
Czech Technical University in Prague

Faculty of Information Technology

Department of Theoretical Computer Science

Master’s thesis

Port of Valgrind to Solaris/x86

Bc. Petr Pavl̊u

Supervisor: Mgr. Jǐŕı Svoboda

9th May 2012

Acknowledgements

I would like to thank my supervisor Jǐŕı Svoboda for providing me help and very
good advices, and my family for supporting me throughout my studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have cited
all sources of information in accordance with the Guideline for adhering to ethical
principles when elaborating an academic final thesis.
I acknowledge that my thesis is subject to the rights and obligations stipulated by
the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular that the
Czech Technical University in Prague has the right to conclude a license agreement
on the utilization of this thesis as a school work under the provisions of Article 60(1)
of the Act.

In Prague 9th May 2012 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2012 Petr Pavl̊u. All rights reserved.

This thesis is a school work as defined by Copyright Act of the Czech Republic. It has
been submitted at Czech Technical University in Prague, Faculty of Information Tech-
nology. The thesis is protected by the Copyright Act and its usage without author’s
permission is prohibited (with exceptions defined by the Copyright Act).

Citation of this thesis

Petr Pavl̊u. Port of Valgrind to Solaris/x86: Master’s thesis. Czech Republic: Czech
Technical University in Prague, Faculty of Information Technology, 2012.

Abstract

The aim of this thesis is to port Valgrind to the Solaris/x86 platform. Valgrind is
a combination of a dynamic binary analysis framework and associated tools. It is
a free application licensed under the GNU GPL 2. The tools are able to find many
programming errors, for example, memory leaks, race conditions or underperforming
code. Solaris is a commercial Unix-type operating system developed by the Oracle
Corporation. The thesis also describes main directions and techniques in the program
analysis area, together with examples of actual tools.

Keywords dynamic program analysis, Valgrind, Solaris

Abstrakt

Ćılem této diplomové práce je vytvořeńı portu nástroje Valgrind na platformu Solar-
is/x86. Valgrind je kombinace frameworku pro dynamickou binárńı analýzu a k tomu
přidružených nástroj̊u. Jedná se o svobodnou aplikaci licencovanou pod GNU GPL 2.
Nástroje umožňuj́ı uživatel̊um naj́ıt mnoho chyb v jejich programech, např. úniky
paměti, souběhy nebo nedostatečně optimalizované části kódu. Solaris je komerčńı
operačńı systém unixového typu vyv́ıjený společnost́ı Oracle. Text práce také ob-
sahuje popis hlavńıch směr̊u a technik v oblasti analýzy programů společně s př́ıklady
konkrétńıch nástroj̊u.

Kĺıčová slova dynamická analýza programů, Valgrind, Solaris

Contents

1 Introduction 1

1.1 Goals . 1

2 Program Analysis 3

2.1 Purpose of Program Analysis . 3

2.2 Static Analysis . 4

2.2.1 Basic Description . 4

2.2.2 Implementation Techniques . 4

2.2.3 Representative Tools . 5

2.3 Dynamic Analysis . 8

2.3.1 Basic Description . 8

2.3.2 Implementation Techniques . 8

2.3.3 Representative Tools . 11

2.4 Comparison Between Static and Dynamic Analysis 17

3 Valgrind 19

3.1 Project Overview . 19

3.2 Available Tools . 20

3.3 Architecture and Implementation . 21

3.3.1 Conceptual Overview . 21

3.3.2 Translation . 22

3.3.3 Executing Translations . 24

3.3.4 Threads . 24

3.3.5 Signals . 25

3.3.6 System Calls . 26

3.3.7 Other Facilities . 27

3.4 Limitations . 28

4 Port Implementation 31

4.1 Build System . 31

4.2 Standard Library . 32

4.3 Client Program Loading . 32

ix

4.4 Executing Translations . 34
4.5 Threads . 34
4.6 Signals . 35
4.7 System Calls . 37

4.7.1 Important System Call Wrappers 38
4.8 Other Facilities . 40

4.8.1 Debug Information Reader . 40
4.8.2 Function Replacement . 40
4.8.3 Client Requests . 41
4.8.4 Core Dumps and Gdbserver . 41

4.9 Tools . 41

5 Evaluation 45
5.1 Testing . 45
5.2 Bug Example . 46

6 Conclusion 47

A Installation and User Manual 49

B Contents of Enclosed CD 51

References 53

Index 59

x

Figures

2.1 Principle of probe-based instrumentation 10

4.1 Virtual address space partitioning . 33
4.2 Initial stack layout . 34
4.3 Signal frame . 36
4.4 Syscall from the point of view of a user space program 37

Tables

4.1 Supported system calls, part 1 . 42
4.2 Supported system calls, part 2 . 43

5.1 Results of the Solaris port in the Valgrind test suite 45

xi

Listings

2.1 Splint detecting a memory leak and a few other problems 7
2.2 Using libumem to find a memory leak 12
2.3 Using DTrace to obtain a distribution of memory allocation sizes . . . 14
2.4 Oracle Solaris Studio Code Analyser detecting a memory leak and

a few other problems . 15
2.5 Pintool for tracing memory reads . 17

3.1 Memcheck detecting a memory leak and an out-of-bounds access . . . 21
3.2 Disassembly to Valgrind’s intermediate representation 24
3.3 Syscall wrapper for time(2) . 26
3.4 Example of a Memcheck false positive 29

5.1 Bug found by Memcheck in the Solaris standard C library 46

xii

Chapter1

Introduction

No software product is bug free. Finding bugs and fixing them form a big expense
in the life of any nontrivial program. Special tools have been developed to simplify
this task. Some of the most used ones are profilers, static analysers and dynamic
analysers. Together they are called program analysis tools.

The Solaris operating system provides many such programs. They allow to easily
inspect what is happening inside the kernel or in user programs. In addition to
common Unix tools, Solaris also contains its own specific program analysis tools, for
example, libumem to detect common memory related errors and dynamic tracing
facilities provided by the DTrace tool. However, an easily accessible heavyweight
dynamic analysis framework is not available.

Valgrind is a combination of a dynamic binary analysis framework and associated
tools. It uses a disassemble-and-resynthesise technique that provides great control
over a running program but in exchange, it requires extra system resources and
significantly slows down the observed program (typically 10-50 times slower than the
native execution). Valgrind is a free application licensed under the GNU GPL 2.
The official version currently supports Linux and Mac OS X (an unofficial port to
FreeBSD also exists). It can run x86, AMD64, PPC32, PPC64 or ARM binaries.
Three categories of tools are available. Memory error detectors are able to find
memory leaks, use of uninitialised memory, accesses to freed memory and out-of-
bounds memory accesses. Thread error detectors are capable of recognising race
conditions in multi-threaded code. The last category consists of cache and heap
profilers, they help to make programs run faster. The most used tool is from the first
category and is called Memcheck.

1.1 Goals

The main goal of this thesis is to port Valgrind to the Solaris/x86 platform (or more
specifically to the SunOS 5.11 kernel). This task is not as trivial as porting a usual
user program between POSIX-compliant systems because Valgrind is closely tied to
details of an operating system. This thesis consists of three general goals:

1

1. Introduction

• Study program analysis tools and compare their basic capabilities.

• Study Valgrind internals, especially those depending on the underlying operat-
ing system. Devise a way of porting Valgrind to the Solaris/x86 platform and
implement it.

• Demonstrate the functionality of the port by running Valgrind’s Memcheck tool
on a simple command-line application. Optionally, verify the functionality of
the tool using the regression tests bundled with the Valgrind source code.

2

Chapter2

Program Analysis

2.1 Purpose of Program Analysis

Program analysis is a process of automatically analysing a behaviour of computer
programs. The intention is to find non-obvious properties of observed programs that
expose optimisation opportunities or manifest bugs in the programs. The origin of
program analysis is dated to the advent of the first compilers where it was used
to optimise compiled programs. That started a complex development in this field,
essentially becoming a wide research and industrial area. Besides program analy-
sis embedded in compilers and similar systems, there are now also many different
specialised tools directly targeted at programmers that help them to deal with in-
creasingly complex computer systems.

Main applications of program analysis:

• Program optimisation, for making code run faster and use less memory. This
ranges from simple constant propagation optimisations used in compilers to
heap or cache profiling.

• Program correctness, for detecting bugs in programs before they land on pro-
duction systems. This includes finding memory leaks, invalid pointer references,
use of undefined values, or race conditions.

Program analysis can be split into two categories: static analysis and dynamic
analysis. The next pages describe these two concepts. Since Valgrind is a dynamic
analysis tool, the main focus is on dynamic analysis and static analysis is discussed
only marginally. The following description also mentions several representatives of
different kinds of analysis methods. The attention is given especially to tools that
are not parts of typical compiler suites and to tools that are available on the Solaris
operating system.

3

2. Program Analysis

2.2 Static Analysis

2.2.1 Basic Description

Static analysis is a name for methods that derive properties of a program without
executing it. The methods are based on examining a source code of the program
(typical for machine code compiled languages, such as C/C++) or a compiled code
(typical for bytecode compiled languages, such as Java). Compiler optimisations are
standard examples of static analysis.

Bug searching tools based on this approach usually used to be sound. The sound-
ness property guarantees that a tool produces a description of a program’s behaviour
which holds for all possible inputs and runtime environments. Unfortunately sound-
ness usually comes at the cost of less precise results, with false positives. If there
are too many false positives in a tool’s report then the tool becomes unusable. Re-
ducing a number of these warnings in an error-free code is a key challenge for all
static analysis tools. In order to do so, some modern tools do not hold the soundness
property [1].

The tools operate by creating a model of a program state. Because there are many
possible executions, many possible states must be tracked. However, in practise,
tracking all possible precise states cannot be done because it would require too much
(possibly unbounded) computing time and memory. Thus the static analysis tools
must use some approximation, resulting in an information loss. Even if there is
enough computing time and memory available, the approximation is still inevitable as
many facts of a program’s behaviour are undecidable, for example, deciding whether
exit(2) is ever called (the halting problem).

Another complication, that the static analysis tools have to deal with, are un-
defined values. Such values come from non-deterministic inputs, for example, from
a user or a network. In order to preserve soundness, analysing has to be conservative
and must consider all possible values from such inputs. If a tool operates at the
source code level then there is also a problem that not all sources can be accessi-
ble and so semantics of these functions is not directly available. Such obstacles can
considerably degenerate a tool’s output.

2.2.2 Implementation Techniques

Static analysis methods are usually based on rigorous mathematical approaches.
There are several of them but unfortunately this thesis does not have room to de-
scribe many of them. Two very common, which also nicely denote basic ideas of
static analysis, are: a data flow analysis and an abstract interpretation.

2.2.2.1 Data Flow Analysis

The data flow analysis is a method that determines how variables are used within
programs. It utilises a control flow graph of a program to obtain required properties.
Its main use is in compilers when optimising programs. A typical example of this

4

2.2. Static Analysis

technique is a reaching definition analysis that calculates which variable definitions
can reach a given point in a program’s code. The data flow analysis is generally
performed by setting up data flow descriptions for each node of the control flow
graph and then propagating the descriptions along the paths in the graph.

2.2.2.2 Abstract Interpretation

The abstract interpretation is a theory for obtaining information about a program’s
behaviour based on an approximation of program semantics. It replaces concrete
states in the program by their more general (abstract) form and provides instructions
to manipulate this form. For example, an abstraction of each integer variable x can
be an interval Ix = [Lx, Hx], where x ∈ I. Using this concrete abstraction, a potential
statement y = u + v is calculated as Iy = [Lu + Lv, Hu + Hv]. It can be viewed as
a partial execution of a program in its abstract form.

2.2.3 Representative Tools

Just as there are many static analysis methods, there are also many tools that use
them. Wikipedia, the free encyclopedia, contains a comprehensive list of the static
analysis tools [41]. Not to fill many pages with their description, only two notable
ones are introduced in the following text: Lint and Coverity Static Analysis.

2.2.3.1 Lint

Lint was the first widely used static analysis tool. It was developed by Stephen C.
Johnson in 1977 [13] and first released to the public in 1979 as a part of Unix V7.
(Lint’s original source code is now available online [60].) It is a command which
examines C source programs, detecting a number of bugs and obscurities. It is based
on the Portable C Compiler (written by the same author).

A shortened list of issues that Lint detects (nowadays, most of them are discovered
directly by compilers):

• unused variables and functions.

