •

P1
∧ vQ = v′Q

)

∨
(
(vPi

, vQi) =
(
v′Pi

, v′
Qi

)
∧ vP1

= v′P1
∧
(
vQ, a, v

′
Q

)
∈ T •

Q

)
.

For the first two clauses we exploit the fact that composition produces

transitions changing only a substate of one automaton at a time. Therefore

we can trace the transition back into Pi or Qi. The other automaton does

not change its state. All the clauses suggest that only one of Pi, Qi, P1, Q

performs a transition and that in turn is true only if exactly one of Pi+1,

Qi+1 performs a transition. Which is finally equivalent to

(
((vPi

, vP1
) , (vQi, vQ)) , a,

((
v′Pi

, v′P1

)
,
(
v′Qi, v′Q

)))
∈ T •

R′
i+1

.

Decomposition function

Regardless of how obvious this part may seem it is an important step that

affects future replications and therefore is of a key value to the proof by

induction. We assumed

DVP1
,VRi

(vRi
) = DVP1

,V
R′

i

((
vP ′

i
, vQi

))
= D
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and because replication extends decomposed states by the state of the new

thread and composition only copies over the decomposed state of the left

operand for all states that are produced in that particular step,

DVP1
,VRi+1

(((vRi
, vP1

) , vQ)) = D ∪ {vP1
}

and because the same applies to the construction of R′
i+1,

DVP1
,V

R′
i+1

(((vPi
, vP1

) , (vQi, vQ))) = D ∪ {vP1
}

Hereby (1) holds.

To prove (2) we need to verify requirements of Lemma 1. If P1 and Q are

composable then any Rn
P1

(
NVP1

)
is composable with Q and in turn with Qn

because replication and cross product do not alter sets of actions. The replicated

automaton is a standard automaton as no ambiguity of transition actions araises.

Corollary 1. First it is important to see that Rn
P1

(
NVP1

)
⊗ Qn is an over-

approximation of composition of n-threaded server with n clients. All valid states

of individual threads are captured and all combinations of thread-client bindings

are as well.

It is possible to operate the relaxed automata iteratively yielding the same re-

sults as if we pre-replicated server for a fixed number of clients and then composed

it with all the clients at once.

What the construction uncovers is that there does not exist a strict mapping

between threads and clients and that it may happen that one client communicates

with different threads throughout the execution and vice versa. Although such

behaviour could be permitted in some compositions and thus should be considered

for generality it will be shown that it can also be avoided and that the possibility

of doing so originates in the iterative approach - alternating between spawning

a thread and adding a client. Depending on the concrete context and modelled

situation it may or may not be assumed that such pairing takes place in the

modelled situation.

By making the decision to use relaxed definition of interface automata, a pos-

sibility to separate the replication and composition is offered. Without them

no partially bound intermediate results could be constructed implying need of

a more complex operation. The separation itself enables us to use different poli-

cies together, a refined variants of the replication and composition operation can

be used independently. Some suggestions for the refinements will be mentioned

further in this thesis.
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4. Ambiguity and pairing of threads

With the use of the previously defined composition there is a trade-off between

generality and size of the result automaton. This fact is an immediate conse-

quence of postponing binding of transitions which in standard composition leads

to less transitions being produced in a common scenario where the two operands

share actions. Although after standardisation of a relaxed automaton all unnec-

essary transitions are purged, the process suffers from an inevitable growth of the

size of the automaton equivalent to the worst case in the standard composition.

The gain of generality is, however, only a formal advantage and in some situa-

tions may be considered harmful, because of the ambiguity arising from missing

distinction of individual execution paths.

In a single thread and the basic composition there either exists a binding of

particular transitions or it does not but with multiple threads a naive replication

and composition would often result in an existence of execution paths where two

threads call a method but recieve return values addressed to the other thread, if

such semantical interpretation can be made at all.

4.1 Ambiguous event delivery

In Figure 4.1 we can see a part of an automaton whose states encode substates

of server thread 1, client 1, server thread 2 and client 2 in this order. Action a ↑

marks method invocation, action a ↓ then signifies return from the method, both

types of transitions bear an advancement in a server and a client at one time.

It can be noticed that on the highlighted path after first two steps both clients

have invoked the method a but subsequently absorb the response action of the

other thread. This is the result of the most general representation of possible

interleavings of virtually all composed multi-threaded models.

Again such a behaviour could be considered valid in situations where we do

not model method invocations in the meaning that could be considered standard.

If the replies were indistinguishable and were delivered over a shared bus, all such

transitions would be part of a valid model. In the rest of the models where there

exist pairs of actions that are somehow related, for example method invocations

and returning from them, and where migrating computation from one thread

to another is not considered, it seems reasonable to disallow absorbing events

produced by calls made by other threads.
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0, 0, 0, 0

1, 1, 0, 0

1, 0, 0, 1

0, 1, 1, 0

0, 0, 1, 1

1, 1, 1, 1

2, 2, 1, 1

2, 1, 1, 2

1, 2, 2, 1

1, 1, 2, 2

2, 2, 2, 2

a ↑

a ↑

a ↑

a ↑

a ↑

a ↑

a ↑

a ↑

a ↓

a ↓

a ↓

a ↓

a ↓

a ↓

a ↓

a ↓

Figure 4.1: Ambiguity of composition

Pairing particular actions and maintaining affiliation of a thread to a client

during execution starting with one of the actions (a ↑) and ending with the

other (a ↓) would be complicated. After exploring further the structure of multi-

threaded servers a more restrictive solution may be found that also resolves the

ambiguity, and it is described in the following section.

