
Familiarize yourself with the concept of Physical Unclonable Functions
(PUFs). Pay special attention to memory (SRAM) based PUFs. Analyze
existing measurements of initial SRAM contents in Atmel ATmega1284
devices (supplied by the thesis supervisor). Based on your analysis, suggest
a method for constructing a PUF based on such initial SRAM contents and
using it for device identification and possibly other purposes.

Czech Technical University in Prague

Faculty of Information Technology

Department of Computer Systems

Master’s thesis

SRAM-Based Physical Unclonable

Function on an Atmel ATmega

Microcontroller

Mikhail Platonov

Supervisor: Ing. Josef Hlaváč, Ph.D

1st May 2013

Acknowledgements

I would like to thank my supervisor Josef Hlaváč for his guidance through-
out this graduation project. I am also grateful to Vilena Bryleva for proofread-
ing my thesis and providing me with useful feedback. I thank my friends
for their moral and material support of my achievements. I also thank all
my teachers involved in the Czech Technical University for providing me
with the knowledge and thus allowing me to improve myself.

Lastly, I would like to express my deep gratitude for my family. Their
daily support I feel throughout my entire study period even a world away.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adher-
ing to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended,
in particular that the Czech Technical University in Prague has the right
to conclude a license agreement on the utilization of this thesis as a school
work under the provisions of Article 60(1) of the Act.

In Prague on 1st May 2013 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2013 Mikhail Platonov. All rights reserved.
This thesis is a school work as defined by Copyright Act of the Czech Repub-
lic. It has been submitted at Czech Technical University in Prague, Faculty
of Information Technology. The thesis is protected by the Copyright Act and
its usage without author’s permission is prohibited (with exceptions defined
by the Copyright Act).

Citation of this thesis

Platonov, Mikhail. SRAM-Based Physical Unclonable Function on an At-
mel ATmega Microcontroller. Master’s thesis. Czech Technical University
in Prague, Faculty of Information Technology, 2013.

Abstract

Secret keys are usually stored in a nonvolatile memory, which can be hard
to secure. An alternative is to generate the keys “on-the-fly” by using
the inherent uniqueness of a device based on the manufacturing process
variations. This is realized by Physical Unclonable Functions (PUFs).

A promising approach is to construct an intrinsic PUF based on the
Static Random Access Memory, since many electronic devices have em-
bedded SRAM. However, using a SRAM as a PUF requires stability of the
SRAM cells under a wide variety of conditions, moreover the SRAM output
must be unique.

The aim of this thesis is to design the PUF concept based on one of
the popular Atmel AVR microcontrollers. During the work the evaluation
of PUF properties of the test chips is discussed. Proposed PUF-design is
suitable for using in two application scenarios: chip identification and key
generation. The SRAM output is not stable enough for that various post-
and pre-processing techniques are analyzed to make the concept suitable
for key generation scenarios.

The major contributions of the current research is the new measurements
performed on an Atmel AVR microcontroller, many researches have focused
mostly on FPGA so far. This work estimates the entropy of a PUF in a
16Kbyte SRAM output in order to uniquely identify each of Atmel AT-
mega1284P microcontrollers. Furthermore, after applying postprocessing
error correction, proposed SRAM-based PUF can be used to generate a
stable 4Kbit key.

Keywords Hardware security, Physical Unclonable Function, SRAM PUF,
Atmel AVR microcontroller, ATmega1284, key generation, chip identifica-
tion, Hamming distance, mean value, bit error rate, error correction codes.

ix

Abstrakt

Tajné kĺıče jsou zpravidla uloženy v paměti, která je nezávislá na napájeńı.
Obsah této paměti je však obt́ıžné zabezpečit. Alternativou je generovat
kĺıče za běhu s využit́ım jedinečných vlastnost́ı konkrétńıho zař́ızeńı, jež jsou
závislé na odchylkách ve výrobńım procesu. K tomu se použ́ıvaj́ı fyzicky
neklonovatelné funkce – označované zkratkou PUF (Physical Unclonable
Function). Slibný je př́ıstup, kdy se ke konstrukci fyzicky neklonovatelné
funkce použije statická pamět’ RAM, protože mnoho elektronických zař́ızeńı
dispo-nuje vestavěnou pamět́ı SRAM. Nicméně k použit́ı SRAM jako PUF
je třeba, aby buňky paměti SRAM byly stabilńı ve velkém rozsahu pra-
covńıch podmı́nek, výstup muśı být nav́ıc jedinečný. Ćılem této práce je
navrhnout PUF na mikrokontroléru z obĺıbené řady Atmel AVR. V práci
je diskutováno vyhodnoceńı vlastnost́ı testovaných čip̊u s ohledem na PUF.
Navržená PUF je vhodná pro použit́ı ve dvou aplikačńıch scénář́ıch: pro
identifikaci čip̊u a pro generováńı kĺıč̊u. Výstup źıskaný ze SRAM neńı
dostatečně stabilńı, proto jsou analyzovány r̊uzné techniky předzpracováńı a
následného zpracováńı, aby byla metoda pouv zitelńı i pro generováńı kĺıč̊u.
Hlavńım př́ınosem prezentovaného výzkumu jsou nová měřeńı provedená
na mikrokontroléru Atmel AVR. Výzkum se doposud zaměřoval povětšinou
na obvody FPGA. V práci je odhadnuta entropie funkce PUF využ́ıvaj́ıćı
16Kbyte SRAM pro účely jednoznačné identifikace jednotlivých kus̊u mik-
rokontrolér̊u Atmel ATmega1284P. Po použit́ı následné korekce chyb lze
navrženou koncepci PUF použ́ıt i pro generováńı stabilńıho 4Kbit kĺıče.

Kĺıčová slova Bezpečnost hardwaru, fyzicky neklonovatelná funkce, PUF,
SRAM, mikrokontrolér ATmega1284, generováńı kĺıč̊u, identifikace čip̊u,
Hammingova vzdálenost, aritmetický pr̊uměr, bitová chybovost, samooprav-
né kódy.

x

Contents

Introduction 1

Motivation . 1
Research goals . 2
Thesis overview . 3

1 State of the Art 5

1.1 Physical Unclonable Functions 5
1.1.1 PUF in general . 5
1.1.2 PUF properties . 6
1.1.3 PUF classification . 7
1.1.4 Advantages and disadvantages of PUFs 14
1.1.5 The basic PUF applications 15
1.1.6 Use cases . 18
1.1.7 Attacks . 21

1.2 SRAM PUF . 23
1.2.1 SRAM cell . 23
1.2.2 Statistical analysis of SRAM PUFs 27
1.2.3 SRAM PUF implementation 31
1.2.4 Patents . 32

1.3 Atmel AVR microcontrollers 34
1.3.1 Atmel ATmega1284P 35

2 Realisation 37

2.1 Measurement Results. 37
2.1.1 Mean value . 38
2.1.2 Error rate . 40
2.1.3 Correlation between bits 41

xi

2.1.4 Memory effect . 43
2.1.5 Aging effect . 43
2.1.6 Correlation between the chips 43
2.1.7 FAR and FRR . 45
2.1.8 Summary . 49

2.2 Error correction . 49
2.2.1 Approach: Using more than one PUF cell for the error

reduction . 50
2.2.2 Averaging output . 51
2.2.3 Hamming codes . 52
2.2.4 BCH code . 53
2.2.5 Repetition code . 53

2.3 Preselection . 55
2.4 PUF-design proposal . 59

2.4.1 Concept of the SRAM PUF without ECC 59
2.4.2 Concept of the SRAM PUF with ECC 61
2.4.3 ECC using the repetition code 63
2.4.4 Test runs of designed PUF with ECC 66

2.5 Summary . 66

Conclusion 67

Summary . 67
Results . 68
Limitations and further research 69

Bibliography 71

A Measurements summary 83

B Acronyms 85

C Contents of enclosed CD 87

D Publications of the author 89

xii

List of Figures

1.1 PUF approach from Lofstrom 8
1.2 Basic operation of an optical PUF 9
1.3 Ring Oscillator PUF . 10
1.4 Coating PUF . 11
1.5 Logical circuit of a Latch PUF cell 12
1.6 Schematical circuit of a Butterfly PUF cell 12
1.7 Device identification . 15
1.8 Principle of authentication using challenge-response pairs 17
1.9 Principle of authentication using hardware-based CRPs generation 17
1.10 6-T SRAM cell . 24
1.11 Bistable system . 24
1.12 Bistable SRAM circuit . 25
1.13 Fingerprint of the SRAM content 26
1.14 Measurement of decision time 27
1.15 Binomial PDF . 28
1.16 False acceptance rate and false rejection rate 30
1.17 PUF with the ECC scheme . 31

2.1 Mean values . 39
2.2 Error rate of PUFs. Intra-chip Hamming distance 41
2.3 Autocorrelation of the SRAM PUF 42
2.4 SRAM PUF on power-off time scale 44
2.5 Inter-chip bitwise correlation of SRAM PUF cells 46
2.6 Inter-chip bitwise correlation of SRAM PUF cells 47
2.7 False Acceptance Rate and False Rejection Rate 48
2.8 Intra-chip and Inter-chip Hamming distance 48
2.9 Using more than one PUF cell for the error reduction 51

xiii

2.10 Repetition code. Initialization phase. 54
2.11 Repetition code. Key generation phase. 54
2.12 Concept of preselection techniques 56
2.13 Heatmap of memory state . 58
2.14 Stable cells over all test chips 59
2.15 Concept of the SRAM PUF implementation with ECC support 62

xiv

List of Tables

1.1 PUF approaches summary . 13

2.1 Mean value of ten test chips . 38
2.2 Intra-chip Hamming distance of ten test chips 40
2.3 Intra-chip Hamming distance of ten test chips over all range of

operation . 40
2.4 Memory effect measurements 43
2.5 Inter-chip Hamming distance of ten test chips 44
2.6 Average BER, before and after majority decision 50
2.7 BER after averaging output . 52
2.8 BER after Hamming(8,4) . 52
2.9 BER after Repetition code . 55
2.10 BER before and after Repetition(15) 55
2.11 Preselection multiple readout 57
2.12 Number of stable and unstable cells over all test chips 57
2.13 Numbers of bits identify the ten test chips 60
2.14 Amount of stable bits and Hamming distance over observed test

chips. 60
2.15 Summary of the ECCs . 63
2.16 Performance of the ECC with different repetition factor 64

A.1 Measurement results of chips 83

xv

Introduction

Motivation

Microcontrollers gain their popularity because of low cost and small size.
They are widely used in electronic devices from household appliances to
spacecrafts. Microcontrollers are small enough to be even built in implant-
able medical devices.

Security requirements are the same for all devices in the network be it a
full-size computer or a microcontroller. For example data transmission over
public channels, especially wireless links, requires encryption with a secret
key. It means keys should be generated and stored in a secure way. Usually,
keys are stored in a flash, which is a well-known security issue [1, 2].

Microcontroller, as an intelligent device, requires configurable software
which can be stored in a nonvolatile memory. Keeping the configuration
in plaintext mode makes it the target of cloning attacks. As soon as an
adversary is able to dump the memory, the whole system can be cloned.
And that is a serious problem to Intellectual Property (IP) developers up
to the present day. Encryption is one solution to this problem. Encrypted
software is stored in nonvolatile memory and when the microcontroller is
powered up, the software is decrypted with the secret key. This protects
against the counterfeiting threat but causes another problem called private
key storage.

There are various application scenarios where the key storage problem
is the essential part. For example, applications with smart cards, banking
applications, pay television, etc. In all these cases at least a master key has
to be stored securely.

On-chip flash memory in a microcontroller can be hardly considered
as secure storage. One solution is physical unclonable functions (PUFs).

1

Introduction

PUFs take advantage of manufacturing process variations to generate a
unique key directly out of the chip circuitry, without the need to store it
explicitly.

Proposed by Gassend et al. [3] in 2002, PUFs have become a “hot” re-
search topic in recent years. The idea of using physical phenomena of man-
ufacturing process variations was later applied to SRAM [4, 5]. It figured
out that initial state of the SRAM cells can be used as a PUF.

The fact is that manufacturing variabilities cause small mismatches
between the P-channel and N-channel transistors in a 6T-SRAM cell. As
a result, each SRAM cell is biased towards ‘0’ or ‘1’ during powering up
depending on the nature of the mismatch. Some cells never have a stable
state if the mismatch is very small. Such cells define the noise of a PUF
and it is the main disadvantage of SRAM-based PUFs.

There are some techniques to provide a stable output [2]: some of them
require an access on hardware level, some correct errors by pre- and post-
selection methods. But the most feasible approach that allows to generate a
stable output is applying error correction codes on the SRAM PUF output
[2, 6].

This thesis analyzes statistical properties of the power-up SRAM state
of one of the popular Atmel AVR microcontrollers. Two concepts of SRAM
PUF implementation are suggested. One concept is used for chip identi-
fication. The other concept uses error correction techniques in order to
generate strong keys. The conclusions of the work are confirmed by prac-
tical measurements of ten ATMega 1284P microcontrollers under a wide
variety of conditions.

Research goals

The current PUF researches focus on FPGA implementation [1, 4, 7–17].
The goal of the present thesis is discovering of a possibility to implement
a PUF on a simple AVR-series microcontroller. According to the research,
which is done on FPGA, an appropriate approach is using power-up SRAM
state of microcontrollers as a PUF.

In this way, the main goals of the thesis are:

1. Determining the existing concepts of Physical Unclonable Functions.
Discovering the possibilities of adapting them on the given Atmel’s
microcontrollers. with special attention to the literature overview of
the SRAM-based PUFs implementations. Identifying disadvantages

2

Thesis overview

of the existing approaches in order to avoid them in constructing our
own PUF.

2. Analyzing supplied measurements of the initial SRAM contents in
Atmel ATmega1284 microcontrollers. Proposing a statistical template
for evaluating the PUF properties and suitability for using a device
as a PUF.

3. Suggesting a method for constructing a PUF on power-up SRAM
contents. Evaluating the suitability of using proposed PUF-design in
main application scenarious, such as device identification, key gener-
ation and other possible purposes.

Thesis overview

The thesis is organized as follows: the first part of the work is oriented
towards a literature study concerning physical unclonable functions, partic-
ular emphasis is placed on SRAM-based physical unclonable functions. The
latter part contains the results of the measurements of ten ATMega 1284P
microcontrollers. The thesis concludes with considering a possibility of us-
ing the ten test chips in the two PUF application scenarious: key generation
and device identification. The references and the author’s publications are
presented at the end of the masters thesis.

Chapter two starts with explaining the basic concept of PUF and the
main PUF properties. Then different PUF approaches are classified and
general advantages and disadvantages of these approaches are discussed.
Chapter is continued with an overview of basic applications, as well as
their use cases in practice. Then a brief overview of possible attacks is
given. The second part of the chapter deals with the SRAM-based PUFs
concept. It covers the internal structure of a SRAM cell on six transist-
ors and known PUF-designs on SRAM cells. Then the section on patents
concerning PUFs is given. This chapter concludes with a brief overview
of Atmel AVR microcontrollers followed by specification of given ATMega
1284P microcontrollers.

The third chapter deals with practical measurements and provides the
results of the measurements. It contains statistical analysis of the power-
up SRAM state of ten Atmel ATmega1284P microcontrollers. Since the
SRAM output does not meet the PUF requirements, two following sections
are devoted to error correction and preselection techniques that allows to
adapt SRAM output for the PUF purpose. The chapter concludes with con-

3

Introduction

structing PUF design for the application scenarious such as key generation
and device identification.

In conclusion, the thesis summarizes the concept of the SRAM-based
physical unclonable functions, recapitulates the results of the measure-
ments, mentioning the SRAM PUF-design on an Atmel ATmega1284P mi-
crocontroller and provides suggestions for further research.

4

Chapter 1

State of the Art

1.1 Physical Unclonable Functions

1.1.1 PUF in general

Different definitions of a physical unclonable function (PUF) can be found
in the newer literature [18–20]. In general, a PUF is a function with in-
ternal random nature that uses manufacturing variability to generate an
unpredictable repsponse. Therefore the PUF response of a chip is called
fingerprint.

The concept of PUF was described by Pappu in his doctoral dissertation
in 2001 [21]. He used the term physical one-way function (POWF) and
defined it as “a function which is easy to compute but hard to invert”.
Later, another interpretation of the same term became popular - physical
random functions [3]. Nowadays, it is generally accepted and widely used
as physical unclonable functions (PUFs).

The concept of PUFs is based on the local mismatches, differences
between physical components of a device due to production variability.
Since the manufacturing process can not be controlled, the local mismatches
of produced components are random therefore a PUF can not be replicated.
Thus unclonable property is achieved.

As it follows from the name, a PUF should have some features of the
functions. It means according to the input (or challenge) the function gen-
erates the output (or response). But these are not true mathematical func-
tions since they are able to produce several output values from one input
or vice-versa several input values can result in one output value. It would
be better to say that a PUF is an engineering function which acts upon a
physical system.

5

1. State of the Art

Typically, a PUF input is called a challenge and the PUF output is the
response. A mapping of applied challenge to its resulting response is called
a challenge-response pair (or CRP). A PUF performs this CRP mapping.

response = PUF (challenge)

A PUF implementation consists of two distinct phases. During the first
phase - initialization (or enrollment), a PUF is queried and number of CRPs
are stored in a database. In the second phase, generally called identification
(or verification), a challenge from the database is applied to the PUF and
the corresponding response is compared with the entity in the database for
the initial response.

