
MASARYK UNIVERSITY

FACULTY OF INFORMATICS

⑥✇✁✂✄☎✆✝✞✟✡☛☞✌✍✏✑✒✓✔✕✖✗✘✙✚✤✥✦✧★✩✪✫✬✭✮✰✱✲✳✴✵✶✷✸✹✺❁②❆⑤
Refactoring of

Sequence Chart Studio

DIPLOMA THESIS

Ondřej Bouda

Brno, 2013

Declaration

Hereby I declare, that this thesis is my original authorial work, which I have worked out

by my own. All sources, references and literature used or excerpted during elaboration

of this work are properly cited and listed in complete reference to the due source.

Brno, May 27, 2013

Ondřej Bouda

Advisor: RNDr. Vojtěch Řehák, Ph.D.

iii

Acknowledgement

I would like to express many thanks to my advisor, RNDr. Vojtěch Řehák, Ph.D., for his

guidance throughout this work.

v

Abstract

Sequence Chart Studio is a tool for formal modelling and verification of communication

protocols specified in Message Sequence Chart. It features a user-friendly graphical

user interface and algorithms for checking properties, computing differences between

specification and actual flows, rearranging diagrams, and several other functions. All

parts have been implemented as students’ work.

The tool was initially designed to work with messages as the only type of events on

communicating instances, and did not allow to reasonably extend it to support other

types of events. The purpose of this work was to refactor the application core to enable

further extensions. As a consequence, all the algorithms and other dependent code was

to be adjusted without affecting their functionality. A sequence of gradual steps was

performed, resulting in the core refactored successfully.

The refactoring was proven useful by actually extending Sequence Chart Studio

with two new types of events: local actions and conditions. Although the tool pays

attention to comply with the Message Sequence Chart recommendation, in case of con-

ditions, the formalism was found to be rather imperfect. An extended syntax and alter-

native semantics were proposed for conditions. Within the work, application core code

was reviewed, the object model was slightly simplified, and memory problems were

greatly reduced.

vii

Keywords

Sequence Chart Studio, Message Sequence Chart, refactoring, conditions, local actions,

formal methods.

ix

Contents

1 Introduction . 3

1.1 Sequence Chart Studio . 3

1.2 Message Sequence Chart . 4

1.3 The Goal of the Work . 5

2 MSC Elements . 7

2.1 Elements Supported in SCStudio . 7

2.1.1 Basic MSC . 8

2.1.2 High-Level MSC . 9

2.1.3 Time Restrictions . 10

2.1.4 Data Languages . 10

2.2 Local Actions . 10

2.3 Conditions . 11

2.3.1 MSC Recommendation Definition 11

2.3.2 Inconveniences of the Standard Definition 13

2.3.3 Alternative Conditions Proposal 14

3 Conditions Evaluation . 27

3.1 Restrictions over the Conditions Specification 27

3.2 SCStudio Algorithms for MSC Traversal 27

3.3 Traverser Algorithm . 28

3.3.1 Forward Traverser Algorithm . 28

3.3.2 Backward Traverser Algorithm . 30

4 Internal Structure Refactoring . 37

4.1 Initial State . 37

4.2 Enhancement Proposals . 39

4.3 Refactored State . 40

5 Implementation . 43

5.1 Local Actions . 43

5.2 Conditions . 43

6 Conclusions . 47

Bibliography . 49

1

Chapter 1

Introduction

The general topic addressed by this work is prevention of defects in the software de-

velopment process. The motivation is fairly trivial: the less defects, the higher quality

and, above all, the less money spent on development and maintenance.

Defects may arise at various stages of the development process, with various im-

portance, however. There is a consensus that the cost of defect removal depends on the

stage the defect is introduced in. E.g., [12] says: “The longer the defect stays in the soft-

ware food chain, the more damage it causes further down the chain,” and concludes

that early defects are more expensive. Hence, we mostly focus on the design phase.

This work specializes on the area of computer network protocols development. Par-

ticularly in this field, it is crucial to detect design shortcomings yet before the protocol

gets implemented and programmed into network devices. As mentioned by [3], lots

of companies use only structured English text for protocol specification, though. Com-

pared to formal specification, usage of natural language inherently yields more flaws,

as it is usually ambiguous and vague. Nonetheless, the mentioned companies regard

application of formal methods as a too expensive and time-consuming process. That

was the basis for creating and further development of Sequence Chart Studio.

1.1 Sequence Chart Studio

Sequence Chart Studio [21] (or SCStudio, for short) is a tool for formal modelling and

verification of communication protocols. It tries to remedy the aforementioned situa-

tion by helping with gradual adoption of formal methods.

First, it features a user-friendly graphical interface in which the communication gets

visualized so that the diagrams may simplify and clarify the textual specification. Since

the SCStudio frontend is implemented as a Microsoft Visio add-on, it not only utilizes

the features of Visio, but it integrates into the whole Microsoft Office suite. On top

of that, SCStudio enriches Visio with a custom set of features making communication

diagrams drawing easier.

Second, if the diagrams are drawn properly, checker algorithms may formally verify

that some properties are satisfied, or give a counterexample. A “proper” diagram is that

which adheres to the syntactical rules required by the formalism SCStudio uses.

Third, when the modelled system gets implemented, timestamped logs of the actual

communication may be imported into SCStudio, visualized, and checked whether the

3

1. INTRODUCTION

logged run of the system follows the specification of the protocol. Messages violating

the specification get highlighted and confronted with the expected behaviour, so it is

easy to identify a problem.

There are other notable features SCStudio offers, some of which get described later

in the following chapters. For a complete list, see the SCStudio documentation [1].

The formalism used by SCStudio for description of communication is Message Se-

quence Chart [9], referred to as MSC. It has been chosen for being powerful enough yet

intuitively readable, the latter of which is a prime requirement for any specification, as

emphasized, e.g., in [13].

1.2 Message Sequence Chart

This section briefly introduces the main features of the formalism, whereas Chapter 2

describes the MSC elements relevant for this work in more detail. For more precise

introduction to MSC, see Section 1 of the ITU-T Z.120 recommendation [9].

MSC is a high-level language for specifying asynchronous message-based commu-

nication systems. The standard specifies two forms, graphical and textual, the former

of which is designated for humans. Since it is visual, it gives overview of the modelled

system, is easy to understand, and as such will be preferred throughout the thesis. “The

textual form of MSC is mainly intended for exchange between tools and as a base for

automatic formal analysis.” [9]

Let us see an example MSC diagram in Figure 1.1. The diagram describes behaviour

of three communicating parties in the system: a client, a proxy and a server. The client

sends a register message to the proxy, which resends it to the server and confirms back

to the client. After receiving the confirmation, the client sends a request message to the

proxy, which then sends a response.

Any such diagram—specifying the communicating parties, messages sent among

them and other types of events—is referred to as basic MSC (BMSC). The MSC standard

also specifies another type of diagrams called high-level MSC (HMSC), which allow for

hierarchical specification of the modelled system. Using HMSC, one can decompose the

system into simpler parts.

“Intuitively, HMSC can be seen as a finite automaton where every state is

labelled by a BMSC1. Each run of the automaton represents a BMSC which

is the concatenation of the BMSCs along the run. Hence, an HMSC specifies

the set of BMSCs represented by all the (accepting) runs.” [3]

A sample HMSC diagram follows in Figure 1.2. The modelled system starts with

the client registration, which is specified in the Registration MSC diagram. The specifi-

cation follows with either Redirection diagram, after which the system is done, or Data

Transfer diagram, which may be performed repeatedly. The data-transfer branch ends

1. Or HMSC—an HMSC diagram may refer to another HMSC diagram.

4

1. INTRODUCTION

with the Checksum Verification. Note that it is not guaranteed that events from one ref-

erenced diagram may only get executed when events from the previous diagram are

finished—the HMSC really expresses the concatenation of BMSCs. Chapter 2.1.2 men-

tions more details.