4.2 Thread distinction

Even if we purged the ambiguous mixings of messages, another repercussion can

be spotted in that too many structurally similar subgraphs appear in the com-

posite. The phenomena could be interpreted in some settings as if individual

server threads could be assigned to clients in any order. Such behaviour can in

many cases be required, while in other cases it can be considered superfluous or

even undesirable. A well-known technique to avoid such a growth of the state

space is the thread canonicalisation, which is useful in situations when threads as

such do not need to be identified, which happens often. Essentially a particular

designation is assigned to threads and only a concrete (canonical) order of their

creation or assignment is considered.

Example 6. As shown in Figure 4.2 with the previously defined composition

every replicated thread gets bound with all possible counterparts resulting in

a symmetrical but in many real world situations unnecessary growth of the com-

posite automaton.
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Client1 Client2

Client2 Client1

Client1 Client2

Client2 Client1

Client1 ↔ Thread1, Client2 ↔ Thread2

Client1 ↔ Thread2, Client2 ↔ Thread1

This whole branch of
the composite automaton
is redundant if we con-
sider canonicalisation of
threads.

Figure 4.2: Most general composition of two thread server with two clients

4.3 Pairing threads and their counterparts

Now after the similarity to standard composition has been demonstrated it is

possible to refine the process for more practical uses. In fact an iterative approach

allows us to save more transitions than it is possible with standard composition

and possibly leads to less states being reachable and thus reduces the size of

the composite automaton. We will now redefine the composition operation and

consider it instead of the former one.

Naturally as it is possible to compose relaxed interface automata whose input

(output) actions are already absorbing (absorbed by) transitions of another au-

tomaton, we will restrain to actions that still can be bound. In cases where we

repeatedly add unbound threads there is no particular need for such a distinction

but to provide a consistent tool for operating relaxed automata we will adapt

shared to our needs. It is only the most natural adjustment that could have been

anticipated since the original definition in chapter 2.

Definition. We will use shared′(P,R) for relaxed automata to denote

(
AI

P ∩AO
R

)
∪
(
AO

P ∩AI
R

)

Now, inspired with the original composition, we will define a composition

that allows repeated compositions which often behave better than the previous

attempts to maintain generality.

Definition. For interface automaton P1, two relaxed interface automata P, Q

and decomposition function DVP1
,VP

we define composition
(
P, DVP1

,VP

)
⊗′′ Q =

(
R, DVP1

,VR

)
by
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VR = VP × VQ

V init
R = V init

P × V init
Q

AI
R =

(
AI

P ∪AI
Q

)
\ shared′(P,Q)

AO
R =

(
AO

P ∪ AO
Q

)
\ shared′(P,Q)

AH
R = AH

P ∪ AH
Q ∪ shared′(P,Q)

T I
R =

{
((vP , vQ) , a, (v

′
P , vQ))

∣
∣(vP , a, v

′
P) ∈ T I

P ∧ a /∈ shared′(P,Q)
}
∪

{(
(vP , vQ) , a,

(
vP , v

′
Q

))∣
∣
(
vQ, a, v

′
Q

)
∈ T I

Q ∧ a /∈ shared′(P,Q)
}

T O
R =

{
((vP , vQ) , a, (v

′
P , vQ))

∣
∣(vP , a, v

′
P) ∈ T O

P ∧ a /∈ shared′(P,Q)
}
∪

{(
(vP , vQ) , a,

(
vP , v

′
Q

))∣
∣
(
vQ, a, v

′
Q

)
∈ T O

Q ∧ a /∈ shared′(P,Q)
}

T H
R =

{(
(vP , vQ) , a,

(
v′P , v

′
Q

))∣
∣(vP , a, v

′
P) ∈ T I

P ∧
(
vQ, a, v

′
Q

)
∈ T O

Q

}
∪

{(
(vP , vQ) , a,

(
v′P , v

′
Q

))∣
∣(vP , a, v

′
P) ∈ T O

P ∧
(
vQ, a, v

′
Q

)
∈ T I

Q

}
∪

{
((vP , vQ) , a, (v

′
P , vQ))

∣
∣(vP , a, v

′
P) ∈ T H

P

}
∪

{(
(vP , vQ) , a,

(
vP , v

′
Q

))∣
∣
(
vQ, a, v

′
Q

)
∈ T H

Q

}

DVP1
,VR

=
{(

(v, vr) , DVP1
,VP

(v)
)∣
∣(v, vr) ∈ VR

}

This is effectively the same as composing and standardising the result after-

wards. The definition above is ment to emphasise that some overhead can be

saved and that the operation is similar to the standard operation of composition.

The benefit to this extension is that every replica of P1 (which may be viewed as

a thread) is bound with one particular instance of Q. No future composition will

result in binding with the thread after it has been bound for the first time.

Moreover it is a way that demonstrates the possibility of modelling situations

where all threads are equal. Casting off the distinction of threads reduces greatly

the reachable state-space while essentially no practicaly viable information is lost.

Partial overlap with thread canonicalisation, a common optimisation method, is

another notable quality of this approach.

If we compare the results produced by repeated replication and the just defined

composition with a product of a concrete construction over standard interface au-

tomata, the closest would be (P ⊗Q)n purged of states and transitions violating

mutual exclusivity of states in different threads.
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5. Selective replication

The previously defined replication allows for establishing connection between re-

laxed automata and standard automata on a theoretical level and provides us

with construction of models of multi-threaded solutions but does not offer any

way to restrict multi-threading to only specific parts of the interface automaton.

It is, however, possible to address such requirements by further enhancing the

apparatus.

5.1 Revised definitions

First we divide sections of an automaton, as determined by synchronisation an-

notation, into replicable and irreplicable sections.

Definition. Let RV denote a set of replicable sections for a synchronisation

annotation (SV , CV ).

