
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS

DISTRIBUTED P2P DATA BACKUP SYSTEM

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE Bc. ISTVÁN MÉSZÁROS
AUTHOR

BRNO 2013

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS

DISTRIBUOVANÝ P2P SYSTÉM PRO ZÁLOHOVÁNÍ
DISTRIBUTED P2P DATA BACKUP SYSTEM

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE Bc. ISTVÁN MÉSZÁROS
AUTHOR

VEDOUCÍ PRÁCE Ing. IGOR SZŐKE, Ph.D.
SUPERVISOR

BRNO 2013

Abstrakt
Tato diplomová práce představuje model a prototyp kooperativního distributivního systému
zálohování dat založeném na P2P komunikační síti. Návrh systému umožňuje uživatelům
přispět svým lokálním volným místem na disku do systému výměnou za spolehlivé úložiště
jejich dat u jiných uživatelů. Představené řešení se snaží splnit požadavky uživatelů na
ukládání dat, zároveň však také řeší, jak se vypořádat s mírou nepředvídatelnosti uživatelů
ohledně poskytování volného místa. To je prováděno dvěma způsoby - využitím Reed -
Solomon kódů a zároveň také tím, že poskytuje možnost nastavení parametrů dostupnosti.
Jedním z těchto parametrů je časový rozvrh, který značí, kdy uživatel může nabídnout před-
vídatelný přínos do systému. Druhý parametr se týká spolehlivosti konkrétního uživatele
v rámci jeho slíbeného časového úseku. Systém je schopen najít synchronizaci ukládaných
dat na základě těchto parametrů. Práce se zaměřuje rovněž na řešení zabezpečení systému
proti širšímu spektru možných útoků. Hlavním cílem je publikovat koncept a prototyp.
Jelikož se jedná o relativně nové řešení, je důležitá také zpětná vazba od široké veřejnosti,
která může produkt používat. Právě jejich komentáře a připomínky jsou podnětem pro
další vývoj systému.

Abstract
This master’s thesis briefly presents a model and a prototype of a cooperative distributed
data storage system based on P2P network communication. The system design lets the
users to contribute their local free space in exchange of reliable remote storage, which is a
virtually co-allocated space on other users’ devices. The introduced solution tries to meet
the users’ requirements for data storing, meanwhile work around the issue of their unpre-
dictability when it comes to contribution of free space. This is mainly done by harnessing
the capabilities of Reed-Solomon codes, but by providing adjustable parameters for the
contributions as well. One of these parameters is the time frame, which describes when
can a user offer contribution to the system. The second parameter refers to the reliability
of the user inside his promised time frame. The system is responsible for finding partner
contributions for data storage based on these parameters. This thesis also focuses on solv-
ing the wider spectrum security issues of the system. The main goal of this work was to
publish the prototype and the concept itself. As this is a relatively new solution and design,
feedback is required from the public, which is also the main source for further designing
and developing the system.

Klíčová slova
Online Zálohování, Kooperatíný Zálohovaní, Distribuovaný, Peer-to-peer, Ukládání dat,
Spolehlivý, Adaptívný, Flexibilný, Java, AES, Reed-Solomon kódy, Systém založený na
časových intervalech, MD5 hash funkce, Erasure kódy

Keywords
Online Backup, Cooperative Backup, Distributed, Peer-to-peer, Data storage, Secure, Reli-
able, Adaptive, Flexible, Java, AES, Reed-Solomon Codes, Time frame based system, MD5
hash function, Erasure codes

Citace
István Mészáros: Distributed P2P Data Backup System, diplomová práce, Brno, FIT VUT
v Brně, 2013

Distributed P2P Data Backup System

Prohlášení
Prohlašuji, že jsem tento diplomový projekt vypracoval samostatně pod vedením Ing. Igor
Szőke Ph.D. Uvedl jsem všechny literární prameny a publikace, ze kterých jsem čerpal

. .
István Mészáros

May 22, 2013

Poděkování
Chtěl bych poděkovat mému vedoucímu Ing. Igor Szőke, Ph.D. za jeho připomínky a cenné
rady, poskytnutou pomoc a trpělivost.

c© István Mészáros, 2013.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě in-
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 1

2 Online Data Storage Systems 2
2.1 Client-Server Architecture Based Data Storage Systems 2
2.2 Cooperative Data Storage Systems . 3
2.3 Data Repository Models . 4

3 Issues and Solutions For The Cooperative Data Backup Solutions 6
3.1 Reliability Issues . 6
3.2 Replication Model . 6
3.3 Erasure Coding Model . 7
3.4 Reed-Solomon Codes . 9
3.5 Security Issues . 10
3.6 Encryption Algorithms . 11
3.7 Performance Comparison of Symmetric Encryption Algorithms 12
3.8 Digital Signature and Data Integrity . 12
3.9 Performance Comparison of Digital Signature Algorithms 14
3.10 Data Transfer Issues and Possible Solutions 14

4 Design of a Time Frame Based Cooperative Data Storage System 17
4.1 Agreements Within the Crowd . 17
4.2 Time Frame, Space and Reliability Model 18
4.3 Time Frame Characteristics . 20
4.4 Models of Fair Pricing . 22

4.4.1 Fair Pricing with General Demand 23
4.4.2 Fair Pricing with Local Demand . 24
4.4.3 Absolute Pricing Model . 24

4.5 System Characteristics . 25
4.6 Data Storing Process . 25
4.7 Data Retrieving Process . 26
4.8 Contributor Dedication Process . 27
4.9 Poisson Binomial Probability Approximation 28
4.10 Poisson Binomial Probability Approximation Error Rates 29
4.11 File Maintenance Techniques and Processes 30

5 Implementation of the Prototype and Used Technologies 31
5.1 Server Side Application . 32
5.2 Web Service . 32
5.3 Database Architecture . 34
5.4 Client Side Application . 35
5.5 Contribution Dedication Process and Price Model Implementation 38
5.6 Client Application Structure . 39
5.7 The Common Module . 39
5.8 NAT Traversal Implementation . 40
5.9 Technologies and Frameworks . 40

6 User Feedback, Tests and Measurement Results 42
6.1 Real Time Testing . 42
6.2 Other Sources of User Feedback . 45
6.3 Computer and Storage Space Usage Trends 46

7 Conclusion 50

A Attachments 54

B CD Content 58

Chapter 1

Introduction

Distributed peer-to-peer storage systems are relatively new solutions for remote data stor-
ing. They promise a cheap, secure and reliable data backup service. However there are only
a few real working realizations, from which only one is commercially accessible by public
users.

Implementing a system, based on distributing the client’s data between contributors
faces significantly more technical issues than implementing classic client-server architecture
storage systems. The design has to deal with unreliability of the contributors and a different
spectrum of possible attacks.

In this thesis a possible solution and a prototype of a distributed peer-to-peer data
backup solution is presented. The main goal of this research is to uncover the advantages
and disadvantages of the discussed systems. This is done by publishing the functional
prototype and the concept for the wide public, mainly in order to receive feedback. The
solution presented in this thesis is different from the other available distributed solutions (or
which were available in the past). The main difference is that a wide range of possibilities
are given to the users to indirectly select their partners for data storing. They are allowed
to choose the parameters, which describe the time interval of their data availability and
the reliability percentage. These options make the system more flexible and give ability to
reach more contributors from the public than the currently available solutions.

This thesis is divided into six chapters. In chapter 2 the available regular and cooper-
ative data backup solutions are presented and compared. The basic issues about security,
reliability and communication of the distributed systems are discussed in chapter 3. In
chapter 4 an unconventional model of distributed peer-to-peer data storage system is pre-
sented. Besides that the necessary agreements between the clients and contributors, fair
pricing model and basic operations such as data storing and retrieving are described as
well. In chapter 5 the architecture of this irregular system is presented. Among the cov-
ered topics are the client and server side applications, communication protocols between
them, the database architecture and the used technologies and frameworks. In chapter 6
the real time test results, objective measurements, subjective feedback from the test users
are presented. In the last chapter conclusion is discussed based on the users’ feedback
and objective measurements. The possible improvements to the design of this system is
described as well.

The main motivation for this study was to find an alternative solution for inefficient
client-server online storage architecture, which often deals with uplink bandwidth prob-
lems, vulnerability against cyber attacks and limited small storage space. The idea was
represented in Starcube startup accelerator in Brno (Spring 2013).

1

Chapter 2

Online Data Storage Systems

In this chapter the motivation for creating the time frame based cooperative data storage
system is presented. The basic concepts of online backups and general backup techniques
are introduced as well.

2.1 Client-Server Architecture Based Data Storage Systems

There are several online backup solutions worldwide, which are well known for the pub-
lic. These solutions are mainly data center based, which means the providing company
offers a portion of his storage complex to other companies, organizations, or individuals
in exchange for money. These solutions are comfortable for the users, due to simple and
user-friendly client applications and the always available servers. Most of these cloud based
storage systems follow the Freemium business model, which means they offer also free but
limited service for everybody, hoping that some of the users will pay for the extended
service. The table below shows some of the well known online backup services and their
prices.

Table 2.1: Comparison of online backup service1

1http://lifehacker.com/5905702/dropbox-google-drive-skydrive-and-others-pricing-per-gb-and-more-
compared- sin-convenient-charts

2

As table 2.1 shows each of these back up services offer limited free storage place for
users (Freemium business model). All of them are based on centralized storage system. On
the other hand if these services are compared with a solution from the company Symform,
which is a cooperative data backup solution a significant difference can be found. The
solution from the company Symform offers a unlimited reliable storage place.

Table 2.2: Symform free backup service2

The unlimited backup storage is achieved by making the users able to contribute their
free unused space from their local computers to the system in rate of 1 for 2 GB. This
means if they provide 2 GB free space from their local computers (or NAS, server) they
get 1 GB reliable online storage space (which is actually space on the other contributors’
devices). This is the basic idea behind a cooperative data storage systems.

2.2 Cooperative Data Storage Systems

There are only a few commercial and non-commercial distributed backup solutions currently
available. The only available commercial solution is provided by the already mentioned
company Symform (recently some startup companies are trying with similar ideas, like
Spacemonkey 3). In the past Wuala storage trading was well known also. This system was
shut down in 2010. The reason Wuala shutdown its service, was due to the complexity of
the maintenance of their completely distributed system (without tracker server), as well
the significant drop in hard drive prices lead to adopt only data center based solution[8].

Symform’s model is very simple. Each of their users can contribute free space from
their immovable nonstop running device(NAS, server, etc.) to the network, in exchange of
reliable online backup storage. This means that users are able to pay for online backup
storage by giving up part of their own local hard drive. This has only one disadvantage,
the users who contribute have to own a server, which has to be always available and be
reachable from the internet. This is not an issue for companies, but for individuals it
can be limiting. In chapter 4 a possibility is discussed, how to avoid the obligation of
having a server running for contribution in a cooperative data backup solution.

There can be 2 basic types of distributed data storage system designs:

• Hybrid or Server based - this category of storage systems is based on a control
server (or servers), which tracks the users, but the data is still distributed over the
network via peer-to-peer protocols. BitTorrent’s new backup service, which is coming

2http://www.symform.com/our-solutions/pricing/
3http://www.kickstarter.com/projects/clintgc/space-monkey-taking-the-cloud-out-of-the-datacente

3

out later this year4 can be mentioned as an example.