• used before set variables,

• an unreachable (dead) code,

• a misuse of function return values (for example, using a function value when
the function does not return one),

• a non-portable character use (if the char data type is used with an assumption
that it is a signed/unsigned type),

• assignments of longs to ints (possible accuracy loss),

• constructs without any effect,

• multiple uses and side effects (problems such as a[i] = b[i++];).

5

2. Program Analysis

To reduce a number of unwanted warnings, Lint allows to include additional se-
mantic information in a program’s code. Such information is written inside comment
blocks. Examples are /*NOTREACHED*/ – indicates that a code after the current
line is unreachable, /*ARGUSED*/ – suppresses a warning about unused arguments
for the current function. Modern static analysis tools provide more sophisticated
mechanisms how to write extra semantic information but the principle remains the
same.

Reincarnations and extended versions of the original Lint can be found on today’s
systems, for example, PC-lint [47] or Splint [7, 51]. Listing 2.1 shows several defects
that can be found by Splint. The example is self-explanatory but note that none of
the problems found by Splint is detected by the GNU C compiler.

6

2.2. Static Analysis

Listing 2.1: Splint detecting a memory leak and a few other problems

setup@sol :~$ cat lintme.c

#include <stdlib.h>

int main(void)

{

char *i = malloc (10);

i[12] = ’a’;

return 0;

}

setup@sol :~$ cc -Wall -Wextra -pedantic lintme.c

setup@sol :~$ splint -strict lintme.c

Splint 3.1.2 --- 09 Feb 2011

lintme.c: (in function main)

lintme.c:4:20: Function malloc expects arg 1 to be size_t

gets int: 10

To allow arbitrary integral types to match any integral

type , use +matchanyintegral.

lintme.c:5:3: Index of possibly null pointer i: i

A possibly null pointer is dereferenced. Value is either

the result of a function which may return null (in which

case , code should check it is not null), or a global ,

parameter or structure field declared with the null

qualifier. (Use -nullderef to inhibit warning)

lintme.c:4:13: Storage i may become null

lintme.c:6:12: Fresh storage i not released before return

A memory leak has been detected. Storage allocated locally

is not released before the last reference to it is lost.

(Use -mustfreefresh to inhibit warning)

lintme.c:4:24: Fresh storage i created

lintme.c:5:3: Likely out -of -bounds store: i[12]

Unable to resolve constraint:

requires 9 >= 12

needed to satisfy precondition:

requires maxSet(i @ lintme.c:5:3) >= 12

A memory write may write to an address beyond the allocated

buffer. (Use -likelyboundswrite to inhibit warning)

Finished checking --- 5 code warnings

2.2.3.2 Coverity Static Analysis

In the year 2002, the Coverity, Inc. company was founded by Stanford University
computer scientists. The goal of this company was to commercialise a static bug-
finding tool that was developed in a four-year research project at the university [6,

7

2. Program Analysis

9]. The product is today called Coverity Static Analysis and it is one of the most
advanced static analysis tools on the market.

It is an unsound tool that can analyse C/C++ at the source code level and
Java and C# at the bytecode level. The product aims for less than 20 % of false
positives [1].

Analysis used is interprocedural (crosses function boundaries). It means that
built-in checkers look at all functions in the context. This technique allows to find
more code defects. A patented statistical approach is used in the error reporting, for
example, if a function return value is always checked by a caller but there is one place
where it is not, then this place is marked as an error. Other features are parallel
analysis and incremental analysis (if there is a code change then only affected files
are reanalysed) [30].

The following list enumerates defects found using Coverity Static Analysis (carbon
copied from the data sheet of the tool [29]):

• concurrency defects such as deadlocks, race conditions and blocking misuse,

• performance degradation problems due to memory leaks, file handle leaks, cus-
tom memory and network resource leaks, database connection leaks,

• crash causing errors such as null pointer dereference, double-free, use-after-free,
improper memory allocation, and mismatched array new and delete,

• an incorrect program behaviour caused by a dead code, uninitialised variables,
invalid use of negative variables,

• improper use of APIs with C++ STL usage errors,

• security vulnerabilities due to buffer overflows, insufficient validation, etc.

In the year 2006, Coverity, Inc. started to scan source codes of lead open source
projects. This scan project was founded by United States Department of Homeland
Security. In the first year, over 6,000 defects found by the scan were fixed. In the
following years the project was extended to include more open source programs. Since
2009, the project is completely founded by Coverity, Inc. [28].

2.3 Dynamic Analysis

2.3.1 Basic Description

An opposite approach to obtain a program’s behaviour is used by dynamic analysis,
it observes a program by executing it (usually at the machine code level). Typical
dynamic analysis tools are profilers and memory leak detectors.

2.3.2 Implementation Techniques

There are several very diverse dynamic analysis techniques, for example, a use of
specialised hardware to monitor an execution of a program or a sampling of a program
counter for a statistic-based profiling. The next pages describe the most used dynamic

8

2.3. Dynamic Analysis

analysis method called instrumentation. It is a technique for inserting extra code into
a program to observe its behaviour.

The program instrumentation can be divided into three categories: a source-code
instrumentation, a static binary instrumentation and a dynamic (runtime) binary in-
strumentation. There exist a few instrumentation tools from the first two categories,
such as Patil and Fischer’s bound checker for C [19] (a source code instrumentation
tool), or ATOM [22], Purify [10, 40] and FIT [5, 35] (all three static binary instru-
mentation tools). However, most current tools (that are still actively developed) use
the dynamic binary instrumentation. This method has several advantages:

• no need for access to a source code,

• no recompilation of a program is required,

• no files on a disk are changed,

• a dynamically generated code is correctly instrumented,

• some tools also allow to attach to an already running process.

The simplest form of this technique is represented by a function interception
via preloading. More advanced approaches are a probe-based instrumentation and
a JIT-based instrumentation (copy-and-annotate or disassemble-and-resynthesise).

Note that the following text use two terms: instrumentation code and analysis
code. The instrumentation routines select where the instrumentation is inserted and
the analysis procedures determine what to do when the instrumentation is activated.

2.3.2.1 Function Interception via Preloading

The principle of the function interception is to redirect one function to another func-
tion. Whenever the original function is called, the replaced one is entered. Typical
usage involves redirecting a family of the standard memory allocation functions.

There are several ways how the interception can be accomplished. The simplest
approach takes advantage of the preload capability of runtime linkers. Preloading
allows to insert an arbitrary dynamic library into the symbol resolution process.
Symbols in the inserted library have a higher priority than symbols coming from
regular libraries required by a program. This permits to effectively intercept all calls
to functions contained in dynamically loaded libraries. All hard work is done by the
runtime linker, a tool just has to come in the form of a dynamic library. Examples of
this technique include libumem (see Section 2.3.3.1), DUMA [32] and mpatrol [42].

2.3.2.2 Probe-based Instrumentation

The probe-based approach allows to insert an analytic code into a specified location
in a binary code of a program. The implementation is done by replacing instructions
at the location with flow-control instructions that transfer execution to the analytic
code.

Figure 2.1 shows an example of two probes inserted into a program. The flow-
control is changed using the call instruction. The original instructions are copied

9

2. Program Analysis

to the end of the analysis code. This assumes that the original instructions are not
dependent on their location. If it is not the case then such an instruction has to be
emulated, executed from the original context or altered in a way that the original
behaviour is preserved.

Examples of this technique include Detours [11] (allows to insert probes only at
function entries), DTrace (see Section 2.3.3.2) and Pin (see Section 2.3.3.4).

Original program

· · ·
Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

Instr 6

Instr 7

Instr 8

Instr 9

· · ·

Instrumented program

· · ·
Instr 1

call P1

Instr 3

Instr 4

Instr 5

Instr 6

Instr 7

call P2

Instr 9

· · ·

Probe P1

P1-Instr 1

P1-Instr 2

Instr 2

return

Probe P2

P2-Instr 1

P2-Instr 2

Instr 8

return

Figure 2.1: Principle of probe-based instrumentation

2.3.2.3 Copy-and-Annotate Instrumentation

The copy-and-annotate instrumentation (C&A) is a runtime technique for inserting
extra code into a program that operates on a binary representation of the program and
while doing so preserves the original instructions. Only necessary flow control changes
are inserted into the program. Each instruction is annotated with a description of
its effect, an analysis tool then use the annotations to guide its instrumentation.

The method is said to be transparent which means that it does not change in-
structions and addresses used in the program. Since the original instructions are
(almost) verbatim copied, a complete semantics is retained.

Pin (see Section 2.3.3.4) is probably the most known representative of this ap-
proach. It was also used in early versions of Valgrind (see Chapter 3) to handle the
FP and SIMD instructions.

2.3.2.4 Diassemble-and-Resynthesise Instrumentation

The disassemble-and-resynthesise instrumentation (D&R) is a similar technique as
the copy-and-annotate instrumentation. It also operates at the runtime on a binary
representation of a program. However, instead of executing the original instructions,

10

2.3. Dynamic Analysis

the code is first converted into an intermediate representation (IR). This IR is instru-
mented (by inserting additional IR) and then compiled back to the original binary
format.

The intermediate representation has to be able to represent all instructions of an
original code. Simple instructions are directly represented by one primitive operation
in the IR, complex instructions are broken into multiple operations and remaining
instructions are emulated. For example, if the original binary representation is the
x86 machine code then the cpuid instruction is a candidate for the emulation.

Compared to C&A, this method is more complex and due to that also slower.
D&R is more suitable for heavyweight analysis tools while it is an overkill for simple
ones. This method also allows (at least theoretically) a translation from one binary
representation to another.

Valgrind (see Chapter 3) is a canonical example of this approach.

2.3.3 Representative Tools

A few dynamic analysis tools were already mentioned in the previous sections. More
of them can be found on Wikipedia [34]. This section describes in detail four very
popular ones: libumem, DTrace, Oracle Solaris Studio analyser suite and Pin.

2.3.3.1 Libumem

Libumem is a dynamically loaded library consisting of a set of memory allocation
functions. It is a port of the kernel SLAB allocator to the user space done in the
year 2001 by Jonathan Adams [2, 3]. It is shipped as a part of the Solaris operating
system since Solaris 9 Update 3 (released in March 2004). The library is available
under the CDDL open source license [43]. There also exists a port to other operating
systems [49].

Besides being a highly scalable allocation library [27], it also supports a memory
debugging that can be used to detect memory leaks and memory corruption errors.
A big advantage is that it is possible to run the libumem memory debugging in the
production with an acceptable overhead. The easiest way how to use this library is
to utilise the preload facility of runtime linkers (see Section 2.3.2.1).

Listing 2.2 shows an example how libumem is used in a conjunction with MDB1

to detect a trivial memory leak. In this case, the preload technique is used to inject
the library into the program. Setting the environment variable UMEM DEBUG to the
default value enables the libumem debugging. The program is executed using MDB.
A breakpoint is set to the exit(2) call. In a leak-free program, all heap-allocated
memory should be freed at this point. The libumem MDB module is loaded to read
and interpret the libumem debugging information. Three commands from this mod-
ule are used in the example. The ::findleaks command lists all found leaks. The

1Modular Debugger (MDB) is an extensible general purpose debugging tool for the Solaris op-
erating system. See the official guide for a complete reference [44].

11

2. Program Analysis

::bufctl audit command is used to get more detailed information about a speci-
fied leak, especially a stack trace indicating where an allocation occurred. Finally,
the ::umem verify command displays if any allocated buffer is corrupted. Unfor-
tunately, in this case libumem was not able to detect the write after the end of the
allocated memory.