CV ⊆ RV ⊆
{
[v]

SV

∣
∣v ∈ V

}

The set of replicable sections should be considered a part of the synchronisa-

tion annotation. Apart from the relation Exclude we shall define for all V1 ⊆ V

SynchronisedV (V1) ⇔ |V1| = 1 ∧ v ∈ V1 : v /∈
⋃

RV

ReplicableV (V1) ⇔ V1 ∩
⋃

RV 6= ∅

Definition. Replication function R′
P1

for a relaxed interface automaton P, its

state decomposition DVP1
,VP

and synchronisation annotation NVP1
denotes a func-

tion complying with the following constraints:

R′
P1

(
P, DVP1

,VP
, NVP1

)
=

(
Q, DVP1

,VQ

)

VQ =
{
(v, v1) ∈ VP × VP1

∣
∣¬ExcludeVP1

(
DVP1

,VP
(v) , {v1}

)}

V init
Q = VQ ∩

(
V init
P × V init

P1

)

AI
Q = AI

P ∪AI
P1

AO
Q = AO

P ∪ AO
P1

AH
Q = AH

P ∪AH
P1

DVP1
,VQ

=
{(

(v, v1) , DVP1
,VP

(v) ∪ {v1}
)∣
∣(v, v1) ∈ VQ

}

In the following constraints we will use • instead of I/O/H to avoid the need

to present all three variants. We will also break the sets into subsets to better
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explain the meaning.

T •
Q = VQ × A•

Q × VQ

It is necessary to create transitions between synchronised states, states whose

all threads are in the same irreplicable substate. It is important to realise that

the composite states may encode substates of other automata, such information

needs to be carried over from components to the composite. Hence

A =







((u, v) , a, (u′, v)) ∈ T •
Q

∣
∣
∣
∣
∣
∣
∣

SynchronisedVP1

(
DVP1

,VQ
((u, v))

)
∧

SynchronisedVP1

(
DVP1

,VQ
((u′, v))

)
∧

(u, a, u′) ∈ T •
P







and symmetrically

B =







((u, v) , a, (u, v′)) ∈ T •
Q

∣
∣
∣
∣
∣
∣
∣

SynchronisedVP1

(
DVP1

,VQ
((u, v))

)
∧

SynchronisedVP1

(
DVP1

,VQ
((u, v′))

)
∧

(v, a, v′) ∈ T •
P1







lastly

C =







((u, v) , a, (u′, v′)) ∈ T •
Q

∣
∣
∣
∣
∣
∣
∣

SynchronisedVP1

(
DVP1

,VQ
((u, v))

)
∧

SynchronisedVP1

(
DVP1

,VQ
((u′, v′))

)
∧

(u, a, u′) ∈ T •
P ∧ (v, a, v′) ∈ T •

P1







.

Next it is necessary to be able to start individual threads - old threads in the old

automaton

D =







((u, v) , a, (u′, v)) ∈ T •
Q

∣
∣
∣
∣
∣
∣
∣

SynchronisedVP1

(
DVP1

,VQ
((u, v))

)
∧

ReplicableVP1

(
DVP1

,VP
(u′)

)
∧

(u, a, u′) ∈ T •
P







and the new thread

E =







((u, v) , a, (u, v′)) ∈ T •
Q

∣
∣
∣
∣
∣
∣
∣

SynchronisedVP1

(
DVP1

,VQ
((u, v))

)
∧

ReplicableVP1
({v′})∧

(v, a, v′) ∈ T •
P1







.

Another important point in the execution is the place where threads join with

the main thread.
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F =







((u, v) , a, (u′, v)) ∈ T •
Q

∣
∣
∣
∣
∣
∣
∣

ReplicableVP1

(
DVP1

,VP
(u)

)
∧

SynchronisedVP1

(
DVP1

,VQ
((u′, v))

)
∧

(u, a, u′) ∈ T •
P







G =







((u, v) , a, (u, v′)) ∈ T •
Q

∣
∣
∣
∣
∣
∣
∣

ReplicableVP1
({v})∧

SynchronisedVP1

(
DVP1

,VQ
((u, v′))

)
∧

(v, a, v′) ∈ T •
P1







Only execution and scheduling of the replicated parts remain.

H =







((u, v) , a, (u′, v)) ∈ T •
Q

∣
∣
∣
∣
∣
∣
∣

¬SynchronisedVP1

(
DVP1

,VP
(u)

)
∧

¬SynchronisedVP1

(
DVP1

,VQ
((u′, v))

)
∧

(u, a, u′) ∈ T •
P







I =







((u, v) , a, (u′, v)) ∈ T •
Q

∣
∣
∣
∣
∣
∣
∣

¬SynchronisedVP1

(
DVP1

,VQ
((u, v))

)
∧

¬SynchronisedVP1

(
DVP1

,VP
(u′)

)
∧

(u, a, u′) ∈ T •
P







J =







((u, v) , a, (u′, v)) ∈ T •
Q

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

¬SynchronisedVP1

(
DVP1

,VQ
((u, v))

)
∧

¬SynchronisedVP1

(
DVP1

,VQ
((u′, v))

)
∧

SynchronisedVP1

(
DVP1

,VP
(u)

)
∧

SynchronisedVP1

(
DVP1

,VP
(u′)

)
∧

DVP1
,VQ

(u) = DVP1
,VQ

(u′)∧

(u, a, u′) ∈ T •
P







K =







((u, v) , a, (u, v′)) ∈ T •
Q

∣
∣
∣
∣
∣
∣
∣

¬SynchronisedVP1
({v})∧

¬SynchronisedVP1

(
DVP1

,VQ
((u, v′))

)
∧

(v, a, v′) ∈ T •
P1







L =







((u, v) , a, (u, v′)) ∈ T •
Q

∣
∣
∣
∣
∣
∣
∣

¬SynchronisedVP1

(
DVP1

,VQ
((u, v))

)
∧

¬SynchronisedVP1
({v′})∧

(v, a, v′) ∈ T •
P1







M =







((u, v) , a, (u, v′)) ∈ T •
Q

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

¬SynchronisedVP1

(
DVP1

,VQ
((u, v))

)
∧

¬SynchronisedVP1

(
DVP1

,VQ
((u, v′))

)
∧

SynchronisedVP1
({v})∧

SynchronisedVP1
({v′})∧

v = v′∧

(v, a, v′) ∈ T •
P1






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The following example gives a meaning to individual subsets.

