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Abstrakt 
Nízká spotřeba se stala velice důležitou součástí návrhu dnešních čipů. Cílem této 

diplomové práce je návrh zařízení pro přenos dat mezi I2C a APB sběrnicemi za použití 
technik pro nízkou spotřebu. Verifikace je též součástí práce. 

Práce nejprve srovnává různé techniky návrhu zařízení s nízkou spotřebou. Jako 
výsledek tohoto porovnání bylo v návrhu užito techniky hradlování hodin. Byla 

provedena analýza s patřičným odůvodněním popisující, na které registry bylo hradlování 
hodin použito. 

Jednotlivé kroky postupu začínají od specifikace a pokračují až po fyzický design. 
Verifikace byla provedena samokontrolními testy. Pokrytí kódu je v práci rovněž užito 
společně s grafickou ukázkou pokrytí stavových strojů. 

Pro možnost srovnání více výsledků bylo užito více metod hradlování hodin, 
kterými jsou: hradlování nepoužito, automatické hradlování (provedeno během syntézy), 
manuální hradlování (manuálně vloženy hradlovací buňky) a kombinovaná metoda 
manuálního a automatického hradlování.  

Odhad spotřeby (nástroji k tomu určenými) byl proveden jak po syntéze, tak po 
fyzickém návrhu. Odhady, které byly provedeny po fyzickém návrhu, byly provedeny pro 
mód nečinnosti a komunikační mód zařízení. Výsledky odhadu spotřeby jsou porovnány a 
ukázány jsou i případy užití a spotřeba u těchto případů. 

Klíčová slova: RTL, I2C, APB, low power design, clock gating, odhad spotřeby. 
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Abstract 
Low power has become a very important part of designing today’s chips. The goal 

of this thesis is to design a device for transmitting data between I2C and APB buses while 

considering low power techniques in the design. Verification is also a part of this thesis. 

This thesis first compares the different techniques used for low power design. As a 

result of the comparison, clock gating technique is used in the design. An analysis was 

done to describe the registers that the clock gating is used for, and the reasons to use 

clock gating at these registers. 

 The work flow goes from specification to physical design. Verification was done 

using self-checking tests and code coverage is also used in the thesis, along with 

graphical examples of FSM coverage. 

Four different methods of clock gating were used to compare different results. 

These methods are: no clock gating use, automatic clock gating (placed during synthesis), 

manual clock gating (manually placed cells), and manual clock gating, combined with 

automatic clock gating.  

Power estimations were done and compared after the synthesis, as well as after the 

physical design. The power estimations done after the physical design, were done for idle 

and communication mode of the device. The results of the power consumption estimation 

are compared and use cases are shown, as well with their power consumption. 

Keywords: RTL, I2C, APB, low power design, clock gating, power estimation. 
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1 Introduction 

1.1 The purpose and goals of this document 
This document is the documentation to my Master’s theses. The goal of this thesis 

was to design an IP core that will be able to communicate with I2C and APB bus as a 

Slave device with use the of low-power techniques. It was intended to design a device for 

physical layer only – the protocols for a particular use (e.g. if the I2C Master wants an 

answer from CPU or if data are only being sent to CPU and to answer is expected) would 

have to be designed according to the use. 

Let’s assume that from now on the, the abbreviation DP device will be used for 

this device, standing for Diploma project device. 

I2C is a bit serial bus. It is often used in pad-limited design, where the speed can 

be limited. It has the advantage in using only two signals for communication (SDA, SCL 

signals).  

APB bus is a parallel bus; in this case, it is used as an 8-bit bus. APB bus is used 

to connect peripheral devices with a CPU. One of the first activities of the project was to 

study how the protocols work. Therefore there is also a brief description of these 

protocols. 

The overall connection of the device is shown in Figure 1. The DP device is 

connected to I2C using pads (on the left side of the picture) and connected to a CPU using 

APB bus (right side of Figure 1). 

DP device

I2C/APB block

SDA_IN

SDA_OUT

SDA_OE

SCL_IN

SCL_OUT

SCL_OE

I2C_CLK

APB_INTR

PCLK

SDA PAD

SCL PAD

SDA

SCL

APB bus

PRESETn, PENABLE, PSELx, PWRITE,

PADDR, PWDATA, PREADY, PRDATA

APB Bridge

AHB bus

CPU

I2C Master

CPU

SDA PAD

SCL PAD

SDA_IN

SDA_OUT

SDA_OE

SCL_IN

SCL_OUT

SCL_OE

SOC SOC

 
Figure 1: Connection of the DP device among other devices in a system 
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Low-power techniques were supposed to be described and used in the design. I 

researched of these techniques and described them in the document. After taking in count 

their characteristics and use, I decided to use clock gating, as it would be the most 

suitable technique for this design. The use of clock gating is also part of the assignment. 

Development of the IP on RTL level was the next step in the project. This was 

first designed as schemas, which are also shown and described in this document. I then 

wrote the RTL in Verilog 2001. Clock gating is included in the Verilog coded as an 

option through defines, which gives the option of using or not using the clock gating cells 

I manually placed in the design. 

There were four different alternatives of clock gating that were used in order to 

compare the power consumption – no clock gating, automatic clock gating (done during 

synthesis), manual clock gating (placing manually clock gating cells) and manual clock 

gating combined with automatic clock gating. These four different alternatives were 

measured and compared. 

The overall goal was to use low power aware design and compare the 

consumption results with and without the use of these techniques. The assignment says to 

compare the consumption estimation after synthesis, however because these estimations 

are not very accurate and usually differ by 30-50%, I went further and continued with 

physical design and measured the consumption after the physical design was done. That 

gave very accurate power consumption estimations which gave adequate results. 

1.2 Brief overview of each chapter 

1.2.1 Chapter 1 - Introduction 

This chapter contains an introduction to the topic with description of the overall 

project as well as its goals. 

1.2.2 Chapter 2 - Protocols descriptions 

This chapter briefly describes I2C and APB protocols that were used in the design. 

1.2.3 Chapter 3 - Low-Power techniques 

This chapter describes all the different kinds of techniques for low-power design 

as well as the reasoning why clock gating was used in the design. 

1.2.4 Chapter 4 - Design and Verification flow 

This chapter describes the whole design and verification flow that was used for the 

development of the IP. It contains the RTL description of the device, description of 

verification and the verification tests that were used, descriptions of FSMs, the 

description and reasoning for what registers clock gating was used for. It describes also 

the different phases of physical design such as Floorplan, Cell place, Clock tree synthesis 

and Routing. 
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1.2.5 Chapter 5 - Power consumption results 

This chapter contains final consumption results and explanations why in different 

modes are different power consumptions. This chapter also describes use cases of the 

design and the power consumption in those cases. 

1.2.6 Chapter 6 - Summary 

This chapter contains the summary of this whole document and describes the 

results that were reached in this thesis. 
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2 Protocols descriptions 

2.1 I2C Protocol description 
This device communicates with the I2C standard rev. 03. The device is an I2C 

Slave device operating in Sm, Fm and Fm+ modes with 7-bits addressing. The 

explanations of these terms follow. The description of the I2C protocol is not complete in 

this document, but is focused on these characteristics. The complete documentation of the 

I2C Standard can be found in (B.V., 2007).  