1.3 The Goal of the Work

At the beginning of this work, there was a simple requirement: to extend Sequence

Chart Studio with two new types of objects that can be modelled—local actions (an

event representing an internal action of the instance it is attached to) and conditions

(restricting some behaviour of the modelled system). Although the latter is a non-trivial

extension, which touches all the algorithms traversing the diagrams, the main issue

was that the design of the data structure used for storing the objects did not allow

that (Chapter 4.1 describes the problem in detail). Hence the need for reworking, or

refactoring the application so that it could be extended as required.

The next chapter lists the MSC elements already supported by SCStudio and de-

scribes in detail the types of elements to be added: local actions and conditions. Chap-

ter 3 proposes the algorithm for evaluating the semantics of conditions. The main part,

Chapter 4, elaborates on refactoring SCStudio to make implementation of the new ele-

ments possible. The implementation itself is documented in Chapter 5. The last chapter

evaluates the accomplished work and proposes some further extensions.

5

1. INTRODUCTION

Client Proxy Server

register

register

ack

request

response

msc

Figure 1.1: A BMSC example.

Registration

Data

Transfer
Redirection

Checksum

Verification

HMSC Example

Figure 1.2: An HMSC example.

6

Chapter 2

MSC Elements

This chapter briefly describes part of the MSC recommendation relevant to this work

and support of the elements in SCStudio, with the focus on local actions and conditions.

A complete specification of these two types of elements is given in Sections 2.2 and 2.3.

2.1 Elements Supported in SCStudio

SCStudio supports most of the elements defined in the MSC recommendation [9]. It is

necessary to distinguish between support of the elements on the frontend and backend

level, though. The former allows the user to draw diagrams using some elements, but

the backend support enables the algorithms to actually take the elements into account

when verifying, redrawing, exporting or any other algorithmic processing of a diagram.

On the frontend, all the elements relevant to this work are already supported and

will be only slightly adjusted to meet the requirements. As such, frontend-level ele-

ments support will not be further discussed.

The SCStudio backend consists of:

• the internal data structure for representing the MSC diagrams,

• verification algorithms (e.g., race-condition checker or time-race checker),

• transformers (e.g., the beautify transformer able to automatically arange the ele-

ments in the diagram, or the tighten time transformer—more on this in [19]),

• other algorithms (e.g., the find flow function able to compare MSC diagrams and

show differences between them),

• import/export algorithms.

The internal data structure is in the centre of the application. All other parts depend

on it, thus, with a change in the data structure, all other backend parts must be altered

appropriately. As examined later, it is the data structure which will have to be extended,

with all the implications regarding the other parts, for SCStudio to support local actions

and conditions. There is also some “glue” code for transforming the elements between

frontend and backend, which will get modified, too.

7

2. MSC ELEMENTS

The rest of this section describes the MSC elements already supported by the SC-

Studio backend. Basically, it is just a brief summary of other students’ work, namely [2]

and further extensions [11], [19], [14], [18], [4], and [20].

2.1.1 Basic MSC

A BMSC diagram contains a set of instances, representing the communicating parties

within the modelled system. An instance is depicted as a vertical line on which events

are attached. There might be various types of events described later in this subsection.

Not all instances of the system must be present in every BMSC diagram—those not

mentioned are considered empty, having no events.

The events on an instance are totally ordered by their placement on the instance

line from top to bottom, i.e., event e is specified to occur sooner than event f iff e is

above f on the instance line. The MSC recommendation defines special instance seg-

ments, though, called coregions [9, Section 7.1], depicted as rectangles with dashed

sides. Events within a coregion, which are attached to the rectangle sides, are generally

unordered. The user may specify explicit order of any two events in the coregion by

drawing an ordering line1. An instance may contain several areas of either form. The

order within an area is given by whether it is a strict-order (line) area or coregion area,

while two events from different areas are ordered by the relative order of the areas on

the instance.

There are only two types of events supported by the SCStudio backend so far—a

message sending event and message receiving event, which denote sending or receiv-

ing a message, respectivelly. There are three kinds of messages defined by the MSC

recommendation, all of them supported:

complete message — sent and received by concrete (distinct) instances, delivered in

any finite time (recall the communication model in MSC is asynchronous);

lost message — sent by a concrete instance, but not delivered anywhere;

found message — a message which “appears from nowhere” [9, p. 24], received by a

concrete instance.

A complete message is a special type of element in MSC in that it adds further

restrictions on order of events: a message sending event precedes the corresponding

message receiving event. The (partial) order of events in a BMSC is thus defined as the

reflexive and transitive closure of union of order given by instances and messages. This

order is called the visual order of the given BMSC.2

Figure 2.1 demonstrates all the BMSC concepts supported by the SCStudio backend.

There is an extra type of element not mentioned yet—a comment, which may be bound

to any event. Comments only serve documentation purposes, and are ignored by the

algorithms.

1. Of course, to form a valid order, the reflexive and transitive closure is considered.
2. See Definition 4.7 in [2] for a more formal definition.

8

2. MSC ELEMENTS

2.1.2 High-Level MSC

For high-level specification of the modelled system, HMSC diagrams are used, which

relate particular BMSCs and even other HMSCs together, governing the behaviour of

the (sub)system. Essentially, an HMSC diagram consists of:

• start node, representing the (sub)system starting point, depicted as ▽;

• MSC reference nodes, referring to other MSC diagrams, depicted as
☛
✡

✟
✠;

• end nodes, denoting exit points of the described (sub)system, depicted as △;

• flow lines, connecting the nodes, depicted as either — (line) or −→.

Following the introduction of HMSCs as finite automata in Section 1.2, the semantics

of HMSC elements may be summed up to the following:

• the automaton states are represented by start node, reference nodes and end nodes;

• the initial state is denoted by start node;

• the final states are denoted by end nodes;

• the transitions are given by flow lines.

It is important to note that reference nodes do not work as synchronization barriers.

The semantics of HMSC is not such that all the events would have to be executed within

the automaton state, and only after that the next state could be entered. The instances

do not get synchronized before or after a reference node. Instead, some events may get

executed before other events, regardless of whether they are specified in a “preceding”

or “following” referenced diagrams—as illustrated in Figure 2.2 and an equivallent

MSC in Figure 2.3.

The SCStudio backend supports all the HMSC elements listed above. Multiple flow

lines may be connected to a single point of a node. To simplify the drawing, connection

points (depicted as ◦) may be used in HMSC diagrams, which serve as auxiliary points

for connecting multiple flow lines anywhere in the drawing. They are also supported

by the SCStudio backend. Comments are supported in HMSC, too. They have the same

semantics as in BMSC—they serve documentation purposes only, and are ignored by

algorithms.

The remaining type of element SCStudio backend supports in HMSC is condition

node (depicted as ��
❅❅

❅❅
��). Following the introduction of HMSC semantics, conditions

serve as transition guards in the corresponding finite automaton. Compared to the MSC

recommendation, however, the support is very limited in SCStudio: condition nodes are

stored in the internal data structure, but ignored by the algorithms (with one exception,

mentioned in Section 2.3).

A summary example follows in Figure 2.4.

9

2. MSC ELEMENTS

2.1.3 Time Restrictions

Besides the basic MSC elements described in the previous two subsections, SCStudio

supports time restrictions (both on frontend and backend), as specified in [9, Section

11]. The purpose of the extension is to provide means to quantify time in the protocol

specification instead of the implicit any finite time.

There may be a time interval, or a set of intervals, assigned to any pair of events

or HMSC node connection points. The SCStudio documentation [1, Section Tighten

Time] contains some nice examples on this. The time extension also allows for speci-

fying timestamps for events. This is particularly useful for analysing real traffic of the

implemented protocol.

2.1.4 Data Languages

Despite the elements described in the previous subsections, for further reference, one

concept not actually supported by SCStudio has to be mentioned—the concept of data

languages. Even though MSC describes communication, the actual communication data

have not been mentioned yet. To stay independent of particular application, the MSC

recommendation leaves a concrete data language as a parameter, and only enforces

some essential requirements on it. E.g., SDL [8] or C may be used for data specification.