Example 7. Consider the automaton in Figure 5.1; Figure 5.2 depicts the repli-

cated automaton.

0 1 2 3 4 5
a; b? c; d! e;

Replicable Replicable

Critical

Figure 5.1: An automaton P with replicable section

0, 0 1, 1

2, 1

1, 2

3, 1

2, 2

1, 3

4, 1

3, 2

2, 3

1, 4

4, 2

2, 4

4, 3

3, 4

4, 4 5, 5
a;

b?

b?

c;

b?

b?

c;

d!

b?

c;

c;

b?

d!

b?

d!

d!

b?

c;

c;

d!

d!

e;

C

D

E F

G

H

K

L

I

C

Figure 5.2: Result of a selective replication

Subsets J and M help preserve transitions performed in threads that come

from a different automaton, as pictured in Figure 5.3 - the automaton P from

Figure 5.1 is considered.

Transition in Q

α β
τ

Transition in R = P ×Q

4, α 4, β
τ

Transition in R′
P
(R, DVP ,VR

, NVR
)

4, α, 3 4, β, 3
τ

J

Figure 5.3: Transition of an automaton R′
P(P ×Q, . . .)

Subsets A, B are also distinguished in the case of automata composed of

different components. For example if we consider the client in Figure 5.4.

31



0 1 2 3 4
x; b! d? y;

Figure 5.4: An example of client

The corresponding composition of the server and client, captured in Figure 5.5,

shows interleavings of server and client transitions among states, which from

the perspective of replication are not distinguished, and the transitions would

disappear were there no rules as for the sets A and B.

0, 0

1, 0

0, 1

1, 1 2, 2 3, 2 4, 3

5, 3

4, 4

5, 4
a;

x;

x;

a;
b; c; d;

e;

y;

y;

e;

Figure 5.5: An example of single-threaded composition

Unfortunatelly an example addressing multiple threads and compositions with

clients with independent and synchronised parts of state space would be too large

to fit in here and even if it was not, the comprehensibility would be questionable.

We believe that the principle is clear, though.

5.2 Evaluation

If we wanted to relate the operation to the previously defined one we would

notice that except set C all the sets contain a transition only if it is present in

one of the two automata and both its ends are valid in regard to synchronisation,

which is the only necessary and in the same time also sufficient requirement for a

transition to be added to a replicated automaton with the operation R. They only

further restrict which transitions are meaningful in respect to replicability. If we

restrained to transitions not in C the automaton produced with this newly defined

replication operation would be a subautomaton of the result of the replication

defined previously.

The set C merges advancement into one thread in areas of the automaton

where there is no parallelism to be produced. This simulates all threads in a

pool to be stopped except the main thread, which continues in a not replicated

behaviour. It also can be interpreted as if the newly added thread piggybacked

onto the main thread and did nothing until it reached a point where it was

supposed to run and most probably listen for a request of a service.
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If we imagined a possible accepted trace of action events then when ever the

concrete action is handled by a not replicated section its multiplicity of allowed

occurances does not change by the replication because the sets A, B and C either

advance all the replicas at once or do not advance any of them, which leads

to no transition being added in addition. The rest of the sets are responsible

for transition between replicated and not replicated sections and for scheduling

of the threaded blocks. It is important to say that we also rely on removal of

unreachable parts of the automaton to keep the results meaningful. That means

not all transitions are necessary for the resulting automaton but their presence is

better determined by reachability of their source state.

A similar analysis of affecting the state space as we did for composition can be

done for replication and although it could be argued that in the case of replicat-

ing execution branches without binding to different components (not structuraly

but as instances) the branches are equivalent and redundancy appears. It should

be possible to detect for a replicable section whether it needs to produce differ-

ent orderings or if one canonical scheduling is sufficient to depict all states of

the system. Then only an arbitrary ordering would be enabled in the resulting

automaton casting off the redundancy. But optimisations such as partial order

reduction can be borrowed from single-threaded automata and will not be con-

sidered here.

This type of replication also upholds the need of relaxed automata or more

complex operations than standard composition, because there is not much to

change about how new threads can be introduced to a standard interface au-

tomaton while keeping replication separated from composition itself.
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6. Application

If we were able to assign each component an appropriate interface automaton

and synchronisation annotation, it would be possible in some cases to verify

whether the particular use of the component complies with the assumptions made

by the automaton. Being able to extract this additional information from the

implementation itself would be even better, but we shall not focus on that here.

A general solution to automatisation of such a process would be hard to find

as there is no universally valid parallelisation pattern across all programming

languages and frameworks. Even if it existed it would probably suffer from trying

to reflect completely different requirements of different platforms.

6.1 Mapping to particular implementations

The main aim is to produce a single-threaded automaton describing the behaviour

of the component should no parallelism occur and only then attempt to parallelise

it through replication. In the following simplified examples we leave out returns of

void methods from the model in the interest of keeping the model presentable for

this thesis. We also assume the interface assumptions of the following components

written in Java and C++/OpenMP to be described with automaton similar to 5.1,

should the ?’s, !’s and ;’s be omitted. In such a case Figure 5.2 of replicated

automaton in the previous section would also apply to the two Listings and would

illustrate state spaces of the multi-threaded environments listed in Listings along

with the components.