I2C is a bidirectional 2-wire bus for efficient inter-IC control. This bus is called 

the Inter-IC or I2C-bus. Only two bus lines are required: a serial data line (SDA) and a 

serial clock line (SCL). Serial, 8-bit oriented, bidirectional data transfers can be made at 

up to 100 kbit/s in the Standard-mode, up to 400 kbit/s in the Fast-mode, up to 1 Mbit/s in 

the Fast-mode Plus (Fm+), or up to 3.4 Mbit/s in the High-speed mode. (B.V., 2007) 

Two wires, serial data (SDA) and serial clock (SCL), carry information between 

the devices connected to the bus. Each device is recognized by a unique address and can 

operate as either a transmitter or receiver, depending on the function of the device. In 

addition to transmitters and receivers, devices can also be considered as masters or slaves 

when performing data transfer. A master is the device which initiates a data transfer on 

the bus and generates the clock signals to permit that transfer. At that time, any device 

addressed is considered a slave. 

 

2.1.1 Speed modes 

All devices are downward compatible – any device may be operated at a lower bus 

speed. Sm, Fm and Fm+ modes have the same bus protocol and data format. The data 

format of Hs mode, however is different. 

 Standard-mode (Sm) – up to 100 kbit/s 

 Fast-mode (Fm) – up to 400 kbit/s 

 Fast-mode Plus (Fm+) – up to 1 Mbit/s 

 High-speed mode (Hs) – up to 3.4 Mbit/s 

 

2.1.2 SDA and SCL Signals 

 SDA (serial data line) - serves for transferring data 

 SCL (serial clock line) – used as a logical clock for I2C 
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2.1.3 Reserved addresses 
Table 1: Reserved addresses 

Slave address  R/W bit  Description 

0000 000  0  general call address[1] 

0000 000  1  START byte[2] 

0000 001  X  CBUS address[3] 

0000 010  X  reserved for different bus format[4] 

0000 011  X  reserved for future purposes 

0000 1XX  X  Hs-mode master code 

1111 1XX  X  reserved for future purposes 

1111 0XX  X  10-bit slave addressing 

2.1.4 Data transfer example 

Figure 2 shows a complete data transfer in a block level. After the START 

condition (S), a slave address is sent. This address is seven bits long followed by an 

eighth bit which is a data direction bit (R/ W ) — a ‘zero’ indicates a transmission 
(WRITE), a ‘one’ indicates a request for data (READ). A data transfer is always 

terminated by a STOP condition (P) generated by the master. However, if a master still 

wishes to communicate on the bus, it can generate a repeated START condition (Sr) and 

address another slave without first generating a STOP condition. Various combinations of 

read/write formats are then possible within such a transfer. 

 

Figure 2: Complete data transfer 

2.1.5 Start and Stop condition 

All transactions begin with a START (S) and are terminated by a STOP (P) 

condition. The bus is considered to be busy after the START condition. The bus is 

considered to be free again a certain time after the STOP condition. The bus stays busy if 

a repeated START (Sr) is generated instead of a STOP condition. In this respect, the 

START (S) and repeated START (Sr) conditions are functionally identical. 
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Figure 3: START and STOP conditions 

 

2.1.6 Data validity 

The data on the SDA line must be stable during the HIGH period of the clock. The 

HIGH or LOW state of the data line can only change when the clock signal on the SCL 

line is LOW (see Figure 4). One clock pulse is generated for each data bit transferred. 

 

 

Figure 4: Bit transfer on I2C bus – data validity 

2.1.7 Clock stretching 

 

Clock stretching pauses a transaction by holding the SCL line LOW. The 

transaction cannot continue until the line is released HIGH again. Clock stretching is 

optional. 

On the byte level, a device may be able to receive bytes of data at a fast rate, but 

needs more time to store a received byte or prepare another byte to be transmitted. Slaves 

can then hold the SCL line LOW after reception and acknowledgment of a byte to force 

the master into a wait state until the slave is ready for the next byte transfer in a type of 

handshake procedure 

2.1.8 Write operation example 

Figure 5 shows the I2C write operation example. It is very similar to Figure 2, 

where the transfer was described in general. On Figure 5 the R/ W is set to 0, which 

means that the operation is write. The whole operation ends either with Slave sending a 
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NACK (for example when the Slave’s memory is full) or by Master sending a STOP 

condition. 

 

Figure 5: I2C Write operation example 

2.1.9 Read operation example 

Figure 6 shows the I2C Read operation example. The R/ W signal is set to 1, 

which sets the I2C operation to read. The operation ends when the I2C Master sends 

NACK and Stop condition afterwards. 

 

Figure 6: I2C Read operation example 

2.1.10 Combined operation example 

An example of two different operations is shown on Figure 7. After the first 

operation a Repeated Start condition is sent by the I2C Master and a new operation 

follows starting with the new Slave address. After all of the operations are finished, a 

STOP condition is sent by the I2C Master. 

 

Figure 7: I2C Combined operation example 
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2.2 APB Protocol description 
This device communicates with AMBA 3 APB Protocol. The complete 

documentation for this protocol can be found under (ARM, 2004). 

APB is a parallel unpipelined synchronous protocol where every transfer takes at 

least two cycles. This APB version also includes signal PREADY which is used for 

extending the APB transfer by the slave device. This can be useful if the device needs 

more than two cycles for the transfer. Any number of extra additional cycles can be 

added. This means from 0 higher. 

APB uses the following signals: 

 Input signals: PSELx, PENABLE, PRESETn, PCLK, PWRITE, PADDR, 

PWDATA 

 Output signals: PREADY, PSLVERR, PRDATA 

2.2.1 Operating states 

The APB bus can be in three different operating states as shown on Figure 8. 

Those states are further described under Figure 8. 

 

Figure 8: APB Operating states 

 IDLE This is the default state of the APB. 

 SETUP When a transfer is required the bus moves into the SETUP state, 

where the appropriate select signal, PSELx, is asserted. The bus only 

remains in the SETUP state for one clock cycle and always moves to the 

ACCESS state on the next rising edge of the clock. 

 ACCESS The enable signal, PENABLE, is asserted in the ACCESS state. 

The address, write, select, and write data signals must remain stable during 
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the transition from the SETUP to ACCESS state. Exit from the ACCESS 

state is controlled by the PREADY signal from the slave: 

o If PREADY is held LOW by the slave then the peripheral bus 

remains in the ACCESS state.  

o If PREADY is driven HIGH by the slave, then the ACCESS state is 

exited and the bus returns to the IDLE state if no more transfers are 

required. Alternatively, the bus moves directly to the SETUP state 

if another transfer follows. 

2.2.2 APB Signals detailed description 
Table 2: APB Signals desription 

Signal Source Description 

PCLK.  Clock source Clock The rising edge of PCLK times all transfers on 

the APB. 

PRESETn System bus equivalent Reset. The APB reset signal is active LOW. 