• Completely distributed - in this category the tracking is not dependent on a server,
instead it uses a second layer of routing at the application level at each peer, which
finds the appropriate partners for the distribution in the peer-to-peer network (e.g. Chord
is such a system under development and research at MIT,Cambridge)[2]

This thesis focuses on uncovering the opportunities, what a hybrid or server based
cooperative data storage system can offer to the users.

2.3 Data Repository Models

Backup in general means to store data at least in 2 different places. In case if one of the
storage devices crashes, it can be still recovered from the other. There are several backup
techniques, which are widely used around the world. The most common schemes are the
following:

• System Images (Complete backup) - This is the simplest way to protect a file
system against disk failures and file corruption. It is done by copying the entire
content of the file system to a backup device. The resulting archive is called a full
backup. This has some disadvantages, that it is time consuming and each backed up
image of a system requires the same amount of space for backup as the original data
(if not compressed, which decreases the performance even more)[1].

• Incremental - Faster and smaller backups can be achieved using an incremental
backup scheme, which copies only those files that have been created or modified
since a previous backup (full or incremental). Incremental schemes reduce the size
of backups, since only a small percentage of files change on a given day. A typi-
cal incremental scheme performs occasional full backups supplemented by frequent
incremental backups[1].

• Differential - A differential backup is a type of data backup, that saves only the
difference in the data since the last full backup5.

• Continuous Data Protection - The system immediately logs every change on the
system. This is generally done by saving byte or block-level differences rather than
file-level differences as in incremental back up[17].

4http://www.nbcnews.com/technology/gadgetbox/bittorrent-takes-dropbox-sync-sharing-backup-
service-1C8123522

5http://searchdatabackup.techtarget.com/definition/differential-backup

4

Figure 2.1: Incremental backup method
scheme1.

Figure 2.2: Differential backup method
scheme2.

The figures 2.1 and 2.2 show the difference between the incremental and differential
backup process. As the scheme shows, the size of the incremental backup grows by each
change made since the last (full or incremental) backup, while in the case of differential
backup only the difference since the last full backup is stored.

1http://wiki.r1soft.com/display/TP/Backup+Method+-+Incremental+Backup
2http://wiki.r1soft.com/display/TP/Backup+Method+-+Differential

5

Chapter 3

Issues and Solutions For The
Cooperative Data Backup
Solutions

In this chapter the main issues and problems of a distributed peer-to-peer data storage
system are discussed.

3.1 Reliability Issues

A key problem of a cooperative data storage system is how to create a reliable service for
storing the data with a set of unreliable resources. Even if the contributors have obligation
to run a server, they are unreliable with a certain percentage, which is due to device failures,
power cuts, possibility to abandon the system, etc. Reliability of the data can be ensured
by two basic ways.

3.2 Replication Model

The first way is to replicate the data among multiple devices (contributions). This is
efficient if the redundancy (replication ratio or the count of replications) of the data is
high, but by increasing the replications the transfer bandwidth is increasing as well. The
model of reaching the desired reliability based on replicating the data is the following:

Let’s assume the data is distributed between n contributors. Let contributor Ci has the
probability P (Ci, t) of being online in time t, where i ∈ {1..n}, then the probability of our
data being online at time t is[12]:

Ponline(t) = 1−
n∏
i=0

(1− P (Ci, t)) (3.1)

Let’s assume Pdesired is the desired reliability for the data, in ideal case it is 1.0, but
due the issues already mentioned (un-installation, power cuts, etc.) this is practically
unreachable. In all case Pdesired has to be less than the calculated Ponline. This can be
reached only by asking more and more contributors for the backup.

In conclusion with this method high reliability can be reached, but in practice it is
unusable, due to the ineffective bandwidth and storage space usage. This is because the

6

original data has to be transferred and stored within peers n times, so the redundancy rate
in percentage is 100n%.

A practical example:
Let Pdesired = 0.99(99%), and ∀i ∈ {1..n} : P (Ci, t) = 0.8 Therefore:

Ponline(t) = 1− (0.2)n

1− (0.2)n ≥ 0.99

n ≥ 3

So n has to be at least 3, to reach the desired reliability. This means each MB of data
has to be transferred 3 times.

Figure 3.1: Scheme of the replication model with redundancy of 300%.

3.3 Erasure Coding Model

The second way to reach the desired reliability can be done by using erasure codes. These
codes are part of the family of FEC (forward error correcting codes), but in comparison
with error correction codes they have better parameters with known erased data, which
can be reflected to the distributed data storage case, when some of the data fragments are
missing. The erasure codes can be divided into two main categories:

Optimal erasure codes - with a (k+m, k) block, where k is the size of the original data
block and m is the size of the redundancy block. It is possible reconstruct any missing
m blocks from the k + m blocks. Reed-Solomon codes can be mentioned as part of
this category[10].

Near optimal erasure codes - these codes need (1+ε)k to restore k data blocks. Where
ε > 0, which can be often reduced with the cost of CPU performance and memory.
The modern algorithms require relatively small ε to reach high reliability, but still
these algorithm are used mainly in telecommunication, not in data storing. The
latest designed Tornado codes has at ε = 0.01 reliability of 99.9% [13]

7

Using optimal erasure codes the data is not replicated among contributors, but some
additional redundant data sequences are created from the original data.

In other words m redundant bytes are added to the original k byte data, so any m bytes
of the final k+m encoded data can be missing, and yet the data will be still recoverable. In
practice k+m has to be a relatively small number between 1 and 256 (most common), so the
data which is longer then k bytes, has to be divide to fragments, where each fragment will
be maximally k bytes long. Then to each of this k bytes m redundant bytes are calculated.
After that each of the k+m encoded bytes a distributed equally among k+m contributors,
so any m of the contributors can be offline, and with the remaining k bytes the original
k + m bytes can be reconstructed (containing the original data). Figure 3.2 shows this
interleaving technique.

Figure 3.2: Byte interleaving and fragmentation scheme.

This method is much more efficient in usage of bandwidth as well as space. If the
contributors availability is known, in order to reach the required reliability the redundancy
rate of these methods can be adjusted.

To calculate the probability of the data being available Ponline is more complex than
the situation for replication model. The calculation has to be done with the (Bernoulli)
binomial formula [12]:

n = k +m

Ponline(t) =

n∑
z=k

(
n

z

)
P (t)z(1− P (t))n−z (3.2)

8

This formula is valid only if every contributor’s probability is equal. In reality every
contributors probability for being available is different. For this case Poisson binomial
distribution can be used. This distribution at its simplest form has high computational
complexity, therefore an approximation of this method has to be implemented in practice,
this approximation will be discussed in chapter 5.

Figure 3.3: Scheme of the erasure code model with redundancy.

3.4 Reed-Solomon Codes

Reed-Solomon codes are widely used in telecommunication, raid systems, QR codes, optical
storage devices like CDs DVDs and many other fields to fix errors in data (mainly burst
error). The first time this algorithm was published in 1960 by Irving Reed and Gustav
Solomon.

The core of the Reed-Solomon codes is a Galois field, which is a finite field generated by
a generator polynomial. Galois fields hold only none repeating number sequence, with the
length of pn where p has to be a prime. Most often it is 2, than the GF (2n) can hold up
to numbers with n bits, which makes it practical for usage in software engineering. Most
often n = 8, because this way the number in the Galois field can be coded into one byte.
The complete explanation of the Galois fields and Reed-Solomon coding is out of the scope
of this thesis, but the some properties has to be described.

Encoding with Reed-Solomon means to add m parity bytes to the k data bytes, so by
dividing the k + m code polynomial (represented by the k + m bytes) with the generator
polynomial the reminder is 0. During decoding this reminder is verified; if it is not zero the
code contains error.

Decoding is a much more complex multistage process. First the syndromes (coefficients
of the reminder after the division with the generator polynomial) have to be found. Than
these syndromes are used to determinate, which bytes were corrupted (Chien search). After
the bytes were found, the corruption rate has to be determined (Forney algorithm). As the
corruption rate is found, these data has to be XOR-ed with the original code sequence,
which is containing errors. The Reed-Solomon codes can fix up to m

2 unknown errors and
m known errors. The decoding algorithm usually needs at least 10 times more resources
(computational, memory) as the encoding [14].

9

Fortunately in the case of known errors, the syndrome searching and corruption rate
determining part can be skipped. This will result in a much faster algorithm for known
erasure errors, which is the case of the distributed data backup systems. The data from
contributors, who are offline is considered as erased code, therefore it has to be calculated.

3.5 Security Issues

Distributed technologies generally deal with more security risks than conventional client-
server architecture applications. There are many possibilities how the attackers can abuse
or disrupt the system. The most common attacks can be [6]:

Free rider attack – a user wants to back up his data, but he refuses to contribute in
order to get free service. A solution for that attack is in a formal contract between
the client and the contributor. This contract has to be checked periodically, whether
the contributor is keeping his promise. In case the contract is broken, the contributor
has to be punished, so the cost of free rider attack is higher than using the service
regularly. A contract can be done concerning the ratio of contribution and using the
reliable storage. The only problem with this solution is that, it is hard to distinguish
free rider attack from a failure contributor device. For this reason “grace” period has
to be allowed in the system, which is a time interval when the user is being unpunished
for breaking the contract.

Bandwidth attack – since peer-to-peer data transfer is used, the users can easily abuse
the bandwidth of their partners by continuously uploading and downloading their
data. It is possible to defend against this attack, by limiting the amount of upload
and download of the client. Other option is reducing the bandwidth for suspicious
clients on the side of the contributor. Also a bandwidth attack can be done by the
contributors, by reducing the transfer speed of the files, which are already stored on
their devices. Against this attack contract has to be made for minimal upload speed
as well. Breaking the contract again should lead to punishment.

Grace period attack – is an attack where a client uses the grace period time to back
up his data for free, without contribution. This can be done only for the time while
grace period is valid, but by recreating his account the client can reach a free service
with a relatively little effort. Possible solution for this attack is prepayment and post-
payment. Prepayment requires the client to contribute or pay with money or some
service before using the service of others. The best way to do this, is the define the
price of the prepayment as high that for the attacker is not benefiting to use this
attack. Post-payment is a mechanism of marking the clients (e.g. by IP address),
who already attacked the system, and not allowing them to use the service anymore
until they pay for their misused grace period. This has a disadvantage that the user
can use the grace period once.

Third party data access – as contributor based model is realized over the internet, unau-
thorized users can read or change the unprotected data of the users. It is possible to
prevent this attack by encrypting and interleave the data. Each encrypted fragment
has to be sent to a different contributor. This issue is solved if erasure coding model
is used, like it was mentioned in the section 3.3. The possible encryption algorithms
are described in the section 3.6.