In substance Listing 1 and Listing 2 implement usage of components in par-

allel with slight differences in the source of parallelism. In case of the server

the parallelism may be described as passive as it depends on incoming requests.

Notice that the bound on number of threads in Listings 1 and 2 is a part of the

particular environment not the component itself. In both cases these limits are

used only to demonstrate favouring of a particular scheduling of threads which

is also why the sleep calls and blocking on reading from stream are used. Es-

pecially in Listing 1 it is apparent that simple patterns for parallelism can be

recognised programmatically and could be used to check compatibility with the

component’s interface assumptions. Listing 2 captures how a naive web server

could be implemented, should the bound on number of threads be put aside.

The choice of OpenMP is based on its straightforward use and ability to

parallelise particular blocks. Components implemented with other technologies

can indeed be modelled as well.
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#include <omp.h>

#include <mutex>

#include <iostream>

using namespace std;

static const int N = 2;

class Component {

private:

mutex m;

public:

void a () {cout << "a" << endl;}

void b (int thread) {cout << "b(" << thread << ")" << endl;}

void cd (int thread) {

lock_guard<mutex> l(m);

// LOCK UNLOCK = 2 TRANSITIONS

cout << "c(" << thread << ")" << endl;

cout << "d(" << thread << ")" << endl;

}

void e () {cout << "e" << endl;}

};

int main (int argc, char** argv) {

omp_set_num_threads(N);

Component c;

c.a(); // A

#pragma omp parallel // DO IN PARALLEL

{

int n = omp_get_thread_num();

usleep((N - n - 1) * 1000);

c.b(n); // B

usleep( n * 2000);

c.cd(n); // C, D

} // BARRIER

c.e(); // E

}

Listing 1: Parallelised section in C++/OpenMP
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import java.io.InputStream;

import java.net.ServerSocket;

public class Server {

void a () {System.out.println("a");}

void b (int thread) {System.out.println("b(" + thread + ")");}

synchronized void cd (int thread) {

// LOCK UNLOCK = 2 TRANSITIONS

System.out.println("c(" + thread + ")");

System.out.println("d(" + thread + ")");

}

void e () {System.out.println("e");}

static int N = 2;

public static void main(String[] args) throws Exception {

final Server s = new Server();

ServerSocket ss = new ServerSocket(8080);

Thread[] connections = new Thread[N];

s.a(); // A

while (N > 0) { // DO IN PARALLEL

final InputStream client = ss.accept().getInputStream();

final int thread = --N;

connections[N] = new Thread(new Runnable() {

public void run() {

try {

client.read(); s.b(thread); // B

client.read(); s.cd(thread); // C, D

catch (Exception e) {}

}

});

connections[N].start();

}

for (Thread thread : connections) { // BARRIER

thread.join();

}

s.e(); // E

}

}

Listing 2: TCP Server in Java
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6.2 Architectures

Multi-threaded servers are not the only systems that can be modelled through

replication. The parallelism, or better a particular serialisation of parallel re-

quests, may be introduced in systems where there is only one active thread on

the server side. Be it object-oriented RPC (Remote Procedure Call) systems such

as CORBA [11] or non-blocking event-driven systems such as Node.js [13].

6.2.1 RPC based - CORBA

module example {

interface Server {

void a ();

void b (in long client);

void cd (in long client);

void e ();

};

};

Listing 3: IDL of a component accessible in parallel

Suppose a component implementing an interface in Listing 3 was made acces-

sible to multiple remote actors. Then multiple RPC requests could be delivered

to the server. Even if the server was single-threaded it would process a particular

interleaving of actions emitted from different clients. Any two states inside any

calls would be mutually exclusive, because of single-threaded nature of processing

them.

6.2.2 Event driven - Node.js

In Node.js a parallel emission of requests may result in action interleaving due

to asynchronous non-blocking calls. In some situations this can be related to

parallel run of multiple threads.

In Listing 4 a server is instantiated that listens for requests. Every incoming

request causes a provided callback to be invoked - modelled with request?. The

callback itself invokes a non-blocking method read which exits right away, which

causes the target state to be an exclusive state, because all events are processed

in a single thread. After returning from read there is a potential gap in the

execution until the provided callback is fired once read data are ready. Only then

a response is emitted. As we did earlier it would be possible to not model return
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from the non-blocking asynchronous read but we will model it to demonstrate

the little difference it makes.

http = require "http"

fs = require "fs"

server = http.createServer (request, response) ->

###

DO IN ‘PARALLEL‘ DUE TO ASYNC NATURE

RESPONDS TO THE REQUEST WHOSE FILE IS READ FIRST

###

fs.readFile file, (error, data) ->

response.writeHead 200,

"Content-Type": "text/plain"

"Content-Length": data.length

response.write data

response.end()

server.listen 8080

Listing 4: Parallelism-like interleaving of callbacks in Coffee-Script on Node.js

Figure 6.1 further illustrates what we described above in words. The lambda

transition can be replaced by rerouting response action back into state 0, or it

could be left out completely if we did not care about endless loops.

0 1 2 3 4
request? read ↑! read ↓? response!

λ

Replicable

Critical

Figure 6.1: A possible model of the server implemented in Listing 4

6.3 Component systems

The previous examples described separate components with only marginal stress

put on their hierarchical composition. In practice, however, composition is what

motivated the definition of interface automata. While in object oriented pro-

gramming languages the provided interface may and often is explicitly stated,
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the required interfaces are encoded in the implementation itself and therefore

they are less obvious. Component systems often employ means of definition of

components on a higher level of abstraction than that of any particular program-

ming language. The definition of provided and required interfaces is what they

are ment for exactly. This encourages for extending such definitions with tem-

poral requirements for individual invocations or message based communication.

