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Abstract

In order to build a model, learning algorithms use a training set to set up
its parameters. Validation set is used to select the best of learned models.
To estimate the performance of a model on unseen data should be used an
independent and identically distributed testing set. This thesis is focused on
how to select data samples from an original set and place them into the training
and testing sets. In the first chapter is an overview of existing approaches and
new possible approaches are discussed. The second chapter is focused on
experimental comparison of these methods.

Keywords Training set construction, classification, regression, representat-
ive set, data splitting, instance selection, class balancing, model learning.

Abstrakt

Uč́ıćı algoritmy použ́ıvaj́ı pro sestaveńı modelu tréninkovou množinu. Val-
idačńı množina je použ́ıvána pro výběr nejlepš́ıho modelu. Pro stanoveńı
přesnosti modelu na budoućıch datech by měla být použita nezávislá testo-
vaćı množina. Tato práce se zabývá t́ım, jak co nejlépe vybrat data z p̊uvodńı
sady a umı́stit je do trénovaćı a testovaćı množiny. V prvńı kapitole je přehled
existuj́ıćıch metod a jsou diskutovány nová možná řešeńı. Druhá kapitola je
zaměřená na experimentálńı porovnáńı těchto metod.

Kĺıčová slova Konstrukce trénovaćı množiny, klasifikace, regrese, reprezent-
ativńı množina, rozdělováńı množin, redukce dat, vyvažováńı tř́ıd, učeńı mod-
elu.
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Introduction

A training set is a special set of labeled data providing known information
that is used in the supervised learning to build a classification or regression
model. We can imagine each training instance as a feature vector together
with an appropriate output value (label, class identifier). A supervised learn-
ing algorithm deduces a classification or regression function from the given
training set. The deduced classification or regression function should predict
an appropriate output value for any input vector. The goal of the training
phase is to estimate parameters of a model to predict output values with a
good predictive performance in real use of the model.

When a model is built we need to evaluate it in order to compare it with
another model or parameter settings or in order to estimate predictive per-
formance of the model. Strategies and measures for the model evaluation are
described in section 1.1.

For a reliable future error prediction we need to evaluate our model on a
different, independent and identically distributed set that is different to the
set that we have used for building the model. In absence of an independent
identically distributed dataset we can split the original dataset into more sub-
sets to simulate the effect of having more datasets. Some splitting algorithms
proposed in literature are described in section 1.2 and experimentally com-
pared in section 2.4.1.

During a learning process most learning algorithms use all instances from
the given training set to estimate parameters of a model, but commonly lot
of instances in the training set are useless. These instances can not improve
predictive performance of the model or even can degrade it. There are several
reasons to ignore these useless instances. The first one is a noise reduction,
because many learning algorithms are noise sensitive [2] and we apply these
algorithms before learning phase. The second reason is to speed up a model
response by reducing computation. It is especially important for instance-
based learners such as k-nearest neighbours, which classify instances by finding
the most similar instances from a training set and assigning them the dominant
class. These types of learners are commonly called lazy learners, memory-
based learners or case-based learners [3]. Reduction of training sets can be
necessary if the sets are huge. The size and structure of a training set needed
to correctly estimate the parameters of a model can differ from problem to
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Introduction

problem and a chosen instance selection method [3]. Moreover, the chosen
instance selection method is closely related to the classification and regression
method. The process of instance reduction is also called instance selection
in the literature. A review of instance selection methods is in section 1.3.
Experimental comparison in section 2.4.2.

The most of learning algorithms assumes that the training sets, used to
estimate the parameters of a model or to evaluate a model, have proportionally
the same representation of classes. But many particular domains have classes
represented by a few instances while other classes have a large number of
representative instances. Methods that deal with the class imbalance problem
are described in section 1.4 and experimentally compared in section 2.4.3.

Basic notations

In this section we set up basic notation and definitions used in the document.
A population is a set of all existing feature vectors (features). By S we

denote a sample set defined as a subset of a population collected during some
process in order to obtain instances that can represent the population.

According to the previous definition the term representativeness is closely
related. We can define a representative set S∗ as a special subset of an original
dataset S, which satisfies three main characteristics [4]:

1. It is significantly smaller in size compared to the original dataset.

2. It captures the most of information from the original dataset compared
to any subset of the same size.

3. It has low redundancy among the representatives it contains.

A training set is in the idealized case a representative set of a population.
Any of mentioned methods is not needed if we have representative subset
of the population. But we never have it in practise. We usually have a
random sample set of the population and we use various methods to make it
as representative as possible. We will denote a training set by R.

In order to define a representative set we can define a minimal consist-
ent subset of a training set. Given a training set R, we want to obtain
a subset R∗ ⊂ R such that R∗ is the smallest set of instances such that
Acc(R∗) ∼= Acc(R), where Acc(X) denotes the classification accuracy ob-
tained using X as a training set [5].

Sets used for an evaluation of a model are the validation set V , usually
used for a model selection, and the testing set T , used for model assessment.

2



CHAPTER 1
Review

1.1 Model evaluation

The model evaluation is an important but often underestimated part of model
building and assessment. When we have prepared and preprocessed data we
want to build a model with the ability to accurately predict future observa-
tions. We do not want a model that perfectly fits training data, but we need
a model that is reliable after deployment in the real use. For this purpose we
should have two phases of a model evaluation. In the first phase we evaluate
a model in order to estimate the parameters of the model during the
learning phase. This is a part of the model selection when we select the model
with the best results. This phase is also called as the validation phase. It does
not necessary mean that we choose a model that best fits a particular set of
data. The well learned model captures only the underlying phenomenon, not
the noise. A model that captures a noise is called as over-fitted [6]. In the
second phase we evaluate the selected model in order to assess the real
performance of the model on new unseen data. Process steps are shown
below.

1. Model selection

a) Model learning (Training phase)

b) Model validation (Validation phase)

2. Model assessment (Testing phase)

1.1.1 Evaluation methods

During building a model, we need to evaluate its performance in order to
validate or assess it as we mention earlier. There are more methods how to
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1. Review

check our model, but not all are usually sufficient or applicable in all situations.
We should always choose the most appropriate and reliable method for our
purpose. Some of common evaluation methods are [7]:

Comparison of the model with physical theory
A comparison of the model with a physical theory is the first and prob-
ably the easiest way how to check our model. For example, if our model
predicts a negative quantity or parameters outside of a possible range,
it points to a poorly estimated model. However, a comparison with a
physical theory is not always possible nor sufficient as a quality indicator.

Comparison of model with theoretical or empirical model
Sometimes a theoretical model exists, but may be to complicated for a
practical use. In this case, the theoretical model could be used for a
comparison or evaluation of the accuracy of the built model.

Collect new data for evaluation
The use of data collected in an independent experiment is the best and
the most preferred way for a model evaluation. It is the only way that
gives us a real estimate of the model performance on new data. Only
new collected data can reveal a bias in a previous sampling process. This
is the easiest way if we can easily repeat the experiment and sampling
process. Unfortunately, there are situations when we are not capable to
collect new independent data for this purpose either due to a high cost
of the experiment or another unrepeatability of the process.

Use the same data as for model building
The use the same data for evaluation and for a model building usually
leads to an optimistic estimation of real performance due to a positive
bias. This is not recommended method and if there is another way it
could not be used for the model evaluation at all.

Reserve part of the learning data for evaluation
A reserve part of the learning data is in practise the most common
way how to deal with the absence of an independent dataset for model
evaluation. As the reserve part selection from the data is usually not
a simple task, many methods were invented. Their usage depends on a
particular domain. Splitting the data is wished to have the same effect
as having two independent datasets. However, this is not true, only
newly collected data can point out the bias in the training dataset.

1.1.1.1 Evaluation measures

For evaluating a classifier or predictor there is a large variation of performance
measures. However, a measure, good for evaluating a model in a particular
domain, could be inappropriate in another domain and vice versa. The choice
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1.1. Model evaluation

of an evaluation measure depends on the domain of use and the given prob-
lem. Moreover, different measures are used for classification and regression
problems. The measures below are shortly described basics for the model
evaluation. For more details see [8, 9].

Measures for classification evaluation

The basis for analysing classifier performance is a confusion matrix. The
confusion matrix describes how well a classifier can recognize different classes.
For c classes, the confusion matrix is an n × n table, which (i, j)th entry
indicates the count of instances of the class i classified as j. It means that
correctly classified instances are on the main diagonal of the confusion mat-
rix. The simplest and the most common form of the confusion matrix is a
two-classes matrix as it is shown in the table 1.1. Given two classes, we usu-
ally use a special terminology describing members of the confusion matrix.
Terms Positive and Negative refer to the classes. True Positives are posit-
ive instances that were correctly classified, True Negatives are also correctly
classified instances but of the negative class. On the contrary, False Positives
are incorrectly classified positive instances and False Negatives are incorrectly
classified negative instances.

Predicted
Positive Negative

T
ru

e Positive True Positives (TP) False Negatives (FN)

Negative False Positives (FP) True Negatives (TN)

Figure 1.1: Confusion matrix

The first and the most commonly used measure is the accuracy denoted
as Acc(X). The accuracy of a classifier on a given set is the percentage of
correctly classified instances. We can define the accuracy as

Acc(X) =
correctly classified instances

all instances

or in a two-classes case

Acc(X) =
TP + TN

TP + TN + FP + FN
.

In order of having defined the accuracy, we can define the error rate of a
classifier as

Err(X) = 1−Acc(X) ,

which is the percentage of incorrectly classified instances.
If costs of making a wrong classification are known, we can assign different

cost or benefit to each correct classification. This simple method is known
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1. Review

as costs and benefits or risks and gains. The cost matrix has then the
structure shown in Figure 1.2, where λij corresponds to the cost of classifying

Predicted
Class i . . . Class j

T
ru

e Class i λii . . . λij
...

...
. . .

...

Class j λji . . . λjj

Figure 1.2: Cost matrix

the instance of class i to class j. Correctly classified instances have usually a
zero cost (λii = λjj = 0). Given a cost matrix, we can calculate the cost of a
particular learned model on a given test set by summing relevant elements of
the cost matrix accordingly to the model’s prediction [9]. Here, the cost matrix
is used as a measure, the costs are ignored during the classification. When
a cost matrix is taken into account during learning a classification model, we
speak about a cost-sensitive learning, which is mentioned in section 1.4 in the
context of class balancing.

Using the accuracy measure fails in cases, when classes are significantly
imbalanced (The class imbalanced problem is discussed in section 1.4 ). Good
examples could be medical data, where we can have a lot of negative instances
(for example 98%) and just a few (2%) of positive instances. It gives an
impressive 98% accuracy, when we simply classify all instances as negative,
which is absolutely unacceptable for medical purposes. The reason for this is
that the contribution of a class to the overall accuracy rate is a function of
its cardinality, with the effect that rare positives have an almost insignificant
impact on the performance measure [10].

Alternatives for the accuracy measure are:
Sensitivity (also called True Positive Rate or Recall) - the percentage of
truly positive instances that were classified as positive,

sensitivity =
TP

TP + FN
.

Specificity (also called True Negative Rate) - the percentage of truly negative
instances that were classified as negative,

specificity =
TN

TN + FP
.

Precision - the percentage of positively classified instances that are truly
positive,

precision =
TP

TP + FP
.