This signal is normally connected 

directly to the system bus reset signal. 

PADDR APB bridge Address. This is the APB address bus. It can be 

up to 32 bits wide and is driven 

by the peripheral bus bridge unit. 

PSELx APB bridge Select. The APB bridge unit generates this 

signal to each peripheral bus slave. It indicates 

that the slave device is selected and that a data 

transfer is required. There is a PSELx signal for 

each slave. 

PENABLE APB bridge Enable. This signal indicates the second and 

subsequent cycles of an APB transfer. 

PWRITE APB bridge Direction. This signal indicates an APB write 

access when HIGH and an APB read access 

when LOW. 

PWDATA APB bridge Write data. This bus is driven by the peripheral 

bus bridge unit during write cycles when 

PWRITE is HIGH. This bus can be up to 32 bits 

wide. 

PREADY Slave interface Ready. The slave uses this signal to extend an 

APB transfer. 

PRDATA Slave interface Read Data. The selected slave drives this bus 

during read cycles when PWRITE is LOW. 

This bus can be up to 32-bits wide. 

PSLVERR Slave interface This signal indicates a transfer failure. APB 

peripherals are not required to support the 

PSLVERR pin. This is true for both existing 

and new APB peripheral designs. Where a 

peripheral does not include this pin then the 

appropriate input to the APB bridge is tied 

LOW. 
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2.2.3 Write transfer without waiting states 

 

Figure 9: Write transfer without waiting states 

The write transfer starts with the address, write data, write signal and select signal, 

which are all changing after the rising edge of the clock. After the following clock edge 

the enable signal is asserted, PENABLE, and this indicates that the Access phase is taking 

place. The address, data and control signals all remain valid throughout the Access phase. 

The transfer completes at the end of this cycle. 

The enable signal, PENABLE, is deasserted at the end of the transfer. The select 

signal, PSELx, also goes LOW unless the transfer is to be followed immediately by 

another transfer to the same peripheral. (B.V., 2007) 

2.2.4 Write transfer with waiting states 

Waiting states can be used to extend the transfer. As shown on Figure 10, waiting 

states are used when PREADY signal is low during the transfer. 

During an Access phase, when PENABLE is HIGH, the transfer can be extended 

by driving PREADY LOW. The following signals remain unchanged for the additional 

cycles: 

 address, PADDR 

 write signal, PWRITE 

 select signal, PSEL 

 enable signal, PENABLE 

 write data, PWDATA. 
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PREADY can take any value when PENABLE is LOW. This ensures that 

peripherals that have a fixed two cycle access can tie PREADY HIGH. 

 

 
Figure 10:APB Write transfer with waiting states 

2.2.5 Read transfer without waiting states 

Figure 11 shows the read transfer without using wait states. The timing of the 

signals was already described in the write transfer paragraph above.  

 

Figure 11: Read transfer without waiting states 
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2.2.6 Read transfer with waiting states 

The transfer is extended if PREADY is driven LOW during an Access phase. The 

protocol ensures that the following remain unchanged for the additional cycles: 

 address, PADDR 

 write signal, PWRITE 

 select signal, PSEL 

 enable signal, PENABLE. 

 

Figure 12: APB Read transfer with waiting states 
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3 Low-Power techniques 

3.1 Low power design motivation 
Challenges that cause us to deal with low power design are mainly the following: 

 Increasing device density 

 Increasing clock frequencies 

 Lowering supply voltage 

 Lowering transistor threshold voltage 

High power consumption leads to higher temperatures. The goal is to keep the 

temperature low to avoid parasite effects. The principle of achieving this is to provide 

performance only when it is required. 

 

3.2 Types of power consumption 

3.2.1 Dynamic power 

Dynamic power consists of internal power and switching power. 

Internal power is consumed by the cells when one of the inputs changes, but the 

output doesn’t change. Internal power results from the short-circuit (crowbar) current that 

flows through the PMOS-NMOS stack during a transition. 

3.2.1.1 Switching power 

Because the current flows only during logic transitions on the net, the long-term 

dynamic power consumption depends on the clock frequency (possible transitions per 

second) and the switching activity (presence or absence of transitions actually occurring 

on the net in successive clock cycles). 

 

Figure 13: Switching power 
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The higher the clock frequency is, the more often there is activity on the 

transistors (change of value), because with synchronous devices activity is done with the 

change of clock. In other words, switching power results from the charging and discharging of 

the external capacitive load on the output of a cell. 

These parameters can be summed in the following formula: 

Pdyn=Ceff*Vdd
2
*fclk 

Here we can see that the dynamic power depends on capacitance, voltage (which 

obviously has the greatest impact on dynamic power consumption because of the square 

power) and the clock frequency. The techniques described in the following text will 

mostly focus on how to use the voltage and frequency for lowering the power 

consumption. 

3.2.1.2 Internal power 

Internal power is consumed during the short period of time when the input signal 

is at an intermediate voltage level. During which, both the PMOS and NMOS transistors 

can be conducting. This condition results in a nearly short-circuit conductive path from 

VSS to ground, as illustrated in Figure 1-2. A relatively large current, called the crowbar 

current, flows through the transistors for a brief period of time. Lower threshold voltages 

and slower transitions result in more internal power consumption. 

 

Figure 14: Internal power 

(Synopsys, 2010)  
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3.2.2 Static (leakage) power 

Static power is leakage at transistors at all times. This consumption remains at all 

times constant.  

The main causes of leakage power are reverse-bias p-n junction diode leakage, sub-

threshold leakage, and gate leakage. These leakage paths in a CMOS inverter are shown in 

 

Figure 15: Static leakage currents 

3.2.2.1 p-n junctions leakage 

Leakage at reverse-biased p-n junctions (diode leakage) has always existed in 

CMOS circuits. This is the leakage from the n-type drain of the NMOS transistor to the 

grounded p-type substrate, and from the n-well (held at VDD) to the p-type drain of the 

PMOS transistor. This leakage is relatively small. 

3.2.2.2 Sub-threshold leakage 

Sub-threshold leakage is the small source-to-drain current that flows even when 

the transistor is held in the “off” state. In older technologies, this current was negligible. 
However, with lower power supply voltages and lower threshold voltages, “off” gate 
voltages are getting close to “on” threshold voltages. Sub-threshold leakage current 

increases exponentially as the gate voltage approaches the threshold voltage. 

3.2.2.3 Gate leakage 

Gate leakage is the result of using an extremely thin insulating layer between the gate 

conductor and the MOS transistor channel. Gate oxides are becoming so thin that only a dozen or 

fewer layers of insulating atoms separate the gate from the source and drain. Under these 

conditions, quantum-effect tunneling of electrons through the gate oxide can occur, resulting in 

significant leakage from the gate to the source or drain. 

(Synopsys, 2010) 
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3.3 Low power techniques overview and comparing 
There are different techniques used for low-power. The next several paragraphs 

are an introduction to low power techniques. The focus therefore is on comparing 

different techniques and their use and purpose. 