Put in other words component systems such as SOFA2 [15] or FRACTAL [12] can

benefit from use of models such as interface automata. The ability to replicate

automata to a particular degree of parallelism to reason about compatibility of

components at the time of their composition or possibly about other types of

properties verifiable by model-checking are a desirable feature of such systems if

not a crucial one. The component systems form a suitable platform for the here

introduced types of operations. To further demonstrate the application of the

incremental replication consider the architecture depicted in Figure 6.2.

Database

Server 1 Server 2

Client 1 Client 2 Client 3 Client 4

Replicated Replicated

Replicated

Figure 6.2: Tree-like client-server architecture encorporating replicated servers
for load balancing, shared resources in form of a database and multiple isolated
clients divided among the servers.

Let us specify interface automata for individual components and then provide

an implementation complying with the usage protocol. We will provide only the

particular implementation without a definition in ADL (Architecture Description

Language) which usually preceeds implementation of business logic. Despite the

fact the components in this example correspond to objects, in general this is not

a necessity.
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0

1

2

add ↑?

add ↓!

remove ↑?

remove ↓!
Critical

Figure 6.3: Database interface automaton

The database component provides two operations, namely add and remove.

Itself it deals with atomicity of the operations which neither the servers, clients

nor any hypothetical additional future components need to be aware of. Each

of the two operations can be performed countless times. An implementation in

C++ follows.

class Database {

public:

mutex m;

int state;

int add () { lock_guard<mutex> l(m); return ++state; }

int remove () { lock_guard<mutex> l(m); return --state; }

};

Listing 5: Database component written in C++

The mutual exclusivity of states where a thread can be found in its substate

after initial message (method invocation) has been delivered and before a response

is sent back (returning from a method) is achieved through a mutex, one of

many synchronisation primitives, which is locked upon construction of lock guard

whose destruction at the time of returning from the method causes the lock to

be unlocked again.

The following two automata and implementations conforming to the behaviour

specification describe multiple instances at a time. For our purposes both Server 1

and Server 2 are instances of the same class as well as all the clients Client 1,

Client 2, Client 3 and Client4 are instances of a single class. This is a decision

made purely for elimination of unnecessary obscurity of the modelled situation

and to allow reuse of automata in the overall composite model.
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0 1

2 3

4 5

update ↑?

add ↓?

remove ↓?

add ↑!

remove ↓!

update ↓!

update ↓!

Figure 6.4: Server interface automaton

The servers implement business logic that determines interaction with database

upon receiving request from a client. This is implemented by use of random choice

between two branches of execution to restrain to the importance of structure of

the automaton instead of going into much detail implementation-wise. Altough

it can appear that the composition is also limitted and simplified, it is not the

case. References to class Database could in reality employ RPC in the context

of a server, which is a different component than the referred Database, to make

the deployment flexible. Notice that the behaviour is not too different from what

was outlined in Chapter 1. It consists of a loop that incidentally happens to split

into two paths. Initialisation and termination are both void.

class Server {

public:

default_random_engine r;

Database& database;

Server(Database& database) : database(database), r(SEED) {}

int update() {

usleep(r() % 10 * 1000);

return r() % 2 ? database.add() : database.remove();

}

};

Listing 6: Server component written in C++
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0 1 2
update ↑! update ↓?

display;

Figure 6.5: Client interface automaton

As it was the case with servers, the implementation of clients, though it may

appear otherwise, is not necessarily bound to a server by possesing a reference

to the particular instance living in the same address space, but rather consider

utilising middleware for communicating the operation invocations to the very

implementation residing possibly on a completely different node. The clients

apart from communicating with servers perform local actions, represented with

the inner transition display despite being a sequence of calls to an externally

supplied object; we simply consider them local and a part of the component

and we do not consider any synchronisation to take place during the mentioned

transition. All functionality was placed into the constructor to avoid modelling

invocations of other methods on the side of a client.

class Client {

public:

int id;

Server& server;

Client(Server& server, ostream& out) : server(server) {

NEW_ID(id);

while (true) {

int response = server.update();

display: out << "Client" << id << ": " << response << endl;

}

}

};

Listing 7: Client component written in C++

As it has been mentioned and can be seen from the implementation now servers

and clients are unaware of the fact that their behaviour could result in blocking of

a serving thread on the side of their composition counterpart, the database. This

is actually a special form of a highly desirable property of composite systems,

which rely on guarantees made by interfaces rather than implementation. It is

important that the communication layer, message delivery middleware or method

invocation, is able to enqueue messages that cannot be delivered due to the

42



responsible thread being blocked, resulting in an eventual message delivery or

lock acquisition under a specific scheduling. In a more general setting this would

become a lot more difficult once more than one lock can be held at a time by one

thread.

The architecture suggests that four clients are instantiated in parallel and

communicate with two distinct servers. Those in turn share a single database in-

stance. If we wanted to construct a model of the whole system as presented above,

we would compute it recursively from the individual automata as illustrated by

Figure 6.6.

S1 C1

⊗′′

RS1

⊗′′

C2

D

⊗′′

RD

S2 C3

⊗′′

RS2

⊗′′

C4

⊗′′

Figure 6.6: A tree of construction of model of the architecture from Figure 6.2.
The leaf nodes represent input interface automata of the respective components.
D stands for the Database component, Si for the Server i and Ci for the Client i.
The R stands for the replication function. Note that common subexpression
elimination could be used provided that both servers and individual clients are
all the same.