Thus, in general a PUF is not a function in the mathematical sense, and
can be defined as follows:

A PUF is a physical entity which produces an output value at least in
dependence of physical structures which are hard to clone [2].

1.1.2 PUF properties

The following section 1.1.3 will show how wide the collection of the known
PUF approaches is today. In order to identify PUF performance of an
instantiation, some general intrinsic parameters must be specified. The
first four properties in the list below are necessary but not sufficient for the
identification approach as a PUF suitable [22]. The rest of the properties
allow to estimate the quality and the strength of the PUF:

1. Evaluability. If a PUF and input(challenge) are given, then the cor-
responding response(output) is evaluated easily. In a theoretical per-
spective, “easy” means within polynomial time, while in a practical
perspective it refers to as little overhead as possible, in constraints of
time, cost, area, power, and energy of an integrated chip.

2. Reproducibility. The same challenge and the same PUF should pro-
duce the same response by querying the PUF multiple times. A pos-
sible error in the response should be small enough to correct it. The
property differentiates PUFs from true random number generators
(TRNGs).

3. Physical unclonability. Physical unclonability is the core PUF prop-
erty. A PUF, which can not be reproduced in the manufacture way, is
called manufacturer resistant. There are no two PUFs with identical
challenge-response behavior.

6

1.1. Physical Unclonable Functions

4. Mathematical unclonability. There is no such mathematical apparatus
which allows to construct probabilistic algorithm in order to predict
the PUF response or to map the known challenges to the known re-
sponses.

5. Opaqueness. It shall be hard to analyze the physical structure of the
PUF in order to replicate a PUFs challenge-response behavior.

6. Identity. The property identity is followed by physical unclonabil-
ity. A statistical measurement which characterizes the identity (or
uniqueness) of PUFs is an inter-distance histogram, summarized by
its average value.

7. Unpredictability. Given a PUF and a set of challenge-response pairs
for this PUF don’t allow to construct algorithm in order to obtain cor-
rect response to any random challenge. Associated with mathematical
unclonability.

8. One-wayness. Challenge can not be constructed for a given PUF and
its response. Similar to the core property of the HASH functions.

9. Tamper-evidentness. Any small change of the PUF leads to different
challenge response behavior. It could be integrity destruction of a
physical entity or tampering at logical level.

1.1.3 PUF classification

Many PUF instantiations were proposed during last 30 years. Early studies
have not been labeled a PUF by their authors but they have certain PUF-
like properties. Possibly because the concept of PUF was systematized only
in 2001 by Ravikanth S. Pappu [21].

The following list of PUF constructions does not purport to be a com-
prehensive overview of all well-known PUFs. This is just an attempt to
classify PUFs by their main design properties and usage.

Early studies

The concepts of using the uniqueness of fiber structure of paper [23,24] were
one of the first approaches of identification by objects that have unique
manufacturing process variations. Later they made up the category “Paper
PUFs” [25,26] which is mainly considered as an anti-counterfeiting strategy
for currency notes.

7

1. State of the Art

Figure 1.1: Approach from Lofstrom 1

The idea of preventing credit card fraud by using the inherent uniqueness
of the particle patterns in magnetic swipe cards was proposed by Indeck et
al. in 1994 [27].

In the year 1998 Posch demonstrates a method to embed a unique sig-
nature into a coating material was used in a smart card or in the covering
material of some other secure hardware device. The method bases on the
impossibility of exactly reproducing a specific piece of plastic or other ma-
terial used to cover the secure hardware [28].

2000, Lofstrom proposed a concept of extracting the inherent unique-
ness of chips from uncontrollable manufacturing variations by comparing
the drain currents of two transistors. The circuit in Fig. 1.1 contains a
comparator for measuring the difference between two nominally identical
transistors connected to a resistor. The output is biased toward VDD or
VSS depending on the mismatch.

Optical PUFs

The first PUF-like concept based on random optical reflection patterns was
introduced by Tolk et al. in 1992 [29]. The goal of this instantiation was the
identification of strategic arms in arms control treaties. Later, proposed by
Pappu et al. in 2002 [30] concept of optical PUF was based on transparent
optical medium. The idea behind this approach is very simple - when a
laser beam shines on the material, a random and unique speckle pattern
will arise. The resulting interference pattern is an uncontrolled process
and the nature of interaction between the laser and the particles is very
complex. Fig. 1.2 illustrates the approach. Practical experiments [21, 30]

1Retrieved from [2]

8

1.1. Physical Unclonable Functions

Figure 1.2: Basic operation of an optical PUF 2

show that the optical PUF is practically unclonable. Unfortunately such
PUF instantiation is hard to implement.

Ring-Oscillator PUFs

Ring-oscillator PUFs were introduced in the year 2002 [3, 31]. The schema
of the approach is shown in Fig. 1.3. It turns out that the nominally
identical ring-oscillators have different characteristic frequency caused by
manufacturing variations and environmental conditions. Ring-Oscillator
PUF is supposed to use this small random delay deviations in frequency.

Odd number of inverters make a loop where the output of a predecessor
is the input of a successor. Each inverter adds an output delay to the
resulting delay of a square wave. Counters in Fig. 1.3 contain all the
details of the desired measure and are considered as a PUF output. Ring-
oscillators are widely used as sensors to measure voltage and temperature.

Arbiter PUFs

Arbiter-based PUFs belong to the category delay PUFs as well as Ring-
Oscillator PUFs. Such PUFs are based on comparing the delay between
two digital paths and figuring out which of them provide the smaller delay.
The originator of the approach is Lee et al. [32,33] Production process has
an effect on the physical parameters determining the exact delay of each

2Retrieved from [22]

9

1. State of the Art

Figure 1.3: Ring Oscillator PUF 3

path. It is expected that all devices have their own specific delay that
explains the PUF concept of such approach. PUF determines which digital
path is fastest and returns either a zero or one. If a delay is too small the
arbiter circuit will produce unstable output depending on the environment
mostly. Such phenomenon is called noise or metastability of the arbiter.

Coating PUFs

The idea of using chip-specific data was utilized by Posch in 1998 who
introduced the approach to add a mixture of isolating and conducting ma-
terial (coating) to the chip [28]. This idea was used in [35] by Tuyls et al.
when the coating PUFs were introduced. The basic implementation and
operation of a coating PUF is shown in Fig. 1.4.

Approaches discussed before were relying mostly on the effects of uncon-
trollable manufacturing variations. In case of coating PUF the randomness
is achieved by spraying a passive dielectric coating directly on top of the
integrated circuit (IC). The coating PUF obtains a response from the comb-
shaped sensors in the top metal layer of an IC by measuring their capacit-
ance. Additionally, proposed PUF concepts provide chips with the strong
protection against such physical attacks as tampering. Since this coating
is opaque and chemically inactive, the tampering attack would change the
capacitance of the coating and as a result the original unique identifier will
be destroyed.

3Retrieved from [34]

10

1.1. Physical Unclonable Functions

Figure 1.4: Coating PUF 4

SRAM PUFs

A SRAM cell can be used as a PUF. Since the SRAM consists of a few tran-
sistors, the local mismatch between them is large. This is a big advantage
for a PUF implementation. The idea of the SRAM PUF implementation,
properties and parameters are given in more detail in Sec. 1.2.

Latch PUF

An electronic circuit which consists of two cross-coupled NOR-gates is used
as a latch PUF. Such a simple NOR latch circuit is able to hold the logic
value. The technique is proposed in [36]. The piniciple behind is very
similar to SRAM cells. But SRAM cells are in a logically unknown state
before they are set in a stable state. Whereas Latch IC is staying in stable
state until it is triggered by asserting a reset signal. After which it starts
converging to a stable state again. The result of convergence depends on the
internal mismatch between the electronic components that have a random
nature. Logical schema of a Latch PUF cell is shown in Fig. 1.5).

Flip-flop PUFs

Another memory-based intrinsic PUF was proposed by Maes et al. in 2008
as a replacement for the SRAM PUF on FPGA boards [37]. Equivalently
to SRAM PUFs, Flip-Flop PUFs are based on the power-up behavior of
memory but instead of SRAM cells D-flip-flops are used.

4Retrieved from [22]

11

1. State of the Art

Figure 1.5: Logical cir-
cuit of a Latch PUF
cell

Figure 1.6: Schematical circuit of a
Butterfly PUF cell5

Butterfly PUFs

Several drawbacks of SRAM PUFs implementation led to introducing but-
terfly PUFs [13]. There are some FPGAs where SRAM PUFs implement-
ation is impossible due to the fact that all SRAM cells are automatically
reseted to zero directly at power-up and hence can not be used anymore
because all randomness is lost. The butterfly PUF cell construction is
schematically shown in Fig. 1.6).

The Butterfly PUF uses the internal matrix of the FPGA to uniquely
identify it based on the intrinsic physical characteristics of the integrated
circuits. Experimental results show that it is very stable to environmental
and other FPGA operating parameter variations [13].

Other instantiations

PUFs have become a hot topic. Many new researches of PUFs instanti-
ations have appeared in the last few years. In the year 2009, Guajardo et
al. described concept of LC PUF, that acts as a capacitor and construc-
ted as a small glass plate with a metal plate on each side [38]. In [39],
Helinsky et al. proposed Power Distribution PUFs based on the resist-
ance variations in the power grid of a chip. SIMPL Systems and PPUFs
were published by Ruhrmair in 2009 [40]. Reconfigurable PUFs or rPUFs
were introduced in [41]. In 2011 Majzoobi et al. published an ultra-low
power current-based approach [14]. Ganta et al. introduced a higly stable
leakage-based approach in 2011 [42]. A current starved inverter chain PUF

5Retrieved from [22]

12

1.1. Physical Unclonable Functions

was proposed by Kumar et al [43]. [44] demonstrates an idea of dynamic
physically unclonable functions using device aging to alter delay charac-
teristics according to user instructions. Sensor based PUFs are introduced
in [45]. SRAM PUF approach for key generation in wireless sensor nodes
was published by Selims et al. in [46]. Lithographic variations of physical
unclonable functions are described in [47]. Suzuki et al. introduced some
kind of delay based PUF on glitch shapes in [48]. Some improvements of
above-mentioned RO-PUFs are suggested in [49] and [12].

Performance of different instantiations

Table 1.1 summarizes the performance of some of the published PUF ap-
proaches. The performance of PUF instantiations can be described by two
statistical parameters: inter- and intra- chip Hamming distance. In the
table the temperature variations were taken into account because it is the
source of error in PUF output. Another source of error is the power con-
sumption which is not measured for all presented approaches thus it is not
listed in the table.

Approach Ref Temp. (◦C) HDintra ,% HDinter,%
ID Cell [50] -25..125 5 50
Ring-oscillator PUF 1 [51] 20..120 0.48 46.15
Ring-oscillator PUF 1 [8] 25..65 <2 47.31
Arbiter [51] 20..120 9 23
SRAM PUF1 [4] -20..80 12 50
SRAM PUF2 [5] 25 5 bias to 1
Latch PUF [36] 0..80 5.5 50
Inverter-based PUF [52] 20..125 0.4 50
Butterfly PUF [13] -20..80 6 50
D-flip-flop PUF1 [37] 25 <5 50
D-flip-flop PUF2 [53] -40..80 10 35
Glitch-based PUF [48] 0..80 <8 40

Table 1.1: Summarizing of different approaches 6

6Retrieved from [22]

13

1. State of the Art

1.1.4 Advantages and disadvantages of PUFs

Two important PUFs advantages could be emphasized: cost reducing and
security raising. Some part of applications e.g. identification requires gen-
erated unique ID. Usually, ID is stored in a nonvolatile memory. The chips
with nonvolatile memory cost more than without it. Because some addi-
tional resources are needed in order to produce such chips and therefore
some additional expenses. The chips without internal nonvolatile memory
require to generate an ID and keep it on external storage. Later the ID is
transfered back which causes additional costs again.

A PUF implementation on a chip does not require nonvolatile storage
because it is assumed that a chip already has an ID. Therefore a PUF is
able to generate unique ID “on-the-fly”. Thus the task of identification is
reduced to the searching of suitable PUF that has a large enough entropy
in order to identify the number of required chips.

A PUF implementation allows to increase the security level. First, the
PUFs resist reverse engineering attacks. Second, PUFs don’t require to
generate and store secret keys on external storage and than transfer it.
These steps are very pricey for the chips without PUF to guarantee the
security.

A PUF can easily reach security standards because confidential data are
generated directly on the chip. Moreover it is unnecessary to store it since
it can be easily reproduced at any time. Therefore according to the public
key cryptography principles, the secret key is needless to transfer.

The main problem of the PUFs is the noisy output (see Tab. 1.1). All
PUFs produce unstable response, some of instantiations are very sensitive to
the environmental conditions and as a result are very noisy. These errors can
be random or deterministic. Random errors are caused by circuit noise. The
deterministically generated errors are caused by temperature variations,
aging effect, voltage or everything that effects on the local mismatch of the
internal components.

For some applications e.g. key generation or authentication, such PUF
output is not accepted. So, some techniques for the response stabilization
should be applied. It will take additional cost and as a result reduce the
advantages. For example, in order to correct errors in the PUF output, error
correction codes should be implemented on the chip. The ECC require a
nonvolatile memory available.

But such applications as identification can be implemented without ad-
ditional error correction techniques as long as the distance (usually Ham-
ming distance is calculated) between the IDs is large enough. Therefore
even if relatively big errors occur, the chip can be identified correctly.

14

1.1. Physical Unclonable Functions

Figure 1.7: Identification process 7

1.1.5 The basic PUF applications

Identification, authentication and key generation are three the basic PUF
applications [54]. In this section an overview of all of them are given.

Device identification

Identification is the simplest application scenario that can be applied on
PUF without additional techniques. The idea of PUF identification is
widely used in anti-counterfeiting technologies. A biometrical identifica-
tion scheme works very similarly.

Process of identification consists of two phases: initialization and iden-
tification. During the first phase, a PUF is queried many times and the
challenge-response pairs are stored in a database. The identification phase
allows to find an entity in the database that contains current challenge to
the PUF and the corresponding response. The result of the whole identi-
fication process is a chip ID which is assigned to the CRP in the database.

The decision on the matching of the observed response and the enitity
in the database is usually made by Hamming distance calculation. In a
pure PUF without error correction techniques the responses on the same
challenge usually slightly differ. In such cases Hamming distance is the
most suitable method to measure the tollerance of binary output data.
Therefore if there is an entity in the database where the Hamming distance
between this entity and the observed response is close enough then chips
are identified, otherwise the process fails.

The acceptance level used to decide on a positive identification depends
on the intersection of the intra-chip Hamming distance and the inter-chip
Hamming distance distributions (see Fig. 1.7).

7Retrieved from [22]

15

1. State of the Art

The intra-chip Hamming distance histogram represents the bit error
rate distribution of the same chip during the set of queries. The inter-
chip Hamming distance histogram shows the distance between the different
chips. Obviously errorless identification is possible if both diagrams do
not intersect. Then the threshold is somewhere in the middle of these
diagrams(see Fig. 1.7). In case of overlapping of these diagrams some
errors in identification are possible: either the wrong chip is identified (false-
acceptance rate), or no chip is identified (false-rejection rate). In order to
choose an appropriate accepted level it is recommended to minimize the
sum of FAR and FRR.

Key generation

A PUF can be used in secret key generations [55]. The main requirement
for such application scenario is the stable PUF output. As we seen in Table
1.1 all PUFs are quite noisy that is intrinsic property of a PUF. In order to
produce exactly the same PUF response over the number of readouts, some
error correction techniques should be applied.

ECC requires an auxiliary data which should be stored in nonvolatile
memory. It causes cost raising (if in-chip memory is used) or decrease
in security (if external storage is used) so the result reduces both PUF
advantages 1.1.4.

The scheme here again consists of two phases. The initialization phase
where the chip is read out, the PUF output with auxiliary data (helper
data) is stored in an database. During a key generation phase a PUF is
queried again and current readout is combined with the helper data from
the database. An algorithm uses them to extract the same secret key as
in the initialization phase. This problem is known as secret key extraction.
The result of the algorithm is a shared secret key. Helper data should not be
kept secret, therefore it can be stored in external storage without possible
secure issue [10, 56].

Authentication

Authentication procedure is identification plus identity verification step. A
very nice practical example is a card-reader at entry 1.8. A request is sent
to the smart card to be authenticated [57]. The card replies back. The
sender compares the card’s response with the entity in the database. If
they match, the card is authenticated.

If PUFs are used in response-generation scenarios, then it can be done
in two types [2]: by using hardware-based CRPs or software-based CRPs:

16

1.1. Physical Unclonable Functions

Figure 1.8: Principle of authentication using challenge-response pairs 8

Figure 1.9: Principle of authentication with hardware-based CRPs genera-
tion 9

1. The concept behind the authentication with hardware-based CRPs is
shown in Fig. 1.9. Here PUFs should work like a HASH function:
take an input and generate a corresponding output. Therefore PUFs
have HASH function properties, namely unpredictability, even an ex-
tensive set of CRPs are known; uniform distribution, the responses are
uniformly distributed over a set of all possible output values; stability
of the response apart from possible noise at the output.

The scheme of the authentication with hardware-based CRPs can be
represented as follows: The PUF is queried by zero-vector. The out-
put of the PUF is defined as the chip ID. Again, the output is usually
noisy. So replied ID can not be found in the database. Therefore the
server uses the intra- and inter-chip Hamming distance histograms in
order to find out the appropriate entity in the database. After this
step the chip is identified.