Listing 2.2: Using libumem to find a memory leak

setup@sol :~$ cat lintme.c

#include <stdlib.h>

int main(void)

{

char *i = malloc (10);

i[12] = ’a’;

return 0;

}

setup@sol :~$ cc -o lintme lintme.c

setup@sol :~$ export LD_PRELOAD=libumem.so

setup@sol :~$ export UMEM_DEBUG=default

setup@sol :~$ mdb ./ lintme

> :: sysbp _exit

> ::run

mdb: stop on entry to _exit

mdb: target stopped at:

0xfee61508: nop

> ::load libumem

> :: findleaks

CACHE LEAKED BUFCTL CALLER

08067 c10 1 0807 be30 main+0x15

Total 1 buffer , 24 bytes

> 0807 be30:: bufctl_audit

ADDR BUFADDR TIMESTAMP THREAD

CACHE LASTLOG CONTENTS

807 be30 8075 fd0 55 fdbb3d92f 1

8067 c10 0 0

libumem.so.1‘ umem_cache_alloc_debug +0x144

libumem.so.1‘ umem_cache_alloc +0x19a

libumem.so.1‘ umem_alloc +0xcd

libumem.so.1‘malloc +0x2a

main+0x15

_start +0x83

> :: umem_verify

Cache Name Addr Cache Integrity

[snip]

umem_alloc_24 8067 c10 clean

[snip]

12

2.3. Dynamic Analysis

2.3.3.2 DTrace

DTrace is a dynamic analysis framework developed for the Solaris operating system
by Bryan Cantrill, Mike Shapiro and Adam Leventhal [4]. It was first released as
a part of Solaris Express 11/03 (released in November 2003) and later shipped in the
first version of Solaris 10 (released in January 2005). It is available under the CDDL
open source license [43]. This has allowed to create ports to FreeBSD and Mac OS X
(ports to several other operating systems are in progress). Besides the official docu-
mentation, there also exist two books containing a comprehensive description of this
tool [8, 15].

DTrace has been designed to be used on production systems. This ultimately
means two things: no overhead when not explicitly enabled and the absolute safety
of analysis code execution. It is a kernel based framework, the instrumentation and
processing of the analysis code reside in the kernel. This provides an ability to
instrument both user and kernel-level software in a unified form. It is done so in
a seamless way which allows to follow programs across the user/kernel boundary.

The DTrace architecture consists of three main components: the in-kernel DTrace
core, user-level consumers that communicate with the DTrace core via the DTrace
library (the dtrace(1M) command is a typical consumer) and pluggable instrumen-
tation providers (packaged as kernel modules).

The providers exploit several different types of the probe-based instrumentation
(see Section 2.3.2.2). Most probe types have zero overhead when disabled. Some of
the typical providers are:

• Function Boundary Tracing provides an ability to insert probes at an entry to
and a return from almost all kernel functions,

• Statically Defined Tracing utilises explicitly in-implementation specified probes
with semantic meanings,

• Syscall provider makes available probes at an entry to and a return from each
system call,

• PID provider allows to instrument arbitrary instructions in user-level processes.

The analysis code is written in the D language. It is a high-level language that
resembles C and AWK. The code is compiled into a small reduced instruction set
called D Intermediate Format (DIF). The kernel contains a DIF virtual machine to
run the compiled code.

Listing 2.3 shows an example instrumentation of a user-level program. The ex-
ecuted program is a C compiler. The script is specified directly on the command
line. It defines one probe to be inserted at the entry of the malloc(3C) function
(pid$target:libc:malloc:entry). When the probe fires, the aggregating function
quantize() is called. Using this function, the script measures a distribution of
memory allocation sizes. In this case, the output reveals that the C compiler mostly
performed many small allocations.

13

2. Program Analysis

Listing 2.3: Using DTrace to obtain a distribution of memory allocation sizes

root@sol :~# dtrace -n ’pid$target:libc:malloc:entry

{ @ = quantize(arg0) }’ -c ’cc hello.c’

dtrace: description ’pid$target:libc:malloc:entry ’

matched 1 probe

dtrace: pid 4322 has exited

value ------------- Distribution ------------- count

0 | 0

1 | 2

2 |@@ 9

4 |@@@@@@ 33

8 |@@@@@@ 34

16 |@@@@@@@@@ 53

32 |@@@@@ 26

64 |@@@@@@@ 41

128 |@ 6

256 |@ 6

512 |@ 7

1024 | 1

2048 |@ 6

4096 | 0

8192 | 0

16384 | 2

32768 | 1

65536 | 0

2.3.3.3 Oracle Solaris Studio Analysers

Oracle Solaris Studio is a proprietary compiler suite and a software development
product for Solaris (x86, AMD64, SPARC) and Linux (x86, AMD64), which is avail-
able free of charge from its website [45]. It is shipped with several dynamic program
analysis tools, including performance, code and thread analysers. (Note that not all
these tools are available in the Linux version.)

The performance analyser observes runtime characteristics of programs which
helps programmers to find hotspots, bottlenecks and areas of high resource con-
sumption in their product. The code analyser is a tool that incorporates both static
and dynamic analysis techniques. The dynamic variant uses the static binary instru-
mentation. The analyser can detect memory leaks, out-of-bounds memory accesses,
use of uninitialised memory and other similar errors. The thread analyser can find
data races and deadlocks in programs. All analysers come with fancy GUIs.

Listing 2.4 illustrates how the code analyser can be used. A static analysis report
is created by specifying the -xanalyze=code compiler option. A dynamic analysis

14

2.3. Dynamic Analysis

report is created by running the actual program which is prior to that instrumented
by the discover(1) tool. The reports are then viewed in a GUI tool.

Listing 2.4: Oracle Solaris Studio Code Analyser detecting a memory leak and a few
other problems

setup@sol :~$ cat lintme.c

#include <stdlib.h>

int main(void)

{

char *i = malloc (10);

i[12] = ’a’;

return 0;

}

setup@sol :~$ cc -V

cc: Sun C 5.12 SunOS_i386 2011/11/16

setup@sol :~$ cc -g -xanalyze=code -o lintme lintme.c

setup@sol :~$ discover -a lintme

setup@sol :~$./ lintme

setup@sol :~$ code -analyzer lintme

Static analysis
ABW Beyond Array Bounds Write: i[12] @ line 5
Memory Leak: 10 @ line 4
MRC Missing malloc Return Value Check: malloc(10) @ line 4

Dynamic analysis
ABW Beyond Array Bounds Write: at address 809001c (1 bytes) on the heap @ line 5
Memory Leak: 10 bytes @ line 4

2.3.3.4 Pin

Pin is a framework for the dynamic binary instrumentation of programs [14, 48]. It
is available for Linux and Windows and it supports the x86, AMD64 and Itanium
architectures. It is a proprietary software developed and supported by Intel. It is
free for a non-commercial use. Instrumentation tools (called Pintools) are written
in C/C++ using Pin’s rich set of APIs. Pin’s goals are to provide an easy-to-use,
portable, transparent and efficient instrumentation.

The power of Pin is fully demonstrated by the Intel Parallel Studio suite that
uses Pin as an underlying engine [46, 50]. Tools included in this suite are able to find
these defects:

• use of uninitialised values,

• use of invalid memory references,

• a mismatched memory allocation and deallocation,

• memory leaks,

• invalid use of stack memory,

15

2. Program Analysis

• data races and deadlocks,

• performance bottlenecks.

Pin supports two instrumentation modes: a JIT-based one and a probe-based
one. The JIT-based mode allows to completely instrument an application. The JIT
compiler translates code from one ISA directly into the same ISA without using an
intermediate representation. This technique is called the copy-and-annotate instru-
mentation (see Section 2.3.2.3). The compiled code is stored in a code cache and
executed from there. The original code is never executed. Several methods are used
to optimise the jitted code, including trace linking, register reallocation, inlining and
liveness analysis. Using these methods, Pin achieves a very small slowdown, for
example, the maximum slowdown for a basic-block counting is three times.

The probe-based mode provides an ability to instrument an application at the
function-level only. It allows to wrap or replace functions in a program. It has almost
none overhead because no code has to be jitted.

Pin also fully supports multi-threading (without any introduced serialisation) and
similarly to debuggers, Pin can attach to an already running application.

Listing 2.5 shows a Pintool that logs information about all memory reads in
a program. The function main() initialises Pin, opens a log file, registers the in-
strumentation function Instr() (called for each instruction before its translation)
and the finalisation function Fini() and finally starts the observed program. The
function Instr() inserts a call to the analysis function MemoryRead() if a given in-
struction reads memory. The function MemoryRead() simply logs a memory access.
Finally, the function Fini() closes the log file after the program finishes.

16

2.4. Comparison Between Static and Dynamic Analysis

Listing 2.5: Pintool for tracing memory reads

#include <stdio.h>

#include "pin.H"

static FILE *fo;

VOID MemoryRead(VOID *ip , VOID *addr , UINT32 size)

{

fprintf(fo , "%p: %p %d\n", ip , addr , size);

}

VOID Instr(INS ins , VOID *v)

{

if (INS_IsMemoryRead(ins))

INS_InsertPredicatedCall(ins , IPOINT_BEFORE ,

AFUNPTR(MemoryRead), IARG_INST_PTR ,

IARG_MEMORYREAD_EA , IARG_MEMORYREAD_SIZE ,

IARG_END);

}

VOID Fini(INT32 code , VOID *v)

{

fclose(trace);

}

int main(int argc , char **argv)

{

PIN_Init(argc , argv);

fo = fopen(" trace.txt", "w");

INS_AddInstrumentFunction(Instr , 0);

PIN_AddFiniFunction(Fini , 0);

PIN_StartProgram ();

return 0;

}

2.4 Comparison Between Static and Dynamic Analysis

A comparison of the two described analyses is not easy. In practice, a user should
utilise both analyses (if it is possible) because each of them provides a different view
on software.

Static analysis is based on more mathematical basis than its counterpart. It can
be used to detect errors in an early stage of the development (before a program
can be successfully executed), this is not possible for dynamic analysis. The static
approach does not require any tests, whereas the dynamic method is effective only
if there are available tests with good code coverage. Static analysis has problems

17

2. Program Analysis

to deal with non-deterministic inputs and usually has more false positives than the
dynamic paradigm. Most modern dynamic analysis tools do not require any access to
a program’s source code, whereas the static analysis tools usually need such an access
(unless they operate at the bytecode or machine code level). Also note that only the
dynamic (runtime) binary analysis tools can deal with a dynamically generated code.

18

Chapter3

Valgrind

3.1 Project Overview

Valgrind is a dynamic instrumentation framework and a set of associated tools which
can detect many programming errors and also do profiling. Valgrind initially came
into the public view in February 2002. It is licensed under the GNU GPL 2 [39].
It is currently available on the following platforms: Linux/x86, Linux/AMD64, Lin-
ux/ARM, Linux/PPC32, Linux/PPC64, Linux/S390X, Android/ARM, Darwin/x86
and Darwin/AMD64. There also exists an unofficial port to FreeBSD/x86 and FreeB-
SD/AMD64 [56].2

The original author of the project is Julian Seward, which received in 2006
a Google-O’Reilly Open Source Award for his work on Valgrind. The project itself
won in 2004 a merit (bronze) Open Source Award and in 2008 a TrollTech’s inaugural
Qt Open Source Development Award for the best open source development tool.

Valgrind is a stable and mature system which is used worldwide by many pro-
grammers, ranging from beginners writing their course assignments to professionals
landing rovers on Mars.

Note: this chapter is based on these main sources:

• the official documentation and other information available directly on the Val-
grind website [55],

• Nethercote and Seward’s research paper that describes how Valgrind works [17],

• Nethercote’s Ph.D. dissertation about the dynamic binary analysis [16],

• the Valgrind source code.

2Several more attempts to port Valgrind to another platforms were done, including a port to
NetBSD/x86, Solaris 8/x86 and even to Windows/x86. However, these ports were never finished. In
the case of the Solaris 8 port, there is no public code available.

19

3. Valgrind

3.2 Available Tools

There are eleven tools available as a part of the official distribution of Valgrind:

• Memcheck is a memory error detector that catches uses of uninitialised memory,
accesses to already freed memory, accesses off the end of allocated blocks and
memory leaks.

• Cachegrind is a cache and branch prediction profiler. It simulates how a pro-
gram utilises system caches and calculates a number of mispredicted branches.

• Callgrind is a call-graph generating cache and branch prediction profiler. It
was originally an extension of Cachegrind and so some functionality overlaps
with this tool.

• Helgrind and DRD are thread error detectors that catch misuse of the POSIX
threads API, potential deadlocks and data races. Each of the tools uses a dif-
ferent analysis technique.

• Massif is a heap profiler that measures how much memory is used by client
programs.

• DHAT is also a heap profiler but it does different profiling. It gathers statistics
of lifetime and utilisation of memory blocks and helps to understand memory
usage.

• SGCheck is a tool that can detect overruns of stack and global arrays. It is
a complementary tool to Memcheck (their capabilities do not overlap).

• BBV is a tool that generates basic block vectors for use with the SimPoint
analysis tool.

• Lackey is an example tool that illustrates how to do some simple program
measurement and tracing.