The on-demand nature of a construction of such a model can be demonstrat-

ed by considering only one server being part of the initial architecture and the

additional server being added to the model by modelling its connections to clients

first and then by replicating interface of the database and composing them to-

gether. The initial architecture in the mentioned settings would conform to the

model inclosed by the dashed rounded rectangle. If all the servers and clients

were instances of the same component definitions as it is the case in this example

then the part of the initial model below the slanted dashed line can be cached

and reused upon extension of the model to its desired form. This whole process
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can be repeated over and over to produce models that deploy servers to more

nodes for example. A different number of clients could indeed be connected to

individual servers as well.

All the simplifications and decisions were made to minimise the size of the

constructed automaton for the whole composite system, which is still too large

to be presented here (it has thousands of states and transitions). There are ten

threads in total - two database threads, two servers with two threads each and

four client threads. Thanks to atomicity of database operations the database

could be single threaded but in general it would not be the case. Still the upper

bound 32×64×34 = 944 784 on the number of states of the composite automaton,

which would be met for example if all states were reachable and no two states

were exclusive, is almost three orders of magnitude more than the number of

states in the result. Therefore it can be said that the automaton is actually quite

small.
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7. Related work

There have been many publications of works dealing with behaviour of not only

component systems some of which address parallelism. In principal this thesis

has been affected by a few of them and to various degrees. Only the relevant

aspects of the related works will be highlighted.

To our best knowledge there is no similar work that would attempt to provide

the same operations for interface automata. But there are other formalisms for

describing functional behaviour of software systems, which also handle parallel

interface bindings in component systems.

7.1 Behaviour protocols

In [3] a formalism for modelling system behaviour through expressions accepting

regular languages over sets of actions has been introduced. This is where the two

formalisms coincide. An interface automaton is in fact a finite state machine.

Whether it is required to be deterministic or not does not make a difference. The

behaviour protocols also lead to a finite state machine. They could in fact be

seen as a notation for depicting such automata.

A plenty of operators are defined for protocols to be build from elementary

actions or combinations of protocols. The concept of emission and absorption

of messages in an atomic inner transition during composition and contravariance

in required and provided interfaces during refinement is also shared between the

two approaches.

The similarity can be noticed also in that the protocols also suffer from in-

ability to encode unbounded parallelism in a particular specification. This led to

further analysis and suggested solutions that follow.

7.1.1 Unbounded parallelism

A paper by Jiří Adámek [2] provides a method of dealing with systems whose

models, should they be captured with existing formalisms, would become infinite

due to the absence of a bound on the level of parallelism. The proposed method

builds upon behaviour protocols and suggests provision of finite templates instead

of models. The templates are used in particular contexts to produce models

of particular levels of parallelism, which is computed recursively at the time of

instantiation of the components in question.

Similarly to the solution we present this requires to move away from already

established definitions in a slight way. In the case of relaxed interface automata,
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however, with the approach of binding threads to the clients in each step the

relaxed representation is only a temporary intermediate form and may not be

considered outside the replication process. That way it can be thought of as

a more complex operation applied to two standard interface automata with ad-

ditional information about replicability being supplied. Therefore the procedure

can be interleaved easily with other transformations and operations over interface

automata.

On the other hand the solution using templates of protocols allows to parame-

terise the level of parallelism of a particular section with either a particular value

or value computed from the architecture itself. This allows for far more com-

plex connections to be made between individual components while maintaining

distinct levels of parallelism for distinct parts of the protocol. We are convinced

that restraining to parallelisation of parts of components, which we demonstrated

is possible to be obtained by the proposed operations, is still useful in numerous

modelled situations. What the templates cannot do is that once they are con-

verted into instances the process cannot be repeated easily to obtain a model of

the component’s behaviour with a degree of parallelism larger by one.

The paper does not deal with circular dependencies between components, nei-

ther is this addressed in this thesis. On contrary it can be seen that the structure

of the parse tree of the modelled situation in Figure 6.2 is similar to a graph of

dependencies between components constructed during computation of maximal

incoming parallelism as it is defined in the paper. The tree in Figure 6.6 captures

how the final automaton is composed of the database component replicated to

a degree of parallelism sufficient to serve all server-client bundles that are right

operands to composition operations applied to the database.

7.2 Threaded behaviour protocols

Threaded behaviour protocols [4] are a specification language that aims at min-

imising the difference between the implementation and modelling languages. To

do so it addresses both the notation differences and the structure of the model. It

is inspired with behaviour protocols and the notation resembles Java, an example

of the target implementation language of the modelled systems.

The threaded behaviour protocols separate usage of the modelled component

and its own behaviour. While the behaviour of the component is described as re-

actions to a certain method invocations in an imperative notation, the legal usage

is defined with so called provisions that capture emission of method invocations

by an environment by means of extended regular expressions.

The synchronisation capabilities of the reactions of threaded behaviour pro-
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tocols are more general thanks to permission of acquisition of multiple locks.

Similarly to the solution from the previous section the provisions benefit from

being syntactically parallelisable. It is possible to specify reentrancy, a replicabil-

ity alternative in threaded behaviour protocols, already in the initial specification.

Composition of two such protocols is more or less a syntactical merge of the two.

The final model is constructed at the time of verification after the specification

becomes closed. Then the number of threads is fixed and a particular labelled

transition system with assignment can be constructed much like it is done in

the solution proposed in [2]. Transitions in the model represent changes of state

variables and thread stacks, by which it is possible to maintain proper pairing

of method invocations and subsequent returns in one thread, which is what we

also adressed in our solution. Analysis of open systems is then again based on

imposing a bound on the number of threads.

While models specified with interface automata do not need to be recomputed

from scratch when an incremental modification is made, the same is not true for

protocol-based specifications due to the creation of a model from the complete

specification and its generality. With interface automata it could be possible in

theory to reuse information from a model checking of an automaton in model

checking of a modified automaton. Needless to say that the solution proposed in

this thesis introduces to a certain degree a reasonable alternative to the above

approaches to a different formalism, interface automata.