8Retrieved from [2]
9Retrieved from [2]

17

1. State of the Art

Then the server sends the new request to the PUF containing the
challenge of the corresponding CRP. If the PUF response matches
the expected value from the database, the chip is authenticated.

Obvious advantages of the authentication with hardware-based CRPs
are that neither ECC nor nonvolatile memory is needed and it is al-
gorithmically simple. The disadvantages are that it is hard to imple-
ment, requires external storage, CRPs must be in secure environment.

2. The idea behind the approach of authentication with software-based
CRPs is that the challenge and the response are checked by means of
an encryption algorithmċitehm2012physical. The approach requires
the error correction code implementation and consists of two phases.
At the beginning the ID of the entity should be obtained ether from
an external storage or from internal memory or generated “on-the-
fly”. Later on public-key or symmetric-key cryptography should be
used to generate the response. Advantages of the approach are simple
implementation, usually no CRPs has to be stored. Disadvantages are
ECC implementation.

1.1.6 Use cases

The three main aforementioned application scenarios can be used in a wide
range of use cases of PUFs. In this section the most important of them are
covered.

Product identification

The idea of identification by using a PUF as an integral part of an RFID
tag is shown in [58]. It is supposed that every goods item has a sticked
RFID tag therefore unique PUF is assigned to it.

RFID tags are considered an improvement on bar codes. Bar codes
have a limited usage. They allow to match a product only to the category.
Whereas RFID tag can be used for the product identification that allows
to carry more information about the product during the whole production-
customer chain. But RFID tags have a bid disadvantage in comparison with
bar codes - it has production cost in contrast to free printed bar codes.

Concept of PUF-RFID usage. During the manufacturing process the
vendor glues a PUF RFID on a product box and inputs the information
about the product into a database (e.g. destination, expiration date, etc.).
A logistics company takes the product from the warehouse and distributes
it to the shop. The process can be mechanized by using RFID-readers that

18

1.1. Physical Unclonable Functions

will help to sort goods by the destination address. Later, in a shop, the
RFID is read again at the check-out. The last step in the chain is a fridge
with internal RFID reader at the consumer’s home. The fridge can notify
consumer about approaching expiration date or even suggest some possible
recipes for cooking.

The business model is original and promising. The only discouraging
factor is the high initial cost.

A more realistic example is smart cards usage. In order to get an access
to a room an authentication system needs to read the data from the smart
card. A PUF implementation on the smart cards makes them resistant to
clone attacks. A lost and found card can be reused by attackers, but a
renewed card will fix this problem.

Secure key storage

A PUF can be successfully used in services which require to store unique
secret key, e.g. Pay-TV, DRM, file encryption. Usually private keys are
stored in nonvolatile memory that causes various attacks such as side-
channel attacks and software exploits [59]. Using a PUF in applications
for storing the key does not require to keep it in the chip permanently.
A PUF allows to generate the unique key “on-the-fly” by using intrinsic
physical properties of the PUFs.

With combination of an asymmetric cryptographic approach, the public
key can be generated and used for channel encrypting. The scheme is very
robust against possible attacks.

Night-shift problem

Nowadays business models are distributed over the world. And production
tasks can be outsourced to foreign companies or even foreign countries.
Companies that make production request often fear that another company
will produce more than the ordered number of items and resell the rest of
it illegally. Such problem is called the night-shift problem.

One approach to solve this problem is a PUF implementation on the
chip. This PUF can be reread many times by everyone. A legally used chip
has the same PUF output as the CRP record in a company’s database.
Illegally used chip is going to be rejected during identification phase of
getting access to the service. In this case company should have the full
database of produced items. In another approach a company can activate
the chip just before selling. All activations are stored in database and used
in identification phase.

19

1. State of the Art

Anti-counterfeiting

Counterfeit money is a well known product of forgery. But there are many
other forgeries that cause even worse damage in the market. According
to the statistics from the Organisation for Economic Co-operation and De-
velopment (OECD), the top market fields suffered from counterfeting are:
drugs, electronics, software piracy, food and auto parts.

Nowdays the usual approach to protect products from forgery is an
authenticity mark adding. But the problem of such approach is that all the
marks are the same. When an attacker succeeds in cloning one, the product
is easily forged.

PUFs properties allow to construct very simple but very reliable anti-
counterfeiting schemes. Every valuable object can be equipped with a near
field communication (NFC) tag including a PUF and an authentication
algorithm. NFC is a form of RFID which supports two-way communica-
tion between endpoints. This technique will ensure the genuineness of a
product by requesting the database with IDs of legal devices. Since a PUF
is unclonable and unique it is imppossible just to clone a genuine product.

The cost of implementation is small compared to possible losses of profits
and reputation. The infrustructure is also not so hard to implement. Only
power consumption can cause some difficulties since the public-key crypto-
graphy algorithms take energy which is a problem in terms of passive RFID
tags [60].

IP protection

FPGAs, as the reconfigurable and programmable integrated circuits have
become very popular and have a wide field of applications because of func-
tionality and cost. Therefore the problem of intellectual property in the
chips is raising.

There are many approaches to obtaining the software from the exist-
ing FPGAs in order to clone the product. It can be done ether through
reverse engineering, industrial espionage or unreliable outsourcing compan-
ies [13]. After the device is powered-up the software is loaded into the
internal memory. An adversary can dump the memory and recover the
software. Since the software is known, an adversary starts to produce full
clones of the product. Sold clones are cheaper because the IP owner is not
paid for research or development cost.

There are some procedures to make the software recovering more difficult
[61]. But they are not very satisfactory solutions. In [16] an approach of
keeping the software encrypted was proposed. The configuration is stored

20

1.1. Physical Unclonable Functions

on external memory and during the powering-up it is loaded into internal
memory of the FPGA. With the use of a secret key from the embedded
nonvolatile memory the software is decrypted and ready to use. Suggested
concept requires key storing in plain-text format on internal nonvolatile
memory. This key can be generated from an intrinsic PUF, for example a
DFF [37] or SRAM PUF [1]. Usually PUFs are noisy therefore the error
correction data should be generated. Such data can be saved on external
storage since they don’t include any secret information on the key.

So no internal memory is needed. A secret key is generated by PUF
using physical intrinsic properties of the FPGA. The error correction data
and encrypted software are both stored outside the FPGA. In addition,
an cryptographic encoder should be implemented on the FPGA. Different
implementations are suggested in the literature [4, 13, 17].

1.1.7 Attacks

A PUF looks very reliable and secure because of its intrinsic unique proper-
ties which are obtained due to manufacturing process variations. But there
are some attacks already known. In this section they are briefly explained.

Lack of entropy

The obvious solution to the problem of product counterfeiting is to produce
a clone. The cloned device should have a PUF with the exact same intrinsic
properties as the original one.

Suppose that an attacker is able to repeat the whole production pro-
cess of devices or has an access to the original physical environment. The
question is when the attacker achieves success in the PUF cloning. This
question has a statistical meaning and depends on the PUF’s entropy. The
larger the entropy of designed PUF the more instances are needed in order
to successfully create an identical PUF.

If the entropy of the PUF is b bits, then it is theoretically possible to
obtain 2b number of unique identificators from it. All these identificators
are uniformly distributed, this means the probability of occuring an ID is
equal. But because of the birthday paradox the population of all possible
identificators is two times less 2b/2.

Obviously such clone attack makes sense if and only if the resulting
profit should be more than current operating expenses:

p · s > a · c,

21

1. State of the Art

where p is the profit of getting a counterfeit instance, s is the number
of cloned instances, a is the number of instances produced by attacker and
c is the expenses on the clone creating.

The number of successfully cloned PUFs instances can be expressed as:

s =
a

2b

Therefore, the clone attack becomes unprofitable if:

b > log
p

c
It shows how important it is to design the PUF with the large entropy.

Modeling attacks

Modeling attacks are well described in [62] by Ruhrmair et al. They are
based on the learning algorithms when some CRPs are known. Attacks
are suggested for Arbiter and Ring-Oscillator PUFs [63]. E.g. an attacker
knows a set of CRPs and is able to construct a model of PUF which gives
the result with high probability.

Therefore PUFs must be resistant against modelling attacks, the re-
sponse of the PUFs should not depend on extensive set of CRPs. However
it was shown in [64] that a very accurate model (90%) of PUF can be con-
structed by having 500 CRPs only. The error correction techniques makes
the modeling attacks even simpler. Since the ECC can easily correct 10%
bit error rate in the PUF output.

Side-channel attacks

As we know the attacker does not have an access to the internal structure
of the PUF, the result of such intervention cause the dysfunction of the
CRP behaviour. But the attacker is able to measure some external effects
of the PUF functioning such as electromagnetic radiation, time various
computations, sound, and power consumption.

The researches show the susceptibility of the PUFs to the side-channel
attacks [4,65]. The PUF output can be recoverd by investigating the power
leakage occurring in the error correction phase [4]. But such attacks are
hard to implement.

Invasive methods

Invasive attacks start with the depackaging of the chip in order to get
direct access to its inner components. Because of the intrinsic properties

22

1.2. SRAM PUF

of the PUFs such attacks are currently not sophisticated enough to be a
success. The removal of chip layers cause the destroying the unique chip
fingerprint [66]. However, [15] proposes successful semi-invasive attacks
based on EM cartography.

A well-designed PUF should meet the requirements in order to be res-
istant against described attacks:

1. Temperature resistance. The temperature variation effects the delay
of internal PUF components [67].

2. Voltage ramp-up time. Decreasing the supply voltage will slow down
the circuit. [68].

3. Ageing. Electrical components are prone to degradation over time.
The underlying reasons for it are time-dependent dielectric break-
down, electro migration, hot carrier injection and negative bias tem-
perature instability [53,69]. Therefore, ageing tests should be provided
to measure the PUF behaviour under temperature variation and sup-
ply voltage.

4. Entropy. Entropy is directly connected with the length of the gener-
ated keys and the population of unique PUF fingerprints. The PUF’s
entropy should be large enough to guarantee resistance against at-
tacks [70].

1.2 SRAM PUF

It turns out that the initial power-up values of the SRAM cells behave
randomly and independently. Moreover a SRAM cell is a bistable system
where uncontrolled production properties affect resulting value in a cell -
either “0” or “1”. These facts allow to use initial power-up state of SRAM
for a PUF constructing.

1.2.1 SRAM cell

A usual SRAM cell consists of six transistors as shown in Fig. 1.10. A
cell contains two cross-coupled inverters (load transistors P1, P2, N1 and
N2) and two access transistors (N3 and N4) connected to the data bit-
lines (WL and WL) based on the wordline signal (Vss). Each inverter is a
p-junction transistor (P1, P2) and an n-junction transistor (N1, N1).

A key characteristic of a SRAM cell in terms of the PUF characteristics
is bistability. Fig. 1.11 demonstrates the basic functionality of a bistable

23

1. State of the Art

Figure 1.10: a) Common six transistor SRAM cell b)Equivalent circuit 10

Figure 1.11: Bistable system: a) Bias toward “0”; b)Balanced system; c)
Bias toward “1” 11

system. A totally balanced system is shown in Fig. 1.11b. The probability
that the ball falls down to the left is the same as the probability of its falling
down to the right. Neither 1.11a nor 1.11 are balanced systems since the
probabilities are unequal. In the left case the system is biased toward “0”,
in the right case - toward “1”. The same behaviour inheres in a SRAM
cell(see Fig. 1.12). But instead of a ball it is the power-up voltage that
decides a case.

The reason of the process of biasing toward one of the stable state is
the static-noise margin (SNM). Increasing the SNM causes a cell to become
more stable, thus a higher voltage is needed to flip the state [71]. The
different SRAM cells have different SNMs caused by intrinsic parameter
fluctuations in a CMOS SRAM cell [72]. Such fluctuations are known and
they do not affect the reading/writing process of the cell.

During power-up, the SRAM cell’s cross-coupled inverters Fig. 1.10

10Retrieved from www.springerimages.com
11Retrieved from [2]

24

1.2. SRAM PUF

Figure 1.12: Bistable SRAM circuit: a) Bias toward “0”; b)Balanced sys-
tem; c) Bias toward “1” 12

are “floating” [4]. Therefore, the different SNM in the transistors cause
the different resulting value in a cell - either “0” or “1”, depending on the
intrinsic characteristiscs of the cells. It was shown that the same SRAM
cell tends to have the same state after power-up whereas different SRAM
cells will behave randomly and independently from each other [4].

Since the bias cannot be controlled during production and the cells
behave randomly and independently, all these facts are key properties of
a PUF and thus the start-up values of SRAM memory can be used for a
PUF constructing.

In detail a SRAM cell behavior during power-up looks as follow [2]:
During powering-up the circuit VDD increases toward its final value (e.g.,
1.35V). As soon as the first PMOS transistor (either P1 or P2) starts to
provide much current (i.e., VTH of the transistor is reached) the correspond-
ing node Q/Qn starts to increase voltage which at the same time decreases
VGS of the second PMOS transistor and increases VGS of the correspond-
ing NMOS. Thus a latching effect occurs and the cell either outputs VSS

or VDD. If the difference between the two transistors P1 and P2 is very
small, both start providing current nearly at the same time. Thus, Q and
Qn increase in voltage until the VTH of one of the transistor N1 and N2 is
reached. Now, the latching effect is defined by the NMOS transistors. It
can be seen that in most cases the output of a SRAM PUF cell is defined
by the threshold voltage difference ∆VTHP of the PMOS transistors. Only
in case of very small ∆VTHP NMOS transistors’ threshold voltage difference
∆VTHN dominates the decision.

The cells that possess the same value after the power-up, are called
stable cells and represent the fingerprint (or identity) of the SRAM PUF.
Whereas the unstable cells are defined by changeable state from one power-
up to the other. The set of the unstable cells is called noise of the PUF.

12Retrieved from [2]

25

1. State of the Art

Figure 1.13: Fingerprint of the SRAM content 13

SRAM PUFs are usually very noisy (see Tab. 1.1). An example of the
SRAM heat-map diagram is shown in Fig. 1.13.

Obviously only the stable cells are suitable for the PUF output genera-
tion. There are some approaches [5] that allow to mark stable cells before
the PUF is used for the first time. The rest of SRAM cells will not be used
in the PUF output but can be used for storing auxiliary data (e.g., helper
data of an error correction code or a cryptographic encoder).

The question is how to select stable cells. It could be done by perform-
ing readouts repeatedly and choose only the cells with stable output values.
But this approach is not suitable for various reasons. First, additional meas-
urements produce an impact on the product costs. Second, measurements
should be done over the wide range of experiments, e.g. temperature and
voltage variations, aging measurements.

The approach from [36] says that stable cells decide faster. The concept
is shown in Fig. 1.14. By measuring time the fast flipping cells can be
detected, to be selected for the PUF constructing.

In Fig. 1.14 all the cells with the decision time under tuseful and lie
under a lower threshold or above upper threshold are marked as useful. All
other cells are not selected. Simulations show that the decision time of the
cells is a function of the temperature. Therefore, during the selection phase
a stable temperature should be provided.

The approach proposed in [5] suggests to select the cells which provide a
mismatch exceeding a certain threshold. NMOS transistors must be taken

13Retrieved from [5]

26

1.2. SRAM PUF

Figure 1.14: Measurement of decision time (UF: useful; NUF: notuseful)14

into account and the mismatch should be above a certain value. The good
chosen the threshold is balanced trade-off between the ratio of the useful
PUF cells and all PUF cells. A method to measure mismatch is to use an
analog to digital converter (ADC).

If the pre-selection methods for searching useful cells are not possible
to apply or the cost of their implementation are very high, then some post-
selection methods could give better result. The post-selection techniques
deal with errors which occur due to unstable cells. Such unstable cells rep-
resent a noise of the PUF output. Thus the post-selection techniques correct
the errors in the PUF output. A very effective post-selection technique is
based on the error correction codes.

1.2.2 Statistical analysis of SRAM PUFs

The hardware properties of a SRAM PUF can be characterized by the
statistical parameters and measurements such as: mean value, Hamming
distance, autocorrelation function, false acceptance rate and false rejection
rate, binomial distribution. These parameters allow to estimate how far the
current PUF is from an ideal one.

Mean value

The mean value parameter shows distribution of the output values “1” and
“0” in a PUF. The PUF should have unpredictable output therefore the
values are distributed equally. Thus an ideal PUF has the mean value
parameter that equals to 0.5.

14Retrieved from [5]

27

1. State of the Art

Figure 1.15: Binomial PDF

The probability density function(pdf) of a binomial distribution de-
scribes the distribution of the mean values of SRAM cells. Therefore the
mean value of an ideal PUF is situated around 0.5 on top of pdf (Fig. 1.15).
The deviation from the ideal value either to 0 or to 1 is called bias. The
bias can effect the predictability since the number of likely combinations
reduces. Unfortunately, the strong bias toward “1” are confirmed by many
measurements of the SRAM PUF based approaches [2, 5].

Intra-chip Hamming distance

The key PUF property is reproducibility (see Sec. 1.1.2). It requires to
guarantee the constant PUF response within a predefined region of oper-
ation. Changes in bits between different runs cause an error. The error
can be estimated by the bit error rate parameter which is measured using
the Hamming distance usually. BER is the Hamming distance between the
current PUF output and the predefined one (e.g. the PUF output during
the first readout is chosen usually).

An ideal PUF has the BER value is 0. But due to the environmental
conditions, noise, temperature variations, power supply the BER exceeds
0. Studies show that the SRAM PUF output is very erroneous(Tab. 1.1).