10

Data corruption attack - since the contributors hold other users’ data, they can easily
corrupt it (change the data). Even a change of one single bit can lead to a data
sequences, what is impossible to decode for the erasure coding algorithms. Against
this attack digital signatures can be a possible defense (with at least 2nd pre-image
resistant hash functions). This solution will detect the change in data. In case of any
change the hash value would be different, indicating the attack. Those contributors
who corrupt the data could be punished. The possible hash functions are described
in the section 3.8

3.6 Encryption Algorithms

In order to keep the data unreadable by third party users of the system, it has to be
encrypted with a symmetric encryption algorithm. The key must be available only for the
clients who own the data.

There are two mayor types of symmetric encryption algorithms [5]:

Block encryption algorithm – Uses a block of bits to encrypt data. It is commonly
used to encrypt large amount of data.

• AES is a 128,192 or 256 bit key globally used and well trusted algorithm.

• DES is one of oldest digital encryption algorithms, it has 64 bit block size with
56 bit size key. It is based Feistel’s cipher scheme with 16 rounds. Historically it
has encrypted the most bytes of all cipher algorithms [9]. DES is considered as
none secure algorithm, since it is easy to crack by brute-force cracking algorithm.
It’s main disadvantage is it’s small key size.

• 3DES is the modern version of the historical DES algorithm, which is considered
breakable today. The basic DES algorithm uses 56 bit keys. The newer version
3DES has 168 bit length key. Compared to the AES algorithm 3DES requires
more computational resources.

• BlowFish is a various 32 up to 448 bit length key symmetric algorithm. It
is considered still secure since its birth (1993), but AES has more attention.
Blowfish algorithm is based on improved Feistel’s cipher scheme.

Stream encryption algorithm – uses two separate streams to encrypt the data. One is
the data stream and the second is the key stream, which contains generated pseudo-
random values to encrypt data stream. Most often the encryption is done by XORing
these two streams.

Block encryption algorithms are generally more secure than stream ciphers, and since
the cooperative storage system is not based on stream of data, but static, local and fixed
size data, it is better to use block cipher algorithms.

If the reliability model of the cooperative data storage system is based on erasure coding,
the distributed data is even more secure. As it was described in the section 3.3, each k+m
byte of the erasure code blocks is distributed equally among the k + m contributors with
byte interleaving method (each fragment gets exactly 1 byte from each k + m long code
sequence), therefore there is no continuous data sequence at any contributor. This makes
practically impossible to retrieve information from the data fragments, under condition if
none of the contributors has knowledge about the others, who store fragments corresponding
to their stored fragment.

11

3.7 Performance Comparison of Symmetric Encryption Al-
gorithms

In section 3.6, the listed symmetric algorithms are currently considered as secure (except
DES), but they have different computational performance. Performance of these algorithms
is an important part in the design of a cooperative data backups system. It is expected that
the users want to store large amount of data, therefore the usage of computational power
for encryption has to be minimized. The table 3.1 shows the performance of the mentioned
algorithms:

Algorithm Megabytes(220 bytes) Processed Time Taken MB/Sec
Blowfish 256 3.976 64.386
AES (128-bit key) 256 4.196 61.010
AES (192-bit key) 256 4.817 53.145
AES (256-bit key) 256 5.308 48.229
DES 128 5.998 21.340
(3DES)DES-XEX3 128 6.159 20.783
(3DES)DES-EDE3 64 6.499 9.848

Table 3.1: Comparison of the encryption algorithms.

Table 3.1 contains the speed comparison for some of the most commonly used symmetric
cryptographic algorithms: “all were coded in C++, compiled with Microsoft Visual C++
.NET 2003 (whole program optimization, optimize for speed, P4 code generation), and ran
on a Pentium 4 2.1 GHz processor under Windows XP SP 1” [16].

In conclusion based on these data it is clear, that Blowfish and AES algorithms has
overall better performance compared to 3DES and DES, therefore it is recommended to
design the cooperative data storage system using these encryption algorithms.

3.8 Digital Signature and Data Integrity

As mentioned in section 3.5, with the data corruption attack contributors can cause damage
to other users of the system. Even the smallest change in the stored fragments at the
contributors side could cause the data not being possible to be reconstructed by the erasure
coding algorithms. This is the most dangerous attack in the system, because it can be done
with minimal effort and can cause loss of the clients data.

In order to prevent the data corruption attacks hash value (checksum) has to be com-
puted for each distributed fragment. The hash value then has to be stored in a database
what is reachable by the client. After downloading back the fragments the data integrity
must be checked with the hash value from the database. If the checksum of the downloaded
file doesn’t correspond to the stored one, the fragment has to be dropped. As far as the
data transfer runs under reliable TCP protocols, the only reason for the data integrity fail
can be the contributor (except man in the middle attacks) itself, therefore he has to be
considered as potential attacker.

The hash value is a constant length sequence of bytes, which has the following five main
characteristics [9]:

1. Can be computed with low computational complexity.

12

2. Applicable for various length inputs.

3. First Pre-image Resistance - For the known y is computationally “hard” to find
any x, where F (x) = y, F is the hash function (irreversibility).

4. Second Pre-image Resistance - For the known x is computationally “hard” to
find any x′, where F (x) = F (x′), x 6= x′.

5. Collision Resistance - For any x is computationally “hard” to find any x′, where
F (x) = F (x′), x 6= x′.

There are many type of implementations of hash functions, currently the two most know
algorithms are the following:

MD5 - The MD5 (Message-Digest) Algorithm is a commonly known and popular hash
function. It generates 128-bit hash value. Recently some cases of collision resistance
attacks have been shown, but this fact doesn’t made it deprecated. This discovery
made MD5 unusable for SSL certificates and digital signature, which rely on collision
resistance, but the pre-image resistance properties are still valid[11][15].

SHA-1 - “Secure Hash Algorithm
”

was designed based on MD5 algorithm, it produces 160
bit hash value from the input. It has been standardised by the standards agency NIST
(National Institute of Standards and Technology) in 1993. Generally it is considered
safer as MD5, because of recent collision resistance failure for MD5 algorithm was
proved with SHA-1, even that SHA-1 is very similar to MD5[3]

Figure 3.4: MD5 hash function1. Figure 3.5: SHA-1 hash function2.

In practice a cooperative data storage system requires a hash function, which meets the
first four characteristics (up to 2nd pre-image resistance). Collision resistance doesn’t have

1http://en.wikipedia.org/wiki/MD5
2http://en.wikipedia.org/wiki/SHA-1

13

to be guaranteed, because in reality the hash value is never send over the network (like in
SSL), it has to be stored on the clients side or in a database in a controller server (hash value
injection attack can’t be performed). Other issue can appear if the data transfer between
peers is unsecured. This way it is vulnerable against man in the middle attacks. This
attack can be done by corrupting the fragments after leaving the user’s but before reaching
the contributor’s device (or at downloading, reverse process), therefore SSL tunneling is
necessary for data transfers between the client and contributor.

Figure 3.6: Man in the middle attack scheme3.

3.9 Performance Comparison of Digital Signature Algorithms

If the collision resistance condition for hash functions is ignored both SHA-1 and MD5 are
considered secure. The computational performance comparison of these algorithms has to
be done, again due to predictable huge amount of data transfer in the system. The following
table shows results of a speed test for these algorithms [20]:

Algorithm CPI Path Length Instruction MB/Sec
MD5 0.72 12 197.86
SHA-1 0.52 24 135.30

Table 3.2: Comparison of the MD5 and SHA-1 hash functions.

The table 3.2 shows that MD5 algorithm has better performance over SHA-1, and since
it is enough to ensure 2nd pre-image resistance it is the better option.

3.10 Data Transfer Issues and Possible Solutions

The peer-to-peer communication is the biggest issue for a cooperative data storage system
concerning data transfer over the IP network. The reason for this is simple, there are
not enough public IPv4 addresses available. The trend for the ordinary users, who are
the potential clients and contributors of a cooperative data storage system is to use NAT
(Network Address Translator). The NAT allows them to easily send outgoing requests, but
makes them unreachable for the users outside their local network. This issue is around
for a long time and will be around even if IPv6 addresses will be used globally.

3http://www.owasp.org/index.php/Man-in-the-middle attack

14

Figure 3.7: Typical NAT based architecture1.

This problem is often referred as “NAT traversal problem”. Fortunately there are several
protocols and techniques for NAT traversal. The following list shows some of the most used
methods:

Session Traversal Utilities for NAT (STUN) - The STUN protocol allows the discov-
ery of a NAT device in the network, the public IP address or NAT address and port
number, what was allocated for the communication. The protocol requires a third
party STUN server, which is addressed by the client application (behind NAT) to
determine the presence of the NAT device[7].

Figure 3.8: STUN based NAT traversal architecture scheme.

Traversal Using Relay NAT (TURN) - The relay based NAT traversal is the most
reliable but the least effective peer to peer communication method in a P2P network
communication. This technique is based on a middle device, which is on a server
side of the network (accessible by everybody), all data transfer is realized through
this relay device, by one of the clients uploading the data, and the other downloading
from it simultaneously. This method requires the resource of the server, which makes
it ineffective[18].

1http://www.cisco.com/en/US/technologies/tk648/tk361/tk438/technologies white paper09186a0080091cb9.html

15

Figure 3.9: TURN based NAT traversal architecture scheme 2.

UDP hole punching - UDP hole punching can be described as follows: with the help of
the mediator server, the hosts behind different NATs can obtain each other’s private
network address and port, as well as the public network address and port resolved by
the NAT. Then they use this information to establish a connection to intercommuni-
cate. This traversing NAT technology is simple and robust[18].

UPnP - Universal Plug and Play is a technology, which allows networking and automatic
device discovery from various vendors and manufacturers. With the help of UPnP
devices can join a network, obtain an IP address and discover other devices. It can
automatically create port forwarding rules in the router[19].

2wiki.cs.columbia.edu/download/attachments/649/TURN.ppt

16

Chapter 4

Design of a Time Frame Based
Cooperative Data Storage System

In this chapter, the time frame based design of a cooperative data backup solution is dis-
cussed. The main focus is given to the mathematical definition of the components of the
design. The architecture, what is described is based on hybrid client-server-contributor
model. In the center of this architecture is a tracker server, which is controlling the opera-
tions carried out by the users in the system and taking care of the fair pricing model. The
chapter also describes some of the possible special attacks against the system and defenses
against them.

4.1 Agreements Within the Crowd

In order to make the system more flexible, some agreements have to be made between the
clients and the contributors.

The basic concept is that the client doesn’t need his data to be reachable 24 hours a day
and 7 days per week. The client can decide about the time frame, when he needs his data
being available. The other agreement that can be made between the client and his partners
is that in the specified time frame the data doesn’t have to be available with 100% reliability.

In an ordinary storage system (the systems what are well known by the public, see
chapter 2) this agreement was not possible to make. In a basic client-server model, regula-
tory options can’t be offered for the clients, with data servers running nonstop. The same
way it is possible to describe the solution from the company Symform, they obligate the
contributors to run a server at their homes.