Table 3: Most common low-power techniques overview 

Technique Description 

Clock gating and clock tree gating Disables blocks or clock tree parts not in use. 

Multiple supply voltages (MSV, 

Multi Vdd), Static Voltage scaling 

(SVS) 

Operates different blocks at different, fixed supply 

voltages. Also known as voltage islands. Signals 

that cross voltage domain boundaries are level-shifted. 

Dynamic voltage scaling (DVS), 

Multi-level voltage scaling (MVS) 

Operates different blocks at variable supply voltages. Uses 

look-up tables to adjust voltage on-the-fly 

to satisfy varying performance requirements. Signals that 

cross voltage domain boundaries are level-shifted. 

Dynamic voltage and frequency 

scaling (DVFS) 

Operates different blocks at variable supply voltages and 

frequencies. Uses look-up tables to adjust 

voltage and frequency on-the-fly to satisfy varying 

performance requirements. Signals that cross 

voltage domain boundaries are level-shifted. 

Adaptive voltage scaling (AVS) Operates different blocks at variable supply voltages. Uses 

in-block monitors to determine frequency 

requirements, and adjusts voltage on-the-fly to satisfy 

them. 

Power gating or 

Power Shut-Off (PSO) 

Turns off supply voltage to blocks not in use. Significantly 

reduces – but does not eliminate – leakage. 

Block outputs float. 

Power gating with retention Stores system state prior to power-down. Avoids 

complete reset at power-up, which reduces powerup/ 

reset delay and power consumption. 

State retention power gating 

(SRPG) 

Stores the system state in local registers. When on 

standby or idling, gates the clock, and the register 

saves the data. State retention registers use both a 

continuous power supply and a switchable supply. 

Other logic is powered only by the switchable supply, and 

can be powered down. 

Save and restore power gating 

(S&RPG) 

As SRPG, but uses a memory array. 

(Goering, 2008) 
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Table 4: Low power design techniques – compared according to usage 

Dynamic Power  Leakage Power  Design  Architectural  

Clock gating Multi Vt  Multi Vt  Pipelining  

Variable frequency  Power gating  Clock gating Asynchronous  

Variable power 

supply  Back (substrate) bias  Power gating     

Multi Vdd  

Use new devices-FinFet, 

SOI  Multi Vdd     

Voltage islands     DVFS     

DVFS           

 

 

Figure 16: Low Power Techniques comparison 

(Murali, 2009) 
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3.4 Clock-gating 
RTL clock gating works by identifying groups of flip-flops which share a 

common enable signal. Traditional methodologies use this enable term to control the 

select on a multiplexer connected to the D port of the flip-flop or to control the clock 

enable pin on a flip-flop with clock enable capabilities. RTL clock gating uses this enable 

term to control a clock gating circuit which is connected to the clock ports of all of the 

flip-flops with the common enable term. Therefore, if a bank of flip flops which share a 

common enable term have RTL clock gating implemented, the flip-flops will consume 

zero dynamic power as long as this enable term is false. 

(Frank Emnett, 2000) 

Clock gating is particularly useful for registers that need to maintain the same 

logic values over many clock cycles. Shutting off the clocks eliminates unnecessary 

switching activity that would otherwise occur to reload the registers on each clock cycle. 

The main challenges of clock gating are finding the best places to use it and creating the 

logic to shut off and turn on the clock at the proper times. 

Clock gating is relatively simple to implement because it only requires a change in 

the netlist. No additional power supplies or power infrastructure changes are required. 

(Synopsys, 2010) 

Clock-gating lowers average power consumption; however it always increases the 

maximum immediate consumption. Therefore it is convenient to use clock-gating only for 

registers that have their enable signal mostly disabled. It is important to do an analysis of 

use of different registers and apply clock-gating only on those where it’s suitable. Usually 
it is recommended to have at least 3-4 flip-flops with the same common enable signal for 

making clock-gating effective. In case of using clock-gating for less than 3 flop-flops 

with the same enable signal it can have an effect of increased consumption. 

(Bečvář, 2011) 

 

 

(Bečvář, 2011) 

Figure 17: Principle of clock-gating connection (not completely correct) 
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Figure 17 shows the principle of clock-gating. The AND gate is enabling the 

clock. This is not a correct connection though, because with having the AND gate it will 

cause a glitch impulse on the gated clock instead of the right clock impulse as shown on 

Figure 18.  

 
(Murali, 2009) 

Figure 18: Glitches in latch free clock gating 

 

Therefore a level-sensitive latch is used with the AND gate inside the clock gating 

cell from a library which needs to be used. The use of the cell is shown on Figure 19. The 

latch holds the enable signal from the active edge of the clock until the inactive edge of 

the clock. 

 

 

(Bečvář, 2011) 

Figure 19: Correct clock-gating cell connection – connection in a dont_touch cell 

Clock gating effects only dynamic power consumption as it is dependent on 

preventing clock activity. 
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3.4.1 Automatic clock gating done by Synthesis tools / Clock gating 

Synthesis tools can detect low-throughput data paths where clock gating can be 

used with the greatest benefit, and can automatically insert clock-gating cells in the clock 

paths at the appropriate locations. 

(Synopsys, 2010) 

Automatic clock gating uses so called functional gating – input and output values 

of the flip flop are compared and if they are different, the clock enable signal is enabled. 

A big advantage of automatic clock gating during synthesis is that it only needs a change 

of one command to enable clock gating use. 

3.4.2 Manual clock gating / Clock tree gating 

Manual clock gating is done by the IP designer by manually setting the enable 

signal for a set of flip flops in the FSM. This enable signal is propagated through a clock 

gating cell. Usually different state modes are used. 

3.5 Miltiple-Vt 
Some CMOS technologies support the fabrication of transistors with different 

threshold voltages (Vt values). In that case, the cell library can offer two or more different 

cells to implement each logic function, each using a different transistor threshold voltage. 

For example, the library can offer two inverter cells: one using low-Vt transistors and 

other using high-Vt transistors. 

A low-Vt cell has higher speed, but higher sub-threshold leakage current. A high-

Vt cell has low leakage current, but less speed. The synthesis tool can choose the 

appropriate type of the cell to use based on the tradeoff between speed and power. For 

example, it can use low-Vt cells in the timing-critical paths for speed and high-Vt cells 

everywhere else for lower leakage power. 

(Synopsys, 2010) 

3.6 Multi Vdd 
Different parts of a chip might have different speed requirements. For example, 

the CPU and RAM blocks might need to be faster than a peripheral block. A lower supply 

voltage reduces power consumption but also reduces speed. To get maximum speed and 

lower power at the same time, the CPU and RAM can operate with a higher supply 

voltage while the peripheral block operates with a lower voltage, as shown in Figure 20. 
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Figure 20: Multi Vdd blocks connection 

(Synopsys, 2010) 

3.6.1 Level Shifters 

Level shifters are used for transferring data between two blocks with different 

power voltage as shows Figure 21. 

CPU block
Peripheral 

block

VSS 0V

VDD1 VDD2Level shifter

 
Figure 21: Blocks with different Level shifter 

In any multi-voltage design, level shifters are required at the interfaces of blocks 

operating at different voltages. It is much easier to design one direction level shifters.  