6



1.1. Model evaluation

It can be shown that the accuracy is a function of the sensitivity and specificity:

accuracy = sensitivity· TP + FN

TP + TN + FP + FN
+specificity· TN + FP

TP + TN + FP + FN
.

F-measure combines precision and recall. It is generally defined as

Fβ = (1 + β2)
precision · recall

β2 · precision+ ·recall

where β specifies the relative importance of precision and recall. The F-
measure can be interpreted as a weighted average of the precision and recall.
A disadvantage of this measure is that it does not take the true negative rate
into account. Another measure, that overcomes disadvantages of the accuracy
on imbalanced datasets is the geometric mean of class accuracies. For the
two-classes case it is defined as

gm =

√
TP

TP + FN
· TN

TN + FP
=

√
sensitivity · specificity

The geometric mean puts all classes on an equal footing, unfortunately there
is no way to overweight any class [10].

The evaluation measure should be appropriate to the domain of use. If
is it possible, usually the best way to write a report is to provide the whole
confusion matrix. The reader than can calculate the measure which he is most
interested in.

Measures for Regression evaluation

The measures described above are mainly used for classification problems
rather than for regression problems. For regression problems more appro-
priate error measures are used. They are focused on how close is the actual
model to the ideal model instead of looking if the predicted value is correct or
incorrect. The difference between known value y and predicted value f(xi) is
measured by so called loss functions. Commonly used loss functions (errors)
are described bellow.

The square loss is one of the most common measures used for regression
purposes, is it defined as

l(yi, f(xi)) = (yi − f(xi))
2

A disadvantage of this measure is its sensitivity to outliers (because squaring
of the error scales the loss quadratically). Therefore, data should be filtered
for outliers before using of this measure. Another measure commonly used in
regression is the absolute loss, defined as

l(yi, f(xi)) = |yi − f(xi)|

7



1. Review

It avoids the problem of outliers by scaling the loss linearly. Closely similar
measure to the absolute loss is the ε-insensitive loss. The difference between
both is that this measure does not penalize errors within some defined range
ε. It is defined as

l(yi, f(xi)) = max(|y − f(x)| − ε, 0)

The average of the loss over the dataset is called generalization error or
error rate. On the basis of the loss functions described above we can define
the mean absolute error and mean squared error as

MAE =
1

n

n∑
i=1

|yi − f(xi)|

and

MSE =
1

n

n∑
i=1

(yi − f(xi))
2

, respectively. Often used measure is also the root mean squared error

RMSE =

√√√√ 1

n

n∑
i=1

(yi − f(xi))2

, which has the same scale as the quantity being estimated. As well as the
squared loss the mean squared error is sensitive to outliers, while the mean
absolute error is not. When a relative measure is more appropriate, we can
use the relative absolute error

RAE =

∑n
i=1 |yi − f(xi)|∑n
i=1 |yi − ȳ|

or the relative squared error

RSE =

∑n
i=1(yi − f(xi))

2∑n
i=1(yi − ȳ)

where ȳ = 1
n

∑n
i=1 yi.

1.1.1.2 Bias and Variance

With the most important performance measure - the mean square error, the
bias, variance and bias/variance dilemma is directly related. They are de-
scribed thoroughly in [11]. Due the importance of these characteristics, it is
in place to describe them more in detail.

With given statistical model characterized by parameter vector θ we define
estimator θ̂ of this model (classification or regression model in our case) as a
function of n observations of x and we denote it as

θ̂ = θ̂(x1, . . . , xN )

8



1.1. Model evaluation

The MSE is equal to the sum of the variance and the squared bias of the
estimate, formally

MSE(θ̂) = V ar(θ̂) +Bias(θ̂)2

Thus either bias or variance can contribute to poor performance of the estim-
ator.

The bias of an estimator is defined as a difference between the expected
value of the method and the true value of the parameter, formally

Bias(θ̂) = E[θ̂]− θ = E[θ̂ − θ]

In another words the bias says whether the estimator is correct on average. If
the bias is equal to zero, the estimator is said to be unbiased. The estimator
can be biased for many reasons, but the most common source of an optimistic
bias is using of the training data (or not independent data from the training
data) to estimate predictive performance.

The variance gives us an interval within which the error appears. For
an unbiased estimator the MSE is equal to the variance. It means that even
though an estimator is unbiased it still may have large MSE if the variance is
large.

Since the MSE can be decomposed into a sum of the bias and variance, both
characteristics need to be minimized to achieve good predictive performance.
It is common to trade-off some increase in the bias for a larger decrease in the
variance [11].

1.1.2 Comparing algorithms

When we have learned more models and we need to select the best one, we
usually use some of described measures to estimate the performance of the
model and then we simply choose the one with the highest performance. This
is often sufficient way for a model selection. Another problem is when we need
to prove the improvement in the model performance, especially if we want to
show that one model really outperforms another on a particular learning task.
In this way we have to use a test of statistical significance and verify the
hypothesis of the improved performance.

The most known and most popular in machine learning is the paired
t test and its improved version the k-fold cross-validated pair test. In
paired t test the originial set S is randomly devided into a training set R and
a testing set T . Models M1 and M2 are trained on the set R and tested on
the set T . This process is repeated k times(ussually 30 times [12]). If we
assume that each partitioning is drawn independently, then also individual
error rates can be considered as different and independent samples from a
probability distribution, which follow t distribution with k degrees of freedom.
Our null hypothesis is that the difference in mean error rates is zero. Then
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the Student′s t test is computed as follows

t =

∑k
i=1 (Err(M1)i − Err(M2)i)√

V ar(M1 −M2)/k

Unfortunately the given assumption is less than true. Individual error rates are
not independent as well as error rate differences are not independent, because
the training sets and the testing sets in each iteration overlaps. The k-fold
cross-validated pair test mentioned above is build on the same basis. The
difference is in the splitting into a training and a testing set, instead of a
random dividing. The original set S is splitted into k disjoint folds of the
same size. In each iteration one fold is used for testing and remaining k − 1
folds for training the model. In this approach each test set is independent of
the others, but the training sets still overlaps. For more details see [12].

The improved version, the 5xcv paired t test, proposed in [12] performs
5 replications of 2-fold cross-validation. In each replication, the original data-
set is divided into two subsets S1 and S2 and each model is trained on each set
and tested on the other set. This approach solves the problem of overlapping
(correlated) folds, which led to poorly estimated means and large t values.

Another approaches described in literature are McNemar’s test [13],
The test for the difference of two proportions [14] and many others.

Methods described above consider comparison over one dataset, for com-
parison of classifiers over multiple datasets see [15].

1.1.3 Dataset comparison

In some cases we need to compare two datasets, if they have the same distribu-
tions. For example if we split the original dataset into a training and a testing
set, we expect that a representative sample will be in each subset and distri-
butions of the sets will be the same (with a specific tolerance of deviation). If
we assess splitting algorithms, one of the criteria will be the capability of the
algorithm to divide the original dataset into the two identically distributed
subsets.

For comparing datasets distributions we should use a statistical test under
the null hypothesis that distributions of the datasets are the same. These
tests are usually called goodness-of-fit tests and they are widely described in
literature [16, 17, 18, 19]. For an univariate case we can compare distributions
relatively easily using one of the numerous graphical or statistical tests e.g.
histograms, PP and QQ plots, the Chi-square test for a dicrete multinominal
distribution or the Kolmogorov-Smirnov non-parametric test. For more details
see [20].

A multivariate case is more complicated because generalization to more di-
mensions is not so straightforward. Generalization of the most cited goodness-
of-fit test, the Kolmogorov-Smirnov test, is in [21, 22, 23].
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1.1. Model evaluation

In the case of comparing two subsets of one set, we use a naive approach
for their comparison. We suppose that two sets are approximately the same,
based on comparing basic multivariate data characteristic. We believe, that
for our purpose the naive approach is sufficient. Advantages of this approach
are its simplicity and a low computational complexity in comparison with
the goodness-of-fit tests. A description of commonly used multivariate data
characteristics follows.

The first characteristic is the mean vector. Let x represent a random
vector of p variables, and xi = (xi1, xi2, . . . , xip) denote the i-th instance in
the sample set, the sample mean error is defined as

x̄ =
1

n

n∑
i=1

xi =


x̄1

x̄2
...

x̄p


where n is the number of observations. Thus x̄i is the mean of the i-th
variable on the n observations. The mean of x over all possible instances in
the population is called population mean vector and is defined as a vector
of expected values of each variable, formally

µ = E(x) =


E(x1)
E(x2)

...
E(xp)

 =


µ1
µ2
...
µp


Therefore, x̄ is an estimate of µ.

Second characteristic is the covariance matrix. Let sjk = 1
n−1

∑n
i=1 (xij − x̄j)(xik − x̄k)

be a sample covariance between j-th and k-th variable. We define the sample
covariance matrix as

S =


s1,1 s1,2 · · · s1,p
s2,1 s2,2 · · · s2,p

...
...

. . .
...

sp,1 sp,2 · · · sp,p


Because sjk = skj , the covariance matrix is symmetric and there are variances
s2j , the squares of standard deviations sj , on the diagonal of the matrix. There-
fore, the covariance matrix is also called variance-covariance matrix. As for
the mean, the covariance matrix over whole population is called population
covariance matrix and is defined as

Σ = cov(x) =


σ1,1 σ1,2 · · · σ1,p
σ2,1 σ2,2 · · · σ2,p

...
...

. . .
...

σp,1 σp,2 · · · σp,p
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where σjk = E[(xj − µj)(xk − µk)].
The covariance matrix contains p × p values corresponding to all pairs of

variables and their covariances. The covariance matrix could be inconvenient
in some cases and therefore it can be desired to have one single number as
an overall characteristic. One measure summarising the covariance matrix is
called generalized sample variance and is defined as the determinant of
the covariance matrix

generalized sample variance = |S|

The geometric interpretation of the generalized sample variance is a p-dimensional
hyperellipsoid centered at x̄.

More details about the multivariate data characteristic can be found in
[24].

1.2 Data splitting

In the ideal situation we have collected more independent datasets or we can
simply and inexpensively repeat an experiment to collect new ones. We can
use independent datasets for learning, model selection and even an assessment
of the prediction performance. In this situation we have not any reason to split
any particular dataset. But in situation when only one dataset is available
and we are not capable to collect new data, we need some strategy to per-
form particular tasks described earlier. In this section we review several data
splitting strategies and data splitting algorithms which try to deal with the
problem of absence of independent datasets.

1.2.1 Data splitting strategies

When only one dataset is given, several possible ways how to use available data
come into consideration to perform tasks described in section 1.1 (training,
validation, testing). We can split available data into two or more parts and
use each to perform a particular task. Common practise is to split data into
two or three sets:

Original Set

Training Testing

ValidationTraining Testing

Figure 1.3: Two and three way splitting
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1.2. Data splitting

Training set - a set used for learning and estimating parameters of the
model.

Validation set - a set used to evaluate the model, usually for model selection.

Testing set - a set of examples used to assess the predictive performance of
the model.

Let us define following data splitting strategies according to how data used
in a process of model building are available.

The null strategy (Strategy 0 ) is when all available data are used for all
tasks. Training, selecting and making an assessment on the same data usually
leads to over-fitting of the model and to an over-optimistic estimate of the
predictive accuracy. The error estimated on the same set as the model was
trained is known as re-substitution error.