In the time frame based system the client can demand for contributory resources, which
correlates with his needs. In other words the system will find, only those contributors to
back up the data for clients, who are reliably online in that time frame, which was given
by the client. And the redundancy rate for the Reed-Solomon algorithm is optimized based
on the found contributors and their promised reliabilities. Time frames can be described
as a repeating interval of time in a week distribution (e.g. business hours, weekend, night
time, etc.) The time frame convention can be useful for employees, who work several hours
each day, therefore they don’t need their data being present at night. As well as the
convention about the reducible reliability can be useful for clients, who just want to back
up their data for crash-recovery, which is not for everyday use (photos, videos, etc.). If the
client requests his data outside of the defined time frame, the data won’t be guaranteed to

17

be present.
Similar specification has to be made from the contributors’ side of the system. They

have to define the time frame and reliability, when they will be reachable by the clients,
and what is the percentage of the reliability they will be online. These specifications of the
contributors has to be kept strictly in order to make the files reachable by the clients as
they desired. This fact requires an advanced handling of the reliability issue. As well as
general file management has to be introduced for cases when contributors decide to leave
the system.

4.2 Time Frame, Space and Reliability Model

The data and space model has to be based on the agreements made by the clients and the
contributors. From the aspect of the client, the data will carry also information about the
time frame and reliability demand. It is possible to define the client’s data (file or directory)
with three parameters:

• Time frame (demanded)

• Reliability (demanded)

• Size of the data

Analogically the contributed space can be described with three parameters:

• Time frame (promised)

• Reliability (promised)

• Size of the free space

The main benefit from this data and space model is that in theory it can be applied
for the vast majority of people around the world. Each user of the system, regardless of
he is contributor or client, can specify his parameters according to his needs or availability.
These parameters won’t bring any handicap to the users of the system, if any client needs
his data be present online 24 hours every day, than he is able to set the parameter to this
value. Same applies for the reliability parameter. In fact with this model the ordinary
online backup mechanism can be emulated as well. Only the time frame has to be set for
24 hours a day and 7 days a week and the reliability has to be set for 100%.

In a more advanced version of this system it is possible to add a fourth parameter
to these definitions, which is the bandwidth needed for the data transfer. Some data is
modified relatively often, so it needs higher bandwidth than others. For example photos
and movies are possible to store with smaller bandwidth, on the other hand work files,
which are often changed need fast up and down link.

The following formulas describe the mathematical model of the time frames, the data
and contributions.

Let T = (b, f, d) be the set of all possible time frames, where

18

b is the start time (beginning) of the time frame, which half-hour of the week it starts (the
week has 336 half-hours). b ∈ N, b < 336

f is the frequency of the time frame, how many days it covers. Each week has 7 days,
therefore f ∈ N, f < 7

d is the duration of the time frame, how many half-hours it covers per day. Each day has
48 half-hours, therefore d ∈ N, d < 48

Any time frame t ∈ T can be defined as (each parameter of the time frame consist the time
frame itself as index)

t = (bt, ft, dt) (4.1)

The geometrical shape of the time frame space is a torus. This means e.g. if a user
starts his time frame at Saturday and it lasts 5 days (variable f), then it ends in Wednesday.
Also this is the case for the hours, if a user starts his hours at 20:00 and it last him 8 hours
(variable d), then he will end it the next day at 4:00. This overlap has to be applied for
time zone differences as well. The server which stores every users’ time frame information,
has to convert time frame hours to the local time zone, e.g. in Japan the time frame from
8:00 to 16:00 is not the same as in the USA, New York city, there is 13 hours difference,
what has to corrected if the client defines the time frame.

The reason why is the model based on half-hours (not hours), is this stepping provides
higher flexibility for the users. While even more detailed description (e.g. minutes) would
confuse the users, and in the end wouldn’t bring any significant change. Simple visualization
of the time frames can be done as shown in figures 4.1 and 4.2.

Figure 4.1: Time frame for regular work hours (left) and time frame for server (right).

Figure 4.2: Time frame which overlaps to the next day (left), time frame which overlaps
from one day to another, but to the next week as well (right).

19

Let F = (s, r, t) be the set of all files in the system, where

s - is the final size of the file sf ∈ N, sf ≥ 0

r - is the demanded reliability rf ∈ R, 0 ≤ rf ≤ 1

t - is the time frame of the file f

Based on the description each file f ∈ F in the system can be defined as (convention):

f = (sf , rf , tf) (4.2)

Analogically let the set of contributions be C = (s, u, r, t), where

sc - is the size of the free space of the contribution sc ∈ N, sc ≥ 0

uc - is the size of the used space of the contribution uc ∈ N, 0 ≤ uc ≤ s]

rc - is the demanded reliability rc ∈ R, 0 ≤ rc ≤ 1

tc - is the time frame of the contribution c

Based on the description each contribution c ∈ C in the system can be defined as (conven-
tion):

c = (sc, uc, rc, tc) (4.3)

4.3 Time Frame Characteristics

Let Γ ⊆ TxT be the “cover” relation over the set of possible time frames. This relation is
important for many reasons in the design, but mainly because it is used to find the possible
partner contributors for data storage for the clients. Only those contributors can store the
client’s data, who are the same time frame online, or their time frame covers the client’s
time frame.

γ = {(q, w)|fq ≥ fw∧
dq ≥ dw∧
(sq ≤ bw ∨ (fq ≥ 7 ∧ dq + sq > 48 + sw))∧
((bw − sq) mod 48 + dw ≤ dq ∨ dq = 48)∧
((bw − sq) + 48fq + dq ≥ 48fw + dw ∨ fq ≥ 7)∧
((bw − sq) + 48(fw − 1) + dw ≤ 336 ∨ fq ≥ 7)),

q, w ∈ T}

(4.4)

In order to explain the working mechanism of this relation it is necessary to introduce
an alternative visual representation of the time frames. This representation is not based on
a 2 dimensional torus, but a 1 dimensional cyclic field, which basis is the half hours in the
week:

20

Figure 4.3: Examples of time frames based on a 1 dimensional cyclic field.

In figure 4.3 the number of days what the frequented time frame covers is the value fq,
the width of each bar (duration of time frame per day) is the value dq and the value bq
is the half hours of the week (336) when the time frame starts. This visualization, show
that it is enough to deal with only one overlap of time (from Sunday to Monday), which
significantly simplifies the equations.

This equation 4.4 can be divided into 6 parts, for better explanation:

fq ≥ fw - The covering time frame must have higher frequency (last for more days).

dq ≥ dw - The covering time frame must have longer duration.

sq ≤ bw ∨ (fq ≥ 7 ∧ dq + sq > 48 + sw) - The covering time frame must start earlier, unless
it last the whole week and ends after second time frame.

(bw − sq) mod 48 + dw ≤ dq ∨ dq = 48 - The starting hours of the second time frame plus
its duration can’t exceed the starting hours plus the duration of the covering time
frame, unless the covering time frame has 24 hours duration (48 half hours).

(bw − sq) + 48fq + dq ≥ 48fw + dw ∨ fq ≥ 7 - The ending half hour of the second time frame

21

can’t exceed the ending half hour of the covering time frame, unless the covering time
frame last for a week.

(bw − sq) + 48(fw − 1) + dw ≤ 336 ∨ fq ≥ 7 - The last rule says that if the covering time
frame covers every day in the week, only in that case can the input time frame
relatively to the covering time frame overlap to the next week. Relative overlap means
that covering time frame’s start time is considered at 0 half hour, and input time
frame’s start hour is normalized to that. Therefore the relative start time difference
is the same as before transformation.

Let t ∈ T,G ⊆ C than G = C ≥ t be the subset of contributions C, where the
contribution’s time frame can cover t.

G = C ≥ t = {a|(ta, t) ∈ Γ, a ∈ C} (4.5)

Let G = C ≤ t be the set of contributions, where the contribution’s time frame is
covered by t.

G = C ≤ t = {a|(t, ta) ∈ Γ, a ∈ C} (4.6)

Let h : T → R be the function, which returns the “surface” of the time frame. In other
words this function returns the total amount of half hours for a time frame in a week:

h(t) = dtft; (4.7)

4.4 Models of Fair Pricing

The system requires a strong economic background, how contributors profit from the pro-
vided space and how clients pay for the used services. The main idea is that each client has
to pay (transfer credit) to the contributors, who store their data. Without this economic
background the system wouldn’t work. By contributing the users earn credit, which again
allows them to back up their data. Credit works as a catalyst in the system, which moti-
vates the users to contribute in order to get reliable free space over the network by giving
up their local unreliable free space.

In this section 3 fair pricing models are presented. The first two concerns about the
general or local demand for the time frames to the equations. The last model is the simplest,
it returns an absolute price for any contribution. It is based only on the stored data, the
reliability and the covered time of the time frame.

One rule applies for each of the models. In these models always the contributor defines
the price of his storage, and the client is paying that amount what his partners request.
This doesn’t mean that the contributors personally can define the price, but the algorithm
is based on the parameters (time frame, reliability, size, used space) of the contributors
and not the clients (file time frame, reliablity, size). If the contributor’s time frame is e.g.
“server” (24/7 with 100% reliability), then the client pays for that specific resource, even
if he wanted to store only for 8 hours a day his data. The chosen pricing model is respon-
sible for determination of the price of the contribution. The distribution algorithm is

22

responsible for finding the best prices for the client, usually the contributions with
smallest surface, what still covers the client’s required time frame see section 4.8.

4.4.1 Fair Pricing with General Demand

The first model tries to simulate the real world economics, where if the demand increases
for some resources, their price is increased as well.

The rules of the system are that the clients are paying credit based on the parameters of
the space, reliability, length of the time frame in half hours, and the the general demand
and offer rate of that time frame in the system.

Calculating the general demand and offer rate into the pricing makes some of the time
frames more valuable and some less. For example the time frames during work hours are
definitely more valuable, because more people rely on these time frame and want their data
be available. On the other hand time frames during night could be less valuable, because
practically less people would use their data during night. Also during the time frames of
work hours the possible amount of contributions can be higher as well, therefore the demand
not necessarily increases the value of the time frame.

The fact that the payment doesn’t depend only on the space and data parameters (size,
reliability, time frame), but also on the general demand of storage space should make the
system adaptive to changes in the demand or the offer. There are two cases what can
happen in the given time frames:

The demand for storage space is closing to the maximum available storage space
– in this case the price of the storage space automatically increases.

The amount of storage space is significantly higher than the demand for it – in
this case the price of the storage space decreases.

This mechanism is again similar to the real world inflation mechanism. It should
be a factor of motivation for the usage of the system. For both sides:

In case of high storage price – Contributors are motivated to provide more space.

In case of low storage price – Clients are motivated to store more data, thus providing
more credit to that particular time frame.

The following equations describe the pricing model for file f which is stored in contri-
bution c:

q(tc) = C ≤ tC
⋃
G ≥ tc (4.8)

Where G ⊆ C, and q(tc) returns a subset of C, where the time of these contributions cover
or is covered by tc. These contributions are competing for the storage of a data in a given
time frame, therefore the general demand for a time frame can be calculated based on these
contributions.