(Murali, 2009) 

In theory, the bus interface of CPU can be a higher or lower voltage, for practical 

reason the bus is always operate at a voltage higher than or equal to the CPU. Otherwise 

system errors occur. 

(Yang, 2008) 
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3.7 Multi-level voltage scaling (MVS), Dynamic voltage 

scaling (DVS) 
This is an extension of Multi Vdd case where a block or subsystem is switched 

between two or more voltage levels. Only a few, fixed, discrete levels are supported for 

different operating modes. 

3.8 Dynamic voltage and frequency scaling (DVFS) 
DVFS is an extension of MVS where a larger number of voltage levels are 

dynamically switched between to follow changing workloads. 

Timing/Voltage Values: DVFS uses a set of discrete voltage / frequency pairs. 

Determining which values to support is a key design decision, application dependent. Too 

few operating points results in systems that spend too much time ramping between levels. 

Too many levels results in the power supply spending too much time “hunting” between 
different target voltages. 

Switching Times and Algorithms: Switching performance levels takes time for 

both voltage regulators and clock generators. Switching voltage levels is particular slow 

and switching frequencies is orders of magnitude faster than voltage level switching. 

Increase the voltage first and decrease the voltage after the frequency is lowered. 

(Yang, 2008) 

 
Figure 22: DVFS blocks 

Mode control block - Voltage as well as frequency is dynamically varied as per 

the different working modes of the design. 
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Voltage regulators block - When high speed of operation is required, voltage is 

increased to attain higher speed of operation with the penalty of increased power 

consumption. 

(Murali, 2009) 

The principle of multivoltage operation can be extended to allow the voltage to be 

changed during operation of the chip to match the current workload. For example, a math 

processor chip in a laptop computer might operate at a lower voltage and lower clock 

frequency during simple spreadsheet computations, thereby saving power; and then at a 

higher voltage and higher clock frequency during 3-D image rendering when the highest 

performance is needed. The changing of supply voltage and operating frequency during 

operation to meet workload requirements is called dynamic voltage and frequency 

scaling. 

The chip and voltage supply can be designed to use a number of established 

levels, or even a continuous range. Dynamic voltage scaling requires a multilevel power 

supply and a logic block to determine the best voltage level to use for a given task. 

Design, implementation, verification, and testing of the device can be especially 

challenging because of the ranges and combinations of voltage levels and operating 

frequencies that must be analyzed and accommodated. 

Dynamic voltage scaling can be combined with power switching technology so 

that each block in the design can operate at multiple voltage levels for different 

performance requirements, or shut off completely when not needed at all. 

(Synopsys, 2010) 

3.9 Adaptive voltage scaling (AVS) 
AVS is an extension of DVFS where a control loop is used to adjust the voltage. 

Performance Monitor is integrated with IP is monitoring to get the best thermal tracking. 

The performance monitor communicates with a power controller which in return sets the 

voltage of the power supply. 

(Yang, 2008) 

AVS contains voltage areas with variable software controlled VDD. Monitors in 

each block communicate with the mode controller that controls Voltage regulators as 

shows in Figure 23. 
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Figure 23: AVS blocks 

(Murali, 2009) 

3.10 Power gating (Power Switching) 

3.10.1 How Power gating works 

Power gating circuit blocks that are not in use are temporarily turned off. On the 

other hand, this increases time delays as power gated modes have to be safely entered and 

exited. The shutting down of these blocks is done by either hardware timers or software 

drivers.  

(Murali, 2009) 

Power switching has the potential to reduce overall power consumption 

substantially because it lowers leakage power as well as switching power. It also 

introduces some additional challenges, including the need for a power controller, a 

power-switching network, isolation cells, and retention registers. 

(Synopsys, 2010) 

3.10.2 Ways how to shut down blocks 

There are different ways how to safely shut down blocks: 

 Software or hardware 

o Driver software schedules the power down operations 

o Hardware timers are used 

 Dedicated power management controller 

 Switch off by using external power supply for long term 

 Use CMOS switches for smaller duration switch off 

 A power switch (either to VDD – header switch, PMOS or GND – footer 

switch, NMOS) is added to supply rails to shut-down logic. MTCMOS 

switches are used. 
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3.10.3 Power switches 

A block that can be powered down must receive its power through a power-

switching network, consisting of a larger number of transistors with source-to-drain 

connections between the always-on power supply rail and the power pins of the cells. The 

power switches are distributed physically around or within the block. The network, when 

switched on, connects the power to the logic gates in the block. When switched off, the 

power supply is effectively disconnected from the logic gates in the block. 

High-Vt transistors from a Multiple-Threshold CMOS (MTCMOS) technology 

are used for the power switches because they minimize leakage and their switching speed 

is not critical. PMOS header switches can be placed between VDD and the block power 

supply pins, or NMOS footer switches can be placed between VSS and the block ground 

pins, as shown in Figure 1-8. The number, drive strength, and placement of switches 

should be chosen to give in an acceptable voltage drop during peak power usage in the 

block. 

 

Figure 24: Power-switching Network Transistors 

(Synopsys, 2010) 

3.10.4 Isolation cells 

Isolation cells isolate the power gated block from the always-on-block. It can hold 

logic 1 or logic 0 or it can hold the signal value latched at the time of the power-down 

event. Isolation cells must be powered during power-down periods to hold the saved 

value.  

Any use of power switching requires isolation cells where signals leave a 

powered-down block and enter a block that is always on (or currently powered up). An 

isolation cell provides a known, constant logic value to an always-on block when the 

power-down block has no power, thereby preventing unknown or intermediate values that 

could cause crowbar currents. 

One simple implementation of an isolation cell is shown in Figure 25. When the 

block on the left is powered up, the signal P_UP is high and the output signal passes 

through the isolation cell unchanged (except for a gate delay). When the block on the left 
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is powered down, P_UP is low, holding the signal constant going into the always-on 

block. Isolation cells must themselves have power during block power-down periods. 

 
Figure 25: Use of isolation cell 

(Synopsys, 2010) 

3.10.5 Enable level shifter 

An enable level shifter acts as a level shifter and an isolation cell at the same time. 

This is shown on Figure 26. That means that the interface cells between different blocks 

must perform both level shifting and isolation functions. 

(Murali, 2009) 

The power switching can be combined with multi voltage operation. Different 

blocks can be designed to operate at different voltages and also to be separately powered 

down when they are not needed. In that case, the interface cells between different blocks 

must perform both level shifting and isolation functions, depending on whether the two 

blocks are operating at different voltages or one is shut down. A cell that performs both 

functions is called an enable level shifter. This cell must have two separate power 

supplies, just like any other level shifter. 

(Synopsys, 2010) 

 
Figure 26: Level shifter 

(Murali, 2009) 
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3.10.6 Retention registers 

Retention registers are always powered up. Special low leakage flip-flops are used 

to hold the data of the main register of the power gated clock. A power gating controller 

controls the retention mechanism. 