Data expressions may be used as contents of messages, parameters of timers, at-

tributes of instances, etc. Unfortunately, data concepts are not supported in SCStudio.

2.2 Local Actions

The MSC recommendation describes actions as follows:

“In addition to message exchange the actions may be specified in MSCs. An

action is an atomic event that can have either informal text associated with

it or formal data statements. Informal text is enclosed in single quotes to

distinguish it from data statements.” [9, Section 4.9]

There are two notes worth mentioning. First, an action is an event, thus, it is only rel-

evant to BMSC diagrams. Second, the “formal data statements” refers to the concept

of incorporating data in MSC—the statement should be applied to the internal state

maintained with the instance during evaluation of the MSC diagram.

SCStudio frontend already supports actions—it is possible to draw diagrams with

them. Regarding the backend, support for actions has to be added—a new type of event

has to be defined in the internal data structure and algorithms should be altered to

handle such an event. Since SCStudio has no notion of instance internal state and by no

means supports the data languages, only informal text is to be considered as the action

contents. Thus, an action event has the same semantics as a comment for the purpose

of this work, therefore, it is to be ignored by the algorithms.

10

2. MSC ELEMENTS

2.3 Conditions

Conditions are the other new element type to be added to SCStudio. The frontend

already supports them somehow—it defines the condition shapes both in BMSC and

HMSC, and enables the user to enter custom text in them. Their semantics, as defined

by the MSC recommendation, is not implemented, though. Only HMSC conditions are

present in the internal data structure and they are completely ignored by algorithms.3

In this section, the conditions get specified as defined by the MSC recommenda-

tion, the definition is confronted with some practical requirements, and the semantics

is proposed for extending SCStudio.

2.3.1 MSC Recommendation Definition

The MSC recommendation introduces conditions as follows:

“Conditions can be used to restrict the traces4 that an MSC can take, or

the way in which they are composed into High-Level MSCs. There are two

types of condition: setting and guarding conditions. Setting conditions set

or describe the current global system state (global condition), or some non-

global state (nonglobal condition). In the latter case the condition may be

local, i.e., attached to just one instance.

Guarding conditions restrict the behaviour of an MSC by only allowing the

execution of events in a certain part of the MSC depending on their values.

This part, which is the scope of the condition, is either the complete MSC or

the innermost operand of an inline expression5 or a branch of an HMSC. The

guard must be placed at the beginning of this scope. The condition is either

a (global or nonglobal) state, which the system should be in (as defined by

prior setting conditions), or a Boolean expression in the data language.”

The graphical syntax is presented in Figure 2.5: on the left side, a setting condition is

shown, which sets condition variables X,Y, and Z; on the right, there is a guarding

condition checking for status of condition variables X and Y .

X, Y, Z when X, Y

Figure 2.5: An example of syntax of setting and guarding condition, respectivelly.

3. The only algorithm considering the contents of condition nodes is the Monte Carlo simulation, which
takes percentage values from them and traverses the diagram using random-walk weighted by these val-
ues. Unfortunately, the algorithm is documented in no printed source, only a brief tutorial is given in [1,
Section Monte Carlo Simulation].
4. A trace is a linearization of all events in the diagram, respecting the event partial order. In other words,
if one timestamped each event in a run of the system, the events ordered by the timestamps would give a
trace.
5. Inline expressions allow for specifying alternative branches, loops, exception handling and other struc-
tural constructs within a BMSC, as defined in [9, Section 7.2]—which SCStudio does not support, though.

11

2. MSC ELEMENTS

A conditions usage example follows in Figure 2.6, which specifies a connection loop.

Due to the first guarding condition, the whole diagram may only be executed if condi-

tion variable Disconnected has previously been set. A connection request is made with

one of two possible outcomes: either the connection is established and the condition

variable Connected is set to indicate that, or the connection fails. In the latter case, two

condition variables are set: Disconnected and Failed. Due to this, when the connection

fails repeatedly, the system may hang up and quit. Further examples may be found in

the MSC recommendation Sections 9 and 17.1.

According to the recommendation, conditions have several characteristics:

type — whether it is a setting or a guarding condition; there is a special type of guard-

ing condition: otherwise ;

content — what is the content of the condition: either a set of condition variable names

(those conditions are referred to as system-state conditions in the rest of the text),

or a boolean expression in the data language, with the exception of the otherwise

condition, which has no content; formal syntax follows later in this subsection;

range — set of instances the condition affects;

scope — within what scope of the diagram the condition has effect (see the definition

in the quotation above).

Conditions Placement

The placement of conditions is restricted by the following rules in [9, Section 4.7]:

• “If instance a and instance b share the same <condition> then for each mes-

sage exchanged between these instances, the <message input> and <message

output> must be placed either both before or both after the <condition>.”

• “A guarding condition must be placed at the beginning of its scope, where a

scope is either a whole MSC, an operand of an inline expression, or a branch

of an HMSC.”

• “A guarding condition should always cover all ready instances of its scope, where

an instance is ready if it contains an event that may be executed before any other

event in the scope.”

• “Otherwise can only occur as the guard of exactly one operand of an alternative

expression.”

There are some more, mainly syntax-oriented restrictions in the recommendation, which

are not that relevant to be listed here, though.

12

2. MSC ELEMENTS

Conditions Range

Each condition specifies the set of instances it affects (the condition is shared among

these instances). Any non-empty set of instances from the whole modelled system may

be used. Even instances not present in a BMSC diagram may share a condition. Speak-

ing about syntax, this is achieved by the shared keyword, following a list of instance

names, both in textual and graphical form. There is a special shared all syntax for re-

ferring to all instances from the whole system, specifying a global condition.

Conditions Semantics

As the MSC recommendation says, “setting conditions define the actual system state

of the instance(s) that share the condition.” A single setting condition may list multiple

condition variables which are set to true by that condition.

Regarding the guarding conditions: “The events in the scope guarded by a guarding

condition can only be executed if the guarding condition is true at the time the first such

event is executed. [. . .] If the guard is a set of condition names, the last setting condition

on that set of instances must have a non-empty intersection with the guard. Only setting

conditions on exactly the same instances are checked; conditions that set the state of a

subset or superset of these instances do not. [. . .] The otherwise guard is true if guards

of all other operands of the alternative expression are false.” [9]

According to the quoted paragraphs, the traces with unsatisfied guarding condition

are excluded from the MSC. A system-state guarding condition is satisfied (evaluated

to true) iff at least one of the listed condition variables is set in the last setting condition

on the exactly same set of instances.

2.3.2 Inconveniences of the Standard Definition

Prior to implementing the conditions in SCStudio, let us first see some inconveniences

the recommendation proposes. The problematic part, regarding the system-state condi-

tions, is that when evaluating a guard, just the last setting condition sharing the same

set of instances is considered.

Let us assume the following use case: first, a client connects to a server and initializes

some settings for the session. Then, the client proceeds, however, in the middle of the

session, the client decides to change one of the settings. Later on, some behavior of the

system depends on the configuration set up by the client.

When modelling the system, guarding conditions shall be used to cut off the be-

havior which the system should not exhibit due to the client’s configuration (e.g., the

system shall not send the client a notification if the client did not enable notifications).

When the guarding condition refers only to the last setting condition, that setting con-

dition overrides any previous settings—it may not only add some state. Thus, to rep-

resent the client changing a setting in the middle of the session, the according setting

condition must repeat all the system states that were set previously—which is possible

13

2. MSC ELEMENTS

to express using the standard conditions semantics, with several problems, though:

• preserving some part of the system state must be handled by a diagram of size

exponential to the number of preceding setting conditions which set the condition

variables constituting the system state;

• guarding conditions cannot specify conjunction of several condition variables—

together with the restriction that a guard may only be present at the beginning of

its scope, it implies that to make a branch executable only when two particular

condition variables are set, a new condition variable must be used, representing

the conjunction;

• any further modification (i.e., addition) of a system state results in major changes

in the model.

See Figure 2.7 for an example in which just two condition variables shall be preserved

and another one added.