The strategy motivated by the arrival of new data (Strategy 1 ) uses one
set for training and the second set, containing the first set and newly collected
data, for the assessment. Merging new collected data with the old data loses
the independence of model selection and assessment, which can lead to an
over-optimistic estimate of the performance of the model.

The most commonly used strategy is to split data into two sets, a training
set and a testing set. The training set (also called the estimation set) is used to
estimate the parameters of the model and also for model selection (validation).
The testing set is then used to assess the prediction performance of the model
(Strategy 2 ).

Another strategy (Strategy 3 ) which splits data into two sets uses one set
for learning and the second for model selection and to assess its predictive
performance.

The use an independent set for each task is generally recommended. This
strategy (Strategy 4 ) splits available data into three sets.

Strategy Training Validation Testing

0 All data All data All data
1 Part 1 All data All data

2 Part 1 Part 1 Part 2
3 Part 1 Part 2 Part 2
4 Part 1 Part 2 Part 3

Table 1.1: Data usage in different splitting strategies

1.2.2 Data splitting algorithms

Many data splitting algorithms were proposed. Quality and complexity of
algorithms differ and not any approach is superior in general. Data splitting
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methods and algorithms and their comparison can be found in literature [25,
7, 26, 27]. Some of commonly used algorithms are described bellow.

The holdout method described in [28] is the simplest method that takes
an original dataset and splits it randomly into two sets. Common practise is
to use one third for testing and the rest for training or half to half. Assuming
that the performance of the model increases with the count of seen instances
and decreases with the count of left instances apart of the training leads to
higher bias and decreases the performance. In other words, both subsets
might have different distributions. Moreover, if a dataset is not large enough,
and it is usually not, the holdout method is inefficient in the use of data.
For example in a classification problem one or more classes might be missing
in one of the subsets, which leads to poor estimation of the model as well
as to its evaluation. In deal with this some advanced versions use so called
stratification. Stratified sampling is a probability sampling, where an original
dataset is divided into non-overlapping groups called strata, and instances
are selected from each strata proportionally to the appropriate probability. It
ensures that each class is represented with the same frequency in both subsets.
But it still does not prevent inception of the bias in training and testing sets.
For better reliability of the error estimation, the methods are repeated and
the resulting accuracy is calculated as an average over all iterations. It can
positively reduce the bias. The Repeated holdout method is also known as
Monte Carlo Cross-validation, Random Sub-sampling or Repeated Evaluation
Sets.

The most popular resampling method is Cross-validation. In k-fold
cross-validation, the original dataset is splitted into k disjoint folds of the
same size, where k is a parameter of the method. In each from k turns one
fold is used for evaluation and the remaining k − 1 folds for model learning
as shown in Figure 1.4. As in the repeated holdout method, the resulting
accuracy is the average of all turns. As well as holdout method, k-fold cross-
validation suffers on a pessimistic bias, when k is small. Increasing the count
of folds reduces the bias, but increases the variance of the estimation [11].
Experiments have shown that good results across different domains have the
k-fold cross-validation method with ten folds [29], but in general k is unfixed.
The k-fold cross-validation is very similar to the repeated holdout method with
advantage that all the instances of the original dataset are used for learning
the model and even for evaluation.

Leave-one-out cross-validation (LOOCV) is the special case of the k-
fold cross-validation in which k = n, where n is the size of the original dataset.
All test sets have always only one instance. This method makes the best use
of data and does not involve any random sub-sampling. According to this, the
LOOCV gives nearly unbiased estimates of a model performance but usually
with large variability. However, this method is extremely computationally
expensive, that makes it often inapplicable.

The Bootstrap method was introduced in [30]. The main idea of the
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Figure 1.4: Cross-validation

method is described as follows. Given a dataset S of size n, generate B boot-
strap samples by uniform sampling (with replacement), n instances from the
dataset. Notice that sampling with replacement allows to select the same in-
stance more than once. After re-sampling, estimate parameters of a model
on each bootstrap sample and than estimate a prediction performance of the
model on the original dataset. The overall prediction error is given by aver-
aging these B estimates. Process is schematically shown in Figure 1.5.

E1

E ¯

B1 Bn

En

...

...

Model1

Error1

Final Error

Modeln

Errorn

Boostrap Sample 

Original Set

Figure 1.5: Bootstrap

The most known and commonly used approach is the .632 bootstrap.
The number 0.632 in the name means the expected fraction of distinct in-
stances of the original dataset appeared in the training set. Each instance has
a probability of 1/n to being selected from n instances ((1−1/n) to not being
selected). It gives the probability of (1 − 1/n)n ≈ e−1 ≈ 0.368 not to be se-
lected after n samples. In other words, we expect that 63.2% instances of the
original dataset will be selected for training and 36.8% remaining instances
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will be used for testing. The .632 bootstrap estimate is defined as

Acc(T ) =
1

B

B∑
i=1

(0.632 ·Acc(Bi)B′
i

+ 0.368 ·Acc(Bi)T )

where Acc(Bi)B′
i

is the accuracy of the model built with bootstrap sample Bi

as the training set and applied to the test set B
′
i and Acc(Bi)T is the accuracy

of the same model applied to the original dataset. Comparison of the bootstrap
with other methods can be found in literature [31, 30, 32, 33, 34]. The results
show that 0.632 bootstrap estimates have usually low variability but with a
large bias in comparison with the cross-validation that gives approximately
unbiased estimates, but with a high variability. It is also reported that the
0.632 bootstrap works best for small datasets. Some experiments showed that
the .632 bootstrap fails in some cases, for more details see [35, 31, 34, 36].

Kennard-Stone’s algorithm (CADEX) [37, 38] is used for splitting
datasets into two distinct subsets which cover approximately the same region
of the factor space defined by the original dataset. Instead of measuring
coverage by an explicit criterion, the algorithm follows two guide lines. The
first one is that no instance from one set should be to far from any instance
of the other set, and the second one is that the coverage should start on the
boundary of the factor space. The instances are chosen sequentially and the
aim is to select the instances in each iteration to get uniformly distributed
instances over the space defined by original dataset. The algorithm works as
follows. Let P be the subset of already selected instances and let Q be the
dataset equal to T at the beginning. We define Dist(p, q) as the distance from
instance p ∈ P to instance q ∈ Q and ∆q(P ) will be the minimal distance from
instance q over the set of already selected instances in P .

∆q(P ) = arg min
p∈P

(Dist(p, q))

The algorithm starts with adding two most distant instances from Q to
P (it is not necessary to select the most distant instances, they can be any
instances, but accordingly to the idea of coverage, we usually choose two most
distant instances). In each iteration the algorithm selects an instance from
the remaining instances in the set Q using the criterion

∆Q(P ) = arg max
q∈Q

∆q(P )

In other words, for each instance remaining in the dataset Q find the smal-
lest distances to already selected instances in P and choose the one with the
maximal distance among these smallest distances. The process is repeat until
enough objects are selected. First iteration of the algorithm is shown in Figure
1.2.2 and in Figure 1.2.2 is final result with area covered by each set. Since the
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1.2. Data splitting

algorithm uses distances it is sensitive to the used metrics and eventual out-
liers. For classification purposes subsets should be selected from the individual
classes [39]. Improved version of CADEX named DUPLEX is described in
[7].

[First iteration]

MaximalNewly added
instance

Smallest distances
from candidates
to already selected
instances

[Factor space

coverage]

Training Set

Testing Set

Figure 1.6: CADEX

Other methods can be considered when we take into account the following
assumption. We suppose that two sets P and Q formed by splitting the
original dataset S are as similar as possible when sum of distances of all pairs
(one instance from the pair is from P and the other from Q) are minimized.
Formally

d∗ = arg min
d

∑
{p,q}∈S

dist(p, q).

To find the optimal splitting to the two sets is computationally very expensive.
Two heuristic approaches come to mind. The first is a method based on the
Nearest neighbour (NN) rule. This simple method splits original datasets
into two or more datasets by finding the nearest instance (nearest neighbour)
of randomly chosen instance and putting each instance into a different subset.
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The second heuristics finds the closest pair (described in [40]) of instances
in S and put one instance into P and the second instance into Q. This is
repeated until the set T is empty. The result of these algorithms are two
disjoint subsets of the original dataset. The question is how properly will this
heuristics work in practice.

1.3 Instance selection

As was mentioned earlier the instance selection is a process of reducing ori-
ginal dataset. A lot of instance selection methods have been described in the
literature. In [3] it is argued that instance selection methods are problem
dependent and none of them is superior over many problems then others. In
this section we review several instance selection methods.

According to the strategy used for selecting instances, we can divide in-
stance selection methods into two groups [5]:

Wrapper methods
The selection criterion is based on the predictive performance or the
error of a model (commonly, instances that do not contribute to the
predictive performance are discarded from the training set).

E

Selection

Algorithm

Wraper

Original Set

Selected Subset

Error Model

Figure 1.7: Wraper method

Filter methods
The selection criterion is a function that is not based upon an algorithm
used for prediction but rather on features of the instance vector.

Selection

Algorithm

Filter

Original Set
Selected Subset

Figure 1.8: Filter method

Other dividing is also used in literature. Dividing of instance selection meth-
ods according to the type of application is proposed in [41]. Noise filters
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are focused on discarding useless instances while prototype selection is
based on building a set of representatives (prototypes). How instance selec-
tion methods create final dataset offers the last presented dividing method.
Incremental methods start with S = ∅ and take representatives from T
and insert them into S during the selection process. Decremental methods
start with S = T and remove useless instances from S during the selection
process. Mixed methods combine previous methods during the selection
process.

A good review of instance selection methods is in [5, 42]. A comparison of
instance selection algorithms on several benchmark databases is presented in
[43]. Some of instance selection algorithms are described bellow.

1.3.1 Wrapper methods

The first published instance selection algorithm is probably Condensed Nearest
Neighbour (CNN) [44]. It is an incremental method starting with new set
R which includes one instance per class chosen randomly from S. In the next
step the method classifies S using R as a training set. After the classification,
each wrongly classified instance from S is added to R (absorbed). CNN selects
instances near the decision border as shown in Figure 1.9. Unfortunately, due
to this procedure the CNN can select noise instances. Moreover, performance
of the CNN is not good [41, 45].

S R

Figure 1.9: CNN - selected instances

Reduced Nearest Neighbour (RNN) is a modification of the CNN
introduced by [46]. The RNN is a decremental method that starts with R = S
and removes all instances that do not decrease the predictive performance of
a model trained using S.

Selective Nearest Neighbour (SNN) [47] is based on the CNN. It
finds a subset R ⊂ S satisfying that all instances are nearer to the nearest
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neighbour of the same class in R than to any neighbour of the other class in
S.

Generalized Condensed Nearest Neighbour (GCNN)[48] is another
instance selection decision rule based on the CNN. The GCNN works the same
way as the CNN, but it also defines the following absorption criterion: instance
x is absorbed if ‖x− q‖−‖x− p‖ > δ, where p is the nearest neighbour of the
same class as x and q is the nearest neighbour belonging to a different class
than x.