 
Figure 27: Retention register 

When a block is powered down and then powered back up, it is often desirable for 

the block to be restored to the state it was in prior to the power-down event. A possible 

strategy is to use retention registers in the power-down block. A retention register can 

retain data during power-down by saving the data into a shadow register (also known as 

the bubble register) prior to power-down. Upon power-up, it restores the data from the 

shadow register to the main register. The shadow register has an always-on power supply, 

but it is constructed with high-Vt transistors to minimize leakage during the power-down 

period. The main register is built with fast but leaky low-Vt transistors. 

One type of retention register implementation is shown in Figure 27. The SAVE 

signal saves the register data into the shadow register prior to power-down and the 

RESTORE signal restores the data after power-up. Instead of using separate, edge-

sensitive SAVE and RESTORE signals, a retention register could use a single level-

sensitive control signal. 

A retention register occupies a larger area than an ordinary register, and it requires 

an always-on power supply connection for the shadow register in addition to the power-

down supply used by the rest of the device. However, restoring the data to the registers 

after power-up is fast and simple compared with other strategies. 

(Synopsys, 2010) 
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Figure 28: Connection of retention register signals 

3.10.7 Always on logic 

There’s always some logic that needs to stay active during the shut-down period. 

The basic principle is shown on Figure 29. Examples of always-on-logic are the 

following: 

 Internal enable pins (ISO/ELS) 

 Power switches 

 Retention registers 

 User-specific cells 

 
Figure 29: Always on logic 

(Murali, 2009)  
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3.11 Conclusion of the listed low-power techniques 
 

3.11.1 Clock gating and clock tree gating 

Clock gating (automatic clock gating during synthesis) is a very easy but at the 

same time effective way how to implement a low-power technique in the design. The 

only thing that needs to be done is changing one command in the synthesis script. This 

method is often used. 

Clock tree gating on a level by manually placing clock gating cells on RTL level 

is a way that can be used when the designed knows the power consumption modes of the 

device and approximately how much time the device spends in these modes. 

These techniques show to be useful in the IP developed in this project. 

3.11.2 Multi Vdd, SVS 

These techniques are used as techniques in the physical design. This technique is 

used in SoC design to provide different voltages for different voltage islands.  

3.11.3 DVS, MVS, DVFS, AVS 

These techniques are an extension of Multi Vdd technique. Again, it’s a matter of 
physical design and they’re used in SoCs.  

3.11.4 Power gating, Power Shut-Off 

This is a technique used in physical design. Multiple-Vt transistors are usually 

used for this technique. It requires use of different extra blocks and the assignment would 

be too complicated. 

3.11.5 Pipelining 

Pipelining is an architectural technique used with advantage in processors. 

However it is not useful in this kind of design that my master’s project is focused on. 

3.11.6 Asynchronous design 

Asynchronous design is a advanced and hard-to-design technique. It is not suitable 

for this kind of design. 

3.11.7 Conclusion 

Clock gating and Clock tree gating turns out to be the best implementable and 

useable technique in this design although it does effect only dynamic power consumption. 

Techniques such as Multi Vdd, SVS, DVS, MVS, DVFS and AVS are used for 

SoCs mainly. This IP core is however not a SoC. Techniques like DVFS are also quite 

complicated, work with more consumption modes and are used in much bigger projects 

than this. 

Power gating is focused on physical design and would not provide comparable 

results after synthesis. 
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Pipelining and asynchronous design are not suitable for this kind of architecture. 

Therefore clock gating and clock tree gating will be used in the design. To be able 

to compare all the different clock gating methods and make the results more interesting, I 

decided to use the next four different clock gating methods: 

 No use of clock gating 

 Automatic clock gating (done during synthesis by synthesis tool) 

 Manual clock gating (Clock tree gating) 

 Manual + automatic clock gating 

 

These four different kinds of the use of clock gating will be further used and their 

power consumption results compared in this document. 
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4 Design and Verification flow 

4.1 Introduction 
A design flow is a sequence of steps that had to be done during the design 

development of an IP. These steps are approximately similar for lots of projects; however 

there’s usually something specific in each of them. For this project it meant to be able to 
get four different physical designs according to the type of clock gating that was used. 

The design flow is a complex process of steps. The flow in Figure 30 shows how 

complicated this process is. 

For the purpose of this project the typical S3 Group design flow was the start 

point, however it needed to be changed for this special purpose as some characteristics of 

this project are unique. The modified flow that was actually used is described in Figure 

30. This flow was setup specifically for this project by creating four different run 

directories as four different variations of clock gating were used. 

Chapters 4.3 to 4.12 describe the different steps of the design flow. The 

description contains what had to be developed, designed and done in those steps. Scripts 

has to be used for most of these steps to automate the development, however these scripts 

had to be changed and adjusted. 

The possibility of being able to do my master’s project at the S3 Group gave me 
the unique opportunity to go through these steps and learn how to work through them and 

learn the work in the tools that are used for each of the steps. I have never done most of 

those steps before as I only worked with FPGAs before. 
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4.2 Design and verification flow diagram 
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Figure 30: Design and Verification flow diagram 
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4.3 Specification 

4.3.1 General description 

This IP block is a device that enables the communication with I2C bus on one side 

and with AMBA 3 APB bus on the other.  

I2C/APB block

SDA_IN

SDA_OUT

SDA_OE

SCL_IN

SCL_OUT

SCL_OE

I2C_CLK

APB_INTR

PREADY

PSLVERR

PENABLE

PSELx

PRESETn

PCLK

PWRITE

PADDR[7:0]

PWDATA[7:0]

PRDATA[7:0]

 
Figure 31: Top-level schema of the I2C/APB Block 

The signals SDA_IN, SDA_OUT, SDA_OE are connected to a PAD before being 

connected to the I2C bus signal SDA. In the same sense are also signals SCL_IN, 

SCL_OUT, SCL_OE connected to another PAD to drive the SCL signal. 

Table 5: Top-level I / O Port list 

Port name Direction Function Connected to 

SDA_IN_i Input Serial Data Line Input I2C 

SDA_OUT_o Output Serial Data Line Output I2C 

SDA_OE_o Output Serial Data Line Output Enable I2C 

SCL_IN_i Input Serial Clock Line Input I2C 

SCL_OUT_o Output Serial Clock Line Output / Clock 

stretching 

I2C 

SCL_OE_o Output Serial Clock Line Output Enable/ 

Clock stretching enable 

I2C 

I2C_CLK_i Input I2C Block Clock I2C 

APB_INTR_o Output APB Interrupt APB 

PREADY_o Output APB Slave Ready for transfer APB 

PENABLE_i Input APB Enable APB 

PSELx_i Input APB Slave Device Selected APB 

PRESETn_i Input Global Reset APB 

PLCK_i Input APB Block Clock APB 

PWRITE_i Input APB read/write operation APB 

PADDR_i Input APB Address APB 

PWDATA_i Input APB Data Input APB 

PRDATA_o Output APB Data Output APB 
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The I2C frequency needs to be in the following relationship with the APB 

frequency: APBCI ff 2  to ensure the correct function of the device. 