Besides the problem with preserving part of the system state and representing a

combination of condition variables, there is another (although much less serious) incon-

venience—possible usage of otherwise conditions. The MSC recommendation permits

an otherwise condition only in alternative expressions (as quoted in Chapter 2.3.1). It

could be convenient to allow otherwise conditions also in HMSC branches.

To sum up, conditions are quite limited in the MSC recommendation, and are use-

ful mainly for describing the system state using only a single condition variable at a

time. Any combinations of several condition variables are overcomplicated, as demon-

strated by Figure 2.7, which is due to limitation to only last setting condition and only

to disjunctions of several condition variables.

One could argue that data language expressions are supported by the MSC recom-

mendation, which were completely ommitted by the aforementioned critics. These are

quite different, though, since only local actions may set a state which may be used by a

subsequent data-language-expression guarding condition—and local actions only de-

fine the state for a single instance, not a set of instances like setting conditions. Hence,

we have a tool which is more powerful at guarding a scope, but less powerful in defin-

ing the state. Although both kinds of conditions could be combined together.

The following subsection proposes an alternative syntax and semantics for MSC

conditions, which is a conservative extension in the sense it does not enhance MSC

expressability, but rather simplifies its usage. The proposed conditions will then be im-

plemented in SCStudio.

2.3.3 Alternative Conditions Proposal

With the background of the previous subsection, alternative conditions are proposed

for MSC. Even those aspects that will not get implemented by this work are proposed

to give a complete specification so that SCStudio might be extended in the future.

14

2. MSC ELEMENTS

The base of the conditions specification remains the same as defined in the MSC

recommendation. The alternative proposal differs (only) in:

• a new type of documentation conditions;

• a new type of unsetting conditions;

• extended syntax and different semantics of system-state guarding conditions;

• extended otherwise conditions placement.

First, the extended syntax is presented in the following text, the semantics is then spec-

ified for the according types of conditions.

Extended Syntax

The conditions syntax is extended over the MSC recommendation [9, p. 42] as follows:

1 <condition text> ::=

2 <condition name list>

3 | unset <condition name list>

4 | when {<condition name list> |
5 <left open> <expression> <right open> |
6 <condition name expr>}
7 | otherwise

8 | "<any text without quotes>"

9 | when "<any text without quotes>"

10

11 <condition name list> ::=

12 <condition name> {, <condition name>}∗
13

14 <condition name expr> ::=

15 <condition name term>

16 | <condition name expr> {OR | <bool or>} <condition name term>

17

18 <condition name term> ::=

19 <condition name factor>

20 | <condition name term> {AND | &&} <condition name factor>

21

22 <condition name factor> ::=

23 [{NOT | !}] <condition name primary>

24

25 <condition name primary> ::=

26 <condition name>

27 | <left open> <condition name expr> <right open>

28

29 <left open> ::= (

30

31 <right open> ::=)

32

33 <bool or> ::= | |

where <condition name> refers to name of a condition variable, <expression> is an

expression in a data language.

15

2. MSC ELEMENTS

Documentation Conditions

The documentation conditions serve for free-form documentation purposes6. A system

state is described by the documentation condition using natural language. The docu-

mentation condition might be viewed as a mere comment using the conditions syn-

tax. Both setting and guarding documentation condition may be specified, using the

syntax at lines 8 and 9 in the syntax listing above. The semantics is the same as with

comments—the documentation conditions, both setting and guarding, are ignored by

algorithms.

Unsetting Conditions

The purpose of unsetting conditions is explained together with semantics of system-

state guarding conditions proposed below. Both the graphical and textual syntax is sim-

ilar to setting conditions, with the difference that the keyword unset is used in front of

<condition name list>, as denoted at line 3 in the syntax listing above. The restrictions

on using unsetting conditions are the same as for setting conditions.

System-State Guarding Conditions

Both the graphical and textual syntax of system-state guarding conditions is extended

as specified at line 6 in the syntax listing above. Besides condition variable name lists,

it is possible to specify expressions on condition variables.

The semantics of guarding conditions differs from the MSC recommendation. The

events in the scope guarded by a guarding condition can still only be executed if the

guarding condition is true at the time the first such event is executed. If the guard is a

set of condition variable names or an expression on condition variable, however, it is

not evaluated according to the last setting condition on that set of instances, but rather

according to the current system state defined on that set of instances. The notion of

system states is introduced together with the condition effect of HMSC nodes on the

system state, which actually defines operational semantics of HMSC nodes. Guarding

conditions may then be evaluated based on the system states.

Definition 1. Let CondVar be the set of all condition variables. Any σ ⊆ 2CondVar is called

a system state. The set of all system states is denoted by Σ.

A system state expresses the set of condition variables which have been set. On the sys-

tem start, no condition variables are set, thus, the initial state is empty. With each HMSC

node n passed in the system run, the system state may be changed: one or more condi-

tion variables may be set using a setting condition, or unset by an unsetting condition.

Both may be present in either BMSC or HMSC. To define that formally, the condition

effect of a node is defined on HMSC, which specifies transformation of the system state

caused by the HMSC node.

6. Free-form conditions were suggested within SCStudio feature requests by the project partners.

16

2. MSC ELEMENTS

Definition 2. Let Eb denote the set of events in BMSC b, Sb, Ub ⊆ Eb denote the setting, or

unsetting condition events in b, respectivelly. Let <b be the visual order on Eb. Let V (c) denote

the set of condition variables listed by (BMSC or HMSC) condition c.

Let N denote the set of HMSC nodes. The condition effect is defined as relation →⊆ Σ ×

N × Σ which contains the following elements, written as σ
n
−→ σ′:

• σ
n
−→ σ for any n except reference node and setting or unsetting condition node;

• σ
n
−→ (σ ∪ V (n)) if n is a setting condition node;

• σ
n
−→ (σ \ V (n)) if n is an unsetting condition node;

• σ
n
−→ (σ ∪X \ Y) if n is a BMSC reference node, where X and Y are sets of condition

variables which have been set (or unset, respectivelly) by the referenced BMSC, i.e.:

X = {C ∈ CondVar | ∃e ∈ Sb . C ∈ V (e) ∧ (6 ∃f ∈ Ub . e <b f ∧ C ∈ V (f))}

Y = {C ∈ CondVar | ∃e ∈ Ub . C ∈ V (e) ∧ (6 ∃f ∈ Sb . e <b f ∧ C ∈ V (f))}

• σ
n
−→ σ′ if n is an HMSC reference node, n1, n2, . . . , nk is the part of the system

run executed within the referenced HMSC, and σ
n1−→ σ1

n2−→ . . .
nk−→ σ′.

Now, in a system run n1, n2, . . ., the system state for any executed HMSC node ni is

σi, where σ1
n1−→ σ2

n2−→ . . .
ni−1

−−−→ σi, σ1 = ∅. Therefore, every guarding condition

node within a system run has a defined system state on which it may be evaluated. The

following definition gives the formal semantics of guarding conditions.

Definition 3. On the set Γ of all condition expressions conforming to the <condition name

expr> syntax, and the set Σ of all system states, the condition valuation ν : Γ × Σ →

{true, false} is inductively defined as follows:

• ν(σ,C) =

{

true if C ∈ σ

false otherwise

• ν(σ, NOT φ) = ν(σ, !φ) =

{

true if ν(σ, φ) = false

false otherwise

• ν(σ, φ1 AND φ2) = ν(σ, φ1 && φ2) =

{

true if ν(σ, φ1) = true and ν(σ, φ2) = true

false otherwise

• ν(σ, φ1 OR φ2) = ν(σ, φ1 || φ2) =

{

true if ν(σ, φ1) = true or ν(σ, φ2) = true

false otherwise

A guarding condition is in system state σ evaluated to true if:

• it contains a condition name expression φ and ν(σ, φ) = true, or

• it contains a condition name list C1, . . . , Cn and ν(σ,C1 OR . . . OR Cn) = true.