28

1.2. SRAM PUF

Correlation

Autocorrelation function allows to detect correlation between cells of the
same SRAM chip. The chips with detected correlation are very sensitive to
brute-force attacks since the number of unique combinations reduces. An
ideal PUF should have no correlation between bits.

In this measurement the Low periodic autocorrelation and Good aperi-
odic autocorrelation [73] are suitable functions:

Periodic autocorrelation: Ca(τ) =
N−1∑

i=0

(−1)ai+ai+τ , 0 ≤ τ ≤ N − 1 (1.1)

Ca(τ) = ±1 says about the correlation between bits and in contrast,
Ca(τ) = 0 does not show any correlation at lag τ .

Aperiodic autocorrelation: Aa(τ) =
N−1−τ∑

i=0

(−1)ai+ai+τ , 0 ≤ τ ≤ N−1 (1.2)

Inter-chip Hamming distance

Physical unclonability of the PUFs is represented by the property iden-
tity(see Sec. 1.1.2). The identity (or uniqueness) can be characterized by
estimating the Hamming distance between the PUF outputs of different
chips. This statistical parameter is called inter-chip Hamming distance.
An ideal PUF should have HDinter = 50% between all possible chip pairs.
This value confirms that no correlation between chips exist.

Hamming distance is the preferred parameter for the correlation detec-
tion between chips. But if the PUF produces the same output on each
of the chips then the Hamming distance is not able to detect correlation.
Therefore another approach should be chosen. It can be done by calculating
each cell’s mean over all chip population.

Size

Another statistical parameter is the size of the PUF which is expressed
in m2

bit
and characterized by area. It shows the technology of the device

production and useful in estimating of the entropy of the PUF.

29

1. State of the Art

Figure 1.16: False acceptance rate (FAR) and false rejection rate (FRR) 15

Speed

Speed can be considered as a good parameter for evaluating PUFs. There
are some approaches [5] where stable cells are selected by their speed de-
cision. It was shown that stable cells decide faster. Speed is a very useful
parameter in pre-processing approaches. The measurement unit for speed
is bits

s
.

FAR and FRR

False acceptance rate (FAR) and false rejection rate (FRR) are shown in
Fig. 1.16. They are key parameters in the identification scenario. The com-
bination of the inter- and intra-chip Hamming distance histograms shows
how well the PUF can identify different chips.

If the both curves do not intersect then the PUF is able to identify the
chip without error. If some intersection area is observed then error can
occur:

• a wrong chip can be identified. False Acceptance.

• a chip can not be identified. False Rejection.

Correctly chosen threshold minimizes the probability of error occur-
rence. Usually the intersection of curves FAR and FRR sets the threshold.

15Retrieved from [2]

30

1.2. SRAM PUF

Figure 1.17: PUF with the ECC scheme 16

FRR and FAR can be expressed algebraically as follows:

FRR =
1

σ
√
2π

∫
∞

HDmax

e
−

1

2

(

x−µintra
σintra

)2

dx ∗ 100% (1.3)

FAR =
1

σ
√
2π

∫ HDmax

−∞

e
−

1

2

(

x−µinter
σinter

)2

dx ∗ 100% (1.4)

1.2.3 SRAM PUF implementation

Fig. 1.17 contains the general ECC scheme implemented on a PUF. The
procedure of the PUF design consists of two phases: the initialization phase
and the working (readout) phase. During the initialization phase an aux-
iliary data are generated that are used later to correct errors in the chip
response. This data should be saved in nonvolatile memory. But generated
by ECC the auxiliary data can not be stored in NV memory as is. Since

16Retrieved from [2]

31

1. State of the Art

the NV memory is exposed to attacks by hackers then retrieved bits can
be used for recovering the key generated by PUF. Thus some helper data
are needed in order to hide the correction bit string. Then the bit code
generated by the error correction codes encoder is XORed with the helper
data retrieved from the output of SRAM cells. The result is stored in NV
memory. Encoder generates the correction sequence from the part of the
first readout.

The result of the readout phase is to obtain the same readout value
that was during the initialization phase. The error correction codes or their
combination help to reach this goal. The ECC were analyzed in detail
in [74]. Some are used for correcting small bit error rates and some are very
computationally complex. There are even concepts of using combination of
several ECC [10].

According to the scheme in Fig. 1.17 retrieved from the nonvolatile
memory correction sequence in combination with the readout of SRAM
cells is used by error correction code generator. The result of this operation
is the original readout obtained during the initialization phase.

As it has been already mentioned and was shown in the table of exper-
iments (Tab. 1.1) the SRAM based PUFs show high bit error rates. And
as it can be seen from the table the error rates are even higher than in
others PUF implementations. To reduce the error rate different types of
error correction codes (ECC) can be used. Not all the ECCs are suitable:
some are very complex to implement in a microcontroller, others are not
able to correct such high error rates.

In [74] different types of ECCs were analyzed: linear error-correcting
codes (Hamming code), cyclic codes (BCH code) and repetition code. It
was shown that only the repetition codes are capable to correct the bit
error rate higher than 10%. In addition they are easy to implement on the
microcontrollers. Therefore the ECC with repetition factor is preferable
technique for the PUF output stabilizing by the error correction.

1.2.4 Patents

During the last decade some patents concerning the PUFs implementation
have appeared. The list is shown in the following section it is not a complete
list of all available patents, but just a brief overview of topics where the
patents are granted. All patents are taken out in the USA and grouped
by the main application scenarios (see Sec. 1.1.5) – identification, key
generation and authentication.

32

1.2. SRAM PUF

Identification schemes

Methods of the identification by the PUF were discussed in Sec. 1.1.5.
The idea behind is the manufacturing process variations producing unique
fingerprint that characterizes the device itself. The fingerprint can be
slightly different under environmental conditions. But usually it is enough
to identify the device. Early proposed patents take into account local mis-
matches between internal components and suggest to generate unique num-
ber. Here are some of them:

• ICID 1999. In the year 1999 Lofstrom filed the first patent [75]. Local
mismatch between different cells is used for identification.

• Microvision 2000. Patent suggests to reread the output several times
in order to identify stable bits. The marked bits are used to generate
the identification number of the chip.

• Hitachi 2001. Another chip identification procedure, based on produc-
tion variability, was filed by Marunaka in 2001 [76]. Hitachi suggests
to use the voltage mismatches between local components.

• STM 2003. The patent is based on the resistors mismatches [77]. In
the year 2003 ST Microelectronics filed a patent.

• PIXIM 2004. One more version of using the intrinsic mismatches in
voltage of circuit elements (NMOS and PMOS transistors, resistors,
capacitors, inductors, light-detecting pixel elements, memory cells,
amplifiers). Filed by PIXIM in 2004 [78]. First mention of SRAM
PUF.

• Infineon 2007. Some kind of improvements of ICID1999 patent by
Heiko Koerner from Infineon Technologies [79].

• National Semiconductor 2008. The patent describes an SRAM PUF
that is used to generate a unique number with logic states only without
going into application details [80].

• National University Corporation Tohoku University, Advantest Cor-
poration 2008. Filed by Okayasu et al. in the year 2008 [81] the patent
describes aging effect of the device by voltage variations over time.

33

1. State of the Art

Key generation schemes

Key generation approaches require stable PUF output in order to obtain
the same key over the whole region of operations. Therefore the patents
should contain some error correction techniques.

• STM 2002. One of the first patent describing the key generation
procedure by using process variations was filed by ST Microelectronics
in 2002 [82].

• LSI 2005. The patent [83] describes the procedure of obtaining the key
but without using any storage outside the chip. An error correction
technique are also suggested.

• Xilinx 2005. The patent implements mechanisms of public key crypto-
graphy. An external storage is used and transfer channel is encrypted
by a key [84].

• MIT 2006. In the year 2006 the Massachusetts Institute of Technology
describes in the patent [85] the procedure of the PUFs usage in key
generation for cryptographic purposes.

• Irdeto 2009. The patent [86] prevents the cloning attacks by the
PUFs.

Authentication schemes

In authentication schemes the verification phase is added to the identifica-
tion schemes.

• ICID 2002. Horng et al. use the position of unstable bits for the
authentication process [87].

• MIT, Intrinsic ID 2003. In this patent [88] a multi-bit input to a
PUF causes a device specific output.

• Philips 2004. Another authetication procedure, based on production
variability, was filed by Pim Tuyls et al. in 2004 [89].

1.3 Atmel AVR microcontrollers

The Atmel AVRTMis a family of 8-bit RISC microcontrollers produced by
Atmel. The AVR architecture was designed by two students at the Norwe-
gian Institute of Technology (NTH) Alf-Egil Bogen and Vegard Wollan and
developed by Atmel in 1996.

34

1.3. Atmel AVR microcontrollers

Microcontrollers produced by Atmel became attractive due to their ad-
vantages:

• Moderateness of prices. Major distributors are ready to sell inexpens-
ive components (under $5) in small quantity.

• Low barriers to entry. Well documented. Can be programmed in C.

• Stability.

• Built-in functionality. Have all you need for basic tasks. Built-in
RAM, FLASH, EEPROM, ADC.

• Low power consumption. This advantage extends field of utilization.

• Cross-platform support. Can be developed under any platforms with
free tools.

Atmel manufactures 3 variations of 8-bit microcontrollers: TinyAVR,
MegaAVR, XmegaAVR. These variations differ in the physical size, memory
size, number of inbuilt peripherals and applications.

1.3.1 Atmel ATmega1284P

AtmelATmega1284P [90] is the high-performance Atmel 8-bit AVR RISC-
based microcontroller which is equipped with 128KB ISP flash memory,
4KB EEPROM, 16KB SRAM, 32 general purpose I/O lines, 32 general
purpose working registers, a real time counter, three flexible timer/counters
with compare modes and PWM, two USARTs, a byte oriented 2-wire serial
interface, an 8-channel 10-bit A/D converter with optional differential input
stage with programmable gain, programmable watchdog timer with internal
oscillator, SPI serial port, a JTAG (IEEE 1149.1 compliant) test interface
for on-chip debugging and programming, and six software selectable power
saving modes. The device operates between 1.8-5.5 volts. By executing
powerful instructions in a single clock cycle, the device achieves throughputs
approaching 1 MIPS per MHz, balancing power consumption and processing
speed.

35

Chapter 2

Realisation

This chapter focuses on the investigation of the PUFs hardware properties
in SRAM cells. In the first section of this chapter particular attention will
be placed on the statistical parameters estimation. The following para-
meters will be determined and explained: Mean value, error rate, correl-
ation between bits, correlation between given chips, false acceptance rate
and false rejection rate. Further several post-processing and pre-processing
techniques of the error correction will be proposed. Finally the PUF design
process will be presented and PUF proposal based on test chips will be
given.

2.1 Measurement Results.

It is important to clarify the environmental conditions in which the meas-
urements are done. As we know [7,91,92] environment influences the PUFs
output a lot. The chips are tested at room temperature (20◦C). More than
thousands of measurements are done with ten ATmega1284 microcontrollers
under different conditions (various power-off times from 1 second to 1 hour
and output can be pre-initialized). Each time SRAM cells were dumped
and saved into log files using hexadecimal format. Statistical analysis of
the log files will be given in this section. Therefore, the response binary se-
quence is 131072 bits which is retrieved from 16KByte memory of the chip.
The initial settings are room temperature, 30 min power-off time, random
state of memory (unchanged before powering on). These settings were used
to determine the response. The results of further measurements will be
compared with the initial measurement and error rate will be estimated.

37

2. Realisation

2.1.1 Mean value

The unpredictability of the output is one of the main PUF properties. Thus
the values of the SRAM cells “0” and “1” should be distributed uniformly,
it means the amount of 0’s and the amount of 1’s should be equal. In an
ideal case the arithmetical mean value of the SRAM cells should be around
0.5 and defined as:

µ =
1

n

n∑

i=1

xi, (2.1)

where n is the number of cells and xi is i
th bit in the response string.

Mean value of the ten test chips are calculated with mean.pl script (see
the enclosed CD) and the results are represented in Tab. 2.1.

Chip 4F 5F 6F 7F 8F 9F AF CF DF EF
µ 0.71 0.71 0.72 0.72 0.71 0.72 0.73 0.76 0.71 0.72

Table 2.1: Mean value of ten test chips

If the output values “1” and “0” of the SRAM cells are distributed
equally then the mean value of different chips is in a binomial distribution.
The probability density function for the binomial distribution is defined as

(
n

k

)

pk(1− p)n−k, (2.2)

where n is the number of cells in SRAM (n = 131072), k is the number
of occurring “1” (0..n), and p is the probability that “1” occurs (p = 0.5).

Fig. 2.1 shows the results of ten test chips on the binomial probability
density function. Since the response of the chips is distributed binomially,
the mean values are placed on top of probability density function.

All mean values are close to each other but a bit far from the ideal value
µ = 0.5. A strong bias toward “1” can be noticed. The bias can effect the
predictability. Further measurements will allow to understand the bias and
exclude or minimize the effect. But even such deviation can be accepted
for some applications and it depends on what the data are used for.

It would be good to figure out the binomial proportion confidence in-
terval (CI). It can help us have a better understanding of how strong the
bias is and how far is the mean from the ideal value. CI relies on approx-

38

2.1. Measurement Results.

Figure 2.1: Mean values plotted against the binomial density probability
curve. The measured mean values (in the circled area) are somewhat far
away from the ideal value of 0.5.

imating the binomial distribution with the normal distribution and can be
determined as follows:

CI = p± z1−α/2

√

p(1− p)

n
, (2.3)

where p is the probability of occurrence “1”, n is the number of bits in
the bit string (n = 131072), z1−α/2 is the 1 − α/2 percentile of a standard
normal distribution, α is the error percentile.

A 95% confidence interval can be considered as the accepted level there-
fore the error α is 5%, and 1 − α/2 = 0.975. Using the table of Laplace
transforms z1−α/2 = 1.96. Since the expected probability p = 0.5, Formula
2.3 gives us:

CI = 0.5± 1.96

√

0.5(1− 0.5)

131072
≈ 0.5± 0.003 (2.4)

Therefore, all the mean values of the chips are far from the confident
interval.

39

2. Realisation

2.1.2 Error rate

One of the main PUF requirement is a stable response under a wide range
of conditions. Every request/response procedure should produce the same
output, or at least have a negligible deviation. The error rate, commonly
expressed as the Bit Error Rate (BER), can be estimated by calculating the
Hamming distance (number of different bits between a pair of values).

The measured value is called intra-chip Hamming distance HDintra. We
suggest to use the first PUF output as the basis of comparision with all
futher PUF outputs. Hamming distance here is the difference between the
current output and the first one. An ideal PUF should have HDintra = 0,
but from practical measurements we can expect the HDintra between 5 and
20 percent over the whole region of operations [4, 22]. Our measurements
are done at room temperature, power-off time is 30 min, memory is used
as it is. Tab. 2.2 contains the results:

Chip 4F 5F 6F 7F 8F 9F AF CF DF EF
min HDintra 2% 2% 2% 4% 2% 2% 2% 2% 2% 1%
max HDintra 2% 2% 2% 4% 2% 2% 2% 2% 25% 2%
avg HDintra 2% 2% 2% 4% 2% 2% 2% 2% 2% 2%

Table 2.2: Intra-chip Hamming distance of ten test chips

From Tab. 2.2 we can observe very stable output for all test chips.
HDintra is near 2%. Only once max HDintra reaches a 25% level which
could be connected with a data transfer error.

Another measurement that could be interesting for estimating the error
rate of the SRAM PUF is HDintra calculated for all test chips in the whole
region of operation, even when including variations of the power-off time
(from 2 sec to 1 hour), pre-initialization of the memory cells with zeros, and
small temperature variations. This measurement should show how stable
the output of SRAM cells is. And if there is any noise influence on it. More
than 500 tests are done for each chip and the results are shown in Tab. 2.3:

Chip 4F 5F 6F 7F 8F 9F AF CF DF EF
min HDintra 2% 2% 1% 1% 2% 1% 1% 1% 2% 1%
max HDintra 2% 25% 9% 21% 2% 9% 20% 9% 9% 26%
avg HDintra 2% 4% 8% 11% 2% 7% 11% 9% 3% 10%

Table 2.3: Intra-chip Hamming distance of ten test chips over all range of
operation

40

2.1. Measurement Results.

0

20

40

60

80

100

120

0.01 0.027 0.044 0.061 0.078 0.095 0.112 0.129 0.146 0.163 0.18

F
re
q
u
en
cy

Error Rate

Intra-chip Hamming Distance of the chip 6F

Figure 2.2: Error rate of PUFs. Intra-chip Hamming distance of chip 6F

The more tests the bigger dispersion of the output bit strings. The
average values of all chips are in and around the accepted range of 5-20% [4,
22]. But the maximal values are quite high sometimes. From the frequency
distribution of the values we can observe how often it happens.

Fig. 2.2 shows the frequency distribution of HDintra values of the chip
6F. It was chosen because a rather high value is observed in Tab. 2.3. We
can see that one group of values is around 2% level and the other one is
around 11-18%. It may have happened because of the environment influence
but which parameter had an effect on it will be figured out in the further
experiments. Nevertheless all the parameters are in the accepted range.

The error rate is an important parameter of PUFs properties which
is used in the selection of the suitable error correction codes in the next
section.

2.1.3 Correlation between bits

Detectable correlation between cells of the same SRAM chip would result
in reducing the number of unique combinations and would decrease the
security resistance to brute-force attacks. In an ideal PUF cells must not
affect each other. Here we analyze the PUF output as binary sequence for
the Low periodic autocorrelation and Good aperiodic autocorrelation [73].