7.3 Extended symbolic transition graphs with as-

signment

Unbounded parallelism is one of the reasons why models become infinite. There

are different methods to cope with infinitness of models or better to remove the

need for the models to be infinite completely. In a paper [6] a method of modelling

infinite states within a single collapsed state is presented. Unlike in tradition-

al labelled transition graphs such as interface automata in symbolic transition

graphs the transitions contain a conditional action together with an assignment

to a variable. Thanks to considering symbols, the variables, instead of particular

values it is not necessary to model an infinite number of states that are being

introduced due to a need to represent all the distinct values from a large domain.

The extended symbolic transition graphs enhance the idea further by allowing

assignments both before and after the action leading to even bigger savings.

Generally these models are at most bisimilar to the precise model and can-

not be subjected to explicit-state model checking without expanding the states.
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Moreover to our best knowledge there is no immediate impact on modelling of

unbounded parallelism presently existing based on this method.

7.4 Parameterised contracts

While behaviour protocols tend to be less optimistic than interface automata,

parametrised contracts [5] attempt to allow a component to be pronounced usable

with as many environments as possible. They address a possibility of computing

an interface on-demand in a specific context. If an environment does not provide

all necessary functionality for a components service to function properly it is

omitted and not considered provided by the component. It then cannot be used

in further compositions but does not cause incompatibilities in environments that

do not need the mentioned service. In a similar spirit the component can be

expected to have less requirements in the case a part of the provided interface is

not used in its final form.

This encourages generous provisions and their replications as present in thread-

ed behaviour protocols with unbounded parallelisation or over-parallelisation of

a given section with eventual restrictions of unused parts. The parameterised

contracts where proposed mainly to address checking of interoperability. To a

certain extent the idea gives us an alternative to on-demand parallelisation with-

out restraining to a particular type of model.

Should we abandon the strict afinity to standard interface automata some

of the above concepts may prove useful in pursuing a better handling of thread

blocking and illegal states that result from it.
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8. Future work

The current state of the apparatus still gives rise to potential extensions. Lim-

itations arising from decisions made for a better grasp of the problem, such as

restraining to isolation of individual clients, could be removed with use of more

specialised composition operations. A generalised relation to parallelised automa-

ta of a particular fixed level of parallelism could be made by considering distinct

interchangable clients being added into the composition in different steps of the

replication process. This would be a straightforward formal enhancement of the

foundations but would not directly impact the applicability.

A lot more benefit could be gained by exploring further the selective replica-

tion of individual parts of the automaton in question. The construction provided

here aims to replicate only one particular part of the automaton repeatedly. It

generaly does not deal with custom addition of threads in different parts of the

model. The severity of such a conceptual deficiency could possibly be mitigated

by provision of appropriate automata used as patterns for new threads during

the replication process. Such an approach would with the highest probability

require supporting changes applied to the replication operation. One possible

solution could elaborate on an idea of replacing replicable sections that are not

desired to be replicated in the particular step with a lambda transition from its

preceeding states to its succesors bypassing the section. The replication opera-

tion would need to be modified to allow such forward jumps in threads that are

effectively not being used in a particular section. Moreover equivalent branches

could be drawn into the automaton and should be eliminated somehow to avoid

unnecessary model growth.

An alternative path to follow would be to explore options for decomposition

of an automaton and replicating individual fractions. The fractions would then

need to be composed back. This approach would better compare to what can be

done with behaviour protocols as mentioned above. During the analysis carried

out in this thesis no particular solution taking this direction was found. In general

the pursuit of an operation applicable to an automaton regardless of the history

of applications of other operations that might have changed its structure makes

the task harder. This is the case with application of a composition between two

replications of parts of the model. The composition may copy sections, remove

sections by not making a method invocation and overall obscure the structure.

Even if a chain of replications produces meaningful structures, interleaving with

compositions with different clients may produce varying results in which the de-

tection of parallelisable sections may prove to be difficult.
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Conclusion

It has been demonstrated that a replication of behaviour modelled by an inter-

face automaton can be achieved with operations introduced in this thesis. That

way a tool for creation of models of multi-threaded systems composed of multi-

ple components has been provided for the formalism of interface automata. It

has been shown that the operations in their most general form relate to natural

expectations about the form of the resulting model but that they can be refined

to better suit needs of component-based designs and that they have practical

applications. Different aspects of models of threaded systems have been taken

into consideration ranging from synchronisation of concurent executions to run-

ning composition avoiding confusion of message recipients and to parallelising

only sections marked as replicable beforehand. Annotations of the automata to

be replicated have been defined to allow features of the related components in

respect to their parallel connections to be depicted by their designers to guide

the replication process without any additional effort being invested at the time

of composition.

Despite the fact that the replication itself utilises intermediate results whose

structure is relaxed compared to interface automata, a conversion to valid in-

terface automata is formulated and further more the conversion can be avoided

completely should the replication function be used together with immediate com-

position. The apparatus has been defined so that it could be used repeatedly

to produce models of an arbitrary level of parallelism and would merge with the

already existing theory build around interface automata. To be able to benefit

from a correct use of replication it is necessary however to maintain the structure

of states which ultimately leads to a growth of the representation.

Particular examples have been provided to illustrate architectures that in

particular can profit from the proposal. Eventually a comparison with other

formal tools and their extensions has been made and advantages of different

approaches have been identified. Altough a hypothetical future enhancements

have been pointed out, all the goals of the thesis were fulfilled.
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Attachments

1. CD with an electronic copy of the thesis and copies of the key references.

2. An utility script is also provided on the CD as a proof of concept for the
proposed operations. Three examples of compositions of automata whose
results did not fit into the thesis are provided in form of input to the utility
script as well as images of the results. Further information is present in
code/README.md file.
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