Note the evaluation of a condition name list is consistent with the MSC recommen-

dation in that any non-empty intersection with a prior setting condition satisfies the

guard. Explicit disjunction expressions shall be preferred, though, to prevent any con-

fusion.

17

2. MSC ELEMENTS

Extended Otherwise Conditions Placement

Besides the possible placement of otherwise conditions specified by the MSC recom-

mendation (which is only in alternative expressions, which are not supported by SC-

Studio), an otherwise condition may also guard an HMSC branch. Before we proceed,

let us define HMSC branches first, as they are not defined by the MSC recommendation.

Definition 4. A branch head is such an HMSC node which is either the start node or has

more than one outgoing flow (connection) line. A branch is an HMSC path starting at a branch

head. Two branches are alternative if they have the same head. Branch B is said to be guarded

by condition c (or c-guarded) if c is the first node on B following the head of B.

The restrictions and semantics of the otherwise conditions in HMSC are similar as

specified by the MSC recommendation for expressions: an otherwise condition can only

occur as the guard of exactly one of alternative branches. The otherwise condition eval-

uates to true iff all branches alternative to the otherwise-guarded branch are guarded

by a condition evaluated to false.

To demonstrate the benefits of the alternative conditions proposal, the use case from

Section 2.3.2 is redrawn in Figure 2.8.

18

2. MSC ELEMENTS

19

2. MSC ELEMENTS

A B C

fnd

a comment
reqA

reqC

rspA rspC

rdrA

lst

msc

Figure 2.1: First, instance B finds messsage fnd. Then, it sends reqA to A. Independently

of time of reqA reception by A, B sends reqC to C. After either of the instances receives

the request message, it sends a response back to B. Messages rspA and rspC may arrive

at B in any order. B redirects rspA to C as message rdrA—note that it still may arrive at

C sooner than reqC. After A has responded to B, it sends lst, which gets lost, though.

20

2. MSC ELEMENTS

K

L

hmsc

A B C

p

q

K

D A B C

r

L

Figure 2.2: An example of asynchronous behaviour. Messages q and r may be sent or

received independently of each other, i.e., r might be sent after delivery of q, but r

might, alternatively, be sent right after p, even before p is received by B.

D A B C

p

q

r

msc

Figure 2.3: An MSC equivallent to that in Figure 2.2.

21

2. MSC ELEMENTS

DataReq

OpenContentProtectedContent

DataTransfer

Authentication

AuthOKWrongAuth

Client hung up

spec

Client DataSrv

dataReq

DataReq

Client DataSrv

data

DataTransfer

Client DataSrv AuthSrv

challenge

credentials
credentials

result

Authentication

Figure 2.4: An example of HMSC support in SCStudio. First, the DataReq node gets exe-

cuted, i.e., Client sends dataReq to DataSrv. If the OpenContent condition is satisfied, the

DataTransfer node is executed. Otherwise, if ProtectedContent condition is met, the sys-

tem continues with Authentication. Depending on the result, Authentication is executed

again, or the DataTransfer begins. For those familiar with Subversion, that could be a

(simplified) description of a request for versioned data.

22

2. MSC ELEMENTS

when

Disconnected

ConnRequest

FailureConnection

Connected when Failed
Disconnected,

Failed

HangUp

hmsc

Figure 2.6: An example of conditions usage.

23

2. MSC ELEMENTS

S1

when S1 otherwise

S1 S2

Represents S1 ∧ S2

S2

Now, S3 may be added

when

S1 S2
when S1 when S2 otherwise

S1 S2 S3 S1 S3 S2 S3 S3

when S1,

S1 S2, S1 S3,

S1 S2 S3

otherwise

Notification

hmsc

Figure 2.7: Preserving a part of the system state with conditions as specified by the

MSC recommendation. Each of the condition variables to be potentially preserved may

or may not have been set. To set another condition variable, it is necessary to examine

all possibilities.

24

2. MSC ELEMENTS

S1

S2

S3

otherwisewhen S1

Notification

hmsc

Figure 2.8: Diagram of the same use case as in Figure 2.7, using the proposed alternative

conditions.

25

Chapter 3

Conditions Evaluation

This chapter proposes an algorithm for evaluating the alternative conditions, as spec-

ified in Section 2.3.3. There are some restrictions over the specification, mentioned in

Section 3.1. As conditions evaluation is to be added to SCStudio, the algorithms cur-

rently being used for traversing MSC diagrams are proposed to be modified rather than

introducing a completely new algorithm. Hence, Section 3.2 goes through the methods

MSC diagrams are traversed in SCStudio. Finally, Section 3.3 proposes the modifica-

tions enabling conditions evaluation.

3.1 Restrictions over the Conditions Specification

Among all the practice-oriented extensions proposed in previous chapter, the imple-

mentation of conditions in this thesis will be restricted in two aspects: the data-language-

expression guarding conditions and condition ranges.

The data-language-expression guarding conditions will be omitted for obvious rea-

sons: SCStudio has no support for data language within MSC diagrams, and adding

such capabilities is beyond the scope of this thesis. Therefore, evaluation of guarding

conditions containing data language expressions may not be implemented.

As for the latter restriction, only global conditions will be implemented for sim-

plicity reasons. Although both the MSC recommendation and the proposition in the

previous chapter allows for specifying subset of instances which a condition affects,

the practical impact of this possibility is considered too low, compared to the complica-

tions it introduces. The data structure will contain the information, though, for future

extensions.

3.2 SCStudio Algorithms for MSC Traversal

Since the initial implementation, SCStudio core has implemented a very generic way

of traversing MSC diagrams. The aim was to encapsulate the data structure, and thus

separate it from algorithms traversing it. Thanks to this, to adjust the traversal, it is

only necessary to change the traverser algorithms, while checkers and other parts of

SCStudio remain untouched. Thus, the main part of integrating conditions evaluation

is a modification of traversers.

27

3. CONDITIONS EVALUATION

The concept of traversers, including examples, is explained in [2]. Speaking in terms

of design patterns (see, e.g., [7]), the algorithms act as observers, while the traverser ac-

tually accessing the data structure is an observable subject. An algorithm first registers

itself (or an auxiliary object) for some types of traversal events at the traverser. Then,

the traverser starts walking through a given diagram, notifying the observers about

reached nodes.

There are several kinds of traversers, each iterating the diagrams slightly differently.

Most of them are based on the depth-first search (DFS), as presented in [5]—with nodes

colored white, grey, or black, according to their actual state in the search.1 Upon travers-

ing, when reached a node, the traverser notifies all the algorithms which registered for

receiving events of reaching (or leaving) a node of a specific color.

By the combination of particular traverser and types of traversal events listened to,

various algorithms may be implemented without actually touching the data structure.

For instance, a cycle-detecting checker algorithm might use a DFS traverser and register

to receive events on reaching a grey node—the reaching of which implies a cycle.

An overview of all traverses used in SCStudio is given in Table 3.1 and Table 3.2.

3.3 Traverser Algorithm

Implementation of conditions semantics in SCStudio will be performed as a modifica-

tion of traversers, introduced in the previous section. The key aspect of conditions is

that they exclude those system behaviours for which the guarding condition (if any)

is not satisfied. In SCStudio, only HMSC can be used for branching the specification

to several alternative system behaviours.2 Hence, it is sufficient to modify only HMSC

traversers.

There are two problems, though. First, some algorithms actually bypass traversers

and access the internal data structure directly. Those will have to be adapted on an in-

dividual basis. Second, some traversers move backwards. That will have to be treated

separately, and is left out to Section 3.3.2. For now, let us consider just forward tra-

versers.

3.3.1 Forward Traverser Algorithm

All the forward HMSC traversers are modified in a similar way. There are two funda-

mental modifications.

As the first necessary modification, branches guarded by unsatisfied conditions are

not reported to the listeners. The algorithms implemented in SCStudio are supposed

to rely only on information retrieved by the listeners they employ, so this modification

1. A node is white if it has not been reached yet, grey if already reached but DFS is still running for some
of its successors, or black when all of its successors have been processed.
2. The MSC recommendation also specifies alternative inline expressions, which may lead to branching
even in BMSC. Inline expressions are not supported by SCStudio, though.