λ(tc) =

∑
c′∈q(tc) sc′∑

c′∈q(tc) s
′
c − u′c

(4.9)

price(c, f) = sfscrch(tc)λ(tc) (4.10)

23

Where λ - function returns the general demand for the time frame, what is the argument
of this function. It returns the summed rate of remaining free space and total space of the
contributions, what the time frame tc can cover or can be covered by. Contribution who
can cover or can be covered by the desired time frame, actually compete with each other for
storing the data, this is the reason calculating the general demand for a time frame based
on their used and free space ratio. This means as the remaining space get closer to zero in
a given time frame (tc), the price will go up with hyperbolic character. Analogically as the
remaining free space raises the price goes down. The price of a contribution is based
on its concurrent contributions.

This model of pricing has two mayor disadvantages:

• Performance - as lots of contributions has to be calculated to the equation, it can
be hard to compute in practice.

• Vulnerability - at first sight this model seems fair, but it can be easily abused. Let’s
say an attacker wants to lower the price of the contributions at a specific time frame.
Simple he can pretend that he has huge amount of free space what he can contribute
at that time frame. This will lower the price of all other contributions, so the attacker
will be able to store for lower price. It is possible to defend against this attack, by
defining and upper limit for contribution size.

4.4.2 Fair Pricing with Local Demand

This model tries to overcome the vulnerability issue of the pricing model with general
demand. It removes the possibility to reduce the price by adding a big contribution to
a time frame.

price(c, f) = sfrch(tc)
sc

sc − uc
(4.11)

This model doesn’t calculate the concurrent contributions to the price, but the con-
tributions define their price based only on their parameters. This function is hyperbolic,
therefore the price will rise with hyperbolic character as the used space gets closer to the
total space. This is a natural behavior; as the resources run out their price raises. This
model has one advantage over the previous, that it removes the performance issue.

Unfortunately by adding small contributions to the system this model can be abused
again. As the small contribution fills up faster, the credit gained for the contribution raises
faster as well. This means an attacker can simply create a contribution of a few MB and as
it fills up, the price gets closer to infinity, because of the hyperbolic character. Then this
credit can be used to store data in other time frames. To defend against this attack a lower
bound for contribution has to be defined.

4.4.3 Absolute Pricing Model

The last pricing model, what is presented doesn’t take into consideration the remaining
space and total space ratio. This leads to an absolute price, which is the same under all
conditions (time frames):

price(c, f) = sfrch(tc); (4.12)

24

The income of a contributor is only based on the size of the files, the surface of the time
frame and its reliability. This system can’t be abused by creating a specific contribution.
It is as well easy to compute. The only problem with this pricing model is that it creates
dominant time frames. Some time frames are more popular than others. The contributors
of these time frames therefore earn more credit. This can cause, they can easily fill up
with their credit the less popular time frames, not leaving space for other users. This can
be a huge handicap for users who can’t contribute at the dominant time frames. Pricing
models based on general or local demand don’t have this issue, because they have hyperbolic
character proportional to the demand.

4.5 System Characteristics

In this section the chosen architecture of the system is presented. The choice was made
for the (hybrid) server based cooperative data storage system as was presented in chapter
2. The reason choosing this architecture is simple, this is the easiest way to implement
a cooperative data storage solution which relies on peer-to-peer communication. It has
three main components:

Client – Is the side, who wants to store the data.

Server – This side stores all the necessary information about peers (clients or contributors),
pricing model, distribution algorithm, does the statistical analysis of the system,
monitoring, etc.

Contributor – Is the side, who provides free space to the system with specified reliability
and time frame.

This design is based on erasure coding reliability model to ensure the desired reliability
of the data. This means each file what is selected for storing has to be processed by an
erasure coding algorithm. This results in creating k+m fragments from the base file, from
which any m fragment can be missing and the original data can be still reconstructed. Each
fragment has to be distributed to a different contributor to achieve the highest diversity
and probability of reconstruction.

4.6 Data Storing Process

The data storing process starts on the client side, who wants to store his files or directo-
ries on a reliable backup storage. The client selects his data in the operation system for
synchronization. Then he chooses the parameters of the backup. These parameters are the
time frame and reliability as described in section 4.2 (the size parameter is the parameter
of the file itself).

In the next step the client sends a request to the server with the chosen parameters
about the backup. The server tries to find contributors who can ensure the backup based
on the clients requirements. If the search process finished successfully the server sends
back the information about the contributors to the client. After the response, the process
continues with the encryption of the data. The encrypted data then is processed by the
erasure code algorithm, which generates various amount of fragments depending on the
specified parameters and the responded contributions (see section 4.8). This all happens

25

behind the client’s firewall on the client’s computer. As the client already has the set of
contributors, it starts to share the data with peer-to-peer protocol. Each contributor has
to verify the transfer before saving the data to the local drive. After the data is transferred
successfully to the contributors the client acknowledges it to the server. The server stores
the dedicated contributors for the file fragments in the database.

Figure 4.4: Sequence diagram of the data storing process

4.7 Data Retrieving Process

If the client’s data is shared within the contributors, and there are at least k contributors
of the k + m (who stores the k + m fragments) for data which was distributed, than the
data can be retrieved (downloaded). The data retrieving process starts by asking the
server about the available contributors who has the relevant data fragments. Server sends
back a list of available contributors, with who the client will establish connection. The
client’s device will ask for establishing a secure peer-to-peer transfer protocol between him
and the contributors. Each contributor verifies the request of the data, by asking the server
about the permission (or other authentication method can be done). As the client retrieves
the encrypted data fragments it orders them to the original sequence and runs the erasure
decoding algorithm, which will generate the original, but still encrypted file. The decryption
algorithm is applied on this file with the same key what was used for encryption, which will
result in the original file.

26

Figure 4.5: Sequence diagram of the data retrieving process

4.8 Contributor Dedication Process

The main goal of the contributor dedication process is finding a list of contributors, who
can store the client’s data. As it was discussed before, erasure coding is used to ensure the
reliability. This process is partially done on the server side, but the majority of work is done
on the clients side. The dedication process starts when the client selects a file or directory
to store in the system. The server chooses a list of contributors for the time frame, what
was set for the data. The relation G = C ≥ tc (see equation 4.5), is usable to find the
appropriate contributions. This function return every contribution, which has time frame,
what can cover the time frame chosen for the file.

After the contributions are selected on the server side, the client is informed about
them. The client has the responsibility to choose the ones (G′ ⊆ G), which fits its needs
concerning reliability. The client chooses G′ set of contributions from the list (best those
which are online at that time, in order to be able to send the data immediately), where
|G′| = n. The client for the erasure coding uses the n value as k +m = n, assuming all of
the chosen contributors will hold a fragment.

A complex issue remains before transporting the data to contributors, which is how to
define the ratio of k and m. Finding the appropriate values for k and m is an extremely
hard process, it can be described as the following:

As defined in section 4.2 each contribution has different probability rg′ of being available
at the time frame tg′ , g′ ∈ G′. The goal is to set the values k + m = n to a value which
will result in Pdesired ≤ Ponline, where Pdesired is given by the user and Ponline has to be
calculated from the selected contributions G′.

27

Ponline can be defined as the following, if ∀g′ ∈ G′ : rg′ = R, where R is a constant:

Ponline =
n∑
z=k

(
n

z

)
Rz(1−R))n−z (4.13)

This equation is based on Bernoulli binomial probability[12], it calculates the probability
of at least k events success out of n trials. Success event refers to “being online” in the
context of the cooperative data storage system. The problem is that it works only for events
with equal probabilities, but the real case is that each contributor has different probability
being online. The issue what has to be solved can be formalized as the following: what is the
probability of exactly k or more than k contributors are online, if all the k+m contributors
have different rg′ probability being online. To visualize this issue, the following equation
shows calculation of probability of at least 4 success events out of 5:

P =abcde+

abcd(1− e)+
abc(1− d)e+

ab(1− c)de+
a(1− b)cde+
(1− a)bcde

(4.14)

The equation 4.14 has complexity of 1 + 5 = 6 probability calculations, which comes
from

(
5
5

)
+
(
5
4

)
. Now this example in our context means to calculate the probability at

least 4 contributors of 5 are online. To further demonstrate the complexity, let’s assume 16
contributors and at least 8 being online from them. The complexity of the function will be(

16

16

)
+

(
16

15

)
+ . . .+

(
16

9

)
+

(
16

8

)
= 1 + 16 + . . .+ 11440 + 12870 = 39203,

which is far not practical to compute for each file what is selected for backup. In practice
the system is designed for thousands of users, so equations can come up to 100 contributors
with probability of at least 80 being online. This problem is called the Poisson binomial
probability distribution[12].

4.9 Poisson Binomial Probability Approximation

The only sensible solution is to approximate these equations. The simplest approximation is
done by simplifying the Poisson binomial distribution to the ordinary (Bernoulli) binomial
probability function and setting the constant R to the average of all the rg′ values where
∀g′ ∈ G′.

R =

∑
g′∈G′ rg′

|G′|
(4.15)

Now as R value is calculated, it can be used in a simple Bernoulli binomial probability
distribution (see 4.13).

28

Another way to approximate Poisson binomial distribution, for exactly k success events
is with discrete Fourier transformation[4]:

Pr(K = k) =
1

n+ 1

n∑
l=0

C−lk
n∏

m=1

(
1 + (C l − 1)pm

)
, (4.16)

Where C = exp
(

2iπ
n+1

)
Where i =

√
−1

Using this approximation is left for further research in this topic.

4.10 Poisson Binomial Probability Approximation Error Rates

The approximation of the Poisson binomial probability distribution as described in section
4.8, is not precise. The exact mathematical determination of the error rate is out of the
scope of this thesis, however practical measurements were done in order to find out the error
rate of this approximation. The measurements were done for various amount probabilistic
events, with different random probabilities for every event. For each test 500 attempts were
done. Figures 4.6 and 4.7 shows the average error rates for different amount of events, with
different value of exact occurrences.

Figure 4.6: Graphs showing, the average error rate of approximation the Poisson probability
distribution for 16 and 12 events.

Figure 4.7: Graphs showing, the average error rate of approximation the Poisson probability
distribution for 8 and 4 events.

29

From these measurements it is clear, the exact number occurrence probability approx-
imation for different random events is less precise with fewer events. The highest error
rate is with 4 events, where the probability of exactly 2 events occurrence is searched.
By increasing the number of events the error rate decreases, which can be considered as
good results, because in the cooperative storage system the events represent contributors
with different probability being online. The system is designed for high number of the
contributors, therefore this approximation is usable for it.

For fewer number of contributors the default equation can be used (see section 4.8).
This equation gives back the precise probability but it is considered as not efficient for
more than 20 events, because of its exponential computation complexity (number 20 was
found during the tests).

4.11 File Maintenance Techniques and Processes

As it was mentioned before the cooperative data storage system relies on set of unreliable
devices. The unreliability comes from the fact that the users are not available on the
internet always, but there is a second factor of unreliability, which is the case when some
of the fragments are lost completely or were removed from the contributors’ devices. The
reasons can be for example contributor device crash, software uninstallation, fragment
physically removed by the contributor, etc.