41

2. Realisation

Figure 2.3: Autocorrelation of the SRAM PUF chip 6F

The periodic autocorrelation of a binary sequence a={ai} of period N
is defined by

Ca(τ) =
N−1∑

i=0

(−1)ai+ai+τ , 0 ≤ τ ≤ N − 1 (2.5)

Ca(τ) = ±1 says about the correlation between bits and in contrast,
Ca(τ) = 0 does not show any correlation at lag τ .

The aperiodic autocorrelation of a binary sequence a={ai} of length N
is defined by

Aa(τ) =
N−1−τ∑

i=0

(−1)ai+ai+τ , 0 ≤ τ ≤ N − 1 (2.6)

In the design of binary sequences, the low aperiodic autocorrelation is
known to be much more difficult to achieve than the low periodic autocor-
relation [93]. But anyway we should analyze both of them.

We may observe slow decreasing function with respect to the lag. The
bits are correlated only at lag τ = 0, which is obviously the bit correlated
with itself. For small lag values the correlation is around 0.19, and for big
lag values the correlation is even less and is equal to 0. This is true for all
the test chips. So we may conclude that the correlation is negligible [22]
and the chips are suitable.

42

2.1. Measurement Results.

2.1.4 Memory effect

The measurement shows how previously written data affect the output at
the next readout. Two tests were prepared. In the first one SRAM PUF
cells were pre-initialized. After two seconds the chip was powered on and
memory state was dumped. The second test is the same as the previous
one but in the first step the memory is untouched. Compare the results of
the two tests in Tab. 2.4.

Chip 4F 5F 6F 7F 8F 9F AF CF DF EF
test A, avg µ,% 71 73 74 73 72 73 74 76 73 73
test B, avg µ,% 70 73 74 74 71 72 74 75 72 73
A, avg HDinra,% 2 4 4 4 2 4 4 4 3 3
B, avg HDinra,% 2 3 4 4 3 3 4 3 3 4

Table 2.4: Memory effect measurements

Memory effect is not observed in Tab. 2.4. Neither the bit error rate
nor the mean values of SRAM PUFs have influence at room temperature.

2.1.5 Aging effect

Studies [9, 46] show the impact of aging on different type of circuit com-
ponents. We perform power-off time analysis to observe the effect of aging
on SRAM PUF. A test chip is taken and HDintra and µ are measured for
different values of power-off time (from 2 sec to 30min).

The parameters are stable enough all the power-off time round (see
Fig. 2.4). There is no influence of power-off time. Perhaps there is some
influence [6] but in micro-seconds dimension which can not be measured
due to lack of technical resources.

2.1.6 Correlation between the chips

As we already know from the theoretical part of the work any PUF has two
main properties. The first one is the stable response and has no correlation
within internal structure. This property was discovered in the previous
measurements. The second main property of PUF is uniqueness. PUF
has to produce such output which should definitely identify PUF. Roughly
speaking there is no the same PUF output.

The correlation between different chips can be analyzed by calculating
inter-chip Hamming distanceHDinter. Ideal PUF should haveHDinter=50%.

43

2. Realisation

Figure 2.4: SRAM PUF on power-off time scale chip 6F

There is no correlation between chips if the mean HDinter of all possible
chip pairs is 50%.

The measured HDinter of the ten test chips is shown in Tab. 2.5.

Chip 4F 5F 6F 7F 8F 9F AF CF DF EF
4F 41% 41% 41% 41% 41% 40% 40% 40% 41%
5F 40% 40% 40% 40% 40% 39% 40% 40%
6F 40% 40% 40% 39% 38% 40% 40%
7F 40% 40% 39% 38% 40% 40%
8F 41% 40% 39% 40% 40%
9F 40% 39% 40% 40%
AF 38% 40% 40%
CF 39% 39%
DF 40%
EF

Table 2.5: Inter-chip Hamming distance of ten test chips

The mean value of all HDinter is 40% which is a bit far from the optimal
value of 50%.

An alternative approach to detect whether correlation between chips
occurs is to calculate mean values over all available chips [2]. The previously
shown method is more common and preferable. But it does not identify the

44

2.1. Measurement Results.

same output over all chips. Since we suspect the test chips of the same
response in some bits it would be good to choose another approach for
inter-chip correlation detection. A suitable approach is to calculate the
mean value of each bit in the response over all test chips:

µ(j) =
1

N

N∑

i=1

xji, (2.7)

where N is the amount of chips, j is a sequence number of bit in the
PUF response. The results are represented as a heat-map diagram in Fig.
2.5.

In our test scenario, 2.64% cells (black) have the same output over all
chips and over all operations. There are no cells that have never had “1”.
And just a thousandth of one percent have had “1” a few times. Most
of SRAM cells changed their state to “1” in more than 50% of the tests.
It confirms the results of the previous measurements about a strong bias
toward “1”. Frequency distribution of the PUF cell with respect to bitwise
correlation is shown on Fig. 2.6.

We may notice a strong bias toward “1” again. It confirms the results of
the previous measurements. There are no cells that have never been used.
A thousandth of one percent have been used just a few times. Most of
SRAM cells are accessed in more than 50% of the tests. From the previous
measurements we know that 70% of SRAM cells are pre-initialized with “1”
after powering up. At the best they should be around 50% and figure with
Inter-chip bitwise correlation should be like density function of binomial
distribution.

2.1.7 FAR and FRR

Assume we have a database on a server. The database stores the chip
identities (fingerprints). These fingerprints were obtained during enrollment
phase when all chips are tested. During the identification phase a chip
sends request to the server. The server compares ID from the request with
database entries. The chip is identified if there is an entry in the database
when the Hamming distance between its value and request ID is below
predefined values. If there is no such entry in the database the server will
reply with rejection.

Some errors can happen:

1. if the accepted level is too high then a wrong chip will be identified.
False Acceptance.

45

2. Realisation

Figure 2.5: Inter-chip bitwise correlation of SRAM PUF cells. a) Intensity
of writing b) Stable cells over all test chips

2. if the accepted level is too low then no entries will be found. False
Rejection.

Different approaches can be found in literature [22,33] False Acceptance
Rate, False Detection Rate and False Rejection Rate. Performing these
measurements help to describe identification performance of a system [2].

46

2.1. Measurement Results.

0

2000
4000

6000
8000

10000
12000

14000
16000

18000
20000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
re
q
u
en
cy

Bitwise correlation

Inter-Chip Bitwise Correlation

Figure 2.6: Inter-chip bitwise correlation of SRAM PUF cells

False Acceptance Rate:

FAR =
NFA

NAA
∗ 100%, (2.8)

where NFA is the number of false accepted attempts, NAA is the number
of attacker attempts.

False Rejection Rate:

FRR =
NFR

NIA
∗ 100%, (2.9)

where NFR is the number of false rejections, NIA is the number of identi-
fication attempts.

The relationship between FAR, FRR and Hamming distance is shown
in Fig. 2.7.

The green doted line represents the threshold for correct FAR and FRR.
Moving the line to the left: wrong IDs may not be accepted but the num-
ber of rejections increases. Moving the line to the right: any ID may be
accepted.

In our case the relationship between FAR and FRR is shown in Fig. 2.8

17Retrieved from [2]

47

2. Realisation

Figure 2.7: FAR and FRR: a) Small number of SRAM PUF cells b) Large
number of SRAM PUF cells 17

Figure 2.8: Intra-chip and Inter-chip Hamming distance. The vertical line
represents the Equal Error Rate

According to the measurements the threshold is around 35%. This point
is called the Equal Error Rate. It means the server can accept chip ID with
35% deviation in Hamming distance value. The values can be obtained al-
gebraically. Suppose we deal with Gaussian distribution then the following
parameters can be derived from test data:

HDintra : µintra = 6.741%; σintra = 5.957;

HDinter : µinter = 41.467%; σinter = 1.416;

48

2.2. Error correction

FRR and FAR can be expressed as follows:

FRR =
1

σ
√
2π

∫
∞

HDmax

e
−

1

2

(

x−µintra
σintra

)2

dx ∗ 100% (2.10)

FAR =
1

σ
√
2π

∫ HDmax

−∞

e
−

1

2

(

x−µinter
σinter

)2

dx ∗ 100% (2.11)

For HDmax = 35% FAR and FRR can be derived from 2.10 and 2.11 by
substitution variables µintra, µinter, σintra, σinter: FAR ≈ 0.0002 and FRR ≈
0.0001.

2.1.8 Summary

The summary table A.1 in Appendix represents the measurement result
from the 10 test chips. According to the results, the initial SRAM state of
chips is suitable to be used as a PUF. All measured statistical properties
are within feasible ranges. The results of the correlation between bits and
correlation between chips turned out to be very good. The response output
of chips is quite stable since intra-chip Hamming distance stays small. The
results are not influenced by power-off time or memory pre-initialization be-
fore power-off. However, a strong bias on the output toward “1” is observed
that can effect the predictability since the number of likely combinations
reduces.

Close similarity of the results show that all ten chips were designed in
the same way.

The following section covers Error Correction techniques that allow cor-
rect errors in the PUFs responses and make them more stable.

2.2 Error correction

The output of SRAM PUF is very noisy. Depending on the environment
PUF cells show error rate of 10% and more [36]. This fact is confirmed
by scientific researches [74] and our measurements in the previous section
(BER is around 3% with the maximum level of 16%). Since we can uniquely
identify each chip by estimating its Hamming distance only thus for some
applications e.g. identification, such noisy PUF output is more than enough.
For the most part of applications e.g. key generation, authentication, such
PUF output can not be accepted. Thus some techniques for the response
stabilization should be applied.

49

2. Realisation

2.2.1 Approach: Using more than one PUF cell for

the error reduction

Here we suggest to compress the response of 3 SRAM cells into 1 PUF bit.
The output should be determined by the majority decision. It means the
states of three cells: 000, 001, 010, 100 will produce “0” at the output.
Otherwise, “1” is generated for the states: 111, 110, 101, 011. Simulation
results will answer the question: does this method reduce errors in the
output. The measurements are done for the combining of 3, 33 and 99
SRAM cells. The results are listed in Tab. 2.6

bits 4F 5F 6F 7F 8F 9F AF CF DF EF
1 2.0 2.0 8.3 10.5 1.9 7.0 10.4 8.8 1.9 9.9
3 2.0 2.1 9.0 10.4 1.9 9.0 13.4 9.0 1.9 10.0
33 5.0 4.1 13.3 16.0 5.1 11.7 17.3 11.2 4.2 14.8
99 9.2 8.5 16.1 19.8 7.1 16.6 21.2 14.2 8.5 17.1

Table 2.6: Average BER in %, before and after majority decision

The results in Tab. 2.6 show that there is no improvement in the bit
error rate after combining SRAM cells. Always the bit error rate increases
after the majority decision. Moreover the more bits are combined the worse
results are achieved. The results for the 99 bits are even worse than for 33
and much more worse than for 3 bits combining.

The situation can be described algebraically to prove or disprove the
simulation results. Assume that p is the probability of error occurring in
one bit. Then the probability of error occurring after 3-bit combining has
to be sum of probabilities:

p =
1

2
p0 +

1

2
p1, (2.12)

where p0 is the probability of error occurring at nominal “0” output, p1 -
at nominal “1”. Since p0 = p1 then p = p0

For p0 is true:

p0 = p(error in 000, 001, 010, 100) =

= p(error in 000) + p(error in 001, 010, 100) =

=
1

4
(3(pp(1− p)) + ppp) +

3

4
(2p(1− p)(1− p) + pp(1− p) + ppp) = ...

=
3

2
p− 3

2
p2 + p3 (2.13)

50

2.2. Error correction

Figure 2.9: Using more than one PUF cell for the error reduction

From 2.12 and 2.13 the probability to meet error after combining of 3
cells is p = p0 = 3

2
p − 3

2
p2 + p3 which is a bit higher than without cell

combining for the bit error range between 0% and 30% (see Fig. 2.9).

Now algebraically proved and shown in our measurements that it is not
possible to achieve better results in the output stabilization by combining
some SRAM cells logically.

2.2.2 Averaging output

Over the previous measurements the Hamming distance was calculated as
follows: response of SRAM is compared with the first one. In case the first
SRAM output is the noisiest and full of errors then all next measurements
should have the high bit error rate. In this approach the first output to
appear will be replaced with the average output from set of measurements.
Table 2.7 contains the results of BER measurements over all test chips when
the average value of 10 and 100 outputs was taken.

Table 2.7 shows an improvement after applying the technique of aver-
aging first N SRAM outputs. Note that this technique does not exclude
errors but allows to mitigate the effect of the noisy responses. The big dis-
advantage is the complexity of usage - it could be a bit pricey to perform
many tests during initialization phase. Therefore, the previous two hypo-
theses show that it is not possible to reduce the bit error rate by algebraic

51

2. Realisation

avg of 4F 5F 6F 7F 8F 9F AF CF DF EF
1 2.06 2.04 8.32 10.47 1.91 7.07 10.42 8.82 1.95 9.93
10 2.06 2.04 5.97 6.22 1.93 2.13 4.03 2.25 2.07 3.91
100 2.06 2.04 2.31 2.47 1.92 2.13 3.15 2.25 1.96 2.48

Table 2.7: BER after averaging output, %

manipulation of output cells without helper data. Another approach should
be implemented to avoid errors at SRAM output.

2.2.3 Hamming codes

Previously considered methods of the error reduction didn’t allow to make
the output of SRAM more stable. Next approaches will create the helper
data that will be used for the recovering the SRAM PUF output. The main
idea is that in order to provide the stable output we need to include some
extra information.

The Hamming code [94], and specifically the version with an additional
parity bit Hamming(8,4) could be applied for the test chips. Hamming(N,n)
is the hamming code of N-bit length long and containing n-bit of data. Thus
the redundancy in the code is R = N

n
= 8

4
= 2.

Algorithm. The SRAM PUF output is divided into 8-bit binary strings.
For each of them the helper data is calculated. The helper data contains 4
parity bits for the error correction. The applied technique corrects only one
error in 8-bit binary string. It means that the ideally if the SRAM output
has only one error in every 8 bit sector of its memory then Hamming(8,4)
can correct errors in the PUF outputs with BER = 1

8
≈ 12, 5%.

The practical implementation of the Hamming Codes approach on the
ten test chips gives the results in Tab. 2.8.

BER Ham(8,4) 4F 5F 6F 7F 8F 9F AF CF DF EF
min before 1.9 1.9 1.8 3.6 1.8 1.6 1.7 1.7 1.9 1.7
max before 2.1 2.1 13 17 2.0 11 18 14 2.0 16
avg before 2.0 2.0 8.3 10 1.9 7.0 10 8.8 1.9 9.9
min after 0.1 0 0 0.6 0 0 0 0 0.2 0.2
max after 1.0 0.9 9.0 15 1.1 9.1 14 13 1.9 9.7
avg after 0.8 0.8 4.3 6.7 0.6 4.2 6.0 5.9 1.1 7.3

Table 2.8: BER after Hamming(8,4), %

52

2.2. Error correction

The first thing to notice is that errors are distributed uniformly over
all SRAM memory. It can be observed from the decreasing values of BER
(HDintra). All the test chips have better output after applying the technique
than it was before. In some cases it allowed to correct errors completely.
But we know that theoretically possible error correction threshold is around
12.5% because Hamming(8,4) corrects only one bit in an 8-bit binary string.
Since we have some values of BER bigger than the threshold (Tab. A.1)
not all PUF outputs can be corrected. Therefore this technique is not
acceptable for some use cases.

2.2.4 BCH code

BCH Code is another block code approach of the error correction codes.
The power of such a code depends on the block length and the helper data
length. An example of BCH Code is the Reed-Solomon code, that has good
error correction rate especially with regard to burst error. But since it
is shown in the previous section (Hamming Codes) the SRAM output of
the test chips contains uniformly distributed errors then the Reed-Solomon
code is not suitable for the SRAM PUF.

In BCH(n, l, dmin), n is the block length, l is the length of the original
data, dmin is the amount of parity bits which is the minimal Hamming
distance between the code words. BCH corrects (dmin − 1)/2 errors. As an
example BCH(15,6,5) is able to correct 2 bits of error in a block of 15 bits.

It’s very important to select correct BCH code values that will show the
best results. It usually depends on the type of processing data. But even
at its best result we can not correct all errors in the PUFs cells. Because
theoretically possible threshold is around 2/15 ≈ 13% and the practically
achievable result is around 6.21% [2].

Also we should mention high complexity of BCH Code implementation
and not all micro-controllers are capable of handling the complexity of it
[95].

2.2.5 Repetition code

The repetition code is a very simple error correction code in comparison
with BCH and Hamming codes. The idea behind the Repetition code R(n)
is to repeat transmitted bit n times [96, 97] and then make the majority
decision. The repetition code is described as very powerful error correction
code that reduces error rate up to BERs of 50% [2]. But such performance
takes the high redundancy value, R(N) = N

n
= N . For example, the R(7)

has redundancy coefficient 7 and capable to correct errors in 3 bits. Clearly

53

2. Realisation

Figure 2.10: Repetition code.
Initialization.

Figure 2.11: Repetition code.
Key generation.

the repetition code is the best error correction technique for the PUFs, but
only if there is enough memory to store redundancy data.

The following principle can be proposed as the repetition code imple-
mentation on SRAM cells (Fig. 2.10): at the initialization phase some
sequential read-outs are done. The result of it are the binary strings of
power-up values od each SRAM cell. Then an auxiliary sequence generated
by the first bit of the string. Then the XORing of power-up sequences and
the auxiliary sequences generates the error correction data. During the next
readouts just generated error correction bits will be used to reduce the error
rate.