28

3. CONDITIONS EVALUATION

effectively cuts off unsatisfied HMSC branches, as required by the conditions specifi-

cation. It is a modification transparent to the algorithms—from their point of view, the

unsatisfied branches simply do not exist in the HMSC, as they are not reported by the

traverser.

For some HMSCs, that modification would be sufficient. There is a problem, though:

due to cycles, a node may be executed repeatedly. If there are some setting or unsetting

conditions on the cycle, however, the node may be revisited with different conditions.

That plays a role if there is also a guarding condition in the cycle, or anywhere later,

which refers to a condition variable set or unset within the cycle. The DFS search, when

reaches an already visited (grey-colored) node, merely notifies grey node listeners and

backtracks. Some guards may have got enabled (or disabled), though, which were not

enabled (disabled) for the first time, thus, some new branches could have got available

(or cut off). The problem is illustrated in Figure 3.1.

Hence, the second modification is proposed. The idea behind the algorithm is that

the search, when reaching the same HMSC node with different set of conditions, will

consider it as a new, yet unreached vertex. To do that, the system state (i.e., a set of

condition variables) will be preserved with each vertex. The HMSC will get “unfolded”

this way to an equivallent HMSC in which semantics of setting and unsetting condi-

tions need not be evaluated. In this unfolded HMSC, branches guarded by unsatisfied

conditions will be cut off and the resulting HMSC will be actually presented to algo-

rithms. Due to the equivalence, the algorithms (which do not evaluate conditions) will

work correctly. Formal definitions follow.

Definition 5. Let H be an HMSC, G = (N,E) a graph where N is the set of nodes from

H , E is the set of connection lines in H . The unfolding of G for HMSC H is a graph U =

(N × 2C , F), where:

• C is the set of condition variables used in H and all its reference nodes, recursivelly, and

• F = {((a, σ), (b, σ′)) | (a, b) ∈ E, σ
a
−→ σ′}.

An element k ∈ N × 2C is called an extended node of H .

Definition 6. Let U = (K,F) be the unfolding of HMSC H . The cut-off unfolding of HMSC

H is defined as:

(K,F \ {((a, σ), (b, σ′)) ∈ F | b is a guarding condition not evaluated to true in σ′})

An example of unfolding of an HMSC follows. In Figure 3.2, the original HMSC is pre-

sented. The nodes are numbered for further reference. Figure 3.3 shows the unfolding

of the HMSC. Each node is commented with the original node numbers and the set of

system states valid when the node is entered. The cut-off unfolding is almost the same

as the unfolding in Figure 3.3, but without the edge from (s6, ∅) to (s7, ∅).

Implementation Notes

Regarding the actual implementation of conditions evaluation, it shall not compute the

complete unfolding, as it is unnecessary. The extended nodes shall be created on-the-fly

29

3. CONDITIONS EVALUATION

as required, thus, only reachable extended nodes are processed.

Yet before an HMSC traverser is run, a pre-checker shall be executed, checking

whether all the static requirements, introduced in Section 2.3, and restrictions men-

tioned in Section 3.1 are met. That guarantees the required preconditions for the tra-

versers to run correctly.

3.3.2 Backward Traverser Algorithm

The problem with backward traversers is apparent: they first enter guarded branches,

and only then may find out whether the guard was satisfied.

One solution to the problem would be to compute an explicit representation of the

cut-off unfolding of the given HMSC and run the backward traverser on it. However,

the complexity of such approach would be exponential to the number of system states

used within the HMSC.

The actually implemented solution performs a forward traversal on the HMSC, stor-

ing the whole graph—which is the reachable subgraph of the cut-off unfolding—in

memory, and traverses this graph backwards. While the worst-case complexity is the

same as in the first approach, it computes only those states which are actually used,

hence, is the preferred one.

30

3. CONDITIONS EVALUATION

31

3. CONDITIONS EVALUATION

Name of Traverser Class Note

DFSEventsTraverser DFS-traverses a given BMSC from all instances, each

from minimal events, follows matching message

events

DFSBackwardTraverser backwards variant of DFSEventsTraverser

DFSInstanceEventsTraverser similar to DFSEventsTraverser, but does not follow

matching message events

DFSAreaTraverser DFS-traverses all event areas in all instances, inde-

pendently of each other

Table 3.1: Overview of BMSC traversers.

Name of Traverser Class Note

DFSBMscGraphTraverser DFS-traverses an HMSC, each HMSC is traversed as

many times as it is referenced

DFSInnerHMscTraverser similar to DFSBMscGraphTraverser, but does not care

whether there are some end nodes in referenced

HMSC—just goes on

DFSHMscTraverser similar to DFSInnerHMscTraverser, but processes each

HMSC at most once

DFSBHMscTraverser backwards variant of DFSHMscTraverser

DFSRefNodeHMscTraverser similar to DFSBMscGraphTraverser, but finds succes-

sor nodes using NodeFinder

DFSHMscFlatTraverser similar to DFSBMscGraphTraverser, but does not re-

curse, i.e., processes just top layer of HMSC

DFSRefNodeFlatHMscTraverser similar to DFSHMscFlatTraverser, but finds successor

nodes using RefNodeFinder

DFSHMscsTraverse traverses HMSC using DFSHMscFlatTraverser and

HMSC found event

ElementaryCyclesTraverser traverses all elementary cycles in an HMSC

FootprintTraverser traverser used by race checker

NodeFinder finds successors or predecessors of a node, skipping

connection nodes

RefNodeFinder similar to NodeFinder, but skips all but reference

nodes

NonemptyNodeFinder similar to NodeFinder, but skips all but nodes refer-

ring to a non-empty BMSC

AllPaths traverses the HMSC for all distinct paths, which are

reported to listeners

Table 3.2: Overview of HMSC traversers.

32

3. CONDITIONS EVALUATION

when

Enabled

A

Secured

Enabled

hmsc

Figure 3.1: The Secured reference node gets reachable only when repeating the cycle,

after setting the Enabled condition variable.

33

3. CONDITIONS EVALUATION

s1
s2

s3

unset X

s4

X

s5

s6

when X

s7

s9

R

s8

s10

Original HMSC

Figure 3.2: An HMSC to be unfolded. Note the comments labelling the nodes for refer-

ence in Figure 3.3.

34

3. CONDITIONS EVALUATION

(s1, ∅)
(s2, ∅)

(s3, ∅)

unset X

(s4, ∅)

X

(s5, ∅)

(s6, ∅)

(s2, {X})

(s9, ∅)

when X

(s7, ∅)

(s3, {X})

(s10, ∅)

R

(s8, ∅)

(s6, {X})

X

(s5, {X})

unset X

(s4, {X})

when X

(s7, {X})

(s9, {X})

R

(s8, {X})

(s10, {X})

(s1, {X})

HMSC Unfolding

Figure 3.3: The unfolding of HMSC from Figure 3.2. Original nodes have been supple-

mented with sets of condition variables valid in the extended nodes.

35

Chapter 4

Internal Structure Refactoring

As required by Chapter 2, the internal data structure, which represents MSC diagrams

in memory, has to be extended. In particular, two new types of BMSC events have

to be added for representing local actions and conditions. However, with the current

object model, it is not possible. The initial design [2] took only message events into ac-

count and, as analysed in Section 4.1, does not allow for generalizing this type of events

and adding new subtypes. Hence, before actually implementing the support for local

actions and conditions, the object model has to be reworked—refactored, as defined

by [6]:

“Refactoring is the process of changing a software system in such a way that

it does not alter the external behavior of the code yet improves its internal

structure. It is a disciplined way to clean up code that minimizes the chances

of introducing bugs. In essence when you refactor you are improving the

design of the code after it has been written.”

Indeed, the goal is to make the object model cleaner and extendable, while the changes

must not alter the external behaviour. Moreover, with regards to the volume of code

depending on particular features of the internal structure, a series of gradual changes

has to be made rather than a complete redesign of according parts. The list of proposed

changes is stated in Section 4.2. Finally, in Section 4.3, the refactored object model is

described.