These cases have to be treated with the process called data maintenance. The simplest
solution for this issue is to recalculate the missing fragments from the remaining ones, but
first the data lost has to be detected. The detection can be done by monitoring of the
fragments. If the contribution, which holds the fragment was not online for certain amount
of time, it can be considered as lost. For the lost fragments a new reliable contributor (best
with the same reliability, as the contributor who removed the fragment or quit the system)
has to be found with the already proposed methods of contribution dedication. After the
contribution is found a command is send to this contribution to recover the missing fragment
from the available ones. This is done by downloading the necessary fragments and with
the erasure coding algorithm the missing one is reconstructed. There is no security threat
for the data, because the original erasure coding of the data was done after the encryption,
so the new contribution even if it has all the necessary fragments can’t decode the original
data.

After the relocation of the fragment, the database has to be updated, so the client can
download the fragments from the new location.

30

Chapter 5

Implementation of the Prototype
and Used Technologies

As described before, the system has free layers: the client layer, the contributor layer and
the server layer. Each of them is connected through the regular IP network. The client and
the contributor layer are together in one simple desktop application handling the commands,
which are given by the user or the server. These two layers have to be constantly connected
to the server. This connection is necessary because the server works as a general controller
of the architecture. It is able to send commands to these layers in order to control the data
flow and manage the system. Figure 5.1 shows detailed connections between components
of the system.

Figure 5.1: System Architecture Scheme

As shown in figure 5.2, the project is divided to 4 modules. These 4 modules inherit
settings and parameters from their parent module (Parent), where the version numbers of
the project dependencies are held. Also the commonly used libraries are defined in this
module.

31

Figure 5.2: Project architecture scheme (Maven hierarchy).

5.1 Server Side Application

The server side application consists of three mayor parts.

• Database - where the information about contributors, clients and data is stored.

• Management logic (service layer) - does the management of the data according
to the requests done by the users via web service.

• Web service interface - is the layer, how the users can reach the database, all the
requests are done via this interface.

The server side is implemented in Java EE (JDK 1.6), with Spring framework1. The
communication to the database is done with Hibernate2 implementation of the Java Persis-
tence API, which allows transparent interactions with the database. The database server
is Postgre3, but due to the usage of Java Persistence API it can be changed without mayor
change to the code of the application. The web service is based on the Spring framework
as well (Spring Web Service), which allows also transparent transformation of Java objects
to Soap XML messages for the web service. The transformation of objects to XML mes-
sages is called marshalling or serialization, which in the implementation is done by JAXB4

framework.
Upon the Hibernate framework, Spring Data JPA is placed as well, this module offers

easy transaction management and generalized database access repositories, which allow
developers to completely avoiding to write SQL scripts.

5.2 Web Service

The web service layer creates an additional interface between the management logic and
the client side application. The communication protocol is based on SOAP5, which consist
of small XML message transfers between the client and the server. In the prototype many
type of messages are present (see table 5.1).

1http://www.springsource.org/
2http://www.hibernate.org/
3http://www.postgresql.org//
4http://jaxb.java.net/
5http://en.wikipedia.org/wiki/SOAP %28protocol%29

32

Request Description Response Description

Get Contributions Requests a page of contribu-
tions from the database for
uploading the data.

Returns a page (max 32
pieces, with cheapest price) of
contributions, those who are
currently online.

Update Contribution Requests to update a contri-
bution for the user.

Returns the updated contri-
bution or in case error mes-
sage.

Delete Contribution Requests to delete a contribu-
tion from the database, and
all the fragments connected to
it.

Get Files Requests a list of files, cho-
sen by the user with the cor-
responding fragment and con-
tribution information.

Returns the list of files and
the additional information en-
capsulated to the file.

Update File Requests to update a list of
files, usually called before up-
loading the file.

Returns the same list of
files, but consistent to the
database.

Delete File Requests to delete a list of
files.

Update Fragment Requests to update a frag-
ment for a file which is cur-
rently uploaded.

Update Configuration Requests to updated (create)
a new configuration (Time-
Frame and Reliability) for the
user.

Returns the consistent config-
uration.

Delete Configuration Requests to delete a configu-
ration from the database.

Register User Requests to register a new
user in the database.

Sign In User Requests for sign in. Returns every consistent in-
formation for the user from
the database (Files, Contribu-
tions, Configurations).

Sign Out User Requests to sign out the user,
it is used only for logging pur-
poses, there is no session man-
agement in web service.

Get Status Periodical polling request of
the status updates of the user,
and updating the database
about the user being online.

Table 5.1: SOAP requests and responses and their descriptions.

33

5.3 Database Architecture

The database architecture is described with the ER-diagram 5.3.

Figure 5.3: Database ER-diagram

The figure 5.3 shows the entities and their connections of in the database. The key
features of these tables are the following:

Contribution – This table holds the address, size, configuration, reliability of the con-
tributions of each user. The distribution algorithm works based on these fields with
the relation of the File table. When was the contribution last time available is also

34

stored in this table, if it is less then 20 seconds before current time, the contribution
is considered being available.

User – This table holds all the information about the users as like: name, email address,
password hash, secret key for the encryption, etc.

Logs – The logs table is used for tracking the important actions, what were made (generally
requests) in the system. As well as statistical analysis can be made about the system
with the help of this table.

File – The file table contains the references to the files of the user. Also it contains the
time frame information with the demanded reliability. The directory field indicates if
the file is a compressed directory or not. This table also holds the size of the each file.
The reference to the contribution table indicated where the fragment can be found.

Fragment – The fragment table is used to keep track about the file fragments in the
system, how big are the fragments and which part of the real file they hold.

Configuration – This table meant to keep track of the time frames used be the users, as
well as the reliability for each time frame.

Properties – This table contains the server parameters which can change by time. These
parameters are used in the applications as constant variables.

5.4 Client Side Application

The client side application was designed to be user friendly, yet still allowing the users
to do every mayor action what is necessary (see table 5.1) The application is a Java SE
application based on Swing6 graphical user interface library. The core of the application is
a tray icon, where from the users can open the dialogs to manipulate their profile, register
new account, sign in, etc.

The usage process starts with the sign in of the user. If the user have already signed in
once and he checked the “Sign in automatically” checkbox, then this process is done after
the application start up. Otherwise the user has to sign in manually:

6http://docs.oracle.com/javase/tutorial/uiswing/

35

Figure 5.4: Sign in and Register dialog of the client side application

The second dialog on the figure 5.4, allows the user to register new profile. After the
user has signed in, he is able to see his files and other properties. The following dialog
shows the user’s uploaded files, their availability, redundancy rate of the erasure coding
(Reed-Solomon), the configuration where the files are held. If the users wants to upload
a directory, the directory is first compressed into one zip file and this file is uploaded.

Figure 5.5: Files tab

The user is able to add new configuration through the “Configurations” tab:

36

Figure 5.6: Confgurations tab

This tab contains the time frame and the reliability information of the configurations.
On the right bottom part the time frames are visualized as shown in the section 4.2. By
clicking on the create button the user adds a new configuration to his profile.

Figure 5.7: Contribution tab.

On the contributions tab the user us able to see his contributions status, how much
profit he has from each contribution. This tab also indicates whether the contribution is
currently online or not.

37

Figure 5.8: Profile tab.

On the profile dialog the user can see his account status, his total income and outcome
in MBs. And by clicking the refresh button this status is updated to a consistent version
with the database.

The continuous data consistency is ensured with polling technique. Every 10 seconds
a Get Status request (see table 5.1) is sent to the server to inform the server that the user
is online and his contributions are as well reachable. Every 60 sec a new Sign In request
is sent to the server to update every changed information. The reason for this is that some
data for the user can be changed by other users. This data can be:

• File outcomes in MB - how much real MB a file costs.

• Contribution Income in MB - how much real MB a contribution produces.

• Contribution used space - how much space is used from total contributed.

• File availability - what percent of fragments is available.

• File diversity - how efficient is the file distribution.

5.5 Contribution Dedication Process and Price Model Im-
plementation

The key part of this work is how to design the distribution algorithm. Generally the
algorithm has to minimize the cost of storing the data, yet equally distribute the data
between contributors. The contribution selection process is based on the coverage function
G ≥ t, G ⊆ C, t ∈ T , as presented in section 4.3. The first step is to select all the possible
contributions, which can store the data, and cover the stored data’s time frame. From the
selected list of contributions, the ones who are not online has to be filtered out. The others
are sorted by their relevance to the data’s time frame, this means the contributions with
time frames, which are similar to the data’s time frame are preferred. But as well as the

38

used and total space ratio is calculated to the dedication process, due to equal distribution
of data.

V = rc
sc + 1

(uc + 1) ∗ h(tc)
(5.1)

Where c ∈ C.
This equation is implemented in the database directly. It ensures load balancing of data

among contributors, as well as finding the minimal coverage of the contributors time frame,
which ensures lowering the price of the data.

5.6 Client Application Structure

The client side application consist of 6 mayor layers (MVC design pattern, data transfer,
file access and web service):

• The view layer - which is responsible for visualizing the data.

• The controller layer - which is responsible for human interactions and change of the
data and is usually implemented in the same java class.

• The model layer - which is a consistent copy of the current state of the database for
the user. Not the whole database is held in the client side, but only the necessary
information what is important for the user, and also only the information what he is
granted to see.

• Web service interface - this interface is responsible to keep the database consistent to
the clients interactions, but also keep the client model up to date.

• Data transfer layer - which is responsible to send and receive data from the contrib-
utors.

• File access layer - this module is responsible for the file operations, Reed-Solomon
codes, encryption, interleaving and hash value calculation.

Each of these layers has its own package in the source code (under module Desktop).
The class MainSession is the starting point of the application, it holds the current user who
is signed in and also many data, which is necessary for working of the layers. Although the
application structure is highly decoupled, due the usage of Spring dependency injection.
This allows that the code doesn’t contain important language level connections between
layers or classes. This makes the application flexible for refactoring, also easier to test with
JUnit. The main operations of the application are parallel, which is implemented with the
thread pool design pattern (no more than 20 threads can be created for data transfer and
the coding algorithms, if in case there are more request for the thread pool, the calling
thread is blocked).

5.7 The Common Module

The Common module contains, all the data access objects (DAOs), which are used by the
hibernate API, these object as well are referenced for JAXB for the web service, so the

39

data base communication and the web service communication is implemented with same
classes. This makes the code easy to understand and refactor again. This module is linked
to all other modules with Maven, so the same classes from this module on the client side,
as well as on the server side.

Some the web service messages are not based on the data access objects, or they con-
tain other important information. These classes are stored in this module as well. The
ObjectFactory class is responsible for instantiation of these classes for JAXB.

5.8 NAT Traversal Implementation

The internet communication issue, known as the NAT traversal problem (introduced in
section 3.10), is partly solved in this prototype. STUN protocol was implemented in the
server side, which determines if the client is behind NAT or not.

This is done by sending all the IP addresses with the RequestState message, what the
client application knows about itself (for each of its IP interface). When the server receives
the message, it knows the source address of the message (which has to be a public IP
address), than this address is compared the list IP addresses sent by the client. If any of
the interfaces of the client has the same IP as the source address known by the server, than
the client is not behind NAT (Although it can be still behind firewall, which makes him
unreachable).