• Nulgrind is the simplest Valgrind tool that performs no instrumentation or
analysis. It is used by Valgrind developers for debugging and regression testing.

Note: DHAT, SGCheck and BBV are experimental tools.
There are also available several external Valgrind tools, for example, ThreadSan-

itizer – a race condition detector [21, 54].
Listing 3.1 shows an example of Memcheck’s output. All messages from Valgrind

are prefixed with a process identification number. Each error report contains a short
description of the problem and a stack trace where the problem has happened.

20

3.3. Architecture and Implementation

Listing 3.1: Memcheck detecting a memory leak and an out-of-bounds access

setup@sol :~$ cat lintme.c

#include <stdlib.h>

int main(void)

{

char *i = malloc (10);

i[12] = ’a’;

return 0;

}

setup@sol :~$ cc -g -o lintme lintme.c

setup@sol :~$ valgrind --quiet --leak -check=full ./ lintme

==632== Invalid write of size 1

==632== at 0x8050CAC: main (lintme.c:5)

==632== Address 0x156034 is 2 bytes after a block of size

10 alloc ’d

==632== at 0xFEFC0B84: malloc (vg_replace_malloc.c:271)

==632== by 0x8050CA0: main (lintme.c:4)

==632==

==632== 10 bytes in 1 blocks are definitely lost in loss

record 1 of 1

==632== at 0xFEFC0B84: malloc (vg_replace_malloc.c:271)

==632== by 0x8050CA0: main (lintme.c:4)

==632==

3.3 Architecture and Implementation

This section describes Valgrind internals. It first provides a complete image how
Valgrind works and continues with a description of individual subsystems. The focus
has been put especially on subsystems that are important for the port. Parts not
directly important for the port has been omitted or only superficially described.

3.3.1 Conceptual Overview

Valgrind consists of three parts: the Valgrind core (called Coregrind), tool plugins
and the VEX library.

Coregrind forms a basic part of Valgrind. It contains an address space manager,
a loader of client programs, a thread scheduler and a code dispatcher, a minimal libc
implementation,3 an internal memory allocator, a signal processing code, a debug in-
formation reader, a core dump creating code, a gdbserver and syscall wrappers. Many
of these subsystems include parts which depend on an underlying operating system,

3Valgrind does not use the system C library to avoid any potential problems with having two
copies of this library in the address space (one for Valgrind and one for a client program) or with
sharing one library image.

21

3. Valgrind

especially the syscall wrappers are unique to each supported system. Coregrind is
150,000 lines of code.

The tool plugins do instrumentation of a client code and perform analysis of
a program execution. Each tool is usually about 10,000 lines of code, Memcheck
being the largest one with almost 20,000 lines.

The VEX library is responsible for translating a machine code into a processor-
neutral intermediate representation and back to the machine code. This means that
Valgrind uses the disassemble-and-resynthesise instrumentation (see Section 2.3.2.4).
The library is 150,000 lines of code.

Valgrind is started by a simple launcher that determines which tool should be
loaded. Each tool is a statically-linked executable compiled from Coregrind, a tool
plugin and the VEX library. After the tool has been started, control is in Coregrind
which first parses options and initialises several core subsystems, including the ad-
dress space manager and the internal memory allocator. It then loads a client binary
in the memory and initialises the tool plugin. Finally, more core subsystems are ini-
tialised, including the thread scheduler and the signal processing machinery. At this
point, the translation of the first client instruction can begin. Note that Valgrind
does not provide an ability for connecting to and instrumenting an already running
program.

3.3.2 Translation

The translation covers all client code, including shared libraries and dynamically
generated code. No original code is executed. The translation is always done per
superblocks, in a just-in-time, execution-driven fashion. Each superblock is a portion
of code that holds the single-entry, multiple-exit property.

The translation consists of several phases where most phases do some transforma-
tion of Valgrind’s intermediate representation (IR). This IR is architecture-neutral,
uses the single static assignment form, and is RISC-like (every instruction does only
a primitive operation and it is the load/store type). However, the IR is not very
RISC-like with regard to a number of instructions. To support all integer, FP and
SIMD operations, it has to contain more than 200 primitive arithmetic and logical
operations. Several special instructions, such as cpuid on x86, are also handled with
a call to a C function that emulates the instruction.

Two similar IRs are used during the translation: a tree IR and a flat IR. The tree
IR consists of statements representing actions with side-effects, such as assignments
to temporaries or memory stores. The statements can contain arbitrarily compli-
cated expressions which do not have any side effects, they merely represent complex
arithmetics. The flat IR flattens these trees by saving computed values of expressions
to temporary variables.

The following paragraphs describe all eight translation phases. The ones marked
with an asterisk are architecture-specific. (The complete translation process can be
nicely observed by invoking Valgrind with the --trace-flags option.)

22

3.3. Architecture and Implementation

• Phase 1. Disassembly*: machine code → tree IR. In the initial phase, an
architecture-specific machine code is converted into the architecture-neutral
IR. Each instruction is disassembled into one or more statements of the tree
IR.

• Phase 2. Optimisation 1: tree IR → flat IR. This phase flattens the IR and
performs several optimisations: redundant get and put elimination, copy and
constant propagation, constant folding, dead-code removal, common subexpres-
sion elimination and even simple loop unrolling for intra-block loops.

• Phase 3. Instrumentation: flat IR→ flat IR. This is the only tool-specific phase
in the translation process. It is used by a tool for inserting instrumentation
changes into the code.

• Phase 4. Optimisation 2: flat IR → flat IR. This is the second optimisation
phase which is much simpler than the first one, only constant folding and
dead-code removal is performed. The purpose of this phase is to optimise
a potentially ineffective instrumentation code.

• Phase 5. Tree building: flat IR→ tree IR. In this phase, the flat IR is converted
back to the tree IR in preparation for instruction selection.

• Phase 6. Instruction selection*: tree IR → instruction list. This phase finally
converts the IR into a list of instructions. The instructions do not reference
to host registers but to virtual ones. The instruction selector uses a simple,
greedy, top-down tree-matching algorithm.

• Phase 7. Register allocation: instruction list → instruction list. The virtual
registers are replaced with host registers in a platform-independent manner.
The allocator uses the linear scan algorithm [20, 24].

• Phase 8. Assembly*: instruction list → machine code. The final phase simply
encodes and writes the selected instructions to a block of memory.

Listing 3.2 illustrates how one instruction is disassembled into the tree IR and
then converted to the flat IR. In this case, it is a move instruction that can be
interpreted in a C-like notation as %eax = *(int*)(%eax + %esi * 1 + 8). The
description of the IRs is as follows: The variables tnum are temporaries. IMark is
a no-operation that indicate where the instruction started, its address and length in
bytes. Add32 is a 32-bit add. Shl32 is a 32-bit left-shift. LDle is a little-endian load.
GET pulls a value out of a thread-state storage. PUT saves a value to the thread-state.
The offsets 0 and 24 point to the registers EAX and ESI, respectively.

23

3. Valgrind

Listing 3.2: Disassembly to Valgrind’s intermediate representation

Original instruction:
0x10FB55: movl 8(%eax ,%esi ,1),%eax

Disassembly into the tree IR:
------ IMark(0x10FB55 , 4, 0) ------

t0 = Add32(Add32(GET:I32(0), Shl32(GET:I32 (24) ,0x0:I8)),

0x8:I32)

PUT(0) = LDle:I32(t0)

Optimisation 1, the tree IR is converted to the flat IR:
------ IMark(0x10FB55 , 4, 0) ------

t15 = GET:I32 (24)

t16 = GET:I32(0)

t13 = Add32(t16 ,t15)

t12 = Add32(t13 ,0x8:I32)

t17 = LDle:I32(t12)

The translated code is stored in a translation table so it can be reused later
without going through the complete translation process again. The translation table
is a fixed-size, linear-probe hash table that uses the FIFO policy to select which code
block should be evicted when the table becomes too full.

3.3.3 Executing Translations

The execution of the translated code is controlled by a dispatcher and a scheduler.
The dispatcher is a short assembly code (about 10 instructions on each platform)

that is entered after the execution of one translated block has finished. The dispatcher
uses a direct-mapped cache (of 32,768 entries) to find a following translated block for
the execution according to the program counter value. If the search does not succeed
then control falls in the scheduler.

The scheduler is a regular C code. When it receives control from the dispatcher
it searches the complete translation table to find the required translated block. If
the search succeeds then the dispatcher cache is updated accordingly and control is
given back to the dispatcher. If the search is not successful then a new translation
has to be prepared and then stored in the translation table and the dispatcher cache.

There are also several other cases when control is reclaimed by the scheduler, for
example, when a maximum number of executed blocks has been reached so the sched-
uler can schedule another thread to run (see Section 3.3.4), or if a syscall instruction
is encountered so a syscall wrapping code can be executed (see Section 3.3.6).

3.3.4 Threads

Valgrind supports multi-threaded programs. A client program running inside Val-
grind has exactly the same process structure as it would have when executed natively

24

3.3. Architecture and Implementation

(there are no extra threads). However, Valgrind allows only one thread to run at once.
The scheduler, that runs in each thread, has to acquire a big lock before a thread
can run any client code or manipulate any shared state.

The big lock is implemented as a self-pipe mechanism: the lock is released by
writing a character into the pipe and acquired by the first thread reading the character
from the pipe. Since these characters are read using the read(2) syscall, it is the
kernel that decides which thread succeeds in the lock acquisition. This means that
even though Valgrind serialises threads, the kernel is still in charge of scheduling
them.

A thread, holding the big lock, executes at maximum 100,000 translated basic
blocks before it gives control back to the scheduler which releases the lock and waits
again on the lock acquisition. A problem arises if the thread needs to perform a pos-
sibly blocking syscall. In such a case, the thread releases the big lock and makes the
syscall. After the syscall finishes, the thread has to reacquire the lock again before
it can continue the execution.

3.3.5 Signals

Handling Unix signals is generally not easy [38]. In the case of Valgrind, it is especially
complicated.

When a client program registers a signal handler, the kernel receives an address
pointing to a client code that should be called to handle the signal. This could
cause that the client code is executed natively. To prevent this behaviour, Valgrind
intercepts all signal-related syscalls and supplies to the kernel its own signal handlers
that appropriately wrap client handlers.

The next problem is that an analysis code and an original code are closely in-
terspersed and cannot be arbitrary separated by a signal delivery. For example,
Memcheck tracks definedness of every bit of a client data. If a value of a client bit is
set then an associated definedness bit has to be updated. However, it is not possible
to perform both operations in one atomic instruction, two are usually required. If
a signal is delivered between these two instructions then a signal handler is executed
while Valgrind is in an inconsistent state. Therefore Valgrind blocks signals while
executing a translated code and polls for them between code block executions.

However, some signals cannot be postponed in this way. Synchronous signals
that are instruction-generated, for example, SIGILL or SIGSEGV have to be processed
immediately when they occur. Thus these signals are not blocked and their handler
does a longjump out of the translated code to the scheduler which proceeds them
appropriately.

Finally, signals cannot be blocked while a thread is in a blocking syscall. For
example, if SIGINT was blocked while the thread is stuck in the read(2) syscall then
the program cannot be terminated with the Ctrl-C combination. (This example as-
sumes that the program is set to terminate on SIGINT and that Ctrl-C sends SIGINT
to the process.) Valgrind contains a non-trivial assembly code to unblock/reblock

25

3. Valgrind

the signals before/after making a blocking syscall and an associated C code to deal
with signals received while executing this code.

3.3.6 System Calls

Valgrind is a user space tool which means that it cannot track a program into the
kernel. When a syscall happens, Valgrind has to be explicitly informed about effects
of this syscall. This includes which registers and memory is read and written by the
syscall and if there are any changes to open file descriptors or memory mappings.
All these effects are described in a syscall wrapper machinery. Even though writing
a single syscall wrapper is relatively easy, there are several hundreds of different
syscalls that are available on each platform. Therefore this machinery makes a huge
part of Coregrind, for example, the syscall wrappers for Linux/x86 consist of around
10,000 lines of code.

Listing 3.3 illustrates a simple syscall wrapper, namely the time(2) wrapper.
The function PRE(sys time)() is called before the syscall is performed. In this
case, it contains three macros: PRINT() outputs information about the syscall if the
--trace-syscalls option is used, PRE REG READ1() informs Valgrind about parame-
ters that are read by the syscall and PRE MEM WRITE() is used to mark a block of client
memory that is about to be written by the syscall. The function POST(sys time)()

is called after the syscall finishes. The macro POST MEM WRITE() marks a block of
client memory initialised by the syscall.