4.1 Initial State

The initial state of the internal data structure part relevant to BMSC diagrams is de-

picted in Figure 4.1. Each type of an MSC element has its own class, inheriting from

MscElement class as a common ancestor. Class BMsc, representing the whole BMSC di-

agram, is a subclass of MscElement, too. Also note StrictOrderArea and CoregionArea

classes, which represent the according segments of an instance.

As it can be seen, the Event class should be better named MessageEvent since it ac-

tually represents a message sending or receiving event, and it contains the m message

attribute referring to an MscMessage object. Apart from other similar imperfections, the

most problematic is the type differentiation of events to StrictEvent and CoregionEvent

according to whether they are contained in a StrictOrderArea or CoregionArea. The

37

4. INTERNAL STRUCTURE REFACTORING

Figure 4.1: Class diagram of the relevant part of the original data structure.

38

4. INTERNAL STRUCTURE REFACTORING

events themselves manage their relations to other, predecessor or successor events,

which, however, depends on the type of event area. The application code, which needs

to traverse an instance, then has to typecast an event at runtime to correctly get its

successors. That prevents from generalizing the Event class and defining other types

of events. If, for instance, a new class LocalActionEvent was introduced, all the other

code would have to differentiate not only between two types of message event, but

among two additional types of local action event, each according to its placement (ei-

ther for strict-order area or coregion area). That would have to be further extended

with each new event type. Overall, adding a new type of event would touch all code

which traverses the diagram. The only workaround would be to take the Event class as

a generic class for events, which would have an attribute for each possible type of ele-

ment: m message pointing to a message, m local action for a local action, etc. Neverthe-

less, the base design is wrong in that an event does too much—it should only manage its

own properties, especially the reference to its MSC element (e.g., a MscMessage object).

If the responsibility for the order of events within an event area was given solely to the

event area, the problem would be solved and the model could be extended with new

types of events. Likewise, the order of event areas on an instance should be governed

by the instance, not by the event area objects.

Another issue with the object model is that the StrictOrderArea and CoregionArea

classes have each a different interface for getting or manipulating with events. Thus,

all application code has to obtain the event area type at runtime and call the according

methods—effectively substituting for the dynamic dispatch mechanism, which is one of

the fundamental concepts in object-oriented programming [15]. Even though it does not

prevent from extending the application with local actions or conditions, it is principally

the same problem as with event types. In the following section, refactorings for fixing

both these shortcomings are proposed.

4.2 Enhancement Proposals

The identified problems will get corrected by a sequence of refactorings, each of which

performs a relatively small step towards the final result. The reason for dividing the

whole operation into several steps is that after every refactoring, the application is in a

stable state which may be tested and potential faults may be found and fixed easily.

1. EventArea attributes m previous and m next, and Instance attributes m first and

m last will be removed. Instead, EventArea objects will be held in m event areas

attribute of class Instance. The application code using the successor/predecessor

access methods will be rewritten to use iterators on the according event area list.

2. For manipulation with contained events, generic methods will be defined in the

EventArea class, which the StrictOrderArea and CoregionArea classes will imple-

ment:

39

4. INTERNAL STRUCTURE REFACTORING

• methods get minimal events and get maximal events to access the set of min-

imal or maximal events in the area,

• methods get predecessor events and get successor events to retrieve the set

of predecessor or successor events of a given event within the area,

• method add event to add an event as a new maximal event in the area.

3. StrictEvent attributes m successor and m predecessor, and StrictOrderArea at-

tributes m first and m last will be removed. Instead, events in a strict-order area

will be maintained in a list attribute m events of class StrictOrderArea. Likewise,

CoregionEvent attributes m successors and m predecessors, and CoregionArea at-

tributes m minimal events and m maximal eventswill get replaced by oriented graph

attribute m events in class CoregionArea. The application code using the succes-

sor/predecessor access methods will be rewritten to use iterators on the accord-

ing event list or graph, respectivelly, where feasible—in the remaining cases, suc-

cessors or predecessors of an event will be retrieved by the according EventArea

methods.

4. TemporaryStrictEvent will be renamed to TemporaryEvent and inherit from Event,

as it does not actually use anything from StrictEvent.

5. Classes StrictEvent and CoregionEventwill be removed as their only function will

have been superseded by event area classes.

6. Class Eventwill be renamed to MessageEvent.

7. A new class Eventwill be created as an ancestor of MessageEvent. The generic event

functionality will be moved from MessageEvent to Event, so that the MessageEvent

class will contain only attributes and methods specific to message events.

8. The code using MessageEvent objects will be generalized to accept generic Event

objects, where possible. Class TemporaryEvent will inherit from Event instead of

MessageEvent.

4.3 Refactored State

As a result of refactorings performed according to the previous section, the object model

was changed, as illustrated in Figure 4.2. The most important change is the generic

Event class. It now serves as a base class for any type of events. The already existing

event classes inherit from Event. See, e.g., the TemporaryEvent class, which represents

auxiliary events related to time extensions [19]. In the old object model, it had to in-

herit from StrictEvent, even though it has no message-related functionality. In the new

object model, TemporaryEvent is placed correctly, inheriting directly from Event. The

new MessageEvent class now only represents message receive or send events, inheriting

40

4. INTERNAL STRUCTURE REFACTORING

Figure 4.2: Class diagram of the refactored data structure.

41

4. INTERNAL STRUCTURE REFACTORING

the common functionality of events (assigned comments, temporal data, etc.) from the

Event class.

With the new hierarchy of internal structure classes, new types of events may be

added besides the MessageEvent class. For SCStudio to enable support for local actions

and conditions in BMSC diagrams, the classes LocalActionEvent and ConditionEvent

may now be created, inheriting from Event. Moreover, the overall hierarchy is appar-

ently simpler, with less interdependencies, which is due to the escallation of responsi-

bility for order of events purely to event areas, and order of event areas to instances.

Considering the implementation, standard data structures (std::list [10], boost::graph

[17]) were used for that, instead of custom pointer-linked structures, which makes the

code more compact and easier to understand.

The interface of event area classes was unified. Both StrictOrderArea and CoregionArea

still offer functionality specific to the according type of area, but also feature more

methods implemented from the common EventArea parent. Much of the application

code is now neutral to the particular event area type, yielding in more compact code

and less runtime typecasting—which should speed up the execution.

Upon performing the refactoring steps, all dependent application code was adjusted

to work correctly with the new class scheme. Thus, the overall goal has been accom-

plished, resulting in an improved structure while maintaining the external behaviour.

As a side-effect of the refactoring, the set of automated tests now runs notably faster,

and the number of memory defects reported by Valgrind [16] was reduced from 471 to

207.

42

Chapter 5

Implementation

The refactoring, performed according to the previous chapter, had a goal to make the

internal structure extendable. The fact that this goal has been successfully achieved

is best proved by actually extending the refactored structure with the new types of

events. Both local action and condition event classes have been added to the structure,

providing the backend support for local actions and conditions. In addition to adding

these elements, evaluation of conditions has been implemented for a selected HMSC

traverser. In this chapter, the implementation is briefly described.

5.1 Local Actions

As mentioned earlier, local actions are rather easy to implement. Given the fact SCStu-

dio does not support data language statements, local actions only serve documentation

purposes, and are to be ignored by the algorithms.

Two new classes are introduced: LocalAction and LocalActionEvent. The former rep-

resents the local action element, defining its dimensions and textual content, while the

latter denotes the event that occurs on an instance. The classes are added to the in-

ternal structure as follows in Figure 5.1. Note the MscElementTmpl and EventTmpl tem-

plate classes, which were omitted from previous diagrams for simplicity reasons. Both

these classes provide a generic methods for their subclasses (MSC elements, and BMSC

events, respectivelly) which are declared using the template type, so that type-safe op-

erations can be made. For instance, subclasses of EventTmpl are supposed to provide

the type of element the event may bind to. Thus, the event may only be bound to the

correct type of element, and returns exactly that type with its get element()method.