4.3.2 Typical usage / Typical communication scenario 

This device serves for the I2C Master to get information from an APB Bridge. 

Therefore the typical communication has the next several steps: 

1. I2C Master writes data (that include request description) in I2C Slave 

2. APB part of the DP device puts the interrupt signal on high according to 

the interrupt mask register 

3. APB Bridge reads the interrupt register, recognizes a request (data in Fifo). 

APB Slave sends a signal to I2C Slave to reset the interrupt state signals 

(Start bit, Selected bit,…). 
4. APB Bridge reads data from the DP device 

5. APB Bridge sends an answer by writing data in DP device 

6. I2C Master reads data by accessing I2C Slave DP device 

4.3.3 Other functions of the DP device except the typical 

communication scenario 

The DP device has also the following functions: 

 Change of I2C Slave address by APB Bridge 

 Read/Write mask in APB Interrupt Mask register by APB Bridge 

 Read APB Interrupt register by APB Bridge 

4.3.4 Register map 

The access to the device from I2C Master is defined by the I2C standard, where 

the device needs to be first addressed, then the master chooses the operation (read/write) 

and afterwards the data is transferred. There are only two operations that the I2C Master 

can do – read and write data. 

On the other hand, the access from the APB has a signal for read/write operation 

and also a bus for addressing an operation. Data can be written in the device and read 

from the device. The addresses with the operations of the device are fully adjustable in 

the dp_s_global_consts.v file. If no changes are made to this file, you can access the 

operations through the following addresses: 
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Table 6: Register map table 

APB 

address 

Register name Width Reset 

value 

Bit functions Note 

000 FIFO_RX 8 00000000 [7:0] – read data from FIFO RO 

001 INTR_REG 8 00000000 [7] – selected_bit 

[6] – start_bit 

[5] – stop_bit 

[4:3] – error  

   00 – no error 

   01 – error during read op. 

   10 – error during write op. 

   11 – unspecified error 

[2] – fifo_rx_not_empty 

[1] – fifo_rx_full 

[0] – fifo_tx_ full 

RO, COR 

RO, COR 

RO, COR 

RO, COR 

RO 

RO 

RO 

010 FIFO_TX 8 00000000 [7:0] data_wr WO 

011 I2C SLAVE ADDR 8 00000000   WO 

100 INTR_MASK_REG 8 11111111 [7] – selected_bit  

[6] – start_bit 

[5] – stop_bit 

[4] – not used/for future use 

[3] – error  

 [2] – fifo_rx_not_empty 

[1] – fifo_rx_full 

[0] – fifo_tx_ full 

 

 

Since the start bit isn’t very accurate when it comes to the fact that if the device is 

actually asked to communicate, there’s also a selected bit. The selected bit serves for 

detecting that the I2C Slave has been successfully addressed and the address matches 

with its address. 
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4.3.5 Top level description 

I2C Slave APB Slave

FIFO_RX
FIFO_RX_DATA_APB[7:0]

EN_FIFO_RX_APB

FIFO_RX_DATA_I2C[7:0]

EN_FIFO_RX_I2C

RESET_MEMORIES

I2C_CLK

SCL_IN

PENABLE

PREADY

PSELx

PRESETn

PCLK

PWRITE

PADDR[7:0]

PWDATA[7:0]

PRDATA[7:0]

RESET_FIFO_I2C

FIFO_RX_FULL_I2C
FIFO_RX_EMPTY_APB

FIFO_TX FIFO_TX_DATA_APB[7:0]

EN_FIFO_TX_APB

FIFO_TX_DATA_I2C[7:0]

EN_FIFO_TX_I2C

FIFO_TX_FULL_APBFIFO_TX_EMPTY_I2C

RESET_FIFO_I2C

FIFO_RX_FULL_APB

START_BIT_SET

PSLVERR

ERR_SET[1:0]

INTR_BITS_CLR

APB_INTR

SDA_IN

SDA_OUT

RESET_MEM

SCL_OE

SCL_OUT

SDA_OE

STOP_BIT_SET

SELECTED_BIT_SET

 

Figure 32: Top-level schema of I2C/APB Blocks  

Figure 32 shows the connections between the I2C and APB blocks and the FIFOs 

that are used for transmitting data between these two blocks. The basics of this 

communication are pretty easy to understand – the data itself is transmitted only through 

the synchronous FIFOs which have different clocks for both read and write operations. 

Other than this there are signals for indicating start-bit, stop-bit, selected-bit, error bits 

and a signal for clearing these signals. These signals that are not transferred through a 

FIFO are synchronized to make sure the signals are transmitted correctly. 

4.3.6 Functional descriptions 

4.3.6.1 Design feature list 

 Compatible with Philips I2C bus standard 

o Clock stretching generation 

o I2C communication error detection (interrupt on APB side) 

 Compatible with ARM APB 3.0 bus standard 

o Interrupt poutput (Fifo TX full, Fifo RX full, Fifo RX not empty, 

I2C communication error, I2C Start bit, I2C Stop bit, I2C Slave 

Selected) 

o Interrupt masking on all interrupt bits 

 8bit data transfers 

 Fifo Memories reset after I2C communication error detection 

 APBCI ff 2  
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4.3.6.2 Reset description 

The PRESETn_i signal coming from the APB bridge is used as a global reset for 

the whole device.  

The APB block of the device generates the signal RESET_FIFO_I2C which is 

also used as a reset for both the FIFOs and the I2C block in case when the APB block 

receives a command to change the I2C Slave address. Then both of the FIFOs are emptied 

(by reset), I2C Slave set to reset and a new address is written to the I2C Slave block 

through TX fifo. 

The reset signal RESET_MEM is generated from the I2C Slave block, which is 

used to empty both FIFOs in case an I2C communication error occurs. In that case an 

error bit is also set. 

4.3.6.3 Setting I2C Slave default address  

The I2C Slave device can have a default address. This address will be set every 

time after the PRESETn_i signal occurs, if the default address is not equal to Zero. The 

default address is defined as a parameter of the IP block instantiation. This means that if 

more than one instance of the DP device is instantiated in a design, each of these 

instances can have a different default I2C Slave address.  

If the default address parameter is set to 0 (Zero), the default address is not used 

and the I2C Slave waits to get an address from APB. 

The default address is always saved to the I2C block from the APB block through 

TX FIFO. This is because the I2C block is reset with every address change as well as the 

memories. 

4.3.6.4 Setting of the I2C Slave address 

Setting of the I2C Slave address (if the default I2C Slave address wasn’t used) is 
done the same way as the change of the I2C Slave address. This is described in 4.3.6.5. 

4.3.6.5 Change of the I2C Slave address 

The address of the device can be changed by the APB command (APB address) 

PADDR_CHANGE_I2C_ADDR and writing the new address to PWDATA signals. 

4.3.6.6  I2C Communication error detection 

There’s a certain chance that an error in the I2C communication can occur. This 

error is detected by the device if a start or stop condition comes in a time that it’s not 
supposed to.  