Edited Nearest Neighbour (ENN) described in [49] is a decremental
algorithm starting with R = S. The ENN removes a given instance from
R if its class does not agree with the majority class of its neighbourhoods.
ENN uses k-NN rule, usually with k = 3, to decide about the majority class,
all instances misclassified by 3-NN are discarded as shown in Figure 1.10.
An extension that runs the ENN repeatedly until no change is made in R
is known as Repeated ENN (RENN). Another modification of the ENN
is All k-NN published by [50] It is an iterative method that runs the ENN
repeatedly for all k(k = 1, 2, . . . , l). In each iteration misclassified instances are
discarded. Another methods based on the ENN are Multiedit and Editing
by Estimating Conditional Class Probabilities described in [51] and
[52], respectively.

S R

Figure 1.10: ENN - discarded instances (3-NN)

Instance Based (IB1-3) methods were proposed in [53]. The IB2 se-
lects the instances misclassified by the IB1 (the IB1 is the same as the 1-NN
algorithm). It is quite similar to the CNN, but the IB2 does not include one
instance per class and does not repeat the process after the first pass through
a training set like the CNN. The last version, the IB3, is an incremental
algorithm extending the IB2. the IB3 uses a significance test and accepts
an instance only if its accuracy is statistically significantly greater than the
frequency of its class. Similarly, an instance is rejected if its accuracy is stat-
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istically significantly lower than the frequency of its class. Confidence intervals
are used to determine the impact of the instance (0.9 to accept, 0.7 to reject).

Decremental Reduction Optimization Procedures (DROP1-5) are
instance selection algorithms presented in [54]. These methods use an associ-
ate that can be defined by function Associates(x) that collects all instances
that have x as one of its neighbours. The DROP1 method removes instances
from R that do not change a classification of its associates. The DROP2 is
the same as the DROP1 but the associates are taken from the original sample
set S instead of considering only instances remaining in R as the DROP1
method. The DROP3 and DROP4 methods run a noise filter first and then
apply the DROP2 method. The DROP5 method is another version of the
DROP2 extended of discarding the nearest opposite class instances.

Iterative Case Filtering (ICF) are described in [3]. They define LocalSet(x)
as a set of cases contained in the largest hypersphere centred at x such that
only cases in the same class as x are contained in the hypersphere. They
defined property Adaptable(x, x′) as ∀x ∈ LocalSet(x′). It means that in-
stance x can be adapted to x′. Moreover they define two properties based on
the adaptable property called reachability and coverage and defined as follows.

Reachability(x) = x′ ∈ S : Adaptable(x′, x)

Coverage(x) = x′ ∈ S : Adaptable(x, x′)

The algorithm is based on these two properties. At first, the ICF uses the ENN
to filter noise instances then the ICF repeatedly computes defined instance
properties and in each iteration removes instances that have |Reachability(x)| >
|Coverage(x)|. The process is repeated until no progress is observed. Another
method based on the same properties, the reachability and coverage, was pro-
posed in [55].

Many other methods were proposed in literature. Some of them are based
on evolutionary algorithms (EA)[56, 57, 58, 59], other methods use the support
vector machine (SVM) [60, 61, 62, 63] or tabu search (TS) [64, 65, 66].

1.3.2 Filter methods

The Pattern by Ordered Projections (POP) method [67] is a heuristic
approach to find representative patterns. The main idea of the algorithm is
to select only some border instances and eliminate the instances that are not
on the boundaries of the regions to which they belong. It uses the function
weakness(x), which is defined as the number of times that example x does not
represent a border in a partition for every partitions obtained from ordered
projected sequences of each attribute, for discarding irrelevant instances that
have weaknesses equal to the number of attributes of dataset. The weakness of
an instance is computed by increasing the weakness for each attribute, where
the instance is not near to another instance with different class.
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Another method based on finding border instances is the Pair Opposite
Class-Nearest Neighbour (POC-NN) [68]. The POC-NN calculates the
mean of all instances in each class and finds a border instance pb1 belonging
to the class C1 as an instance that is the nearest instance to m2, which is the
mean of class C2. The same way it finds other border instances.

The Maxdiff kd trees described in [69] is a method based on kd trees [70].
The algorithm builds a binary tree from an original dataset. All instances are
in the root node and child’s nodes are constructed by splitting the node by a
pivot, which is a feature with the maximum difference between consecutively
ordered values. The process is repeated until no node can be split. Leaves of
the tree are the output condensed set.

Several methods are based on clustering. They split an original dataset
into n clusters and centres of the clusters are selected as instances [62, 42,
71]. Some extensions were proposed. The Generalized-Modified Chang
algorithm (GCM) merges the nearest clusters with the same class and uses
centres of the merged clusters. The Nearest Sub-class Classifier method
(NSB) [72] selects more instances (centres) for each class using the Maximum
Variance Cluster algorithm [73]. Another method is based on clustering. The
Object Selection by Clustering (OSC) [74] selects border instances in
heterogeneous clusters and some interior instances in homogeneous clusters.

Some prototype filtering methods were proposed in the literature. The first
described is Weighting prototype (WP)[75] method. The WP method
assigns a weight to each prototype (∀x ∈ T ) and selects only those with
a larger weight than a certain threshold. The WS method uses a gradient
descent algorithm for computing weights of instances. Another published
prototype method is Prototype Selection by Relevance (PSR)[76]. The
PSR computes the relevance of each instance in T . The most similar instances
in the same class are the most relevant. The PSR selects a user defined portion
of relevant instances in the class and the most similar instances belonging to
the different class - the border instances.

1.4 Class balancing

A dataset is well-balanced, when all classes are represented with the same pro-
portion, but in practise many domains of classification tasks are characterized
by a small proportion of positive instances and a large proportion of negative
instances, where the positive instances are usually our points of interest. This
problem is commonly known as the class imbalance problem.

Although the performance of a classifier over all instances can be high, we
are usually interested in classification of positive instances (true positive rate)
only, where the classifier often fails, because it tends to classify all instances
into the majority class. To avoid this problem some strategy should be used
when a dataset is imbalanced.
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Class-balancing methods can be divided into the three main groups ac-
cording to the strategy of their use. Data level methods are used in pre-
processing and usually utilize various ways of re-sampling. Algorithm-level
methods modify a classifier or a learning process to solve the imbalance. The
last strategy is based on combining various methods to increase the perform-
ance.

This chapter gives an overview of class balancing strategies and some par-
ticular methods. Two good and detailed reviews were published in [77, 78].

1.4.1 Data-level methods

The aim of these methods is to change distributions of classes by increasing
the number of instances of the minority class (over-sampling), decreasing the
number of instances of the majority class (under-sampling), by combinations
of these methods or using other advanced sampling ways.

1.4.1.1 Under-sampling

The first and the most naive under-sampling method is random under-
sampling [79]. The random under-sampling method balances the class dis-
tributions by discarding, at random, instances of the majority class. Because
of the randomness of elimination, the method discards potentially useful in-
stances, which can lead to a decrease of the model performance.

Several heuristic under-sampling methods have been proposed in literat-
ure, some of them are linked with instance selection metods mentioned in
section 1.3. The first described algorithm is Condensed nearest neigh-
bour (CNN) [44] and the second is Wilson’s Edited Nearest Neighbour
(ENN)[49]. Both are based on discarding noisy instances.

A method based on the ENN, the Neighbourhood Cleaning Rule
(NCL) [80], discards instances from the minority and majority class sep-
arately. If an instance belongs to the majority class and it is misclassified by
its three nearest neighbours’ instances (the nearest neighbour rule [44]), then
the instance is discarded. If an instance is misclassified in the same way and
belongs to the minority class, then neighbours that belongs to the majority
class are discarded.

Another method based on the Nearest Neighbour Rule is the One-side
Sampling (OSS) [81] method. It is based on the idea of discarding instances
distant from a decision border, since these instances can be considered as
useless for learning. The OSS uses 1-NN over the set S (initially consisting of
the instances of the minority class) to classify the instances in the majority
class. Each misclassified instance from the majority class is moved to S.

The Tomek Links [50] focuses on instances near a decision border. Let
p,q be instances from different classes and dist(p, q) is the distance between
p and q. Pair p, q is called the Tomek link if there is no closer instance of an
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opposite class to p or q (dist(p, x) < dist(p, q) or dist(q, x) < dist(p, q), where
x is the instance of the opposite class than p, respectively q).

1.4.1.2 Over-sampling

The random over-sampling is a naive method, that balances class dis-
tributions by replication, at random, instances of the minority class. Two
disadvantages of this method were described in literature. The first one, the
instance replication increases likelihood of the over-fitting [82] and the second,
enlarging the training set by the over-sampling can lead to a longer learning
phase and a model response [81], mainly for lazy learners.

The most known over-sampling method is Synthetic Minority Over-
sampling Technique (SMOTE) [82]. The SMOTE does not over-sample
with replacement, instead, it generates ”synthetic” instances of the minor-
ity class. The minority class is over-sampled by taking each instance of the
minority class and its nearest neighbour and placing the ”synthetic” instance,
at random, along the line joining these instances (Figure 1.11). This approach
avoids over-fitting and causes that a classifier creates larger and less specific
decision regions, rather than smaller and more specific ones. The method
based on the SMOTE reported better experimental results in TP-rate and F-
measure [83], the Borderline SMOTE. It over-samples only the borderline
instances of the minority class.

Synthetic 
instances

Figure 1.11: SMOTE

1.4.1.3 Advanced sampling

Some advanced re-sampling methods are based on re-sampling of results of
the preliminary classification [78].

Over-sampling Algorithm Based on Preliminary Classification
(OSPC) was proposed in [8]. It was reported that the OSPC can outperform
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under-sampling methods and the SMOTE in terms of classification perform-
ance [78].

The heuristic method proposed in [84, 85], the Budget-sensitive pro-
gresive sampling algorithm iteratively enlarges a training set on the basis
of performance results from the previous iteration.

A combination of over-sampling and under-sampling methods to improve
generalization features of learners was proposed in [80, 86, 83]. A comparison
of various re-sampling strategies is presented in [87].

On the idea of combination of under-sampling and over-sampling can be
built a simple approach. Count amount of instances in each class and compute
the average number of instances, then randomly under-sample the majority
class and randomly over-sample the minority class to balance the dataset. The
question is how properly will this simple approach work in practise.

1.4.2 Algorithm level methods

Another approach to deal with imbalanced datasets modifies a classifier or a
learning process rather than changing distributions of datasets by discarding
or replicating instances. These methods are mainly based on overweighting
the minority class, discriminating the majority class, penalization for misclas-
sification or biasing the learning algorithm. A short description of published
methods follows.

1.4.2.1 Algorithm modification

Ineffectiveness of the over-sampling method when the C4.5 decision tree learner
with the default settings is used was reported in [88]. It was noted that under-
sampling produces a reasonable sensitivity to changes in misclassification costs
and a class distribution when over-sampling produces little or no change in
the performance. It was also noted that modifications of C4.5 parameters
in relation to the under/over-sampling does have a strong effect on overall
performance.

A method that deals with imbalanced datasets by internally biasing the
discrimination procedure is proposed in [89]. This method uses a weighted
distance function in a classification phase of the k-NN. Weights are assigned
to classes such that the majority class has a greater weighting factor than the
minority class. This weighting causes that the distance to minority class in-
stances is lower than the distance to instances of the majority class. Instances
of the minority class are then used more often when classifying a new instance.