Listing 3.3: Syscall wrapper for time(2)

PRE(sys_time)

{

/* time_t time(time_t *t); */

PRINT(" sys_time (%#lx)", ARG1);

PRE_REG_READ1(long , "time", time_t *, t);

if (ARG1 != 0) {

PRE_MEM_WRITE ("time(t)", ARG1 , sizeof(vki_time_t));

}

}

POST(sys_time)

{

if (ARG1 != 0) {

POST_MEM_WRITE(ARG1 , sizeof(vki_time_t));

}

}

26

3.3. Architecture and Implementation

3.3.7 Other Facilities

3.3.7.1 Debug Information Reader

Valgrind relies on debug information to provide accurate error reports to its users.
Stripped programs and libraries limit usefulness of provided reports. Valgrind is able
to read debug information stored in several formats, including STABS [23, 52] and
DWARF [33], which are the two most common formats used on Unix-like systems,
and PDB [31], which is a format used on Windows systems. The PDB support allows
Valgrind to work with Windows applications running with Wine.4

3.3.7.2 Function Replacement and Function Wrapping

Valgrind contains an advanced facility to redirect or wrap functions. The differ-
ence between the two is that wrapping allows to call an original function from a re-
placement function. This facility is primarily used by Valgrind itself. For example,
Memcheck redirects malloc-family functions to do a leak detection. It is possible to
intercept any function that has a known entry address.

3.3.7.3 Client Requests

Client requests allow manipulating and querying a state of Valgrind from a client
program. A user includes valgrind.h into her program and uses macros available in
this file. A request is encoded using a special preamble which is recognised by Valgrind
in the translation process. The preamble is a series of instructions that is unlikely
to appear in a normal program. For example, the x86 preamble is roll $3, %edi;

roll $13, %edi; roll $29, %edi; roll $19, %edi.5 A program containing the
client requests can still be run normally without Valgrind.

The requests allow a program to determine whether it is running under Valgrind,
discard translations cached by Valgrind (useful for runtime code generation), call
functions natively, query a number of detected errors, inform Valgrind about memory
pools and stacks (to give Valgrind more information about their usage in a program),
or print a stack backtrace.

3.3.7.4 Core Dumps and Gdbserver

Valgrind re-translates a client program and hides its execution under a big volume
of other code which causes that an attached debugger sees the internals of Valgrind
instead of the client ones. Valgrind provides two facilities to improve this situation.

First, if a crash occurs in a client code then Valgrind creates a core dump that
corresponds to an actual client state and that contains only memory segments of the

4Wine is a compatibility layer that reimplements the Windows API and allows to run Windows
programs on Unix-like systems [59].

5Instruction rol b, r rotates r to the left by b bits. In this case, rotating a content of the EDI
register by 64 bits (3 + 13 + 29 + 19 = 64) can be seen as a fancy no-operation instruction.

27

3. Valgrind

client (Valgrind-allocated segments are omitted). A regular debugger can then be
used for post-mortem analysis on such a core dump.

Second, since version 3.7.0 (released on November 2011) Valgrind implements
a gdbserver that allows connecting to a running Valgrind instance using the GNU
Project Debugger (GDB) [37]. The gdbserver exports information about a client
program and communicates with GDB using the GDB Remote Serial Protocol [36].
This facility also provides a way to interactively query the Valgrind core or tools, for
example, to do an incremental leak search under Memcheck.

3.4 Limitations

Valgrind has several limitations and problems that arise from its design and imple-
mentation.

The main limitation is that a program under Valgrind runs 10-50 times slower
than natively. It is so because of the complicated translation process and heavyweight
instrumentation done by some tools. This slowdown prohibits the use of Valgrind on
production systems and may eventually hide some bugs in a client program. Thread
serialisation done by Valgrind poses another performance loss. Luckily, some at-
tempts to make Valgrind multi-threaded have recently begun.

The main problem of analysis performed by the tools are false positives. For
example, Memcheck can be tricked by a highly optimised code that contains bit
tricks or partial loads. Listing 3.4 shows a Memcheck false positive. It can be easily
proved that the tool is incorrect in this case because the variable zoo is initialised to
zero at the printf(3C) statement. Because of this, Valgrind developers advise users
to use only low optimisation levels if they are compiling a program to be run under
Valgrind.

28

3.4. Limitations

Listing 3.4: Example of a Memcheck false positive

setup@sol :~$ cat fool.c

#include <stdio.h>

int main(void)

{

int zoo;

int i = zoo;

zoo = zoo ^ i;

printf ("zoo=%d\n", zoo);

return 0;

}

setup@sol :~$ cc -g fool.c -o fool

setup@sol :~$ objdump -d fool

[snip]

08050 c8c <main >:

8050 c8c: push %ebp

8050 c8d: mov %esp ,%ebp

8050 c8f: and $0xfffffff0 ,%esp

8050 c92: sub $0x20 ,%esp

8050 c95: mov 0x1c(%esp),%eax # zoo -> %eax

8050 c99: mov %eax ,0x18(%esp) # %eax -> i

8050 c9d: mov 0x18(%esp),%eax # i -> %eax

8050 ca1: xor %eax ,0x1c(%esp) # %eax ^ zoo -> zoo

8050 ca5: mov 0x1c(%esp),%eax

8050 ca9: mov %eax ,0x4(%esp)

8050 cad: movl $0x8050d3c ,(% esp)

8050 cb4: call 8050 a54 <printf@plt >

8050 cb9: mov $0x0 ,%eax

8050 cbe: leave

8050 cbf: ret

[snip]

setup@sol :~$ valgrind --quiet --track -origins=yes ./fool

[snip]

==791== Syscall param write(buf) points to uninitialised byte

==791== at 0xFEF54965: __write (in /lib/libc.so.1)

==791== by 0xFEF20C82: _xflsbuf (in /lib/libc.so.1)

==791== by 0xFEF131CC: _ndoprnt (in /lib/libc.so.1)

==791== by 0xFEF14366: printf (in /lib/libc.so.1)

==791== by 0x8050CB8: main (fool.c:7)

==791== Uninitialised value was created by a stack allocation

==791== at 0x8050C92: main (fool.c:3)

==791==

zoo=0

29

Chapter4

Port Implementation

This chapter describes how the port is implemented. It follows closely the layout of
the previous chapter and covers what changes were necessary in each relevant part
of Valgrind. The text also discusses some differences between Solaris and Linux.
Knowing them is important in comprehending what needed to be done differently in
this port compared to the Linux version.

Porting Valgrind to a new platform requires knowledge in many areas. In the
Solaris/x86 case, it involves understanding internals of Valgrind, specific parts of the
Solaris kernel, the runtime linker and the standard C library as well as understanding
the ELF format and the x86 processor architecture. Knowledge of the STABS and
DWARF formats is also partly necessary.

This chapter assumes that the reader is familiar with the x86 processor architec-
ture [12].

The port is based on the Valgrind source code as of 6th April 2012 (Valgrind
revision 12495, VEX revision 2274).

4.1 Build System

The Valgrind build process is based on the GNU Autotools (primarily on Auto-
conf [25] and Automake [26]) and the make utility. Minor modifications in this
system were necessary. The changes include building only the x86 version even if
the AMD64 system is present, or fixing linking options of some regression tests (for
example, if a test uses socket related functions then the test has to be linked against
the socket and nsl libraries).

The only notable addition to the build system is a Solaris specific linker script.
Each linker script is a small Perl program whose main purpose is to tell an underlying
linker to set an alternate load address of the tool executables. This is necessary
because the tools are regular, position-dependent executables and if a tool was loaded
at the default address (0x8000000 on Solaris) then it would clash with the most
client programs (which are usually also position-dependent executables). There is no
portable way to change the load address so there is a linker script for each supported

31

4. Port Implementation

operating system. The Solaris version of this script creates a mapfile containing
appropriate linker directives to modify the default behaviour and passes this file to
the Solaris linker. The mapfile format version 2 is used [18].

4.2 Standard Library

Valgrind implements a minimal subset of the standard C library (see Section 3.3.1).
This includes a variety of functions, some of which are platform specific because they
require assistance of the kernel. Most of these functions represent low-level functions
from the POSIX standard [61], which are usually implemented directly by the kernel
so it is enough to just make an appropriate syscall. There are a few exceptions, for
example, there is no open(2) syscall on Solaris 11, therefore the openat(2) syscall
with the first parameter set to AT FDCWD is used instead. This port makes syscalls via
the int $0x91 instruction which is the most portable way how to enter the Solaris
kernel on the x86 platform.

4.3 Client Program Loading

Loading a client program into the memory constitutes a significant part of the ini-
tialisation procedure which involves several steps and various modules.

A prerequisite of the loading process is the initialisation of the address space
manager which is a component that maintains information about current (virtual)
memory mappings. When this module is initialised it needs to obtain mappings
that are already in place. This is done by a syscall (Darwin) or by accessing the
/proc filesystem (Linux and Solaris). In the Solaris case, current mappings are read
from the file /proc/self/xmap which is a binary file containing an array of prxmap

structures. Each structure describes one contiguous address segment.
The Solaris port supports reading and mapping ELF6 objects. The actual process

is very similar to what the kernel does: a client binary is read from a disk, program
headers are parsed, load segments are mapped into the memory, if an interpret is
required then it is loaded too, and finally, a stack is initialised. Figure 4.1 shows
how the virtual address space is partitioned for a typical program. It contains some
differences compared to a normal run. The runtime linker is loaded in the lower
part of the address space, while it is normally mapped at the opposite end (this
is not particularly important as the runtime linker is a position-independent code).
Valgrind is loaded at the address 0x38000000, this is determined by the linker script
(see Section 4.1). The client stack, which is allocated by Valgrind, is positioned
below the Valgrind image. The initial stack set by the kernel is left unused, Valgrind
switches to its own statically allocated stack.

6Executable and Linkable Format (ELF) is a common standard file format for code objects on
Unix-like operating systems, including Solaris [53].

32

4.3. Client Program Loading

0xffffffff
Dynamic shared objects

Valgrind
0x38000000

Client stack

Client program
0x08000000

Initial stack set by the kernel

Runtime linker
0x00100000

0x00000000

Figure 4.1: Virtual address space partitioning

The ELF loader has been extended to understand the PT SUNWDTRACE program
header. This header contains an address of a scratch area that is used by the DTrace
fasttrap provider. The address represents an initial value of the thread pointer (see
Section 4.5).

The final stage of the loading process initialises the client stack. Figure 4.2
displays a content of such a stack. It contains a number of arguments to the program
(argc), string pointers to actual arguments (argv), string pointers to environment
variables (envp), an auxiliary vector (auxv) and a string table.

All values are usually derived from values that the kernel passed to Valgrind on its
initial stack. However on Solaris, the kernel does not create any auxiliary vector if an
executed program is a statically-linked program, which is the Valgrind case. There-
fore the auxiliary vector has to be built from scratch. The vector stores information
that is primarily intended to be used by the runtime linker. It contains a platform
identifier, a name of an executed program, an address referring to a memory location
where program headers of an executed program are mapped, an address where an
interpreter is mapped, a size of memory pages, hardware capabilities and potentially
other similar values. Most of the values are either constants or originate from the
ELF loader. The hardware capabilities are currently obtained by using a private
kernel interface (which is originally provided for the isainfo(1) command). This
should be eventually changed so that the hardware capabilities reflect the properties
of the virtual CPU that Valgrind synthesises.

33

4. Port Implementation

Higher address

· · ·
String table

· · ·

auxv
· · ·

AT NULL

envp
· · ·
NULL

argv
· · ·
NULL

argc
Return address

Lower address
Stack pointer

Figure 4.2: Initial stack layout

4.4 Executing Translations

Valgrind contains a special dispatcher for each supported platform. The Solaris/x86
dispatcher is an exact copy of the Linux/x86 version. The negligible change is that it
does not create the .note.GNU-stack section which in the Linux case notifies a linker
that this object does not require an executable stack.

4.5 Threads

The multi-thread support is closely tied to two issues: thread-local storage imple-
mentation and a logic associated with creating new threads.