If the client is behind NAT, he can’t contribute, unless in case if he sets port forwarding
on his router. This is an uncomfortable solution for NAT traversal, because the client has
to set port forwarding manually on the router. Unfortunately there are no reliable open-
source solutions for Java for UPnP protocol, or UDP/TCP hole punching. Relay based
NAT traversal (TURN) is possible to implement, but it would be unfair with the users with
public IP address, because all the data transfer would done through their device, using their
bandwidth. This haven’t been implemented yet. The prototype in this thesis implements
only the port forwarding solution of NAT traversal.

Most of the future work on this application concerns the NAT traversal issue.

5.9 Technologies and Frameworks

In this section the frameworks and libraries are presented, what were used to implement
the prototype. The focus was given to the maintainability and scalability of the system,
therefore the technologies have been chosen according to that. The whole system (covering
each layer) is based on Java EE and Java SE. The following technologies are used on the
server side:

Postgre DB - This database server is used mainly, because it is free and has a reliable
support.

Maven - Maven is a project management tool, which does the compilation, automatic
tests and other actions necessary to develop the application. The main benefit from
Maven is the automatic transitive dependency resolving.

Hibernate - Hibernate is used as the implementation of the Java Persistence API. Hiber-
nate gives us the flexibility to change database server without the necessity of making
changes in the code.

40

Spring Data - Spring Data library is used with Hibernate to access data in database
(DAO).

Spring WS - Spring WS is used to implement the REST web service infrastructure for
communication between the clients and the server. It creates a transparent infras-
tructure where XML parsing doesn’t have to be done by the developer.

JAXB - This library is used to marshal and un-marshal the objects to and from XML for
web service communication.

On the clients side the following libraries and technologies were used in the implemen-
tation:

Java.Security, Java.Crypto - These libraries are used to cover the cryptographic aspects
of the system, like AES encoding and decoding.

Spring WS - Spring WS is used to implement the REST web service infrastructure for
communication between the clients and the server. It creates a transparent infras-
tructure where XML parsing does not have to be done by the developer.

JAXB - This library is used to marshal and un-marshal the objects to and from XML for
web service communication.

These libraries and frameworks have reliable support and are well documented, so main-
tenance of the project can be easily achieved. Also JUnit framework was used to test the
application.

41

Chapter 6

User Feedback, Tests and
Measurement Results

In this chapter subjective and objective results are presented about the system. The pro-
totype was published over the internet to test users. As well as two surveys were done
for receiving feedback about the concept. The first survey was done in order to find out
current data backup and storage trends among the everyday users. The results were used
in a calculation, which simulates the behavior of the system. The second survey was done
for receiving feedback from the test user about the usability, missing features and concept
evaluation in general. The system has been tested in real usage for 10 days by 23 users.
Some of the users were using the prototype constantly with contribution of their space,
some user who were not technically able to contributed (NAT traversal issue). These users
tested download, upload and general usage of the system to the system.

6.1 Real Time Testing

The prototype and the concept itself was published through various channels for the wide
public. In this section the test session and the feedback from the test users is described.

The prototype application was published as a portable java web-start application, from
the website: www.crowdybackups.com/global. This page was propagated through
social media and several blog sites, but most of the test users where found personally. Due
to the web-start based publication, the test user received updates of the software each time
when an error was corrected.

The application was downloaded by 23 test users. The 23 test users created 15 contri-
butions. This contribution set in total allocated 89GB of distributed space. Together the
23 test users uploaded 1053 MB of data in exact 50 files. For the 50 files 418 data fragments
were created by the Reed-Solomon algorithm.

In the attachments detailed measurements are presented about the test users’ behavior
in the system. The measurements contains, the real time changes in contributor space, file
reachability and user credit revenue (income and outcome), based on the 3. pricing model
presented in section 4.4.3.

18 of the test users gave feedback through a survey, which consisted questions about the
application performance, user interface usability, missing functionalities, comparison with
Symform’s concept and comparison with the ordinary online storage system concept. The

42

answers had to be set as a rate from 1 to 5, where one meant negative user experience or
unimportant feature and 5 meant positive user experience and very important feature for
the user. The results of the user feedback for the usability and user experience are shown
in figure 6.1. Subjective importance of the features of an online storage system are shown
in figure 6.2.

Figure 6.1: The graph shows the average user experience for the usability aspects of the
prototype and the concept.

Based on data presented in figure 6.1, it is possible to conclude that the prototype and
concept was satisfactory for most of the test users. The speed of the data processing, upload
and download wasn’t impractical for usage. The simplified absolute pricing model, what
was used in the prototype was welcomed by the test users.

To understand the concept of the time intervals (which was completely new for the
users) was without problem as well, although the test users were informed personally about
the usage and the concept of the time frames.

Based on my experience, a video tutorial is necessary, explaining the usage of the ap-
plication. (The attachments contain this video)

43

Figure 6.2: The graph shows the average rate of various features for an online storage
system.

From figure 6.2 is possible to conclude, that the most important features, what are
missing from the prototype are: file system integration (dedicated folder), file sharing and
ability to have data being nonstop online. The last feature is already reachable by the time
frame based cooperative storage system.

Two questions were asked about the preferences concerning the need for the data avail-
ability and how would the user like to increase his online storage space. In the last question,
3 models were choosable: Symform’s 2GB contribution for 1GB reliable space, regular on-
line data storage system freemium based model, and the time interval based model, which
was presented in this thesis.

What is your preference in having data online? Count

Some of my data I need nonstop (share, edit, etc.), some
just I back up online and don’t use it

13

Nonstop, 100% available data, but small storage 5

Table 6.1: User preferences for online data storage.

Table 6.1 shows, that most of the users need some of their data being nonstop online
and some just want to use for back up. This could be satisfied by the time frame based
cooperative data storage system, by simple creating a “server” configuration with 100%
reliability and a backup configuration, which is for only long term data storage with smaller
time interval.

44

What would you choose from the following, to in-
crease the size of your online reliable storage?

Count

Flexible but more complex credit system, which depends on
your time being online, reliability, how much you contribute.
Doesn’t require server.

8

Simple contribution system. I would run a server to be al-
ways available (24/7), in ratio of 2GB contributed space for
1GB reliable storage space online.

7

I rather not contribute at all, I prefer freemium data storage. 2
I rather pay for more storage, instead of any contribution 1
Other 1

Table 6.2: Increase of online storage space preferences.

Table 6.2, shows that both Symform’s model and the model presented in this thesis
are both acceptable for the users. This fact comes from the trend, that many of the users
already have a server (or a simple personal computer), which is running all the time. Mainly
these users are people, who constantly rely on computer usage.

6.2 Other Sources of User Feedback

The concept was published for the wide public in other sources as well. The basic idea was
discussed with business mentors, angel investors and technology professionals from several
companies. The following list shows the main communication channels, how the project
was discussed in order to receive feedback from the potential users as well as from business
mentors and angel investors.

Starcube startup accelerator - Starcube startup accelerator is a business course held in
Brno. This course lasts for 3 month, where business and technology ideas are discussed
with mentors, angel investors, as well as technology professionals 1. I personally with
two other, attended to this course in order to test the idea from the business aspect.
Through the course many possible usages and opportunities were discussed for the
concept and in general was greatly welcomed. At the event of Trial Starcube show,
the idea was among the best 5 project participating in the course.

Project landing page - To represent the idea on the world wide web a landing page, de-
scribing the concept was created. It can be found at the host address:
www.crowdybackups.com. This landing page hosts three versions of the concept,
which are Family, Business and Global. The Global version is, what was described
in this thesis. The other two are very similar technologies (ideas), but on a different
user scale.

Social media - The idea was represented on the popular social site Facebook as well.
This page opens the simplest possible communication channel with users, who were
interested in using the prototype.

1http://www.starcube.cz/

45

It is important to mention that the process receiving user feedback about the concept
was done more that 6 month. The design of the application and concept itself changed few
times during this process.

The following list describes the main feedbacks from mentors and business investors, to
whom the idea was presented.

Scale One of the first feedback for the concept presented in this thesis, was an advice to
make it in smaller scales instead of creating a global service. This was for example
creating an application for companies, which own many computers and working with
lot of data. The other possibility is household scale, where the data would be backed
up within the devices of a house hold (family, mobile phones, tablets, computers).
The specification of this simpler system are differing from the presented one. Due
to the small amount of users, the contribution selection process has to be simplified,
it doesn’t need complex time frame mathematical model. As well as the model of
fair pricing is unnecessary, because each of the registered devices can be trusted, and
these devices can agree on the amount free space shared for backup.

Feedback from security and backup specialists - Based on the feedback from the
backup and security specialists, the main concern about this technology, is how to
ensure the reliability. This feedback was given mainly for the smaller scale versions
of the technology (for internal business and household usage), but it is applicable
for the global version as well. The simple calculation based on the approximation of
the Poisson probability distribution won’t be sufficient enough, to ensure the desired
reliability. Due to unpredictable changes of the user behaviors (concerning their con-
figuration) or the unpredictable software un-installations the system has to provide
higher redundancy.

Adding project as an extension to other applications - This idea was given by a
business mentor at Starcube. The concept is to add the application (family or busi-
ness) as a side project of some already known applications, like anti virus systems,
CAD applications, operating systems, etc. This would easily create a good sales
channel, while providing higher value for the base application.

6.3 Computer and Storage Space Usage Trends

It is necessary to measure the current trends of data backups and user storage space, in
order to find out what are the possible limits of the time frame based cooperative data
storage system.

A survey was published over the internet, with 106 responses. The survey contained
questions about the users’ available unneeded storage space on their devices (including
NAS, computers and home servers), desired backup storage space and time frame, which
indicates when are the users most probably online and with what percentage of reliability.

The survey was mainly (around 70%) completed with the current (or former) students
and young graduates working at CERN nuclear research facility in Geneva2. the choice
for this communication channel was made, because this community holds around 1500
members, coming from each continent. It was an excellent possibility to test the idea on
a global scale.

The table 6.3 show the average values concerning user trends.
2http://directory.web.cern.ch/directory/

46

Category Average value

Unneeded storage 59.42GB
Unneeded storage with NAS device 63.97GB
Required backup space 45.85GB
Reliability 86.09%
Reliability with NAS device 86.91%
Time frame frequency 6.5 days
Time frame duration 29 half hours - 14.5 hours

Table 6.3: Average user trends.

To calculate the average of the start time of the time frame, doesn’t provide any impor-
tant information, but the mode value can give some idea about the users start time trends:
Mode was 18 half hour, which means Monday 9:00.

With the time frame, storage and required backup trends it is possible to reflect, in
which time of the day, how much data is required to be available and how much free space
is available as well. Also based on this information it is possible to visualize the practical
limits of storage on different reliability percentages.

The figures A.1, A.2 (in attachments), 6.3 and 6.4 were calculated based on the survey,
but with the same implementation as the prototype. This graphs give rough idea about
the possible limits about the system and used mechanisms.

The figure A.1 and A.2 shows the total amount of free space over week distribution,
and the relevant possible reliable storage space with the percentage of reliability. These
graphs were calculated with the usage of Poisson probability approximation as well as the
contribution time frame coverage functions (see 4.3).

Figure 6.3: Needed backup storage and available backup storage over week distribution in
GBs.