Different approaches using the SVM biased by various ways for dealing
with imbalanced datasets were published. The method proposed in [90] mod-
ifies a kernel function for this purpose. In [91] it two schemes for controlling
the balance between false positives and false negatives are proposed.
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1.4.2.2 One-class learning

A one-class learning is an alternative to discriminative approaches that deal
with imbalanced datasets. In the one-class learning, a model is built using only
target class instances. The model is then learned to recognize these instances,
which can be under certain conditions superior to discriminative approaches
[92]. Two one-class learning algorithms were studied in literature, particularly
the SVM [93, 94] and auto-encoders [92, 94]. An experimental comparison of
these two methods can be found in [94]. Usefulness of the one-class learning on
extremely unbalanced datasets composed of high dimensional noisy features
is showed in [95].

1.4.2.3 Cost-sensitive learning

A cost-sensitive learning is another commonly used way in the context of
imbalanced datasets. A classification model is extended with a cost model
in the form of a cost matrix. Given the cost matrix as shown in Figure 1.2
in section 1.1 we can define conditional risk for making decision αi about
instance x as

R(αi|x) =
∑
j

λijP (j|x)

where P (j|x) is a posterior probability of class j being true class of in-
stance x. The goal in a cost-sensitive classification is to minimize the cost of
misclassification. This means that the optimal prediction for an instance x is
the class i that minimize a conditional risk. Note that the optimal decision
can differ from the most probable class [96].

A method which makes classifier cost sensitive, the MetaCost, is pro-
posed in [97]. The MetaCost learns an internal cost-sensitive model, then
estimates class probabilities and re-labels training instances with their min-
imum expected cost classes. A new model is built using the relabelled dataset.

The AdaCost [98] method based on Adaboost [99] has been made a cost-
sensitive by an over-weighting instances from the minority class, which are
misclassified. Empirical experiments have shown, that the AdaCost has lower
cumulative misclassification costs in comparison with the AdaBoost.

1.4.3 Ensemble learning methods

Ensemble methods are methods, which use a combination of methods with
the aim to achieve better results. Two most known ensemble methods are
bagging and boosting. The bagging (Bootstrap aggregating) proposed in [100]
initially generates B bootstrap sets of the original dataset and then builds a
classification or regression model using each bootstrap set. Predicted values
of these models are combined to predict the final result. In classification
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tasks it works as follows. Each model has one vote to predict a class, the
bagged classifier counts the votes and assigns the class with the most votes.
For regression tasks, the predicted value is computed as the average of values
predicted by each model.

The boosting, firstly described in [101], is based on the idea a powerful
model is created using a set of weak models. The method is quite similar
to the bagging. Like the bagging the boosting uses voting for a classification
task or averaging for a regression task to predict the output value. However,
the boosting is an iterative method. In each iteration a newly built model is
influenced by the performance of those built previously. By assigning greater
weights to the instances that were misclassified in previous iterations the model
pays more attention on these instances.

Another in comparison with bagging and boosting less widely used method
is stacking proposed in [102]. In the stacking method the original dataset is
splitted into two disjoint sets, a training set and a validation set. Several base
models are learned on the training set and then applied to the validation set.
Using predictions from the validation set as inputs and correct values as the
outputs, a higher level model is build. In comparison with the bagging and
boosting, the stacking can be used to combine different types of models.

Ensemble methods such the bagging, boosting and stacking often outper-
form another methods. Therefore, they have been widely studied in recent
years and lot of approaches have been proposed. The earlier mentioned Ad-
aboost [99] and AdaCost [98] are other methods that use the boosting are
RareBoost [103] or SMOTEBoost [104]. A method combining the bag-
ging and stacking to identify the best combination of classifiers is used in
[105]. Three agents (Naive Bayes, C4.5, 5-NN) are combined in the approach
proposed in [86]. There are many other methods utilizing the mentioned ap-
proaches.
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CHAPTER 2
Experiments

Experimental part is divided into three parts where each part corresponds to
one particular task related to training set construction, described in previous
chapter. Experiments are performed in the following way. For each experiment
are chosen appropriate evaluation measures (Section 2.1). Experiments are
designed to assess the behavior of the algorithms on different datasets and for
various classification models (Section 2.2 and 2.3). Results are then compared
in relation with a particular dataset and conrete classification model (Section
2.4).

2.1 Evaluation measures

For all tasks used for training set construction described in the previous
chapter is the main goal to improve the performance of a model by construct-
ing quality training set. Many measures for evaluation have been described
in the previous chapter in section 1.1.1.1. For our experiments are mainly
used two performance measures, classification accuracy as a commonly used
measure for classification tasks and f-measure as a measure for imbalanced
datasets, where we are focused on correct classification of instances of posit-
ive class and classification accuracy does not give enough information about
correctness of positive instances classification.

However, each task (data splitting, instance selection and class balancing)
has another quality measures that are appropriate to their purposes. De-
scription of measures used for assessment of these methods follows in next
sections.
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2.1.1 Data splitting

Measures to asses data splitting methods are capability of a splitting method
to select instances for building quality model as was described earlier and the
second important measure of method quality is the reliability of performance
prediction (to choose suitable instances for evaluation). We split an original
dataset in order to evaluate the performance of learned model on unseen data.
We need a method with a good estimate of future performance. Reliability of
performance prediction of a method is measured as a difference in perform-
ance estimate by a method and the real performance on unseen data. Main
measures used for data splitting methods comparison and assessment are:

• Learned model performance.

• Reliability of a model assessment.

2.1.2 Instance selection

For comparison and assessment of instance selection methods we use two meas-
ures. First is classification performance of a model learned on subset produced
by these methods and the second measure is the compression rate. Com-
pression rate is defined as

compression rate =
|R∗|
|R|

where |R| is the size of an original set and |R∗| is the size of a set of selected
instances.

Another measures that are related to compression rate or rather to amount
of instances in the training set are learning time and response time. Learn-
ing time is a time consumed in learning phase to build a model. Response time
is a time consumed by a model to give an appropriate response for an instance.
This times strongly depend on the learning algorithm and the model itself.
Usually when learning time is not relevant for building a model response time
is crucial and vice versa. Main measures used for instance selection methods
comparison and assessment are:

• Learned model performance.

• Compression rate.

• Learning and response time of a model.

2.1.3 Class balancing

The purpose of class balancing methods is to increase the performance of a
model. Only measure for comparison and assessment of these methods is the
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performance of a model on balanced set produced by these methods. Main
measure used for class balancing methods comparison and assessment is:

• Learned model performance

2.2 Design of experiments

At first, before main experiments, all datasets have been preprocessed. Attrib-
utes have been normalized into 0–1 scale and class labels have been remapped
into integers. Because of absence of two independent samples, original dataset
has been splitted into two subsets in order to have the same effect as having
two independent samples. Splitting is performed randomly (Figure 2.2). Data-
set have been splitted in a ration 7:3. The bigger sample (S1) is used as an
input for tested methods in each experiment and the smaller sample (S2) is
utilized for evaluation of the methods. Dataset has been splitted 10 – 100
times in dependence on the time complexity of the experiment.

Split randomly

Original dataset

Sample 1

Sample 2

Figure 2.1: Experiment design

Results of each experiment are compared on six classification models:

• 1-nn classifier,

• 5-nn classifier,

• 10-nn classifier,

• 20-nn classifier,

• neural network classifier
(500 cycles, learning rate=0.3, momentum=0.2, error=1 · 10−5 ),

• naive bayes classifier
(minimum kernel bandwidth =0.1, number of kernels=10).
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2.2.1 Data splitting

Sample S1 is splitted by each splitting method into training and testing set.
Training set is used for building a models. Performance of each model is evalu-
ated on the testing set and on the sample S2, where results on S2 are taken as
the real performance on unseen data. Difference between the real performance
and the performance achieved on testing set is the reliability of data splitting
method. This process is repeated 10 – 100 times for each splitting algorithm
and for each sample S1. The experiment is shown schematically in Figure
2.2.1. Following data splitting methods are compared:

• Null method – original dataset is used

• Random sampling

• Stratified sampling

• NN – Nearest Neighbour splitting

• CADEX – Kennard-Stone’s algorithm

• Cross-validation – 10 fold cross-validation

• Bootstrap – .632 bootstrap

Data splitting 
algorithm

Train set

Test set

Sample 1

Model Performance

Performance

Sample 2

Difference

Figure 2.2: Design of experiment: data splitting

2.2.2 Instance selection

Each instance selection algorithm is applied on sample S1. Between the ori-
ginal set and the reduced set is computed compression rate. Reduced set is
used for building a models. Performance of learned models is evaluated on
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the sample S2 and compared with the performance on the original set. This
process is repeated 10 – 100 times for each instance selection algorithm and
for each sample S1. The experiment is shown schematically in Figure 2.2.2.

During the learning phase of a model building is measured the learning
time. The values are averaged over all iterations. In the same way works
measuring of the response time of a model. Response time is measured during
evaluation of a model on the entire subset and values are also averaged over all
iterations. In this case absolute values are not so meaningful as a differences.
Following instance selection methods are compared:

• Null method – original dataset is used

• ENN – Edited Nearest Neighbour

• CNN – Condensed Nearest Neighbour

• DROP2 – Decremental Reduction Optimization Procedure 2

• DROP3 – Decremental Reduction Optimization Procedure 3

• RNN – Reduced Nearest Neighbour

Instance selection 
algorithm

Reduced set

Sample 1

Model Performance

Comp. rate

Sample 2

Learning
time

Response
time

Figure 2.3: Design of experiment: instance selection

2.2.3 Class balancing

Class balancing methods are applied on sample S1. Balanced set produced
by each method is used for building a models. Built models are evaluated
on sample S2 and results are compared with results on the original dataset.
This process is repeated 10 – 100 times for each class balancing algorithm and
for each sample S1. The experiment is shown schematically in Figure 2.2.3.
Following class balancing methods are compared:
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• Null method – original dataset is used

• Random under-sampling

• Random over-sampling

• Mixed balancing – combination of under-sampling and over-sampling

• SMOTE – Synthetic Minority Over-sampling Technique

• SMOTE + ENN

Class balancing
algorithm

Balanced set

Sample 1

Model Performance

Sample 2

Figure 2.4: Design of experiment: class balancing

2.3 Experimental data

All dataset used for benchmarking are from the UCI Machine Learning Repos-
itory [106]. Datasets have been chosen by their characteristics to be appropri-
ate for our experimental purposes. Each dataset have its main characteristics
which are crucial for assessment of the results of each experiment. Benchmark-
ing datasets and their characteristics are in Table 2.3, detailed description of
each dataset is in Appendix A. Description of terminology used for dataset’s
characteristics is following:

normal – dataset is well balanced, without noise, instances are in two classes,

imbalanced – dataset contains significantly more instances of one class(es)
than other class(es),

multi-class – dataset contains instances in more than two classes,

noisy – dataset contains significant part of noise instances.

All datasets are used in experiments with data splitting methods and in-
stance selection methods and only imbalanced datasets are used in the the
experiment with class balancing methods.
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Table 2.1: Benchmarking datasets
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2.4 Results

In this section are presented results of all experiments. Presentation of results
is divided into three parts corresponding to the purpose of each group of
training set construction methods mentioned above. Individual results of each
method on various datasets using different classifiers are discussed and all
results are presented by graphs and figures. Graphs where is notable behaviour
or interesting trend are in the text. All other graphical representation of
results are given in appendix C. Evaluation of the results is more focused
on trends and differences between methods that are more interesting and
meaningful than absolute values of results.