On both Solaris/x86 and Linux/x86, the thread-local storage implementation
utilises segmentation. The FS and GS registers each hold a segment selector which
points to a segment descriptor in the GDT.7 The segment base address field in the
segment descriptor points to the thread-local data. This address is called a thread
pointer. The GS register is used by the standard C library and the FS register
is utilised by emulators or similar programs, for example, by Wine. A user process
cannot directly access the GDT, a kernel interface has to be used. Therefore Valgrind

7Global Descriptor Table (GDT) is an array of segment descriptors that define aspects of various
memory areas used during a program execution. (Note: Besides segment descriptors, the GDT can
also hold other structures, for example, Task State Segment.)

34

4.6. Signals

simulates the GDT because some tools, for example, Memcheck, depend on knowing
the linear address of every memory access.

Both the Linux and Solaris kernels maintain an individual GDT per each CPU.
The kernels swap only a few segment descriptors when a new thread is about to
run. On Solaris, two of these loaded descriptors are important for the thread-local
storage implementation, the GDT LWPFS and GDT LWPGS descriptors. Programs can
use the lwp private(2) syscall to define the base address in these descriptors which
also causes that the LWPFS SEL or LWPGS SEL segment selector (depending on which
descriptor is being set) is stored in the FS or GS register, respectively.

The Solaris port follows an approach of the Linux version when it simulates an
individual GDT for each thread. This method has relatively large overhead (64 kB
per thread) but it does not require any modification to the generic Valgrind code
(which is required when a shared GDT is used) and it will work even when the
Valgrind big lock limitation is lifted.

New threads are created on Solaris using the lwp create(2) syscall. The first
parameter of this syscall specifies a complete execution context of a new thread. The
context holds values of all processor registers and flags. Valgrind cannot pass this
context directly to the kernel because that would lead to the execution of an original
client code. The lwp create() syscall wrapper contains a code to create a new
Valgrind thread-state, allocate a stack that will be used by Valgrind to run this
thread, and save values from the context to the VEX guest state (part of the thread-
state). This last part is problematic because there are minor differences between
the real processor context and the VEX guest state (see Section 4.7.1.2). Then the
lwp create() wrapper fills a new context that sets the processor to run a Valgrind
thread wrapper and finally makes the lwp create() syscall with this own supplied
context.

In comparison, new threads on Linux are created using the sys clone(2) syscall
which has a similar behaviour to fork(2). It duplicates a calling thread, both threads
continue at a point of the call, but a return value to the parent is a pid of the child
thread while a return value to the child is zero.

4.6 Signals

Signal implementation differs in a few aspects across various Unix-like operating
systems. The most significant difference (from the Valgrind point of view) is how an
original execution context is restored after a signal handler finishes.

On Linux/x86, the kernel saves into the return-address slot on a signal frame an
address of a restorer function. When the execution of the signal handler finishes,
the return address is popped of the stack and control is transferred to the restorer
which makes the sigreturn(2) syscall to restore an original context. The restorer
code comes from the kernel and originally used to be saved directly on the signal
stack, but because that prevented the stack from being non-executable, the restorer
is now located in so called Virtual Dynamically-linked Shared Object. It is a special

35

4. Port Implementation

ELF object that is mapped into a process’s address space by the kernel. It is also
possible to set a custom restorer function when a signal handler is registered. The
Linux/AMD64 implementation is similar but the standard C library is required to
always set the custom restorer function.

On Solaris, if a program wants to return from a signal handler to an original con-
text then it has to do so explicitly using the setcontext(2) variant of the context()
syscall. Typically, programs use the standard C library which wraps user signal han-
dlers and the wrapper makes the neccessary setcontext() call.

The discussed difference is important in two contexts. First, it leads to a small
change in the Valgrind signal handler, an explicit setcontext() call needs to be
added at the end of the handler. Second, it affects how Valgrind delivers signals to
client programs.

Valgrind synthesises the signal delivery to client programs. This means that
Valgrind builds a complete signal frame and takes special care about returning from
a signal handler. Figure 4.3 shows a native signal frame on Solaris. It contains
an invalid return address, a signal number, an old execution context and optionally
extended information about a signal. The Solaris port follows exactly this layout, no
extra data is saved on the stack. The context structure is filled by values from the
VEX guest state. When a client program returns from a signal handler, it makes the
setcontext() call and Valgrind restores the original context in the PRE wrapper of
this call.

Higher address

· · ·
Signal info
· · ·

· · ·
Old context
· · ·

Old context pointer

Signal info pointer

Signal number

Bogus return address
Lower address

Stack pointer

Figure 4.3: Signal frame

In comparison, the Linux version of Valgrind builds a less accurate stack frame.
It does not store the FP and SSE values in the context structure and it saves extra
Valgrind data in the frame which are used (instead of the context structure) to restore
an interrupted execution point. Valgrind utilises a custom restorer which makes the
rt sigreturn(2) syscall. The PRE wrapper of this syscall then restores the original
context.

36

4.7. System Calls

4.7 System Calls

There are many ways how a user space program can make a syscall on Solaris/x86.
It can be made via a call gate, several interrupt gates, Intel’s sysenter or AMD’s
syscall instructions. The port does not support all of them but only a reasonable
subset. The call gate is not supported because it poses a legacy way how to enter
the kernel and is never utilised by the Solaris standard C library. The 0x80 interrupt
gate is also not supported because it is used merely to run Linux programs on Solaris.
Finally, the syscall instruction cannot be used because the VEX library synthesises
the Intel x86 processor.

Figure 4.4 visualises how a syscall is made from the point of view of a user space
program. Before the syscall, up to eight parameters are stored on a stack and a syscall
number is saved in the EAX register. If the syscall succeeds then the carry flag is
cleared and a return value is to be found in the EDX and EAX registers. If the
syscall fails, the carry flag is set and the EAX register contains an error number.

Higher address
Argument 8

Argument 7

Argument 6

Argument 5

Argument 4

Argument 3

Argument 2

Argument 1

Bogus return address
Lower address

Stack pointer

EAX contains
a syscall number

int 0x91, sysenter

Success: C = 0, result in EDX:EAX
Error: C = 1, errno in EAX

Figure 4.4: Syscall from the point of view of a user space program

Solaris also supports other type of syscalls which are called fasttraps and which
can be used via the 0xd2 interrupt gate. These syscalls do not take any parameters
(except for a syscall number in the EAX register) and never fail. This allows them
to go through a fast path in the kernel. There are only a few fasttraps, for example,
one is used by clock gettime(3C).

To support Solaris syscalls in Valgrind, several changes were necessary. The VEX
library has been extended to disassemble the int 0x91 and int 0xd2 instructions.
The syscall-wrapper main module has been modified to know where parameters of the
Solaris syscalls are stored, where a result is saved and how to recognise if a syscall
failed or not. An assembly code for making blocking syscalls has been added, it
is based on the Darwin/x86 version with minor modifications. Finally, the syscall
wrapper machinery for the Solaris syscalls has been implemented. Tables 4.1 and
4.2 summarise syscalls currently supported by this port (about 40 % of all syscalls
are supported). The note column contains hints about a given syscall. The legacy

37

4. Port Implementation

remark means that a syscall is available only on Solaris 11 Express but not in the
final Solaris 11. A section number then means that a syscall is somehow important
and more information about the syscall can be found in that section.

Difficulty of writing syscall wrappers range rapidly. A trivial case is when Val-
grind already provides a required wrapper. This happens when a syscall is common
on all supported systems. If it is not the case then a new wrapper has to be writ-
ten from scratch. A problem is that there is limited information on many syscalls.
The documentation in the second section of manual pages describes an interface im-
plemented by the standard C library which does not always match a real syscall
interface. For quite a lot syscalls, there is no documentation at all. In such cases,
the only way how to comprehend the syscall interface is by reading the source codes
of the kernel and the standard C library.

4.7.1 Important System Call Wrappers

This section discusses a few examples of syscalls that are for some reason interesting
for this port, for instance, a modification to the generic Valgrind code was necessary
to handle them correctly. Information about the lwp create() and lwp private()

syscalls was already presented in Section 4.5.

4.7.1.1 ioctl

The ioctl(2) syscall provides an interface to control devices. It takes three param-
eters: a file descriptor, a request identifier and an optional request-dependent value.
Implementing a wrapper for this syscall is complicated because there are literally
hundreds of various requests and Valgrind needs to know what memory is read or
written by every request that is used by a client program. Otherwise Valgrind may
hide some errors or report false positives.

Solaris provides the sys/ioccom.h header file that contains macros to encode
information about the third parameter in the request identifier. This encoding can
express that the third parameter is a pointer to a memory block, if the block is read
or written and a size of the block. Unfortunately this feature has been rarely utilised
by Solaris developers so it is not much use for this wrapper and most requests still
have to be described manually.

4.7.1.2 context

The previous sections 4.5 and 4.6 already discussed where execution contexts are
involved on Solaris. The context() syscall is used to save a current execution context
(in the ucontext t structure) and later restore it (getcontext(2), setcontext(2)).
The port completely simulates this syscall which means that it is processed directly
by Valgrind and control is never passed to the kernel. It is necessary to do so because
if the syscall was processed by the kernel then a saved context would contain a current
Valgrind context instead of a client program.

38

4.7. System Calls

The context structure consists of a signal mask, a stack declaration and a proces-
sor state. The problematic part is the processor state. Valgrind synthesises an x86
CPU that is very similar to a physical x86 CPU but a representation of the EFLAGS
register, FPU flags and the ST(x) registers is different. In order to get a required
format of these values, several functions to convert between the VEX representation
and the real format were exported from the VEX library. These functions provide
abilities to save/restore the EFLAGS register, the x87 state and the MXCSR register.
However, there is a problem with the EFLAGS register. The VEX library does not
simulate this register directly, instead it uses four 32-bit values that represent the
last arithmetic operation and operands used. It is possible to calculate the EFLAGS
value from these four values but it does not work vice versa without a loss of pre-
cision. Therefore this port saves these four values (plus a check sum of them) into
unused slots in the context structure. It means that the semantics of this syscall is
slightly changed when a program is run under Valgrind.

A further modification, that was required to handle this syscall, is adding two new
events which the core sends to the tools. They inform the tools that a VEX guest
state value is saved into a memory block or loaded from a memory block. Currently,
the only consumer of these events is the Memcheck tool which requires them to track
the value definedness. Appropriate handlers were added to Memcheck.

4.7.1.3 mmap

The mmap(2) syscall establishes a mapping between a process’s address space and
a memory object. The Solaris version of this syscall allows to make a mapping with
a specified alignment. The kernel fulfils the alignment requirement but has a freedom
to determine where the mapping should occur.

Valgrind intercepts mmap() calls and if it finds that a mapping does not have
a fixed address then the address space manager assigns the address to the mapping.
The kernel is then entered with a fixed mapping request. This is necessary because
the kernel does not know about memory areas that Valgrind does not map but
reserves them for other use, for example, a reservation exists for a memory area into
which a grow-down client stack is expanded. The code of the address space manager
has been extended to calculate the fixed address for this Solaris specific alignment
extension.

4.7.1.4 mmapobj

The mmapobj(2) syscall is similar to mmap(2). It establishes a set of mappings
between a process’s address space and a file. Optionally, it can also interpret the
file and map it according to the rules of that file format. It is used mainly by the
runtime linker to map dynamic libraries. It is worth mentioning that this syscall is
not to be found on any other Unix-like system.

From the Valgrind point of view this syscall creates two problems which have to
be dealt with in the POST wrapper. The syscall can make more than one mapping at

39

4. Port Implementation

once which is something that the sanity checks in the address space manager do not
expect. To fix this issue the checks are temporarily disabled until the address space
manager is transferred to a consistent state. The second problem is that Valgrind
does not know which mappings have been created by the call which means that the
/proc/self/xmap file has to be reread to update the address space manager state.
(Note that the syscall actually returns which mappings have been made but not all
mappings are always correctly recorded.)

4.7.1.5 schedctl

This undocumented syscall returns a pointer to a per-thread structure scshared t

that is used for a communication between the kernel and the standard C library. The
structure is allocated in a memory page that is mapped by the kernel in the process’s
address space.

This interface is problematic for Valgrind, for example, it allows the standard
C library to block all signals by setting the sc sigblock member of the structure.
The port cannot let this happen because it would completely mess up the Valgrind
signal machinery. Therefore the port does not support this interface and returns the
value zero when this syscall is made. This value tells the standard C library that the
interface is not available, the library then uses a fallback code instead of using the
interface.