47

Figure 6.4: Needed backup storage and available backup storage over week distribution in
GBs, including NAS devices.

The figure 6.3 and 6.4 were calculated with the same methods as mentioned before, but
these graphs also show the desired backup storage over the week distribution.

The most significant result can be seen in the figure 6.4. The interpretation of this
graph is the following:

If the users would contribute all their unneeded storage space with the
promised reliability and promised time frame, all of the required storage space
could be guaranteed using algorithms and techniques presented in this thesis,
with the reliability of 99%

This assumption is valid under condition, if the users want to reach their data the same
time, when they can contribute. Which condition is partly true, concluded from the results
of the second survey, presented in 6.1

Figure 6.5 shows the comparison of available space offered for free to 106 users by
the different online data backup solutions (Dropbox, Google Drive and Skydrive) and the
available free space offered by the time frame based cooperative data storage solution.

48

Figure 6.5: Comparison of the cooperative data storage system with the available regular
storage systems in GBs.

This figure clearly shows, the theoretical limits of this system are much higher than at
the regular client-server based systems. During business hours the cooperative data storage
system offers 23.4 times more space as Dropbox, 6.7 times more space as Skydrive and 9.4
times more space as Google drive for free, only using clients computers, NAS devices and
home servers. Exact values from these surveys can be found on the CD attached to this
thesis.

49

Chapter 7

Conclusion

In this thesis a possible scheme and a prototype of a distributed peer-to-peer data storage
system was presented. This storage system was designed to be usable for everybody with
internet access. The solution focuses on giving freedom to the users about their contribution,
they are not obliged to run a server for contributing to the system. Instead a design element,
called time frame was introduced, which allows them to select what time of the week they
are most probably available for contribution. The same time frame can be used to define
the requirements for data storage. The specification was based on the assumption that the
users don’t need their data to be nonstop available. This allows the system successfully work
with a set of unreliable users, who have limited but predictable accessibility to internet.
Introducing the time frames creates a completely new model for online data
backups, which doesn’t only consist the size of the data, but also what time
and with what reliability can it be reached

This thesis provides a design which covers most of the security and reliability issues, for
a crowd sourced system for data backups. The main possible attacks against the system
were discussed and a solution was proposed for them. Concerning the reliability erasure
coding, especially Reed-Solomon codes were applied in the design of the system. These
codes provide high flexibility and efficient usage of bandwidth and storage space. Using
this solution, however requires an approximation of Poission binomial probability calcula-
tions, which was also successfully implemented with tolerable error rate. One of the most
important aspects of the concept is the fair pricing model, which is considered as the cat-
alyst for exchanging data within clients and contributors. Three fair pricing models were
proposed and presented, with their benefits and disadvantages.

The implemented prototype based on the presented scheme and the concept itself was
published through various channels.

The application prototype was tested by 23 users through 10 days. These users gave
feedback (via one of the surveys) about the usability of the application and the concept. The
survey also provided comparison with the already existing solutions (regular data center
solutions and Symform§s solution). The results were satisfactory. The mayority of the test
users considered the concept as a good solution for a flexible data backup system. The
users found the speed and the usability of the application convenient, although based on
their feedback many further features would be necessary to implement. These features are
mainly the integration with the file system and file sharing in general.

50

The concept was discussed with angel investors, business mentors and technology spe-
cialist. This publication was done through the Starcube startup accelerator (2013 Brno),
where the project was represented by a 4 member team (where I was considered as CEO
and idea holder, the other team members provided great help in the business and marketing
part of the project). The main feedback from this publication channel, is that the appli-
cation should be also designed as a private small scale data backup solution for companies
and households. The concept of cooperative data backup solution was within the 5 best
ideas, in trial Starcube show. It was also presented at the final Starcube show by another
team member as one of the emerging projects.

In this thesis user trends about computer usage (remote availability), data backups and
free unused storage space was also studied. This was done by publishing a second survey,
which was completed by 106 people, from all around the world. The results of this study are
one of the most important of this thesis. Based on the simulation results, what was done
using the data from the survey it is possible to state: If the users would contribute
all their unneeded storage space with the promised reliability and time frame,
all of their required storage space could be guaranteed using algorithms and
techniques presented in this thesis, with the reliability of 99% (see figure 6.4).
This statement is valid under condition, if the users accept that fact that their data will be
available only the time, they can contribute (they are reliable online).

This system would offer significantly more free storage space for the user, compared to
the ordinary data storage solutions as Dropbox, Google Drive Skydrive (see figure 6.5).

I personally would like to continue to develop this system. Based on the experience
earned from the feedbacks and the testing of the prototype, I believe this system could be
widely used as an alternative solution to the current online data storage solutions.

51

Bibliography

[1] Ann Chervenak, Vivekanand Vellanki, and Zachary Kurmas. Protecting file systems:
A survey of backup techniques. In Joint NASA and IEEE Mass Storage Conference,
1998.

[2] Frank Dabek, Emma Brunskill, M. Frans Kaashoek, David Karger, Robert Morris,
Ion Stoica, and Hari Balakrishnan. Building peer-to-peer systems with chord, a
distributed lookup service. In In Proc. of the 8th IEEE Workshop on Hot Topics in
Operating Systems (HotOS-VIII, pages 71–76, 2001.

[3] D. Eastlake, 3rd and P. Jones. Us secure hash algorithm 1 (sha1), 2001.

[4] M. Fernandez and S. Williams. Closed-form expression for the poisson-binomial
probability density function. Aerospace and Electronic Systems, IEEE Transactions
on, 46(2):803–817, 2010.

[5] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography (Chapman
& Hall/Crc Cryptography and Network Security Series). Chapman & Hall/CRC,
2007.

[6] Mark Lillibridge, Sameh Elnikety, Andrew Birrell, Mike Burrows, and Michael Isard.
A cooperative internet backup scheme. In In Proceedings of the 2003 USENIX
Annual Technical Conference, pages 29–41, 2003.

[7] Zhewen Lin and Tiantong You. Tt-stun protocol design for effective tcp nat
traversal. In Broadband Network and Multimedia Technology (IC-BNMT), 2010 3rd
IEEE International Conference on, pages 970–974, 2010.

[8] Thomas Mager, Ernst Biersack, and Pietro Michiardi. A measurement study of the
Wuala on-line storage service. In P2P 2012, International Conference on
Peer-to-Peer Computing, 3-5 September, 2012, Tarragona, Spain, Tarragona,
ESPAGNE, 09 2012.

[9] Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. Handbook of
Applied Cryptography. CRC Press, Inc., Boca Raton, FL, USA, 1st edition, 1996.

[10] J. S. Plank. A tutorial on reed-solomon coding for fault-tolerance in raid-like
systems. Technical Report CS-96-332, University of Tennessee, July 1996.

[11] R. Rivest. The md5 message-digest algorithm, 1992.

[12] V. I. Rotar’ and V.V.I. Rotar. Probability theory. World Scientific Publishing
Company, Incorporated, 1997.

52

[13] A. Shokrollahi. Raptor codes. Information Theory, IEEE Transactions on,
52(6):2551–2567, 2006.

[14] Bernard Sklar. Digital Communications: Fundamentals and Applications (2nd
Edition). Prentice Hall, 2 edition, January 2001.

[15] Michael Szydlo and Yiqun Lisa Yin. Collision-resistant usage of md5 and sha-1 via
message preprocessing. In Proceedings of the 2006 The Cryptographers’ Track at the
RSA conference on Topics in Cryptology, CT-RSA’06, pages 99–114, Berlin,
Heidelberg, 2006. Springer-Verlag.

[16] O.P. Verma, R. Agarwal, D. Dafouti, and S. Tyagi. Peformance analysis of data
encryption algorithms. In Electronics Computer Technology (ICECT), 2011 3rd
International Conference on, volume 5, pages 399–403, 2011.

[17] Weijun Xiao, Jin Ren, and Qing Yang. A case for continuous data protection at
block level in disk array storages, 2009.

[18] Zhang Yamei and Cai Pengfei. Research on using udp to traverse nat under p2p
network environment. In Advanced Computer Theory and Engineering (ICACTE),
2010 3rd International Conference on, volume 3, pages V3–32–V3–35, 2010.

[19] Lu Yiqin, Fang Fang, and Liu Wei. Home networking and control based on upnp: An
implementation. In Computer Science and Engineering, 2009. WCSE ’09. Second
International Workshop on, volume 2, pages 385–389, 2009.

[20] Li Zhao, R. Iyer, S. Makineni, and Laxmi Bhuyan. Anatomy and performance of ssl
processing. In Performance Analysis of Systems and Software, 2005. ISPASS 2005.
IEEE International Symposium on, pages 197–206, 2005.

53

Appendix A

Attachments

Figure A.1: Reliable storage space distribution over the week distribution in GBs.

54

Figure A.2: Reliable storage space distribution over the week in GBs, including NAS de-
vices.

Figure A.3: Graph shows the total size of online reconstructable data over 10 days test
session. The data availability changes are due the varying availability of the test users.

55

Figure A.4: Graphs shows the income and outcome credits (in MB) for a test user over 10
days.

Figure A.5: Graphs shows the income and outcome credits (in MB) for a test user over 10
days.

56

Figure A.6: Graph shows the total size of online data stored at contributions (not necessary
reconstructable) over 10 days test session. The data availability changes are due the varying
availability of the test users.

57

Appendix B

CD Content

The CD contains:

• Source code of the application - 4 modules

• Project video - idea presentation

• Manual video - how to use the application

• Poster

• Compilation manual

• Compiled code: JAR and WAR files

• Database scheme

• Test results

• Source code of Latex

58

	Introduction
	Online Data Storage Systems
	Client-Server Architecture Based Data Storage Systems
	Cooperative Data Storage Systems
	Data Repository Models

	Issues and Solutions For The Cooperative Data Backup Solutions
	Reliability Issues
	Replication Model
	Erasure Coding Model
	Reed-Solomon Codes
	Security Issues
	Encryption Algorithms
	Performance Comparison of Symmetric Encryption Algorithms
	Digital Signature and Data Integrity
	Performance Comparison of Digital Signature Algorithms
	Data Transfer Issues and Possible Solutions

	Design of a Time Frame Based Cooperative Data Storage System
	Agreements Within the Crowd
	Time Frame, Space and Reliability Model
	Time Frame Characteristics
	Models of Fair Pricing
	Fair Pricing with General Demand
	Fair Pricing with Local Demand
	Absolute Pricing Model

	System Characteristics
	Data Storing Process
	Data Retrieving Process
	Contributor Dedication Process
	Poisson Binomial Probability Approximation
	Poisson Binomial Probability Approximation Error Rates
	File Maintenance Techniques and Processes

	Implementation of the Prototype and Used Technologies
	Server Side Application
	Web Service
	Database Architecture
	Client Side Application
	Contribution Dedication Process and Price Model Implementation
	Client Application Structure
	The Common Module
	NAT Traversal Implementation
	Technologies and Frameworks

	User Feedback, Tests and Measurement Results
	Real Time Testing
	Other Sources of User Feedback
	Computer and Storage Space Usage Trends

	Conclusion
	Attachments
	CD Content