2.4.1 Data Splitting

This section presents results of data splitting methods for six classification
models (1-nn, 5-nn, 10-nn, 20-nn, neural network and naive bayes) on various
datasets. Results on each dataset are discussed separately and at the end of
the section is a summary of the results.

First dataset is Haberman’s Survival Data Set (Dataset A.1). Dataset
A.1 is two-class, well balanced set containing 306 instances. Dataset A.1 has
been splitted by different splitting algorithms into the training and testing
set. Classification models have been built on the training set produced by
each splitting algorithm. Figure 2.5 shows the performance of the classifiers
achieved on independent sample S2. Each sub-figure corresponds to a single
classification algorithm and each box-plot to a single splitting algorithm. Re-
liability of the performance prediction for each splitting algorithm is shown in
Figure 2.6. Like in the previous figure each sub-figure corresponds to a single
classification algorithm. Box-plots here show the differences in the predicted
and real performance (performance estimate on S2). The vertical dashed line
represents the zero difference.

Classification performance of models is shown in Figure 2.5. No method
significantly outperforms other methods. In the classification performance
CADEX has had better results in more generalised models (10-nn,20-nn) and
conversely the zero method (using entire dataset) has had better results on
more sensitive models. Using all available data for learning a model even
evaluation of the prediction performance gives optimistic estimate for all clas-
sifiers as has been expected. Good performance prediction with relatively
small variance has had CADEX for k-nn classifiers. Other methods have had
results with higher variance and with inconsistency to be optimistic or pessim-
istic. The worst estimate have had CADEX for neural network. The nearest
neighbour splitting method has had good results with a small variance for all
classifiers.

The Mammographic Mass Data Set (Dataset A.5) is the biggest dataset
used for benchmarking. Dataset A.5 is two-class, well balanced dataset con-
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taining 961 instances. Classification performance of models learned on subsets
of Dataset A.5 produced by different splitting algorithms is shown in Figure
C.5. Performance prediction reliability of these splitting algorithms on dataset
A.5 is shown in Figure C.6.

On this dataset gives nearest neighbour rule good results. It has had good
estimate of the performance and has had smaller variance than other methods
such as random or stratified sampling. The largest variance in the perform-
ance prediction has had cross-validation, but with good estimate in average.
CADEX has had the estimate with small variance but with unacceptable pess-
imistic bias. CADEX estimate has differed over 10% against the real values.
Poor results of CADEX on this dataset are surprising.
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Figure 2.5: Model performance (Dataset A.1)
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Figure 2.6: Difference in the prediction of model performance (Dataset A.1)
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More interesting situation is with imbalanced dataset. The Blood Trans-
fusion Service Center Data Set (Dataset A.2) is also two-class but highly
imbalanced. Dataset A.2 contains 748 instances, from which 76 percent are
negative. Appropriate performance measure for this dataset is f-measure,
because we are focused mainly on correct detection of positive instances. F-
measure achieved on independent sample S2 for each classifier is shown in
Figure 2.7. Prediction performance reliability for Dataset A.2 is shown in
Figure 2.8.

In all sub-figures corresponding to classifiers in Figure 2.7 we can see
that classifiers learned from subset produced by CADEX outperform oth-
ers in classification performance. Significant improvement in comparison with
other methods is obvious in Figure 2.4.1, 2.4.1 and 2.4.1. Significance of im-
provement has been confirmed by paired t-test at the five percent level of
confidence. CADEX outperforms other methods also in reliability of the per-
formance prediction where has had the most accurate estimate with relatively
small variance in comparison with others. Good estimate has had also nearest
neighbour splitting method, but with higher variance than CADEX. Methods
based on a random factor have had high variance in estimate of performance.
Best estimate of these methods on dataset A.2 has had Bootstrap.

Another imbalanced dataset is the Pima Indians Diabetes Data Set (Data-
set A.4). Dataset A.4 is two-class dataset with 768 instances of which 268 are
positive. Because we are already focused on positive instances, we use f-
measure as the performance measure. Classification performance of models
learned on subsets produced by data splitting methods is shown in Figure
C.3. Performance prediction reliability of splitting methods for this dataset is
shown in Figure C.4.

As on the previous imbalanced dataset, classifiers learned on subset ob-
tained using CADEX has had better performance than same classifiers learned
on subsets produced by other methods. In Figure C.3 is obvious increase in
performance for all classifiers when CADEX has been used. In comparison
with commonly used cross-validation, CADEX has had better estimate of
the model performance with smaller variance. Good results on this dataset
have had also random sampling and stratified sampling. Their estimates are
more accurate with lower variance in comparison with other methods. Nearest
neighbour method has had more optimistic estimate of performance but no
so optimistic as the estimate on the original dataset. Bootstrap has had more
often pessimistic estimate than optimistic.

The Glass identification Data Set (Dataset A.7) is also imbalanced and
contains 214 instances in two classes. Classification performance of models
learned on subsets of Dataset A.7 produced by different splitting algorithms
is shown in Figure C.7. Performance prediction reliability of these splitting
algorithms on this dataset is shown in Figure C.8.

Models with the best classification performance on Dataset A.7 are given
by methods using all available data for learning. Cross-validation and boot-
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strap have had most accurate estimate of the performance, but still with large
variability such as on previous datasets. All other methods decreased classi-
fication performance. Probably, the reason of decreased performance is that
the dataset has not redundant or similar instances from the same class. It
means that removing any instance decreases the capability of the model to
classify similar instances correctly. This corresponds to the fact that the best
results have been achieved by k-nn classifier with k = 1 and performance has
been decreased with increasing k.
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Figure 2.7: Model performance (Dataset A.2)
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Figure 2.8: Difference in the prediction of model performance (Dataset A.2)
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Although each multi-class classification task can be decomposed into more
two-class classification tasks (by repeating classification for each class), we
present results in situation with multi-class classification. The Wine Data
Set (Dataset A.3) is a multi-class imbalanced dataset. Dataset A.3 contains
178 instances in 3 classes. Classification performance is shown in Figure C.1.
Performance prediction reliability for Dataset A.3 is shown in Figure C.2.

Best results on this multi-class dataset have had stratified sampling and
random sampling followed by bootstrap. Good results with a small pessim-
ism has had CADEX. The nearest neighbour splitting has had too optimistic
estimate of the performance. Cross-validation has had large variance.

The Ecoli (Dataset A.6) is the second benchmarking multi-class dataset.
Dataset A.6 conatains 332 instances in 6 classes. Classification performance
of models learned on subsets of Dataset A.6 produced by different splitting
algorithms is shown in Figure 2.9. Performance prediction reliability of these
splitting algorithms on Dataset A.6 is shown in Figure 2.10.

For Dataset A.6 has had best results cross-validation. This method out-
performs others in the performance of learned models even in the perform-
ance prediction reliability. Random and stratified sampling have had also
good estimate of a model performance, but models have been worse learned
in comparison with methods using all available data (cross-validation, boot-
strap). CADEX and nearest neighbour splitting method have had the worst
results on this dataset. CADEX is on this dataset strongly pessimistic and
contrariwise nearest neighbour rule is too optimistic.
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Figure 2.9: Model performance (Dataset A.6)
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Figure 2.10: Difference in the prediction of model performance (Dataset A.6)
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The Heart Disease Data Set (Dataset A.8) is two-class dataset with 10%
of noise instances. Classification performance is shown in Figure 2.11. Per-
formance prediction reliability for Dataset A.8 is shown in Figure 2.12.

All models using various methods have had on this dataset similar per-
formance. In the performance prediction reliability has had CADEX on this
dataset strongly pessimistic estimate. This can point to CADEX’s high sens-
itivity to noise. Random sampling and stratified sampling perform on this
dataset well and also cross-validation and bootstrapping give good estimate,
but with a larger variance.

0.65

0.7

0.75

0.8

0.85

0.9

All Random Stratified NN CADEX 10xCV Bootstrap

Classification performance using 
1−nn

A
cc

ur
ac

y

0.7

0.75

0.8

0.85

0.9

All Random Stratified NN CADEX 10xCV Bootstrap

Classification performance using 
5−nn

A
cc

ur
ac

y

0.75

0.8

0.85

0.9

All Random Stratified NN CADEX 10xCV Bootstrap

Classification performance using 
10−nn

A
cc

ur
ac

y

0.75

0.8

0.85

0.9

0.95

All Random Stratified NN CADEX 10xCV Bootstrap

Classification performance using 
20−nn

A
cc

ur
ac

y

0.65

0.7

0.75

0.8

0.85

0.9

All Random Stratified NN CADEX 10xCV Bootstrap

Classification performance using 
Neural Net

A
cc

ur
ac

y

0.7

0.75

0.8

0.85

0.9

All Random Stratified NN CADEX 10xCV Bootstrap

Classification performance using 
Naive Bayes

A
cc

ur
ac

y

Figure 2.11: Model performance in dependence on splitting algorithm (Dataset
A.8)
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Figure 2.12: Difference in the prediction of model performance (Dataset A.8)

2.4.1.1 Summary

No method outperforms other methods on all or most of the datasets. Usually
if a method gives better results with one classifier than other methods, it gives
better results also with other classifiers. CADEX has had significantly better
results than other methods on two of three imbalanced datasets, but on other
datasets has had unacceptable pessimistic estimate of the performance. The
cross-validation have had large variance in its estimate in comparison with
other methods. The bootstrap has had similar results as the cross-validation
but usually with a smaller variance and with a small pessimistic bias. Ad-
vantage of the cross-validation and bootstrap is that they use all available
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data for learning, this gives better results on small datasets. In stability of
the performance prediction over all datasets has had the best results strati-
fied sampling with no significant difference against random sampling. Both
have had good estimate with acceptable variance in comparison with other
methods. However, stratified sampling usually gives better learned model.
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2.4.2 Instance selection

In this section are presented results of instance selection methods for six clas-
sification models (1-nn, 5-nn, 10-nn, 20-nn, neural network and naive bayes)
on various datasets. As in the previous section, results on each dataset are
discussed separately and at the end of the section is a summary of the results.

Dataset A.1 contains 306 instances and is well balanced. Figure 2.13
presents results of instance selection algorithms on Dataset A.1. The hori-
zontal axis shows the compression of the training set and the vertical axis
shows the performance achieved by a classifier on the compressed training
set. The dashed horizontal line corresponds to the performance of a classi-
fier on whole training set. Comparison of methods in the compression rate is
shown in Figure 2.4.2. Best results in instance selection have been achieved
on Dataset A.1 by DROP. DROP2 has had, with more than three times smal-
ler set, a small decrease in classification performance. DROP3 outperforms
DROP2 in the compression rate and in some cases even in the performance of
a model. ENN that preserves nearly entire dataset increases the preformance
of a model only in two cases. Results of DROP3 have been correlated with
ENN because DROP3 uses ENN as a noise filter before it starts DROP2. CNN
and RNN have had worse compression rate than DROP with higher decrease
in classification performance.

Results of instance selection methods on Dataset A.2, which is two-class
and imbalanced, are shown in Figure C.9. On this dataset ENN improves
performance of all classifiers. DROP has had the best compression rate and
DROP3 outperforms DROP2 in the performance of learned model. DROP did
not work with k-nn, where k is great, because in the dataset was not enough
instances. Poor results has had on this dataset RNN, which did not reduce
the number of instance. CNN has reduced the amount of instance by half
with a small decrease in performance.