Fig. 2.11 shows the nominal readout phase: the error correction bit
string is XORing again with the new power-up values. The major decision
of the resulting sequence is one output bit. Fig. 2.11 represents a five
bit repetition code R(5). It has reduction coefficient of 5 and capable to
recover 2 bit errors. If there are more than 2 errors in the sequence the
wrong output bit is generated.

In Tab. 2.9 the performance of different repetition code length is shown:
3 bit, 7 bit, 15 bit and 31 bit.

The bit error rate is decreasing slowly with regards to repetition factor.
The first line in Tab. 2.9 is the repetition code with length 1 bit. It means
no repetition code is applied.

The result of repetition code applying on the ten test chips is shown in
Tab. 2.10:

The output of all chips becomes more stable (0.13-0.29%). Some exper-

54

2.3. Preselection

Length BER, avg
R(1) 2.06
R(3) 1.67
R(7) 0.81
R(15) 0.21
R(31) 0.09

Table 2.9: BER of the chip 4F after Repetition code, %

R(15) 4F 5F 6F 7F 8F 9F AF CF DF EF
before 2.06 2.04 8.32 10.47 1.91 7.07 10.42 8.82 1.95 9.93
after 0.21 0.19 0.22 0.31 0.07 0.19 0.15 0.29 0.25 0.13

Table 2.10: BER before and after Repetition(15), %

iments succeeded to get almost errorless output after applying repetition
codes [91]. As a result the repetition code shows the best performance but
also the highest redundancy over all error correction codes. And it can
be easily implemented on any type of chip. At the same time BCH and
Hamming codes are not computational feasible for many chips.

We can judge from the results of the experiments that some SRAM
cells have randomly unstable states. Resulting from the errors after the
repetition with long length. Perhaps it is a good idea to mark such cells
and exclude them from the PUF, in other words to perform preselection.

2.3 Preselection

ECC can be considered as post-processing approach that can be implemen-
ted in order to correct the number of errors in the PUFs output. It looks
reasonable to implement some kind of pre-processing techniques that reduce
BER in a way that error correction gets less complex or even unnecessary.

Preprocessing techniques work during the initialization phase and can
require to have some helper data that will be used in the correction of errors
later. The main advantage of preprocessing approaches compared to ECC
is that no additional complex calculations are neccessary during readout
phase.

Different pre-processing approaches are proposed in the literature [2, 6,
7,11]. Most of them such as PUF-parallelization, PUF-biasing, Preselection
techniques require low-level hardware access.

55

2. Realisation

Figure 2.12: Concept of preselection techniques18

During preselection only those cells are selected that generate a stable
result under any conditions. (various temperature, power-off time, voltage
and etc). We can expect the cells to change their state once they are likely
to change it again. The cells which always generate the same output are
called stable and correspondingly the cells producing the erroneous output
are called unstable.

Obviously unstable cells can be detected during the initial phase by
crossing them out from the memory array (Fig. 2.12). The result of
preselection is decreasing the bit error rate. Here a new parameter of PUF
performance - efficiency can be introduced and can be calculated as:

ε =
number of all cells

number of stable PUF cells
(2.14)

Marking unstable cells and their future excluding from the PUF output
are done by means of multiple readouts. SRAM memory measured several
times and the cells that provide the same output over all readouts are
marked as stable. The rest of the cells are not used any more. This simple
measurement is done without getting into hardware level.

Table 2.11 contains the result of detecting stable cells in the test chips:
All chips have nearly the same statistical characteristics. The average

efficiency over all test chips is around 90% which is quite a big value and tells
us that about 10% of SRAM memory have random nature. The heatmap
of SRAM state of several test chips are shown in Fig. 2.13.

18Retrieved from http://www.springerimages.com

56

2.3. Preselection

Parameter 4F 5F 6F 7F 8F
stable 0 20.32% 20.01% 20.73% 24.21% 24.35%
stable 1 67.78% 68.17% 68.29% 67.47% 67.33%
efficiency 88.10% 88.18% 89.02% 91.68% 91.68%

Parameter 9F AF CF DF EF
stable 0 23.78% 20.73% 21.98% 22.37% 21.77%
stable 1 67.21% 67.90% 68.28% 67.50% 68.31%
efficiency 90.99% 88.63% 90.26% 89.87% 90.08%

Table 2.11: Preselection multiple readout

The black spots in Fig. 2.13 are stable cells that can be used as the
PUF output. The light spots are unstable cells which change their state
from time to time. It may be noticed that unstable cells are distributed
over all SRAM and not accumulated in one region. Measurements show
that 90% of SRAM cells can be used in the PUF output. Studies show
inverse proportionality of efficiency to stability [2]. Typically, the higher
the efficiency, the lower the stability. Thus the application should define
required PUF cells and stability factor.

Another interesting question of preprocessing techniques is whether all
test chips provide stable output for some SRAM cells. Then these cells can
be taken out of further use. Measurements show that even for ten test chips
there are not so many stable cells. The result is in Tab. 2.12 and in Fig.
2.14.

Parameter Value
stable 0 0%
stable 1 2.64%

Table 2.12: Number of stable and unstable cells over all test chips

At a first glance, the preselection technique based on multiple readout
seems to be a good approach but in practice different problems occur. First,
measurements confirm a strong bias toward ‘1’ and at that time all test
chips have stable SRAM output with the number of stable cells of 90%
that leads to predictable PUF output. Amount of stable cells over all
test chips under different conditions measurements can not allow to reduce
the number of useless cells in the PUFs output. Moreover in order to get
useful statistical data many readouts should be done which has proportional
impact on the production cost [6]. There are some preselection approaches

57

2. Realisation

Figure 2.13: Heatmap of memory state a) chip 6E b) chip AE. Each pixel
represents one SRAM cell. Black pixels represent stable cells, light pixels
represent unstable cells.

such as parallellization of PUF cells, PUF biasing, preselection using pre-
charging and time based preselection [2]. But all of these methods require
an access on low hardware level.

58

2.4. PUF-design proposal

Figure 2.14: Stable (black) cells over all test chips

2.4 PUF-design proposal

So far we have analyzed some measurements of initial SRAM contents
(Paragraph 2.1). In order to correct errors the pre- and post- processing of
the SRAM response are proposed (Paragraph 2.2, 2.3). After all, we have
enough information in order to suggest a method for constructing a PUF
based on such initial SRAM contents. And later we propose some possible
usage of it.

2.4.1 Concept of the SRAM PUF without ECC

Before starting an in-depth study of the SRAM PUF constructing it would
be good to answer a very simple question: Is it possible to use the SRAM
cells to construct a PUF without any post- or pre-processing techniques?
The answer is yes, but it is true within limits - just a few applications can
be proposed for given ten test microcontrollers.

According to the statistical parameters of the test chips, the initial
power-up values of SRAM cells can be used as a PUF output for chip
identification. Since the maximal HDintra does not exceed 25% value (see
Tab. A.1 in Appendix) and at the same time the minimal HDinter is at
least 39%, all tested chips can be uniquely identified. More than 2000 test
measurements are done and we may be fully confident of that.

59

2. Realisation

All test chips can be identified by using at most 10 bits (see Tab. 2.13).
But in general it is recommended to store a full dump of stable SRAM
cells that determine a unique sequence because the number of stable bits
over the whole region of operations decreases with increasing the number of
observed test chips. Over the whole region of operations for the test chips
we can select 44035 cells (33.6% of total). Later, if we exclude repeated
from them, we will get 22.6% of cells which should be stored in database.

bit 4E 5E 6E 7E 8E 9E AE CE DE EE
2720 0 1 0 0 0 0 1 0 0 0
6025 0 1 0 0 1 0 0 0 0 0
14043 0 0 0 0 0 1 1 0 0 0
19200 0 0 0 0 0 0 0 1 0 0
29607 0 0 0 0 0 0 0 1 0 1
42816 0 1 0 1 0 0 0 0 0 0
61001 1 1 0 0 0 0 0 0 0 0
89249 0 1 0 0 0 0 0 0 1 0
97604 0 0 1 0 0 0 0 0 0 0
122565 0 1 0 0 0 0 0 0 0 0

Table 2.13: Numbers of bits identify the ten test chips

We have reason to believe that the amount of stable bits over the ob-
served test chips will end (see Tab. 2.14). Even sooner they will not be
enough to identify the chip uniquely. But it can be seen in Tab. 2.14 that
the Hamming distance between the SRAM output of different chips is stable
throughout the measurement range. Consequently we suggest to store not
only stable bits but the full dump of SRAM output which is 16 Kbytes.

of chips # of stable bits average HDinter

2 82.9% 39%
4 51.4% 39%
8 37.7% 39%
10 22.6% 39%

Table 2.14: Amount of stable bits and Hamming distance over observed
test chips.

The design of such PUF without any error correction modules should
look like this. A database on a server stores the SRAM outputs (16 Kbytes

60

2.4. PUF-design proposal

fingerprints). These fingerprints are SRAM dumps that were obtained dur-
ing initialization phase. During the readout phase (identification) a chip
sends request to the server. The server compares ID from the request with
database entries.

The chip is identified if:

1. the Hamming distance between the values in the database and the
request value is bigger than 39%,

2. there is an entry in the database when the Hamming distance between
its value and request ID is below 25%.

If there is no such entry in the database the request is refused and the
chip is not identified. We should mention that after the measurements of
more than ten test chips the thresholds (HDinter = 39% HDintra = 25%)
can be moved closer to each other. Clearly the more test chips the closer
thresholds.

2.4.2 Concept of the SRAM PUF with ECC

We ascertained that the response of the SRAM cells is erroneous and is not
suitable for the most part of applications e.g. key generation, authentica-
tion. Thus some techniques should be applied in order to make the output
more stable. As we showed in Paragraph 2.3 the preprocessing approach
deals with access on low hardware level usually. The preselection method
does not give much advantage. And also it’s a bit pricey to implement it.

Therefore only the postprocessing techniques from Paragraph 2.2 could
be feasible to construct quite reliable and suitable PUF. In the PUF-design
we suggest to use one of the error correction codes or a combination of
them.

Microcontrollers Atmel AVR ATmega1284P provide an SRAM of 16
Kbytes and nonvolatile memory of 128 Kbytes. In this case, a PUF can be
implemented easily. According to the measurements such PUF has a stable
response enough to order to generate keys.

The general PUF construction using ECC is shown in Fig. 1.17. The
procedure of the PUF design consists of two phases: the initialization phase
(enrollment) and the working (readout) phase. During the initialization
phase the microcontroller is powering up and the SRAM states are readout.
An auxiliary data are generated and will be used later to correct errors in
the SRAM response. This data are saved in nonvolatile memory.

It’s important to make sure that:

61

2. Realisation

131072131072

131072 131072

ERROR ERROR

SRAM

Readout 1 Readout 2

Decoder

FLASH

Encoder

Readout 1

Initialization phase

Readout phase

Figure 2.15: Concept of the SRAM PUF implementation with ECC support

1. Communication between SRAM and microcontroller needs to be se-
cure otherwise it can be observed and the PUF output recovered. The
securest SRAM is a SRAM inside the microcontroller.

2. SRAM are not accessible directly. It means neither any third-party
software has an access to SRAM blocks nor the PUF bits are available
on the microcontrollers pins.

3. Error correction code contains information of the PUF output. Re-
covered ECC means the PUF is known.

The concept of the PUF using SRAM is shown in Fig. 2.15. In order
to implement such concept two parts of software are needed. The first
one dumps the SRAM states (Readout 1) represented in Fig. 2.15 as the
combination of error sequence and pure SRAM response. Then the Encoder
of the Error Correction Code generates the correction stream and saves it
on the nonvolatile memory (FLASH).

The second part of software is XORing of the SRAM output (Readout
2) and the error correction data from the NV memory. The error correction
data is used to correct errors in the current SRAM PUF response. Therefore
the result of this operation is the readout from the initial phase, Readout 1.

62

2.4. PUF-design proposal

In order to define which phase should be performed during a current
readout, the initialization bit can be used. E.g. if the bit is not set, the soft-
ware performs the initialization phase: reads startup output of the SRAM
and generates the error correction data which is stored on the flash. After
all these steps the initialization bit is set.

The concept can be slightly improved to mitigate the influence of the first
readout on the result. Usage of the average number of readouts is analyzed
in Paragraph 2.2. Errors still remain but the technique of averaging has
allowed to smooth the high bit error rates of some test chips. As a result
the bit error rates of all test chips have become about 2% even for those
chips which have the bit rate of 10% at the first readout.

2.4.3 ECC using the repetition code

The concept of PUF implementation using SRAM cells has been discussed
in broad terms already. Now we shall go into detail and investigate such
important questions, as: which correction technique should be implemented
in ECC, how many SRAM cells are needed for the PUF construction, how
reliable the PUF is going to be, for which applications such PUF is suitable,
etc.

The summary of the error correction techniques in Section 2.2 is given
in Tab. 2.15

Technique Redundancy Effective range 19

Repetition, R(n) n <50%
BCH code, BCH(15,6,5) 2.5 <13.3%

Hamming code, Hamming(8,4) 2 <12.5%

Table 2.15: Summary of the ECCs

Since the bit error rate in some cases can be as high as 19% (see Tab.
A.1 in Appendix), the BCH code and Hamming code can not be applied.
Indeed they can be used but in combination with the Repetition code im-
plementation. At the same time the repetition code is capable to correct
errors in 50% of bits in the SRAM response. Therefore we suggest using the
encoder/decoder with the repetition code in the PUF-design process (Fig.
2.15).

The initialization phase for the Repetition(7) is shown below:

19Theoretical upper bound. The practical values are smaller.

63

2. Realisation

READOUT 1 :

131072 bits
︷ ︸︸ ︷

1001001
︸ ︷︷ ︸

7 cells

| 0111011
︸ ︷︷ ︸

7 cells

| | 0110001
︸ ︷︷ ︸

7 cells

. . .

7x 1st bit : 1111111 | 0000000 | | 0000000 . . .
correcting code : 0110110 | 0111011 | | 0110001 . . .

initialization phase

The power-up values of the SRAM cells are split into 7 bits long segments
(Repetition(7) algorithm). For each of the segments one bit is chosen as the
nominal bit. We define the first bit as the nominal. The nominal bit
generates the nominal sequence which just copies the nominal bit within its
segment. The nominal sequence and readout produce the correction code
by XORing operation. The correction code is stored in Flash memory.

The key generation phase for the Repetition(7) is shown below:

correcting code : 0110110 | 0111011 | | 0110001 . . .
READOUT 2 : 0001000 | 0011001 | | 0100101 . . .

XORed : 0111110
︸ ︷︷ ︸

more 1

| 0100010
︸ ︷︷ ︸

more 0

| | 0010100
︸ ︷︷ ︸

more 0

. . .

key : 10 0 . . .

key generation

Retrieved from the Flash correction data are XORed with the current
SRAM output. The ideal values after XORing are 1111111 or 0000000.
In such cases, there were no errors in the SRAM output. After that, the
majority decision of each 7-bit segment is used to generate one bit. Obvi-
ously the length of the generated key is 7 times less than the number of the
SRAM cells used.

Table 2.16 contains properties of the different repetition code length.

Repetition code Key length HDinter HDintra Error
R(3) 32768 0.31 1.8E-2 1
R(7) 16384 0.20 1E-2 1
R(11) 8192 0.12 8E-5 0.48
R(31) 4096 0.01 2.4E-10 1E-6

Table 2.16: Performance of the ECC with different repetition factor

In the 2nd column the maximum possible key lengths are shown after
applying correction technique. Since the error correction code with the

64

2.4. PUF-design proposal

repetition factor n generates 1 output bit from n SRAM cells, therefore

the key length can be calculated as
⌊
of SRAM cells

#ofoutputbits
= 131072

n

⌋

.

The average Hamming distance between different chips is presented in
the 3rd column in Tab. 2.16. It can be seen that HDinter converges to zero.
This is the result of the strong bias on the output toward “1”. The bigger
repetition factor the closer keys generated by the chips. From this point of
view, the repetition code of 3 bit length long is preferable to 31 bit - the
Hamming distance is bigger and the range of unique chip ids is wider.

HDintra in the 4th column in Tab. 2.16 shows how stable the SRAM
output after correction is. That is the theoretical value which is equal to
bit error correction of segments and can be calculated as the probability of
error occurring in more than 50% of bits in a segment. In other words, the
probability that ECC can not correct occurring errors. For the repetition
factor of 7:

P {ε > 3} =
7∑

ε=4

(
7

ε

)

· pε · (1− p)7−ε

where ε is the bit error rate in the SRAM output, the average value over
test chips is around 8% (see Tab. A.1). It can be seen for example, that
ECC with repetition factor of 7 reduces the initial error rate of 8% to an
error rate of 1%. And repetition factor of 31 reduces the initial error rate
to 2.4E-10.

The key generation capabilities of the repetition factor are listed in the
last column of Tab. 2.16. Since the bit error rate in the segments is known
now, the probability of error occurring in the key can be calculated as:

P {error after Repetition(n)} = 1− (1− BERsegment)
n

The correction with the repetition factor of 3 and 7 generates the key
with error (keys differ in at least one bit) in 100% trials. The repetition
factor of 11 allows to generate the stable key with probability of 51%. The
errors remain only in 1E-4% of cases after correction by ECC with repetition
factor of 31.