4.8 Other Facilities

4.8.1 Debug Information Reader

The Solaris port supports reading the DWARF, STABS and PDB debug information
formats. Only minor modifications to the reader were necessary.

The ELF reader has been extended to interpret the .SUNW ldynsym section. This
section contains a table of local function symbols and allows to get a useful stack
trace for stripped programs that do not have the .symtab section [58].

4.8.2 Function Replacement

All function redirects installed by Coregrind and the tools are OS specific, but in
fact they are very similar for all supported operating systems. Solaris is no excep-
tion. Replacements are registered for overly optimised string and memory functions
located in the runtime linker and the standard C library. Memcheck’s redirects for
malloc-family functions are installed for the allocator available in the standard C
library. Other memory allocators (bsdmalloc, libumem, mtmalloc, watchmalloc) are
not supported. This follows the general Memcheck behaviour when only a main
system allocator on each OS is supported.

40

4.9. Tools

4.8.3 Client Requests

The platform specific part of the client requests implementation is shared between
the Darwin/x86, Linux/x86 and Solaris/x86 ports.

4.8.4 Core Dumps and Gdbserver

The core dump functionality is not currently implemented by this port. The gdb-
server is also not supported because it relies on the ptrace(2) syscall. The Solaris
kernel does not implement this syscall but instead it provides the /proc file system
that can be used to simulate the ptrace() behaviour. The port does not yet contain
a code to do so.

4.9 Tools

The tools are mostly platform independent, therefore not many changes were neces-
sary in this area. The modifications to the Memcheck tool were already discussed
in Sections 4.7.1.2 and 4.8.2. The only not mentioned change in this tool is that
Memcheck on Solaris has to threat a brk(2) allocated memory as initialised (which
is a correct behaviour because the brk-allocated memory should always be zeroed).
Not doing so causes a huge number of false positives in several programs that utilise
the brk() memory management.

Out of eleven tools, two thread error detectors (DRD and Helgrind) are currently
not available. They are disabled because they report many errors in the standard
C library (which were not sorted out yet) and do not support Solaris threads (the
thr *() functions). Therefore they are not much useful to end users yet.

41

4. Port Implementation

Sysno Name Note

1 exit

3 read

4 write

5 open legacy
6 close

10 unlink legacy
12 chdir

13 time

17 brk

18 stat legacy
19 lseek

20 getpid

21 mount

22 readlinkat

24 getuid

27 alarm

28 fstat legacy
29 pause

33 access

37 kill

42 pipe

43 times

47 getgid

50 sysi86

54 ioctl 4.7.1.1
59 execve

60 umask

62 fcntl

66 fstatat

67 fstatat64

68 openat

77 lwp park

80 mkdir legacy
90 readlink legacy
95 sigprocmask

Sysno Name Note

97 sigaltstack

98 sigaction

99 sigpending

100 context 4.7.1.2
107 waitid

112 priocntlsys

113 pathconf

115 mmap 4.7.1.3
116 mprotect

117 munmap

121 readv

122 writev

127 mmapobj 4.7.1.4
128 setrlimit

129 getrlimit

131 memcntl

137 sysconfig

139 systeminfo

142 forksys

146 yield

159 lwp create 4.5
160 lwp exit

161 lwp suspend

162 lwp continue

163 lwp kill

164 lwp self

165 lwp sigmask

166 lwp private 4.5
167 lwp wait

175 llseek

183 pollsys

199 nanosleep

206 schedctl 4.7.1.5
209 resolvepath

213 getdents64

Table 4.1: Supported system calls, part 1

42

4.9. Tools

Sysno Name Note

215 stat64 legacy
216 lstat64 legacy
217 fstat64 legacy
221 getrlimit64

225 open64 legacy
229 getcwd

230 so socket

231 so socketpair

232 bind

233 listen

234 accept

235 connect

238 recvfrom

239 recvmsg

240 send

241 sendmsg

244 getsockname

245 getsockopt

246 setsockopt

254 uucopy

Table 4.2: Supported system calls, part 2

43

Chapter5

Evaluation

5.1 Testing

The testing of the port was done mainly by the Valgrind test suite. It consists of
unit and regression tests which cover most of the functionality that Valgrind provides.
Each test is a small program that is run under Valgrind and its output is compared
to an expected output. The test suite also contains a few real-life applications, for
example, the bzip2 data compressor.

Table 5.1 summarises results for different modules. The failing tests are caused
by minor differences in expected outputs. A few tests also fail because they are non-
portable and depend on a specific system behaviour or because they make a syscall
that does not have yet implemented an associated syscall wrapper. The Helgrind,
DRD and Gdbserver tests are disabled because their functionality is not yet sup-
ported.

Module Tests Fails

Coregrind+VEX 130 29
Memcheck 153 19
Cachegrind 6 0
Callgrind 13 0
Helgrind unavailable
DRD unavailable
Massif 34 0
DHAT 0 0
SGCheck 6 4
BBV 4 0
Lackey 1 0
Gdbserver unavailable

Table 5.1: Results of the Solaris port in the Valgrind test suite

45

5. Evaluation

5.2 Bug Example

Listing 5.1 shows a bug found by the Memcheck tool in the Solaris standard C library,
specifically in the implementation of the snprintf(3C) function. This bug actually
seems to be a known feature of the library where a hack is used to extend the FILE

structure.
The extended structure is called xFILE and it consists of the FILE and xFILEdata

members. The structure is not available outside the library. However, if there is
a pointer to the original file structure, it can actually be a pointer to the extended
variant. The library needs a way how to recognise which structure is hidden behind
the pointer. A hack is used to do so. The first member of the xFILEdata structure
holds a value that is calculated as XOR between an address of the structure and the
value 0x63687367. When the library obtains a pointer to one of the file structures,
it decides which structure is present according to this member.

The snprintf() function allocates on its stack the FILE structure and passes
a pointer to this structure to other functions in the library. When the getxfdat()

function tries to determine which structure is present, it does a conditional jump
according to a value that is located past the allocated FILE structure. This value is
in this case uninitialised and Valgrind reports the error. This hack does not normally
cause any harm, but under specific conditions, it can.

This bug nicely demonstrates what problems is this port able to find on Solaris.
Note that the 64-bit version of the library is not affected by this bug.

Listing 5.1: Bug found by Memcheck in the Solaris standard C library

setup@sol :~$ cat bug.c

#include <stdio.h>

int main(void)

{

char buf [64];

snprintf(buf , sizeof(buf), "Hello ");

return 0;

}

setup@sol :~$ cc -g bug.c -o bug

setup@sol :~$ valgrind --quiet --track -origins=yes ./bug

==857== Conditional jump or move depends on uninitialised value

==857== at 0xFEF20AAF: getxfdat (in /lib/libc.so.1)

==857== by 0xFEF20B47: _realbufend (in /lib/libc.so.1)

==857== by 0xFEF0FB7A: _ndoprnt (in /lib/libc.so.1)

==857== by 0xFEF1446D: snprintf (in /lib/libc.so.1)

==857== by 0x8050CC0: main (in /home/setup/bug)

==857== Uninitialised value was created by a stack allocation

==857== at 0xFEF1440C: snprintf (in /lib/libc.so.1)

==857==

46

Chapter6

Conclusion

The thesis has described main directions and techniques in the program analysis area,
together with representatives of actual tools. Basic capabilities of the tools have been
presented and compared.

The main goal of this thesis, porting Valgrind to the Solaris/x86 platform, has
been successfully reached. Many areas were studied for doing so, including internals
of Valgrind, specific parts of the Solaris kernel, the runtime linker and the standard
C library as well as the ELF format and the x86 processor architecture. In the case
of the Solaris kernel, the focus was especially on understanding how programs are
executed, how threads, signals and syscalls are implemented, and what individual
syscalls do.

Based on this knowledge, a way to add support for Solaris/x86 to Valgrind has
been devised and implemented. The necessary changes span over the complete Val-
grind code base, with the main work done in the framework part (Coregrind).

The port is able to run many client programs. The programs can also make use
of threads and signals. The port supports most important syscalls that are provided
by the kernel, including file, socket and thread related syscalls. Out of eleven official
tools, nine are supported. Only two thread error detectors (DRD and Helgrind)
are currently not available. The functionality of the port was evaluated using the
Valgrind test suite, proving that the port works correctly (except for a few minor
problems).

Future work on this project will include enabling the two remaining tools, adding
the core dump and gdbserver support, implementing more syscall wrappers and port-
ing to the AMD64 architecture.

47

AppendixA

Installation and User Manual

The requirements to successfully build the port are: Solaris 11, GCC 4.x, Solaris ld,
GNU autotools, GNU make, and Mercurial (for obtaining the source code). If all
these are satisfied then the port can be built using the following commands:

$ hg clone https://bitbucket.org/setupji/valgrind-solaris

$ cd valgrind-solaris

$./autogen.sh

$./configure

$ make

$ make install

The port does not come with its own user manual. The official Valgrind manual
should be used instead [57].

49

AppendixB

Contents of Enclosed CD

/

valgrind-3.8.0.SVN.tar.gz.......... distribution package of the project
valgrind-solaris.patch summary of differences between the

original Valgrind and the port
DP Pavlu Petr 2012.pdf thesis text
DP Pavlu Petr 2012.tar.gz........... LATEX source code of the thesis text

51

References

[1] Bessey, A.; Block, K.; Chelf, B.; etc.: A Few Billion Lines of Code Later: Using
Static Analysis to Find Bugs in the Real World. Communications of the ACM,
volume 53, no. 2, 2010: pp. 66–75.

[2] Bonwick, J.: The Slab Allocator: An Object-Caching Kernel Memory Allocator.
In Proceedings of the USENIX Summer 1994 Technical Conference on USENIX
Summer 1994 Technical Conference - Volume 1, USTC’94, USENIX Association,
1994, pp. 6–6.

[3] Bonwick, J.; Adams, J.: Magazines and Vmem: Extending the Slab Allocator
to Many CPUs and Arbitrary Resources. In Proceedings of the General Track:
2002 USENIX Annual Technical Conference, USENIX Association, 2001, pp.
15–33.

[4] Cantrill, B.; Shapiro, M.; Leventhal, A.: Dynamic Instrumentation of Produc-
tion Systems. In Proceedings of the Annual Conference on USENIX Annual
Technical Conference, ATEC ’04, USENIX Association, 2004, pp. 2–2.

[5] De Bus, B.; Chanet, D.; De Sutter, B.; etc.: The Design and Implementa-
tion of FIT: a Flexible Instrumentation Toolkit. In Proceedings of the 5th ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Foftware Tools and
Engineering, PASTE ’04, ACM, 2004, pp. 29–34.

[6] Engler, D.; Chelf, B.; Chou, A.; etc.: Checking System Rules Using System-
Specific, Programmer-Written Compiler Extensions. In Proceedings of the 4th
Conference on Symposium on Operating System Design & Implementation - Vol-
ume 4, OSDI’00, USENIX Association, 2000, pp. 1–1.

[7] Evans, D.; Guttag, J.; Horning, J.; etc.: LCLint: A Tool for Using Specifica-
tions to Check Code. In Proceedings of the 2nd ACM SIGSOFT Symposium on
Foundations of Software Engineering, SIGSOFT ’94, ACM, 1994, pp. 87–96.

[8] Gregg, B.; Mauro, J.: DTrace: Dynamic Tracing in Oracle Solaris, Mac OS X,
and FreeBSD. Prentice Hall, 2011, ISBN 0132091518.

53

References

[9] Hallem, S.; Chelf, B.; Xie, Y.; etc.: A System and Language for Building System-
Specific, Static Analyses. In Proceedings of the ACM SIGPLAN 2002 Conference
on Programming Language Design and Implementation, PLDI ’02, ACM, 2002,
pp. 69–82.

[10] Hastings, R.; Joyce, B.: Purify: Fast Detection of Memory Leaks and Access
Errors. In Proceedings of the Winter USENIX Conference, USENIX Association,
1991, pp. 125–136.

[11] Hunt, G.; Brubacher, D.: Detours: Binary Interception of Win32 Functions.
In Proceedings of the 3rd Conference on USENIX Windows NT Symposium -
Volume 3, USENIX Association, 1999, pp. 14–14.