Dataset A.3 contains in comparison with previous two-class datasets three
classes. Results of instance selection methods on Dataset A.3 are shown in
Figure C.10. As on the previous dataset, results for k-nn classifier are poor for
great k, because in the dataset are not enough instance. This can be seen in
Figures C.2, C.2 and C.2. This dataset probably does not contain any noise
instances because ENN has had no effect. This is the reason why DROP2
and DROP3 have had the same results on this dataset. The best results has
had DROP for neural net classifier where decrease performance by 1.3% and
reduces the dataset to one fifth. CNN and RNN have had better results on
this dataset than in previous cases, but still are worse than DROP.

Dataset A.6 is the second multi-class dataset with 332 instances in six
classes. Results of instance selection methods on Dataset A.6 are shown in
Figure C.11. Best results on Dataset A.6 has been achieved by DROP.

Dataset A.4 is two-class imbalanced dataset. Results of instance selection
methods on Dataset A.4 are shown in Figure 2.15. On Dataset A.4 have had
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Figure 2.13: Classifier performance and method compression rate (Dataset
A.1)

all instance selection methods similar results, but absolutely best results has
had DROP. Only ENN increased the classification performance of models.
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Figure 2.15: Model performance and method compression rate (Dataset A.4)
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Dataset A.5 is the biggest dataset used for benchmarking. It contains 961
instances in two well balanced classes. Results of instance selection methods
on Dataset A.5 are shown in Figure 2.16. On Dataset A.5 DROP2 has reduced
amount of instances to one tenth with less than 2% decrease of accuracy for all
classifiers. CNN has reduced dataset to one third and gives better or similar
classification accuracy as DROP (except 1-nn classifier).
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Figure 2.16: Model performance and method compression rate (Dataset A.5)
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Dataset A.8 contains 10% of noise instances. Results of instance selection
methods on Dataset A.8 are shown in Figure 2.17. Classification performance
has not increased using ENN on this dataset as expected. Classification per-
formance for naive bayes classifier even has decreased (also for k-nn classifier
for greater k, but this is because in the dataset ware not enough instance).
Nevertheless, increase in classification performance has been greater than 3%
for neural network classifier and k-nn with less k.
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Figure 2.17: Model performance and method compression rate (Dataset A.8)
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2.4.2.1 Learning and response time

The main reason why we reduce amount of instances is to speed up the learning
phase of a model or response time of a model. In dependence of an algorithm
used for learning and the model itself, number of instances affects learning
and response time of a model. Figure 2.4.2 shows the compression rate of
each instance selection method. Figure 2.18 shows the learning time for four
different classifiers, where each subfigure corresponds to one classifier and
each bar corresponds to one instance selection method. Figure 2.19 shows the
response time in the same way.

In Figure 2.4.2.1 is obvious speed up in learning phase of neural network.
Time has been reduced more than five times for DROP3, which reduced the
training set to less than one fifth. Similar is it for support vector machine
in Figure 2.4.2.1. With k-nn classifier is situation different, learning time is
negligible here, because learning phase is only in assigning training set to the
classifier. Amount of instances affects k-nn classifier in classification phase
because classifier have to find k nearest neighbours through whole training
set for each not classified instance. Response time of k-nn classifier is in
Figure 2.4.2.1. Response time has been reduced three times with DROP3,
which reduce training set to one fifth. Contrary, learned neural network has
constant response time as can be seen in Figure 2.4.2.1.
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Figure 2.18: Learning time (Dataset A.1))
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Figure 2.19: Response time (Dataset A.1)
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2.4.2.2 Summary

The Decremental Reduction Optimization Procedure (DROP) outperforms
other methods on all datasets and in both used measures – model performance
on produced subset and the compression rate. DROP has reduced amount of
instances to less than one fifth with a small decrease in the classification
performance on most of the datasets. ENN on most of the datasets increased
the classification performance of models, it confirms that ENN works well as
the noise filter.

In Figure 2.18 is obvious strong relation between amount of instances and
learning time of some models (especially for Neural Network,SVM) and in Fig-
ure 2.19 can be seen the relation between amount of instances in the training
set and response time of other models (k-NN). The amount of instances in
the training set affects the learning and response time of the models. Instance
selection methods could rapidly reduce the learning time and the response
time of models.
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2.4.3 Class balancing

This section presents results of class balancing methods for six classification
models (1-nn, 5-nn, 10-nn, 20-nn, neural network and naive bayes) on various
datasets. As in the previous section, results on each dataset are discussed
separately and at the end of the section is a summary of the results.

Dataset A.2 contains 76 percent instances of the negative class. We are
focused on the positive instances therefore we use f-measure as a performance
measure. In Figure 2.20 is shown the classification performance of different
models. As in previous sections each subfigure corresponds to one classifier and
each box-plot to results of particular class balancing method. Class balancing
methods increased classification performance on this dataset as shows Figure
2.20. All methods have had similar result, except under-sampling of majority
class that has had a bit worse results than others. Increase of performance is
greater for k-nn classifiers than for neural network, that has had similar results
as k-nn even without class balancing. Nevertheless, over-sampling decreases
variance in classification performance for all models.

Dataset A.6 is in comparison with the previous multi-class. Results on
Dataset A.6 for different classifiers and class balancing methods are shown in
Figure C.12. Figure C.12 shows that class-balancing methods did not increase
classification performance. Moreover, under-sampling strongly decreased clas-
sification performance of all models.

Another imbalanced dataset is Dataset A.7. Results of class balancing
methods on Dataset A.7 for each classifier are shown in Figure C.13. All
over-sampling methods including mixed sampling increased classification per-
formance, but no method significantly overcomes other. Increase is greater for
k-nn classifiers. Increase for neural network classifier and naive bayes classifier
is not significant.
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Figure 2.20: Model performance (Dataset A.2)
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Dataset A.4 is two-class dataset with 768 instances of which 268 instances
are positive. Results for different classifiers and class balancing methods are
shown in Figure 2.21. On this dataset all class balancing methods signific-
antly decreased classification performance. Measure of the performance is
f-measure. Class balancing methods increased sensitivity of all models as is
shown in Figure 2.22, but at the same time strongly decreased precision. It
means that model correctly classify positive instance (true positives) but also
has a lot of negative instances classified as positive (false positives). In final
the performance has been decreased.
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Figure 2.21: Model performance – f-measure (Dataset A.4)
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2.4.3.1 Summary

Class balancing methods can increase the performance of classification models
on imbalanced datasets. These methods significantly increases sensitivity of a
model on the minority class. With increasing sensitivity is usually decreased
precision of positive class classification. It means that is a lot of false positive
classifications and overall performance can decrease. No method has had
significantly better results than other. Nevertheless, under-sampling of the
majority class gives the worst results on all benchmarking datasets.
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Conclusion

Several methods for data splitting, instance selection and class balancing, pub-
lished in literature, were reviewed. All of these methods are very important
in processes of construction of training and testing sets. Data splitting meth-
ods allow to split a dataset into more subsets in the case of absence of an
independent set for model validation or prediction performance assessment.
Instance selection methods reduce a training set by removing instances useless
for estimating parameters of a model, which can speed up the learning phase
and response time, especially for lazy learners. Class balancing algorithms
solve the problem of inequality in class distributions in order to increase the
performance of learned models.

In the experimental part, several representatives of data splitting, instance
selection and class balancing methods were tested and compared. From data
splitting methods have had the most stable results over all benchmarking data-
sets simple random and stratified sampling. More complex methods as CA-
DEX or NN can improve the classification performance on particular datasets,
but unfortunately they are often strongly biased. They can not be recommen-
ded as a general approach. Instance selection methods can significantly reduce
a training set and still reach high performance on unseen data. Amount of
instances in a training set has a strong impact on the time consumed by learn-
ing a model or on the response time of a model, especially for k-nn. Class
balancing methods increase sensitivity of a model to a minority class. How-
ever, with increasing sensitivity can be decreased the precision and overall
performance may be worse than before class balancing. No class balancing
method has had significantly better results than others.

All compared methods have had different results on various datasets. This
indicates that methods are strongly domain dependent. Moreover, results of
methods are dependent on specific classifiers. Unfortunately, universal ap-
proach does not exists.
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APPENDIX A
Description of Datasets

A.1 Haberman’s Survival Data Set

http://archive.ics.uci.edu/ml/datasets/Haberman%27s+Survival

A.1.1 Data Set Characteristics

Data Set Characteristics: Multivariate Number of Instances: 306 Attribute
Characteristics: Integer Number of Attributes: 3 Date Donated 1999-03-04
Associated Tasks: Classification Missing Values?: No

A.1.2 Data Set Information:

The dataset contains cases from a study that was conducted between 1958
and 1970 at the University of Chicago’s Billings Hospital on the survival of
patients who had undergone surgery for breast cancer.

A.1.3 Attribute Information:

1. Age of patient at time of operation (numerical)

2. Patient’s year of operation (year - 1900, numerical)

3. Number of positive axillary nodes detected (numerical)

4. Survival status (class attribute)

• 1 = the patient survived 5 years or longer

• 2 = the patient died within 5 year
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A. Description of Datasets

A.2 Blood Transfusion Service Center Data Set

http://archive.ics.uci.edu/ml/datasets/Blood+Transfusion+Service+

Center

Whether he/she donated blood in March 2007 binary 1=yes 0=no Output
0 1 1 (24

A.2.1 Data Set Information

To demonstrate the RFMTC marketing model (a modified version of RFM),
this study adopted the donor database of Blood Transfusion Service Center
in Hsin-Chu City in Taiwan. The center passes their blood transfusion service
bus to one university in Hsin-Chu City to gather blood donated about every
three months. To build a FRMTC model, we selected 748 donors at random
from the donor database. These 748 donor data, each one included R (Recency
- months since last donation), F (Frequency - total number of donation),
M (Monetary - total blood donated in c.c.), T (Time - months since first
donation), and a binary variable representing whether he/she donated blood
in March 2007 (1 stand for donating blood; 0 stands for not donating blood).

A.2.2 Attribute Information

1. R (Recency - months since last donation),

2. F (Frequency - total number of donation),

3. M (Monetary - total blood donated in c.c.),

4. T (Time - months since first donation), and

5. a binary variable representing whether he/she donated blood in March
2007 (1 stand for donating blood; 0 stands for not donating blood).
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A.3. Wine Data Set

A.3 Wine Data Set

http://archive.ics.uci.edu/ml/datasets/Wine

Imbalanced Instances. 178 Features. 13 Classes. 3

A.3.1 Data Set Information

These data are the results of a chemical analysis of wines grown in the same
region in Italy but derived from three different cultivars. The analysis de-
termined the quantities of 13 constituents found in each of the three types of
wines.

A.3.2 Attribute Information:

1. Alcohol

2. Malic acid

3. Ash

4. Alcalinity of ash

5. Magnesium

6. Total phenols

7. Flavanoids

8. Nonflavanoid phenols

9. Proanthocyanins

10. Color intensity

11. Hue

12. OD280/OD315 of diluted wines

13. Proline
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A. Description of Datasets

A.4 Pima Indians Diabetes Data Set

768 instances 268 positive instance http://archive.ics.uci.edu/ml/datasets/
Pima+Indians+Diabetes

A.4.1 Data Set Information

Several constraints were placed on the selection of these instances from a
larger database. In particular, all patients here are females at least 21 years
old of Pima Indian heritage. ADAP is an adaptive learning routine that
generates and executes digital analogs of perceptron-like devices. It is a unique
algorithm; see the paper for details.