To conclude the measurements, the bigger repetition factor the stronger
key, the smaller key length, the fewer chips can be enumerated. In an ideal
PUF with key generation of 4096 bits long, 24096 chips can be identified and
have the stable key. But the given test chips have the strong bias toward
1 thus not all bits in the key can be used. Estimated value is around 250

chips.

65

2. Realisation

2.4.4 Test runs of designed PUF with ECC

In order to estimate the performance of the key generation concept, 3000
PUF outputs of ten test chips were analyzed under different conditions.
The result was exactly as expected, no errors were generated by the PUF
with error correction implementation. The theoretical probability of error
occurrence in PUF output with 8% BER of a single bit and a reputation
factor of 31, for generation of a 4096-bit key, is around 0.0001% (see Tab.
2.16).

2.5 Summary

In this chapter, the properties of ten ATMega 1284P microcontrollers were
analyzed with respect to SRAM PUF properties. Mean value, error rate,
correlation between bits, correlation between chips were measured. Meas-
urements were done under different conditions - various power-off times
from 1 second to 1 hour, with either no memory pre-initialization or pre-
initialization with 0s. It is significant to notice a strong bias toward “1” of
the state of SRAM cells, which strongly influences the SRAM PUF prop-
erties.

We should mention that the SRAM-based PUFs have high error rates.
It means that for most applications e.g. key generation or authentication,
such PUFs are not usable in “unprocessed” form, and some error correction
approaches need to be implemented. In 2.2 the error correction codes were
analyzed. It was found out that only Repetition code technique is capable
to correct errors in the PUF output.

Later, two proposals for the SRAM PUF design were presented. The
first concept is intended for applications of identification. And it was shown
that the ten tested chips can be identified using 10-bit values. Another
concept was proposed for key generation applications and contains error
correction code implementation. This approach requires to store 16 Kbytes
of helper data in a nonvolatile memory. If these correction data are lost,
they can be regenerated easily and the key generation will continue.

Both concepts were tested at different conditions over all test chips and
have shown stable results.

66

Conclusion

The main question of this thesis was to develop PUF-design based on power-
up SRAM contents of Atmel AVR microcontrollers. This section concludes
the thesis with providing a summary, an overview of results of statistical
analysis, and finaly with a section on limitations and future work.

Summary

This thesis started with a literature overview of known PUF approaches
and their properties. Special attention was paid to the SRAM-based PUFs
which became “hot” topic nowdays since many electronic devices have em-
bedded SRAM. The results of PUF implementations were collected from
various researches and summarized to serve as references for our own PUF
concept.

Furthermore, statistical analysis of the power-up SRAM contents of ten
Atmel ATmega1284P microcontrollers was presented. The measurements
were done under a wide variety of conditions – various power-off times
from 1 second to 1 hour, with either no memory pre-initialization or pre-
initialization with 0’s. Mean value, error rate, correlation between bits,
correlation between chips were analyzed.

The result of the analysis was used in constructing a PUF on the mi-
crocontrollers. Pre- and post-processing techniques were applied in order
to meet requirements of two application scenarious: key generation and
chip identification. As pre-processing techniques the simple selection meth-
ods were used. These methods did not include methods with an access on
hardware level since there were no technical possibility to implement them.
As post-processing techniques various error correction codes were applied.
Some of them such as Hamming code and BCH were not capable to cor-

67

Conclusion

rect errors in the SRAM PUF output. And only the performance of the
Repetition codes was able to stabilize the output.

Later, two proposals for a SRAM PUF design were presented. The first
concept is intended for applications of identification. The PUF concept
of identification was improved by adding an error correction code imple-
mentation and therefore can be used for key generation applications. The
proposed concepts are reliable in the sense that if these correction data are
lost, they can be regenerated easily and the key generation will continue.

Both concepts were tested in different conditions over all test chips and
have shown stable results. Measurement results for the ten test chips are
listed in Appendix and can be used as references for future researches.

Results

Population sampling of ten ATMega 1284P microcontrollers was estimated
with respect to SRAM PUF properties. More than 3000 measurements were
done under different conditions: with or without memory pre-initialization
with 0’s; for various power-off times from 1 second to 1 hour. The SRAM
memories of the chips were dumped and prepared for statistical analysis by
converting the hexadecimal ouput to the binary format.

Statistical analysis consists of evaluating parameters, such as mean
value, bit error rate, correlation between chips, correlation between bits,
false acceptance rate and false rejection rate. It turned out, that all meas-
ured parameters are within statistically feasible ranges. Neither the cor-
relation between bits nor the correlation between chips was detected. The
SRAM output of the chips is stable enough since intra-chip Hamming dis-
tance stays small. There is no noise influence - the results are stable with
respect to power-off time and preliminary manipulation with memory. It
can be concluded that the SRAM of chips are suitable to be used as a PUF.

We found out that all chips have the strong biases concentrated near
“1”, which influences the SRAM PUF properties. This also means that
it is uncommon for most cells to start-up in different states over multiple
measurements. Unfortunately, the observed effect causes a predictability
since the number of likely combinations reduces.

Furthermore, it was proved that the SRAM output has high error rates.
It follows from calculating intra-chip Hamming distance over multiple meas-
urements. Later, it was shown that 8% average Bit Error Rate can not be
corrected by most error correction codes, meaning that for some applica-
tions, e.g. key generation or authentication, such SRAM in “unprocessed”

68

Limitations and further research

form is unsuitable for the PUF data. Therefore some kind of error correction
needs to be applied.

We found out that neither the output averaging technique, nor BCH
codes or Hamming codes are capable to correct errors in SRAM-based
PUFs, since even 25% level of BER was detected during the measurements.
But repetition codes have shown very good results and proved their suit-
ability in the PUF design. It turned out that applying the repetition code
with a factor of 31 allows to achieve the stable PUF output in 99.9999% of
cases.

As a result of the measurements two SRAM PUF designs were proposed.
The first concept is intended for applications of identification. It was shown
that the ten tested chips can be identified using 10-bit values. Another
PUF concept is suitable for key generation applications. It suggests using
an error correction code, especially repetition code with factor 31, which
has shown good test results. This approach requires to store 16 Kbytes of
helper data in a nonvolatile memory. This is temporary data which can
be easily regenerated in case of loss. The output of this PUF concept is a
4Kbit long key. It looks sufficient for quite a big population of chips.

Taking into account the results of the measurements, we consider it
proved that SRAM in the Atmel ATmega1284 microcontrollers can be used
to construct a PUF.

Limitations and further research

At a first glance, the generation of 4Kbit long key seems to be good enough
but some facts must be taken into account. First, the detected strong
bias toward ‘1’ reduces the number of likely combinations and leads to
predictable PUF output. Tests with the ten chips showed that the estimated
population of all possible identificators is around 250 only. Moreover the
‘birthday paradox’ decreases this value by half. Therefore the resulting
amount of possible unique chips is 225 which is not so big as it looked in
the beginning. So the bias can be a limiting factor in some use cases.

Further research could extend this by analyzing the SRAM output un-
der temperature and voltage variations. That can have possible effects on
the local mismatch of the internal components and therefore on the PUF
properties.

Further, more measurements with more test chips could estimate en-
tropy more accurately. Therefore the key length size could be defined more
precisely.

69

Conclusion

Moreover using preselection techniques could help get rid of error correc-
tion and construct different PUFs on Atmel AVR microcontrollers. Suitable
preselection methods should be based on additional measurements.

70

Bibliography

[1] Jorge Guajardo, Sandeep S. Kumar, Geert Jan Schrijen, and Pim
Tuyls. Physical Unclonable Functions, FPGAs and public-key crypto
for IP protection. In Field Programmable Logic and Applications, 2007.
FPL 2007. International Conference on, pages 189–195, 2007.

[2] C. Bohm and M. Hofer. Physical Unclonable Functions in Theory and
Practice. Springer-Verlag GmbH, 2012. ISBN 9781461450399.

[3] Blaise Gassend, Dwaine Clarke, Marten van Dijk, and Srinivas Deva-
das. Silicon Physical Random Functions. In ACM Conference on Com-
puter and Communications Security, CCS ’02, pages 148–160. ACM
Press, New York, NY, USA, 2002.

[4] Jorge Guajardo, Sandeep S. Kumar, Geert Jan Schrijen, and Pim
Tuyls. FPGA intrinsic PUFs and their use for IP protection. In Pascal
Paillier and Ingrid Verbauwhede, editors, Cryptographic Hardware and
Embedded Systems (CHES), volume 4727 of Lecture Notes in Computer
Science, pages 63–80. Springer Berlin / Heidelberg, Berlin, Heidelberg,
September 2007.

[5] D.E. Holcomb, W.P. Burleson, and K. Fu. Initial SRAM state as a
fingerprint and source of true random numbers for RFID tags. Pro-
ceedings of the Conference on RFID Security, 7, 2007.

[6] Maximilian Hofer and Christoph Boehm. An alternative to error cor-
rection for SRAM-like PUFs. In Proceedings of the 12th interna-
tional conference on Cryptographic hardware and embedded systems,
CHES’10, pages 335–350. Springer-Verlag, Berlin, Heidelberg, 2010.

71

Bibliography

[7] Gang Qu and Chi-En Yin. Temperature-aware cooperative ring os-
cillator PUF. In Hardware-Oriented Security and Trust, 2009. HOST
’09. IEEE International Workshop on, pages 36 –42, july 2009.

[8] A. Maiti and P. Schaumont. Improving the quality of a Physical
Unclonable Function using configurable Ring Oscillators. In Field
Programmable Logic and Applications, 2009. FPL 2009. International
Conference on, pages 703 –707, 31 2009-sept. 2 2009. ISSN 1946-1488.

[9] A. Maiti, L. McDougall, and P. Schaumont. The impact of aging
on an FPGA-based Physical Unclonable Function. In Field Program-
mable Logic and Applications (FPL), 2011 International Conference
on, pages 151 –156, sept. 2011.

[10] Christoph Bosch, Jorge Guajardo, Ahmad-Reza Sadeghi, Jamshid
Shokrollahi, and Pim Tuyls. Efficient helper data key extractor on
FPGAs. In Proceeding sof the 10th international workshop on Crypto-
graphic Hardware and Embedded Systems, CHES ’08, pages 181–197.
Springer-Verlag, Berlin, Heidelberg, 2008.

[11] Crina Costea, Florent Bernard, Viktor Fischer, and Robert Fouquet.
Analysis and enhancement of ring oscillators based Physical Unclon-
able Functions in FPGAs. In Proceedings of 2010 International Con-
ference on Reconfigurable Computing and FPGAs, volume 978-0-7695-
4314-7/10, pages 262–268. cancun, Mexique, December 2010.

[12] Haile Yu, Philip Heng Wai Leong, Heiko Hinkelmann, Leandro Möller,
Manfred Glesner, and Peter Zipf. Towards a unique FPGA-based iden-
tification circuit using process variations. In FPL, pages 397–402, 2009.

[13] Sandeep S. Kumar, Jorge Guajardo, Roel Maes, Geert-Jan Schrijen,
and Pim Tuyls. Extended abstract: The butterfly PUF protecting
IP on every FPGA. In Proceedings of the 2008 IEEE International
Workshop on Hardware-Oriented Security and Trust, HST ’08, pages
67–70. IEEE Computer Society, Washington, DC, USA, 2008.

[14] Mehrdad Majzoobi, Farinaz Koushanfar, and Srinivas Devadas.
FPGA-based true random number generation using circuit metasta-
bility with adaptive feedback control. In Proceedings of the 13th inter-
national conference on Cryptographic hardware and embedded systems,
CHES’11, pages 17–32. Springer-Verlag, Berlin, Heidelberg, 2011.

[15] Dominik Merli, Dieter Schuster, Frederic Stumpf, and Georg Sigl.
Semi-invasive EM attack on FPGA RO PUFs and countermeasures.

72

Bibliography

In Proceedings of the Workshop on Embedded Systems Security, WESS
’11, pages 2:1–2:9. ACM, New York, NY, USA, 2011.

[16] Amir Moradi, Alessandro Barenghi, Timo Kasper, and Christof Paar.
On the vulnerability of FPGA bitstream encryption against power ana-
lysis attacks: extracting keys from Xilinx Virtex-II FPGAs. In Pro-
ceedings of the 18th ACM conference on Computer and communications
security, CCS ’11, pages 111–124. ACM, New York, NY, USA, 2011.
ISBN 978-1-4503-0948-6.

[17] Sergey Morozov, Abhranil Maiti, and Patrick Schaumont. An ana-
lysis of delay based PUF implementations on FPGA. In Proceedings
of the 6th international conference on Reconfigurable Computing: ar-
chitectures, Tools and Applications, ARC’10, pages 382–387. Springer-
Verlag, Berlin, Heidelberg, 2010.

[18] M. Bhargava, C. Cakir, and K. Mai. Attack resistant sense amplifier
based PUFs (SA-PUF) with deterministic and controllable reliability
of PUF responses. In Hardware-Oriented Security and Trust (HOST),
2010 IEEE International Symposium on, pages 106 –111, june 2010.

[19] Leonid Bolotnyy and Gabriel Robins. Physically Unclonable Function-
based security and privacy in RFID systems. In Proceedings of the Fifth
IEEE International Conference on Pervasive Computing and Com-
munications, PERCOM ’07, pages 211–220. IEEE Computer Society,
Washington, DC, USA, 2007. ISBN 0-7695-2787-6.

[20] P. Tuyls, B. Škorić, S. Stallinga, A. H. M. Akkermans, and W. Ophey.
Information-theoretic security analysis of Physical Uncloneable Func-
tions. Financial Cryptography and Data Security, pages 141–155, 2005.

[21] Ravikanth S. Pappu. Physical One-Way Functions. PhD thesis, Mas-
sachusetts Institute of Technology, 2001.

[22] Roel Maes and Ingrid Verbauwhede. Physically Unclonable Func-
tions: A study on the state of the art and future research direc-
tions. In Ahmad-Reza Sadeghi and David Naccache, editors, Towards
Hardware-Intrinsic Security, Information Security and Cryptography,
pages 3–37. Springer Berlin/Heidelberg, Berlin, Heidelberg, November
2010.

[23] D.W. Bauder. An anti-counterfeiting concept for currency systems.
Research report PTK-11990, Sandia National Labs, Albuquerque, NM,
USA, 1983.

73

Bibliography

[24] Commission on Engineering Committee on Next-Generation Cur-
rency Design and National Research Council Technical Systems. Coun-
terfeit Deterrent Features for the Next-Generation Currency Design.
The National Academies Press, 1993.

[25] J.D. Buchanan, R.P. Cowburn, A.V. Jausovec, D. Petit, P. Seem,
G. Xiong, D. Atkinson, K. Fenton, D.A. Allwood, and M.T. Bryan.
Forgery: ’fingerprinting’ documents and packaging. In Nature, number
436(7050), page 475. Blackett Physics Laboratory, Imperial College
London, Jul 2005.

[26] P. Bulens, F.-X. Standaert, and J.-J. Quisquater. How to strongly link
data and its medium: the paper case. Information Security, IET, 4
(3):125–136, september 2010.

[27] R.S. Indeck and M.W. Muller. Method and apparatus for fingerprinting
magnetic media. US Patent No. 5365586, 1994.

[28] Reinhard Posch. Protecting devices by active coating. Journal of
Universal Computer Science, 4(7):652–668, July 1998.

[29] K.M. Tolk. Reflective particle technology for identification of critical
components. Conference/Event SAND–92-1676C; CONF-9207102–26,
Institute of Nuclear Materials Management (INMM) annual meeting,
Orlando, FL (United States), July 1992.

[30] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld. Physical One-Way
Functions. Science, 297:2026–2030, september 2002.

[31] B Gassend. Physical Random Functions. Master’s thesis, MIT, MA,
USA, 2003.

[32] J.W. Lee, Daihyun Lim, B. Gassend, G.E. Suh, M. van Dijk, and
S. Devadas. A technique to build a secret key in integrated circuits for
identification and authentication applications. In VLSI Circuits, 2004.
Digest of Technical Papers. 2004 Symposium on, pages 176–179, june
2004.

[33] Daihyun Lim, J.W. Lee, B. Gassend, G.E. Suh, M. van Dijk, and
S. Devadas. Extracting secret keys from integrated circuits. Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on, 13(10):1200
–1205, oct. 2005. ISSN 1063-8210.

74

Bibliography

[34] G. Edward Suh and Srinivas Devadas. Physical Unclonable Functions
for device authentication and secret key generation. In Proceedings of
the 44th annual Design Automation Conference, DAC ’07, pages 9–14.
ACM, New York, NY, USA, 2007.

[35] P. Tuyls, G.-J. Schrijen, B. Skoric, J. van Geloven, N. Verhaegh, and
R. Wolters. Read-proof hardware from protective coatings. In Cryp-
tographic Hardware and Embedded Systems Workshop, Lecture Notes
in Computer Science, pages 369–383. Springer, Yokohama, Japan, Oct
2006.

[36] Ying Su, J. Holleman, and B.P. Otis. A digital 1.6 pJ/bit chip iden-
tification circuit using process variations. Solid-State Circuits, IEEE
Journal of, 43(1):69 –77, jan. 2008. ISSN 0018-9200.

[37] Roel Maes, Pim Tuyls, and Ingrid Verbauwhede. Intrinsic PUFs
from flip-flops on reconfigurable devices. In 3rd Benelux Workshop
on Information and System Security (WISSec 2008), page 17. Eind-
hoven,NL, 2008.

[38] J. Guajardo, B. Skoric, P.T. Tuyls, S.S. Kumar, T. Bel, A.H.M. Blom,
and G.J. Schrijen. Anti-counterfeiting, key distribution, and key stor-
age in an ambient world via Physical Unclonable Functions. In Inform-
ation Systems Frontiers, volume 11, pages 19–41, 2009.