[12] Intel Corporation: Intel 64 and IA-32 Architectures Software Developer’s Man-
ual Combined Volumes: 1, 2A, 2B, 2C, 3A, 3B, and 3C. 2012. <http:
//download.intel.com/products/processor/manual/325462.pdf>

[13] Johnson, S.: Lint, a C Program Checker. Computer Science Technical Report,
volume 65, 1978.

[14] Luk, C.; Cohn, R.; Muth, R.; etc.: Pin: Building Customized Program Analy-
sis Tools with Dynamic Instrumentation. In Proceedings of the 2005 ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI
’05, ACM, 2005, pp. 190–200.

[15] McDougall, R.; Mauro, J.; Gregg, B.: Solaris (TM) Performance and Tools:
DTrace and MDB Techniques for Solaris 10 and OpenSolaris (Solaris Series).
Prentice Hall, 2006, ISBN 0131568191.

[16] Nethercote, N.: Dynamic Binary Analysis and Instrumentation. Dissertation
thesis, University of Cambridge, 2004.

[17] Nethercote, N.; Seward, J.: Valgrind: A Framework for Heavyweight Dynamic
Binary Instrumentation. In Proceedings of the 2007 ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’07, ACM, 2007,
pp. 89–100.

[18] Oracle and/or its affiliates: Linker and Libraries Guide. 2011. <http://docs.
oracle.com/cd/E23824_01/pdf/819-0690.pdf>

[19] Patil, H.; Fischer, C.: Low-Cost, Concurrent Checking of Pointer and Array
Accesses in C Programs. Software: Practice and Experience, volume 27, no. 1,
1997: pp. 87–110.

[20] Poletto, M.; Sarkar, V.: Linear Scan Register Allocation. ACM Transactions on
Programming Languages and Systems (TOPLAS), volume 21, no. 5, 1999: pp.
895–913.

54

http://download.intel.com/products/processor/manual/325462.pdf
http://download.intel.com/products/processor/manual/325462.pdf
http://docs.oracle.com/cd/E23824_01/pdf/819-0690.pdf
http://docs.oracle.com/cd/E23824_01/pdf/819-0690.pdf

References

[21] Serebryany, K.; Iskhodzhanov, T.: ThreadSanitizer: Data Race Detection in
Practice. In Proceedings of the Workshop on Binary Instrumentation and Appli-
cations, WBIA ’09, ACM, 2009, pp. 62–71.

[22] Srivastava, A.; Eustace, A.: ATOM: A System for Building Customized Pro-
gram Analysis Tools. In Proceedings of the ACM SIGPLAN 1994 Conference on
Programming Language Design and Implementation, PLDI ’94, ACM, 1994, pp.
196–205.

[23] Sun Microsystems, Inc.: Stabs Interface. 2004. <http://developers.sun.com/
sunstudio/documentation/ss11/stabs.pdf>

[24] Traub, O.; Holloway, G.; Smith, M.: Quality and Speed in Linear-scan Register
Allocation. In Proceedings of the ACM SIGPLAN 1998 Conference on Program-
ming Language Design and Implementation, PLDI ’98, ACM, 1998, pp. 142–151.

[25] Autoconf - GNU Project - Free Software Foundation (FSF). <http://www.gnu.
org/software/autoconf/>

[26] Automake - GNU Project - Free Software Foundation (FSF). <http://www.
gnu.org/software/automake/>

[27] A Comparison of Memory Allocators in Multiprocessors. <http://developers.
sun.com/solaris/articles/multiproc/multiproc.html>

[28] Coverity Scan Site. <http://scan.coverity.com/>

[29] Coverity Static Analysis Data Sheet. <http://www.coverity.com/library/
pdf/CoverityStaticAnalysis.pdf>

[30] Coverity Static Analysis Tools for C/C++, C#, and Java. <http://www.
coverity.com/products/static-analysis.html>

[31] Description of the .PDB files and of the .DBG files. <http://support.
microsoft.com/kb/121366/en-us>

[32] DUMA library. <http://duma.sourceforge.net/>

[33] Dwarf Home. <http://dwarfstd.org/>

[34] Dynamic program analysis – Wikipedia, The Free Encyclopedia. <http://en.
wikipedia.org/wiki/Dynamic_program_analysis>

[35] FIT - the Flexible Instrumentation Toolkit. <http://www.elis.ugent.be/
fit/>

[36] GDB Remote Serial Protocol. <http://sourceware.org/gdb/current/
onlinedocs/gdb/Remote-Protocol.html>

55

http://developers.sun.com/sunstudio/documentation/ss11/stabs.pdf
http://developers.sun.com/sunstudio/documentation/ss11/stabs.pdf
http://www.gnu.org/software/autoconf/
http://www.gnu.org/software/autoconf/
http://www.gnu.org/software/automake/
http://www.gnu.org/software/automake/
http://developers.sun.com/solaris/articles/multiproc/multiproc.html
http://developers.sun.com/solaris/articles/multiproc/multiproc.html
http://scan.coverity.com/
http://www.coverity.com/library/pdf/CoverityStaticAnalysis.pdf
http://www.coverity.com/library/pdf/CoverityStaticAnalysis.pdf
http://www.coverity.com/products/static-analysis.html
http://www.coverity.com/products/static-analysis.html
http://support.microsoft.com/kb/121366/en-us
http://support.microsoft.com/kb/121366/en-us
http://duma.sourceforge.net/
http://dwarfstd.org/
http://en.wikipedia.org/wiki/Dynamic_program_analysis
http://en.wikipedia.org/wiki/Dynamic_program_analysis
http://www.elis.ugent.be/fit/
http://www.elis.ugent.be/fit/
http://sourceware.org/gdb/current/onlinedocs/gdb/Remote-Protocol.html
http://sourceware.org/gdb/current/onlinedocs/gdb/Remote-Protocol.html

References

[37] GDB: The GNU Project Debugger. <http://www.gnu.org/software/gdb/>

[38] Ghosts of Unix past, part 3: Unfixable designs [LWN.net]. <http://lwn.net/
Articles/414618/>

[39] GNU General Public License, version 2. <http://www.gnu.org/licenses/
gpl-2.0.html>

[40] IBM Software - Rational Purify. <http://www-01.ibm.com/software/
awdtools/purify/>

[41] List of tools for static code analysis – Wikipedia, The Free Encyclopedia. <http:
//en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis>

[42] The mpatrol library. <http://mpatrol.sourceforge.net/>

[43] Open Source Initiative OSI - Common Development and Distribution License
(CDDL-1.0). <http://www.opensource.org/licenses/CDDL-1.0>

[44] Oracle Solaris Modular Debugger Guide. <http://docs.oracle.com/cd/
E19963-01/html/817-2543/index.html>

[45] Oracle Solaris Studio. <http://www.oracle.com/technetwork/
server-storage/solarisstudio/overview/index.html>

[46] Parallel Studio 2011 from Intel. <http://software.intel.com/en-us/
articles/intel-parallel-studio-home/>

[47] PC-lint and FlexeLint Home Page. <http://www.gimpel.com/html/index.
htm>

[48] Pin - A Dynamic Instrumentation Tool. <http://www.pintool.org/>

[49] Portable umem. <https://labs.omniti.com/labs/portableumem>

[50] A Quick Peek Under the Hood of Intel Parallel Inspector. <http://software.
intel.com/en-us/articles/quick-peek-under-the-hood/>

[51] Splint Home Page. <http://www.splint.org/>

[52] STABS. <http://sourceware.org/gdb/current/onlinedocs/stabs.html>

[53] System V Application Binary Interface. <http://www.sco.com/developers/
gabi/latest/contents.html>

[54] ThreadSanitizer - A Valgrind-based detector of data races. <http://code.
google.com/p/data-race-test/wiki/ThreadSanitizer>

[55] Valgrind Home. <http://valgrind.org/>

56

http://www.gnu.org/software/gdb/
http://lwn.net/Articles/414618/
http://lwn.net/Articles/414618/
http://www.gnu.org/licenses/gpl-2.0.html
http://www.gnu.org/licenses/gpl-2.0.html
http://www-01.ibm.com/software/awdtools/purify/
http://www-01.ibm.com/software/awdtools/purify/
http://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis
http://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis
http://mpatrol.sourceforge.net/
http://www.opensource.org/licenses/CDDL-1.0
http://docs.oracle.com/cd/E19963-01/html/817-2543/index.html
http://docs.oracle.com/cd/E19963-01/html/817-2543/index.html
http://www.oracle.com/technetwork/server-storage/solarisstudio/overview/index.html
http://www.oracle.com/technetwork/server-storage/solarisstudio/overview/index.html
http://software.intel.com/en-us/articles/intel-parallel-studio-home/
http://software.intel.com/en-us/articles/intel-parallel-studio-home/
http://www.gimpel.com/html/index.htm
http://www.gimpel.com/html/index.htm
http://www.pintool.org/
https://labs.omniti.com/labs/portableumem
http://software.intel.com/en-us/articles/quick-peek-under-the-hood/
http://software.intel.com/en-us/articles/quick-peek-under-the-hood/
http://www.splint.org/
http://sourceware.org/gdb/current/onlinedocs/stabs.html
http://www.sco.com/developers/gabi/latest/contents.html
http://www.sco.com/developers/gabi/latest/contents.html
http://code.google.com/p/data-race-test/wiki/ThreadSanitizer
http://code.google.com/p/data-race-test/wiki/ThreadSanitizer
http://valgrind.org/

References

[56] Valgrind port to FreeBSD/x86 and FreeBSD/AMD64. <https://bitbucket.
org/stass/valgrind-freebsd>

[57] Valgrind User Manual. <http://valgrind.org/docs/manual/manual.html>

[58] What Is .SUNW ldynsym? <https://blogs.oracle.com/ali/entry/what_
is_sunw_ldynsym>

[59] WineHQ - Run Windows applications on Linux, BSD, Solaris and Mac OS X.
<http://www.winehq.org/>

[60] Johnson, S.: Lint’s source code. 1979. <http://minnie.tuhs.org/cgi-bin/
utree.pl?file=V7/usr/src/cmd/lint>

[61] The IEEE and The Open Group: The Open Group Base Specifications Issue 7.
<http://pubs.opengroup.org/onlinepubs/9699919799/>

57

https://bitbucket.org/stass/valgrind-freebsd
https://bitbucket.org/stass/valgrind-freebsd
http://valgrind.org/docs/manual/manual.html
https://blogs.oracle.com/ali/entry/what_is_sunw_ldynsym
https://blogs.oracle.com/ali/entry/what_is_sunw_ldynsym
http://www.winehq.org/
http://minnie.tuhs.org/cgi-bin/utree.pl?file=V7/usr/src/cmd/lint
http://minnie.tuhs.org/cgi-bin/utree.pl?file=V7/usr/src/cmd/lint
http://pubs.opengroup.org/onlinepubs/9699919799/

Index

Abstract interpretation, 5

BBV, 20

C&A instrumentation, 10
Cachegrind, 20
Callgrind, 20
Coverity Static Analysis, 7

D&R instrumentation, 10
Data flow analysis, 4
DHAT, 20
DRD, 20
DTrace, 13
Dynamic analysis, 8

Function interception via preloading, 9

Helgrind, 20

Lackey, 20
Libumem, 11
Lint, 5

Massif, 20
Memcheck, 20

Nulgrind, 20

Oracle Solaris Studio analysers, 14

Pin, 15
Probe-based instrumentation, 9
Program analysis, 3

SGCheck, 20

Splint, 6
Static analysis, 4

ThreadSanitizer, 20

Valgrind, 19

59

	Introduction
	Goals

	Program Analysis
	Purpose of Program Analysis
	Static Analysis
	Basic Description
	Implementation Techniques
	Representative Tools

	Dynamic Analysis
	Basic Description
	Implementation Techniques
	Representative Tools

	Comparison Between Static and Dynamic Analysis

	Valgrind
	Project Overview
	Available Tools
	Architecture and Implementation
	Conceptual Overview
	Translation
	Executing Translations
	Threads
	Signals
	System Calls
	Other Facilities

	Limitations

	Port Implementation
	Build System
	Standard Library
	Client Program Loading
	Executing Translations
	Threads
	Signals
	System Calls
	Important System Call Wrappers

	Other Facilities
	Debug Information Reader
	Function Replacement
	Client Requests
	Core Dumps and Gdbserver

	Tools

	Evaluation
	Testing
	Bug Example

	Conclusion
	Installation and User Manual
	Contents of Enclosed CD
	References
	Index