After adding the aforementioned classes, the glue code between graphical frontend

(which already supported local actions) and backend was adjusted. Other related parts

of the application, e.g., exporting the objects to the MSC textual format, were worked

out by other SCStudio developers.

5.2 Conditions

Conditions are implemented similarly to local actions. Classes Condition and ConditionEvent

are introduced, with analogous meaning. Besides defining these classes for use in

BMSC diagrams and supplying the glue code between frontend and backend, condi-

43

5. IMPLEMENTATION

Figure 5.1: The new internal structure with local actions and conditions.
44

5. IMPLEMENTATION

tions semantics have also been partly implemented, demonstrating the proposal from

Section 2.3.3. HMSC traverser class AllPaths has been modified to evaluate the pro-

posed semantics. This traverser is used by the time race checker [19] and several other

algorithms. It searches for all paths within a given HMSC diagram in a depth-first-

search manner and reports each path to its listeners. As there might be infinite paths, it

features a custom limit for how many times each node may be visited before backtrack-

ing.

The AllPaths traverser is implemented by a recursive method which searches for

successor nodes of a given HMSC node. Any successor which has not been visited too

many times (not exceeding the limit) is passed to the recursive call, effectively imple-

menting DFS. First, the notion of system state (which names all the condition variables

that have been set) is introduced: the recursive method all paths is extended to pass

the system state along the node to be searched. Second, the methods for counting the

number of visits of a given node are extended so that the visit count is recorded for a

combination of the visited node and the system state it is visited in. Now, the traverser

is ready for conditions evaluation. Each node is examined for its condition-effect (as

defined in Section 2.3.3):

• condition variables from setting conditions enrich the current system state;

• conversely, condition variables from unsetting conditions are erased from the sys-

tem state;

• reference nodes are also examined—a DFS traversal is executed to collect condi-

tion variables which should be set or unset.

The remaining task is to actually take the system state into account. When iterating

over potential successors of a node, guarding conditions are evaluated with respect to

the current system state. Those which are not satisfied get skipped, thus, the search only

continues to valid branches.

An example follows in Figure 5.2, in which the time race checker reported a race

condition between the two messages. Indeed, if the conditions were not evaluated,

branches containing both A and C reference nodes could have been taken. When the

condition evaluation is applied, however, at most one of the branches is permitted—

and the time race checker reports the diagram as valid.

45

5. IMPLEMENTATION

X Y

when X

A

when Y

C

Cond

A B C

m

A

A B C

m

C

Figure 5.2: Example of an MSC diagram which is valid only when the conditions se-

mantics is considered. If both A and C branches were executed, a race condition would

occur at instance B: the messages from A and C could arrive at any order. As either X

or Y condition variable is set, but not both at the same time, only one of the referred

BMSC diagrams may be executed, thus, no race condition occurs.

46

Chapter 6

Conclusions

The goal of this work was to refactor SCStudio internal data structure. Since the initial

version, only single type of events was allowed, and by design, further types of events

could not be added. The object model had to be altered, without any external impact

on the rest of the application. Two new types of events should have been added then—

local actions and conditions.

The refactoring was performed in several consecutive steps. The object model was

gradually improved to a simpler and, more importantly, extendable state. All depen-

dent application code was adjusted appropriately; SCStudio has been developed for

more than five years, thus, a very high volume of code had to be revised. Both local ac-

tions and conditions were implemented to the refactored data structure. The Message

Sequence Chart recommendation was to be adhered to, which turned out rather im-

perfect in question of conditions semantics. An alternative syntax and semantics were

proposed.

As a result, the application external behaviour was maintained, while the internal

structure has become cleaner and richer of two new types of events. Standard libraries

were used instead of some custom code, which resulted in a great reduction of memory

flaws reported by dynamic analysis tools. The results have already been used by other

project collaborators.

47

6. CONCLUSIONS

48

Bibliography

[1] Sequence Chart Studio Documentation. <http://scstudio.sourceforge.

net/help/>. [Online; accessed 2-April-2013].

[2] Jindřich Babica. Message Sequence Charts properties and checking algorithms.

Master’s thesis, Masaryk University, 2009.

[3] Martin Bezděka, Ondřej Bouda, Ľuboš Korenčiak, Matúš Madzin, and Vojtěch

Řehák. Sequence Chart Studio. In 2012 12th International Conference on Appli-

cation of Concurrency to System Design, pages 148–153, Los Allamitos, Califonia,

USA, 2012.

[4] Martin Chmelı́k. Realizability of Message Sequence Graphs. Master’s thesis,

Masaryk University, 2011.

[5] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms. MIT press, 2001.

[6] Martin Fowler and Kent Beck. Refactoring: Improving the Design of Existing

Code. Addison-Wesley Professional, 1999.

[7] Eric Freeman, Elisabeth Robson, Bert Bates, and Kathy Sierra. Head First Design

Patterns. O’Reilly Media, Incorporated, 2004.

[8] ITU Telecommunication Standardization Sector – Study group 17. ITU recomman-

dation Z.100, Specification and Description Language (SDL), 2002.

[9] ITU Telecommunication Standardization Sector – Study group 17. Recommenda-

tion ITU-T Z.120: Message Sequence Charts (MSC), 2011.

[10] Nicolai M. Josuttis. C++ Standard Library: A Tutorial and Handbook, The.

Addison-Wesley Professional, 1999.

[11] Matúš Madzin. Import of MSC Diagrams From the ITU-T Z.120 Text Representa-

tion. Bachelor’s thesis, Masaryk University, 2009.

[12] Steve McConnell. Code Complete. Microsoft Press, 2004.

[13] Helmut A. Partsch. Specification and Transformation of Programs: A Formal Ap-

proach to Software Development. Springer, 1990.

49

BIBLIOGRAPHY

[14] Zuzana Pekarčı́ková. Computer Aided Layout of Message Sequence Charts. Bach-

elor’s thesis, Masaryk University, 2011.

[15] Benjamin C. Pierce. Types and Programming Languages. The MIT Press, 2002.

[16] Julian Seward, Nicholas Nethercote, and Josef Weidendorfer. Valgrind 3.3-

Advanced Debugging and Profiling for Gnu/Linux Applications. Network The-

ory Ltd., 2008.

[17] Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine. Boost Graph Library: User

Guide and Reference Manual, The. Addison-Wesley Professional, 2001.

[18] Václav Vacek. New Checkers for Sequence Chart Studio. Master’s thesis, Masaryk

University, 2011.

[19] Ľuboš Korenčiak. Time Extension of Message Sequence Chart. Bachelor’s thesis,

Masaryk University, 2009.

[20] Ľuboš Korenčiak. Effective Algorithms for Time Relation Checking in Message

Sequence Charts. Master’s thesis, Masaryk University, 2011.

[21] Vojtěch Řehák, Matúš Madzin, Ľuboš Korenčiak, Petr Gotthard, Ondřej Ko-

cian, Martin Bezděka, Ondřej Bouda, Václav Vacek, Milan Malota, and Zuzana

Pekarčı́ková. Sequence Chart Studio: user-friendly drawing and verification tool

for MSC, 2012.

50

	Introduction
	 Sequence Chart Studio
	 Message Sequence Chart
	 The Goal of the Work

	MSC Elements
	 Elements Supported in SCStudio
	 Basic MSC
	 High-Level MSC
	 Time Restrictions
	 Data Languages

	 Local Actions
	 Conditions
	 MSC Recommendation Definition
	 Inconveniences of the Standard Definition
	 Alternative Conditions Proposal

	Conditions Evaluation
	 Restrictions over the Conditions Specification
	 SCStudio Algorithms for MSC Traversal
	 Traverser Algorithm
	 Forward Traverser Algorithm
	 Backward Traverser Algorithm

	Internal Structure Refactoring
	 Initial State
	 Enhancement Proposals
	 Refactored State

	Implementation
	 Local Actions
	 Conditions

	Conclusions
	Bibliography