[39] Ryan Helinski, Dhruva Acharyya, and Jim Plusquellic. A Physical Un-
clonable Function defined using power distribution system equivalent
resistance variations. In Proceedings of the 46th Annual Design Auto-
mation Conference, DAC ’09, pages 676–681. ACM, New York, NY,
USA, 2009.

[40] Ulrich Ruhrmair. SIMPL systems: On a public key variant of Physical
Unclonable Functions. Cryptology ePrint Archive, Report 2009/255,
2009.

[41] Klaus Kursawe, Ahmad-Reza Sadeghi, Dries Schellekens, Pim Tuyls,
and Boris Skorić. Reconfigurable Physical Unclonable Functions – en-
abling technology for tamper-resistant storage. In 2nd IEEE Inter-
national Workshop on Hardware-Oriented Security and Trust - HOST
2009, pages 22–29. IEEE, San Francisco,CA,USA, 2009.

[42] Dinesh Ganta, Vignesh Vivekraja, Kanu Priya, and Leyla Nazhandali.
A highly stable leakage-based silicon Physical Unclonable Functions. In

75

Bibliography

Proceedings of the 2011 24th International Conference on VLSI Design,
VLSID ’11, pages 135–140. IEEE Computer Society, Washington, DC,
USA, 2011.

[43] R. Kumar, V.C. Patil, and S. Kundu. Design of unique and reli-
able Physically Unclonable Functions based on current starved inverter
chain. In VLSI (ISVLSI), 2011 IEEE Computer Society Annual Sym-
posium on, pages 224 –229, july 2011. ISSN 2159-3469.

[44] Saro Meguerdichian and Miodrag Potkonjak. Device aging-based Phys-
ically Unclonable Functions. In Proceedings of the 48th Design Auto-
mation Conference, DAC ’11, pages 288–289. ACM, New York, NY,
USA, 2011.

[45] Kurt Rosenfeld, Efstratios Gavas, and Ramesh Karri. Sensor Physical
Unclonable Functions. In HOST, pages 112–117, 2010.

[46] G. Selimis, M. Konijnenburg, M. Ashouei, J. Huisken, H. de Groot,
V. van der Leest, G.-J. Schrijen, M. van Hulst, and P. Tuyls. Evaluation
of 90nm 6T-SRAM as Physical Unclonable Function for secure key
generation in wireless sensor nodes. In Circuits and Systems (ISCAS),
2011 IEEE International Symposium on, pages 567 –570, may 2011.
ISSN 0271-4302.

[47] Aswin Sreedhar and Sandip Kundu. Physically Unclonable Functions
for embeded security based on lithographic variation. In Design, Auto-
mation Test in Europe Conference Exhibition (DATE), 2011, pages 1
–6, march 2011. ISSN 1530-1591.

[48] Koichi SHIMIZU, Daisuke SUZUKI, and Tomomi KASUYA. Glitch
PUF: Extracting information from usually unwanted glitches. IEICE
Transactions on Fundamentals of Electronics, Communications and
Computer Sciences, E95.A(1):223–233, 2012.

[49] Xiaoxiao Wang and Mohammad Tehranipoor. Novel Physical Unclon-
able Function with process and environmental variations. In Proceed-
ings of the Conference on Design, Automation and Test in Europe,
DATE ’10, pages 1065–1070. European Design and Automation Asso-
ciation, 3001 Leuven, Belgium, Belgium, 2010.

[50] K. Lofstrom, W.R. Daasch, and D. Taylor. IC identification circuit
using device mismatch. In Solid-State Circuits Conference, 2000. Di-
gest of Technical Papers. ISSCC. 2000 IEEE International, pages 372
–373, 2000.

76

Bibliography

[51] Y. Su, J. Holleman, and B. Otis. A 1.6pJ/bit 96variations. In Solid-
State Circuits Conference, 2007. ISSCC 2007. Digest of Technical Pa-
pers. IEEE International, pages 406–611, feb 2007.

[52] S. Stanzione, D. Puntin, and G. Iannaccone. CMOS silicon Physical
Unclonable Functions based on intrinsic process variability. Solid-State
Circuits, IEEE Journal of, 46(6):1456–1463, June.

[53] Vincent van der Leest, Geert-Jan Schrijen, Helena Handschuh, and
Pim Tuyls. Hardware intrinsic security from D flip-flops. In Proceedings
of the fifth ACM workshop on Scalable trusted computing, STC ’10,
pages 53–62. ACM, New York, NY, USA, 2010. ISBN 978-1-4503-
0095-7.

[54] Gyorgy Csaba, Xueming Ju, Zhiqian Ma, Qingqing Chen, W. Porod,
J. Schmidhuber, U. Schlichtmann, P. Lugli, and U. Ruhrmair. Ap-
plication of mismatched cellular nonlinear networks for physical cryp-
tography. In Cellular Nanoscale Networks and Their Applications
(CNNA), 2010 12th International Workshop on, pages 1–6, Feb.

[55] Boris Škorić, Pim Tuyls, and Wil Ophey. Robust key extraction from
Physical Uncloneable Functions. In Applied Cryptography and Network
Security (ACNS) 2005, volume 3531 of LNCS, pages 407–422. Springer,
2005.

[56] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith.
Fuzzy extractors: How to generate strong keys from biometrics and
other noisy data. SIAM J. Comput., 38(1):97–139, 2008.

[57] Ghaith Hammouri, Erdinç Öztürk, Berk Birand, and Berk Sunar. Un-
clonable lightweight authentication scheme. In ICICS, pages 33–48,
2008.

[58] Rebecca Angeles. RFID technologies: Supply-chain applications and
implementation issues. Information Systems Management, 22(1):51–
65, 2005. ISSN 1058-0530.

[59] Hagai Bar-El. Known attacks against smartcards, 2004.

[60] L. Batina, J. Guajardo, T. Kerins, N. Mentens, P. Tuyls, and
I. Verbauwhede. Public-key cryptography for RFID-tags. In Proceed-
ings of the Fifth IEEE International Conference on Pervasive Comput-
ing and Communications Workshops, PERCOMW ’07, pages 217–222.
IEEE Computer Society, Washington, DC, USA, 2007. ISBN 0-7695-
2788-4.

77

Bibliography

[61] Eric Simpson and Patrick Schaumont. Offline hardware/software au-
thentication for reconfigurable platforms. In Proceedings of the 8th in-
ternational conference on Cryptographic Hardware and Embedded Sys-
tems, CHES’06, pages 311–323. Springer-Verlag, Berlin, Heidelberg,
2006.

[62] U. Ruhrmair, Frank Sehnke, Jan Solter, Gideon Dror, Srinivas Deva-
das, and Jurgen Schmidhuber. Modeling attacks on physical unclonable
functions. In CCS 2010: Proceedings of the 17th ACM conference on
Computer and communications security, pages 237–249. ACM, New
York, NY, USA, 2010.

[63] Blaise Gassend, Daihyun Lim, Dwaine Clarke, Marten van Dijk, and
Srinivas Devadas. Identification and authentication of integrated cir-
cuits: Research articles. Concurr. Comput. : Pract. Exper., 16(11):
1077–1098, 2004. ISSN 1532-0626.

[64] Gabriel Hospodar, Roel Maes, and Ingrid Verbauwhede. Implications
of machine learning attacks on arbiter PUF-based challenge-response
authentication and secure key generation. Technical report, Cosic in-
ternal report, 2012.

[65] Dieter Schuster. Side-channel analysis of Physical Unclonable Func-
tions (PUFs). Master’s thesis, Technische Universität München, 2010.

[66] Pim Tuyls and Boris Škorić. Strong Authentication with Physical Un-
clonable Functions, 2007. 133–148 pp.

[67] D Lim. Extracting secret keys from integrated circuits. Master’s thesis,
MIT, MA, USA, 2004.

[68] Mathias Claes, Vincent van der Leest, and An Braeken. Compar-
ison of SRAM and FF PUF in 65nm technology. In Proceedings of the
16th Nordic conference on Information Security Technology for Applic-
ations, NordSec’11, pages 47–64. Springer-Verlag, Berlin, Heidelberg,
2012.

[69] Dieter K. Schroder. Negative bias temperature instability: What do
we understand? Microelectronics Reliability, 47(6):841–852, 2007.

[70] Robbert van den Berg. Entropy analysis of Physical Unclonable Func-
tions. Master’s thesis, Eindhoven University of Technology, 2012.

[71] E Seevinck, F J List, and J Lohstroh. Static-noise margin analysis of
MOS SRAM cells. October, 22(5):748–754, 1987.

78

Bibliography

[72] B. Cheng, S. Roy, and A. Asenov. The impact of random doping effects
on CMOS SRAM cell. In Proceeding of the 30th European solid-state
circuits conference ESSCIRC, 2004.

[73] Solomon W. Golomb, Guang Gong, Tor Helleseth, and Hong-Yeop
Song, editors. Sequences, Subsequences, and Consequences, Interna-
tional Workshop, SSC 2007, Los Angeles, CA, USA, May 31 - June 2,
2007, Revised Invited Papers, volume 4893 of Lecture Notes in Com-
puter Science. Springer, 2007.

[74] M Hofer and C. Bohm. Error correction coding for Physical Unclonable
Functions. In Austrochip, Workshop on Microelectronics, 2010.

[75] K Lofstrom. System for providing an integrated circuit with a unique
identification. US Patent No. 6161213, 2000.

[76] M. Marunaka. Method for identifying semiconductor integrated circuit
device, method for manufacturing integrated circuit device, semicon-
ductor integrated circuits device and semiconductor chip, 2001.

[77] Wuidart Luc, Bardouillet Michel, and Malherbe Alexandre. Extraction
of a binary code based on physical parameters of an integrated circuit.
US Patent No. 6836430, December 2004.

[78] William R. Bidermann. Using a time invariant statistical process vari-
able of a semiconductor chip as the chip identifier. US Patent No.
7291507, 2007.

[79] Heiko Koerner. Method for identifying electronic circuits and identi-
fication device. US Patent No. 7893699, 2007.

[80] Elroy M Lucer. Method of forming a unique number. US Patent No.
20110286293, November 2011.

[81] Toshiyuki Okayasu, Shigetoshi Sugawa, and Akinobu Teramoto. Elec-
tronic device identifying method. US Patent No. 7812595, 2008.

[82] Luc Wuidart, Michel Bardouillet, and Laurent Plaza. Diversification
of a single integrated circuit identifier. US Patent No. 7796759, 2002.

[83] David A. Barr. Security application using silicon fingerprint identific-
ation. US Patent No. 7577850, 2009.

[84] Stephen M. Trimberger. Copy protection without non-volatile memory.
US Patent No. 7941673, 2005.

79

Bibliography

[85] S. Devadas and B Gassend. Data protection and cryptographic func-
tions using a device- specific value. US Patent No. 7818569, 2010.

[86] Dekker. Gerrard. Johan. Preventing cloning of receivers of encrypted
messages. US Patent No. 2326043, 2009.

[87] Chi-Song Horng. Method of authenticating an object or entity using
a random binary ID code subject to bit drift. US Patent No. 6802447,
2002.

[88] Dwaine Clarke, Blaise Gassend, Marten Van Dijk, and Srinivas Deva-
das. Authentication of integrated circuits. US Patent No. 7840803,
2003.

[89] Pim Theo Tuyls, Theodorus Jacobus Johannes Denteneer, Johan
Paul Marie Gerard Linnartz, and Evgeny Alexandrovitch Verbitskiy.
Method and system for authentication of a physical object. US Patent
No. 8032760, 2004.

[90] Atmel. ATmega1284P. http://goo.gl/xcfCh, 2013. [Online; accessed
23-March-2013].

[91] C. Bohm, M. Hofer, and W. Pribyl. A microcontroller SRAM-PUF.
In Network and System Security (NSS), 2011 5th International Con-
ference on, pages 269 –273, sept. 2011.

[92] Sergei Skorobogatov. Low temperature data remanence in static RAM.
Technical Report UCAM-CL-TR-536, University of Cambridge, Com-
puter Laboratory, June 2002.

[93] Jonathan Jedwab. A survey of the merit factor problem for binary
sequences. In Proceedings of the Third international conference on
Sequences and Their Applications, SETA’04, pages 30–55. Springer-
Verlag, Berlin, Heidelberg, 2005.

[94] RWHamming. Error detecting and error correcting codes. Bell System
Technical Journal, 29(2):147–160, 1950.

[95] R. Micheloni, A. Marelli, and R. Ravasio. Error Correction Codes for
Non-Volatile Memories. Springer Publishing Company, Incorporated,
1st edition, 2008. ISBN 1402083904, 9781402083907.

[96] S. Lin and D.J. Costello. Error Control Coding: Fundamentals and
Applications. Prentice Hall, 2004. ISBN 9780130426727. LCCN
2004040060.

80

Bibliography

[97] Jorge Castineira Moreira and Patrick Guy Farrell. Essentials of Error-
Control Coding. Wiley, Chichester, 2006.

81

Appendix A

Measurements summary

Property Ideal # 4 # 5 # 6 # 7 # 8
Mean Value min, µ 50 70.56 56.45 67.44 65.93 71.42
Mean Value max, µ 50 70.90 82.88 82.94 82.41 71.78
Mean Value avg, µ 50 70.68 71.49 73.06 72.38 71.61

Error Rate min, HDintra 0 1.98 1.97 1.79 3.61 1.84
Error Rate max, HDintra 0 2.14 2.11 12.96 16.96 2.00
Error Rate avg, HDintra 0 2.06 2.04 8.32 10.47 1.91
Bits correlation, Rxx 0 <16 <16 <17 <15 <16

Chips correlation, HDinter 50 40 40 39 39 40

Property # 9 # A # C # D # E
Mean Value min, µ 67.81 27.62 70.84 67.78 49.77
Mean Value max, µ 82.65 83.98 86.19 81.69 83.16
Mean Value avg, µ 73.15 73.59 77.27 72.11 72.10

Error Rate min, HDintra 1.59 1.71 1.67 1.87 1.69
Error Rate max, HDintra 10.99 18.49 14.36 2.02 15.70
Error Rate avg, HDintra 7.07 10.42 8.82 1.95 9.93
Bits correlation, Rxx <17 <16 <18 <16 <17

Chips correlation, HDinter 40 39 39 40 40

Table A.1: Measurement results of chips

83

Appendix B

Acronyms

6T-SRAM six-transistor SRAM cell

ADC analog to digital converter

BER bit error rate

CI confident interval

CMOS complementary metal-oxide-semiconductor

CRP challenge-response pair

ECC error correction code

FAR false-acceptance rate

FPGA field-programmable gate array

FRR false-rejection rate

HD Hamming distance

IP intellectual property

IC integrated circuit

NFC near field communication

NTH Norwegian Institute of Technology

NV memory nonvolatile memory

OECD Organisation for Economic Co-operation and Development

85

B. Acronyms

PDF probability density function

POWF Physical One-Way Function

PUF Physical Unclonable Function

RFID radio-frequency identification

SNM static-noise margin

SRAM static random-access memory

TRNG true random number generator

86

Appendix C

Contents of enclosed CD

readme.txt.....................the file with CD contents description
scripts....................the directory with data processing scripts
logs the directory with log files contained memory dumps
data.............the directory with full calculations: summary tables,
post-processing logs, statistical analysis of the tested chips

thesis the directory of LATEX source codes of the thesis
thesis.pdf........................... the thesis text in PDF format
thesis.ps.............................. the thesis text in PS format

87

Appendix D

Publications of the author

D.1 Josef Hlaváč, Mikhail Platonov, Róbert Lórencz. PUF on a Simple
Microcontroller. The international workshop on Cryptographic ar-
chitectures embedded in reconfigurable devices CRYPTARCHI2012,
France, St-Etienne, June, 2012.

D.2 Mikhail Platonov. History of Physical Unclonable Functions. Pro-
ceedings of the CVUT Poster, Prague, May, 2013.

D.3 Mikhail Platonov, Josef Hlaváč, Róbert Lórencz. Using Power-up
SRAM State of Atmel ATmega1284P Microcontrollers as Physical Un-
clonable Function for Key Generation and Chip Identification. The
first workshop on Trustworthy manufacturing and utilization of secure
devices TRUDEVICE 2013, France, Avignon, May, 2013.

89

	Introduction
	Motivation
	Research goals
	Thesis overview

	State of the Art
	Physical Unclonable Functions
	PUF in general
	PUF properties
	PUF classification
	Advantages and disadvantages of PUFs
	The basic PUF applications
	Use cases
	Attacks

	SRAM PUF
	SRAM cell
	Statistical analysis of SRAM PUFs
	SRAM PUF implementation
	Patents

	Atmel AVR microcontrollers
	Atmel ATmega1284P

	Realisation
	Measurement Results.
	Mean value
	Error rate
	Correlation between bits
	Memory effect
	Aging effect
	Correlation between the chips
	FAR and FRR
	Summary

	Error correction
	Approach: Using more than one PUF cell for the error reduction
	Averaging output
	Hamming codes
	BCH code
	Repetition code

	Preselection
	PUF-design proposal
	Concept of the SRAM PUF without ECC
	Concept of the SRAM PUF with ECC
	ECC using the repetition code
	Test runs of designed PUF with ECC

	Summary

	Conclusion
	Summary
	Results
	Limitations and further research

	Bibliography
	Measurements summary
	Acronyms
	Contents of enclosed CD
	Publications of the author