A.4.2 Attribute Information

1. Number of times pregnant

2. Plasma glucose concentration a 2 hours in an oral glucose tolerance test

3. Diastolic blood pressure (mm Hg)

4. Triceps skin fold thickness (mm)

5. 2-Hour serum insulin (mu U/ml)

6. Body mass index (weightinkg/(heightinm)2)

7. Diabetes pedigree function

8. Age (years)

9. Class variable (0 or 1)
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A.5. Mammographic Mass Data Set

A.5 Mammographic Mass Data Set

http://archive.ics.uci.edu/ml/datasets/Mammographic+Mass

Class Distribution: benign: 516; malignant: 445

A.5.1 Data Set Information

Mammography is the most effective method for breast cancer screening avail-
able today. However, the low positive predictive value of breast biopsy result-
ing from mammogram interpretation leads to approximately 70% unnecessary
biopsies with benign outcomes. To reduce the high number of unnecessary
breast biopsies, several computer-aided diagnosis (CAD) systems have been
proposed in the last years.These systems help physicians in their decision
to perform a breast biopsy on a suspicious lesion seen in a mammogram or
to perform a short term follow-up examination instead. This data set can
be used to predict the severity (benign or malignant) of a mammographic
mass lesion from BI-RADS attributes and the patient’s age. It contains a BI-
RADS assessment, the patient’s age and three BI-RADS attributes together
with the ground truth (the severity field) for 516 benign and 445 malignant
masses that have been identified on full field digital mammograms collected
at the Institute of Radiology of the University Erlangen-Nuremberg between
2003 and 2006. Each instance has an associated BI-RADS assessment ranging
from 1 (definitely benign) to 5 (highly suggestive of malignancy) assigned in a
double-review process by physicians. Assuming that all cases with BI-RADS
assessments greater or equal a given value (varying from 1 to 5), are malig-
nant and the other cases benign, sensitivities and associated specificities can
be calculated. These can be an indication of how well a CAD system performs
compared to the radiologists.

A.5.2 Attribute Information

1. BI-RADS assessment: 1 to 5 (ordinal, non-predictive!)

2. Age: patient’s age in years (integer)

3. Shape: mass shape: round=1 oval=2 lobular=3 irregular=4 (nominal)

4. Margin: mass margin: circumscribed=1 microlobulated=2 obscured=3
ill-defined=4 spiculated=5 (nominal)

5. Density: mass density high=1 iso=2 low=3 fat-containing=4 (ordinal)

6. Severity: benign=0 or malignant=1 (binominal, goal field!)
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A. Description of Datasets

A.6 Ecoli Data Set

http://archive.ics.uci.edu/ml/datasets/Ecoli

A.6.1 Data Set Information:

Data giving characteristics of each ORF (potential gene) in the E. coli genome.
Sequence, homology (similarity to other genes) and structural information,
and function (if known) are provided.

A.6.2 Attribute Information

1. mcg: McGeoch’s method for signal sequence recognition.

2. gvh: von Heijne’s method for signal sequence recognition.

3. lip: von Heijne’s Signal Peptidase II consensus sequence score. Binary
attribute.

4. chg: Presence of charge on N-terminus of predicted lipoproteins. Binary
attribute.

5. aac: score of discriminant analysis of the amino acid content of outer
membrane and periplasmic proteins.

6. alm1: score of the ALOM membrane spanning region prediction pro-
gram.

7. alm2: score of ALOM program after excluding putative cleavable signal
regions from the sequence.
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A.7. Glass Identification Data Set

A.7 Glass Identification Data Set

http://archive.ics.uci.edu/ml/datasets/Glass+Identification

A.7.1 Data Set Information

The study of classification of types of glass was motivated by criminological in-
vestigation. At the scene of the crime, the glass left can be used as evidence...if
it is correctly identified!

A.7.2 Attribute Information

1. Id number: 1 to 214

2. RI: refractive index

3. Na: Sodium (unit measurement: weight percent in corresponding oxide,
as are attributes 4-10)

4. Mg: Magnesium

5. Al: Aluminum

6. Si: Silicon

7. K: Potassium

8. Ca: Calcium

9. Ba: Barium

10. Fe: Iron

11. Type of glass
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A. Description of Datasets

A.8 Heart Disease Data Set

http://archive.ics.uci.edu/ml/datasets/Heart+Disease

A.8.1 Data Set Information

This database contains 76 attributes, but all published experiments refer to
using a subset of 14 of them. In particular, the Cleveland database is the only
one that has been used by ML researchers to this date. The ”goal” field refers
to the presence of heart disease in the patient. It is integer valued from 0 (no
presence) to 4. Experiments with the Cleveland database have concentrated
on simply attempting to distinguish presence (values 1,2,3,4) from absence
(value 0).

This dataset is a heart disease database similar to a database already
present in the repository (Heart Disease databases) but in a slightly different
form. The task is to detect the absence (1) or presence (2) of heart disease.

A.8.2 Attribute Information

Only 14 attributes used:

1. #3 (age)

2. #4 (sex)

3. #9 (cp)

4. #10 (trestbps)

5. #12 (chol)

6. #16 (fbs)

7. #19 (restecg)

8. #32 (thalach)

9. #38 (exang)

10. #40 (oldpeak)

11. #41 (slope)

12. #44 (ca)

13. #51 (thal)

14. #58 (num) (the predicted attribute)
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APPENDIX B
Description of

Implementation

B.1 RapidMiner

For experimental purposes was used RapidMiner. RapidMiner is the world’s-
leading open-source system for data mining. RapidMiner is a modular system
that allows to developers and researchers to implement their own solutions
based on it. Modular concept of RapidMiner is based on individual oper-
ators with given purpose, that are connected in complex chains in order to
design complete data minning processes. RapidMiner allows to be extended
by user-developed operators that are deployed as plug-ins. All source codes ,
built operators, built RapidMiner and RapidMiner processes are included in
attached CD.

B.1.1 Operators

Several plug-ins were developed for experimental purposes. List of operators
is bellow. Implemented operators are highlighted in bold.
One operator was developed in order to data pre-processing:

• Label remapping

For experiments with data splitting methods, two operators were developed
and four built-in operators were used:

• CADEX

• Nearest neighbour split

• Random sampling
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B. Description of Implementation

• Stratified sampling

• Cross-validation

• Bootstrapping

Four operators were developed for experiments with instance selection meth-
ods:

• ENN – Edited Nearest Neighbour

• CNN – Condensed Nearest Neighbour

• RNN – Reduces Nearest Neighbour

• DROP2-3 – Decremental Reduction Optimization Procedure

For experiments with class-balancing methods were developed four operators:

• Random under-sampling

• Random over-sampling

• Mixed sampling

• SMOTE – Synthetic Minority Over-sampling Technique

B.1.2 Processes

Several RapidMiner processes were designed in order to perform proposed
experiments.

Data splitting (splitting.*.rmp)
Processes used to split input dataset into subsets by chosen data splitting
methods. Process is repeated by a given number of iteration.

Instance selection (resampling.rmp)
Process applies implemented instance selection algorithms on a given
sets and produces reduced sets.

Class balancing (balancing.rmp)
Process applies implemented class balancing algorithms on a given sets
and produces balanced sets.

Performance (performance.*.rmp)
Process used for evaluation of methods, it measures a performance of
several models on given sets.

Execution time (execution time.rmp)
Process measures learning and response time.
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B.2. Matlab

B.2 Matlab

Matlab was used for processing of a results and their graphical representation.
All Matlab scripts are included in attached CD. Matlab scripts and their
function are described here:

Data splitting (Splitting.m)
Script used for processing of results of data splitting methods. Script
also generates images for results by given parameters.

Instance selection (Resampling.m)
Script used for processing of results of instance selection methods. Script
also generates images for results by given parameters.

Class balancing (Balancing.m)
Script used for processing of results of class balancing. Script also gen-
erates images for results by given parameters.

Paired t-test (Paired ttest.m)
Script used to verify significance of improvement.
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C. Experimental Results

C.1 Data splitting
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Figure C.1: Model performance (Dataset A.3)
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C.1. Data splitting
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Figure C.2: Difference in the prediction of model performance (Dataset A.3)
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C. Experimental Results
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Figure C.3: Model performance in dependence on splitting algorithm (Dataset
A.4)
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C.1. Data splitting
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Figure C.4: Classifier performance (Dataset A.4)
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Figure C.5: Model performance (Dataset A.5)
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C.1. Data splitting
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Figure C.6: Difference in the prediction of model performance (Dataset A.5)

95



C. Experimental Results

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Original Random Stratified NN CADEX 10xCV Bootstrap

Classification performance using 
1−nn

F
−

m
ea

su
re

0.7

0.75

0.8

0.85

0.9

0.95

Original Random Stratified NN CADEX 10xCV Bootstrap

Classification performance using 
5−nn

F
−

m
ea

su
re

0.7

0.75

0.8

0.85

0.9

Original Random Stratified NN CADEX 10xCV Bootstrap

Classification performance using 
10−nn

F
−

m
ea

su
re

0.4

0.5

0.6

0.7

0.8

0.9

Original Random Stratified NN CADEX 10xCV Bootstrap

Classification performance using 
20−nn

F
−

m
ea

su
re

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Original Random Stratified NN CADEX 10xCV Bootstrap

Classification performance using 
Neural Net

F
−

m
ea

su
re

0.7

0.75

0.8

0.85

0.9

0.95

Original Random Stratified NN CADEX 10xCV Bootstrap

Classification performance using 
Naive Bayes

F
−

m
ea

su
re

Figure C.7: Model performance in dependence on splitting algorithm (Dataset
A.7)
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C.1. Data splitting
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Figure C.8: Difference in the prediction of model performance (Dataset A.7)
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C. Experimental Results

C.2 Instance selection
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Figure C.9: Model performance and method compression rate (Dataset A.2)
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Figure C.10: Model performance and method compression rate (Dataset A.3)
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Figure C.11: Model performance and method compression rate (Dataset A.6)

100
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Figure C.12: Model performance (Dataset A.6)
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Figure C.13: Model performance (Dataset A.7)
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Content of CD
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D. Content of CD

readme.txt ........................ the file with CD content description
data ........................................... the data files directory

datasets....................the directory of datasets of experiments
results...................... the directory of results of experiments

exe.............................the directory with executable programs
rapidminer.................the directory with compiled RapidMiner

scripts ............... the directory with RapidMiner run scripts
rapidminer.bat........the RapidMiner executable (Windows)
rapidminer............... the RapidMiner executable (UNIX)

src.......................................the directory of source codes
rapidminer .................. the directory with RapidMiner sources

RapidMiner Vega ............. the directory with program sources
RapidMiner Extensions.......the directory with plug-ins sources
rapidminer processes..........the directory with processes files

*.rmp..........................the RapidMiner processes files
matlab............................ the directory with matlab scripts

*.m...........................................the matlab scripts
thesis..............the directory of LATEX source codes of the thesis

figures.............................. the thesis figures directory
*.tex.................... the LATEX source code files of the thesis

text..........................................the thesis text directory
thesis.pdf ...................... the Master’s thesis in PDF format
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