For example, that could mean that the device is transmitting data and it suddenly 

comes to a start/stop condition. The device then generates an error, the I2C block sets 

itself to the IDLE state where it expects new commands, resets the FIFOs and writes what 

kind of error occurred. The APB part of the device then signalizes an interrupt and it’s up 
to the APB Bridge to read the APB Status register and do any further actions. 
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I2C Slave announces the following error alternatives: 

 I2C_NO_ERROR 

 I2C_READ_ERROR 

 I2C_WRITE_ERROR 

 I2C_UNSPECIFIED_ERROR 

These constants are set in the dp_s_global_consts.v file. 

4.3.7 I2C 

The I2C Block of the device consists of a standard connection of two blocks - a 

Moore FSM and a Data Unit.  

4.3.7.1 Functions 

The I2C Slave device can only execute requests it receives from a master, which 

are receiving data from the master and sending data to the master. If we look at it from 

the master’s side – read data from the I2C slave and write data in the I2C slave. It does 

not do any other actions. The way the I2C Slave address is set has been described in 

chapter 4.3.6.3. 

4.3.7.2 I2C Slave block diagram 

Figure 33 shows how the I2C Slave FSM and I2C Slave data unit are connected. It 

is a standard connection of a FSM and Data Unit. Data unit provides state signals for 

FSM and FSM sets control signals for the Data Unit. Since both FSM and Data Unit can 

send output to SDA, there’s a multiplexor controlled by the FSM to determine which of 
these outputs goes to the SDA_OUT signal. 

I2C Slave
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State Machine
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Data Unit
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Figure 33: I2C Slave block diagram 
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4.3.7.3 FSM 

The FSM Diagram for I2C Slave is displayed on Figure 34. Since a text 

description of this diagram could be confusing, I decided to put together Table 7 that 

describes what each state serves for and what the next states are and under what condition 

the transition is done. 

The I2C communication is a serial bit communication and is therefore quite exact 

when each bit is set. This made it challenging to design the FSM. Values can be changed 

only in certain intervals when the SCL is low. 
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Figure 34: I2C FSM Diagram   
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Table 7: I2C FSM States 

State name Function Next state 
INIT Initial state, waiting for I2C Slave 

address to be in TX Fifo 

SAVE_SLAVE_ADDR 

SAVE_SLAVE_ADDR Save I2C Slave address IDLE 

IDLE Idle state, waiting for the addressing 

by I2C Master 

GET_ADDR_WAIT 

(if Start condition) 

GET_ADDR_WAIT Wait for SCL rising edge till all 

address bits are received 

SAVE_ADDRESS_BIT – 

after SCL rising edge and 

not all 7bits of I2C Slave 

address received yet 

 

GET_OPERATION – after 

all 7bits of I2C Slave 

address are saved and 

match with the I2C Slave 

address that this device is 

using 

 

IDLE – after all 7bits of 

I2C Slave address are 

saved and they do not 

match with the I2C Slave 

address that this device is 

using 

 

GET_ADDR_WAIT -  

Otherwise 

SAVE_ADDRESS_BIT Save the I2C Slave bit that I2C Master 

is addressing the device with 

GET_ADDR_WAIT 

GET_OPERATION Recognize the operation (read/write) SEND_FIFO_FULL – if 

read operation 

SEND_ACK_WR_WAIT 

– if write operation 

SEND_FIFO_FULL Waits till TX Fifo in not empty (filled 

of some data) 

FIFO_POP – if TX fifo 

filled with some data 

FIFO_POP Pops next data from TX fifo SAVE_FIFO_DATA 

SAVE_FIFO_DATA Saves data from TX fifo to REG1 (see 

Figure 35 for more details) 

SEND_ACK_RD_WAIT 

SEND_ACK_RD_WAIT Waits till SCL falling edge SEND_ACK_START_RD 

SEND_ACK_START_RD Sends ACK to I2C Master SEND_DATA 

SEND_DATA Sends one bit of data COUNT_CYCLE_RD 

COUNT_CYCLE_RD Enables cycle counter to the next bit 

cycle 

SEND_DATA – if not all 

bits sent yet to I2C Master 

WAIT_ACK_M_RD – if 

all bits sent to I2C Master 

WAIT_ACK_M_RD Decide if another Byte transaction 

follows 

IDLE – if no other Byte 

transaction is followed 

WAIT_SEND_DATA – if 

another Byte transaction is 

followed 

WAIT_SEND_DATA Wait for falling edge of SCL to send 

the next Byte 

FIFO_POP_NEXT_DATA 

FIFO_POP_NEXT_DATA Pops out next data from TX fifo SEND_ACK_WR_WAIT 

SAVE_NEXT_FIFO_DATA Saves data from TX fifo to REG1 SEND_DATA 

SEND_ACK_WR_WAIT Wait for next SCL fall edge to send 

ACK 

SEND_ACK_START_WR 

SEND_ACK_START_WR Sends ACK to write operation WAIT_FOR_SDA_DATA 
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WAIT_FOR_SDA_DATA Wait till next SCL rising edge to read 

the data after 

WRITE_DATA 

WRITE_DATA Store data in Reg0 WAIT_DATA_WR 

WAIT_DATA_WR Decides if all bits are stored and 

according to that saving data to RX 

Fifo. Also after data is processed 

there’s a transition to IDLE and 
GET_ADDR_WAIT state 

WRITE_DATA – if not all 

data bits received yet 

 

FIFO_PUSH – all data bits 

received and RX fifo not 

full 

 

SEND_NACK_WR – if all 

data bits received, but fifo 

RX full 

 

IDLE – after stop 

condition (data processed) 

 

GET_ADDR_WAIT– after 

start condition (data 

processed) 

FIFO_PUSH Saves received data to RX Fifo WAIT_ACK_WR 

WAIT_ACK_WR Waits till SCL falling edge SEND_ACK_WR 

SEND_ACK_WR Sends ACK to I2C Master GET_NEXT_OP 

WAIT_NACK_WR Waits till SCL falling edge SEND_NACK_WR 

SEND_NACK_WR Send NACK to I2C Master GET_NEXT_OP 

ERR_SIGNALLING Signals errors in I2C communication IDLE 

GET_NEXT_OP Waits for SCL rising edge to get next 

operation (either write next data, 

repeated start or end of operation) 

WRITE_DATA 

 

 

4.3.7.4 Data Unit 

The Data unit serves for storing the data and detecting different conditions. The 

list of all registers described in the Data Unit Diagram in Figure 35 with their functions is 

described in Table 8.  

The following conditions are also detected by the Data unit: 

 Start/stop condition detection – flip-flops (SDA_CURR, SDA_PREV, 

SCL_CURR, SCL_PREV) are used as a synchronizer. They compare the 

current and previous values of these signals and these signals detect the 

start or stop condition by an AND. 

 SCL Rising edge detection - flip-flops (SCL_CURR, SCL_PREV) with 

and AND detect the rising edge of the SCL signal.  

 SDA Rising edge detection - flip-flops (SDA_CURR, SDA_PREV) with 

and AND detect the rising edge of the SCL signal. 
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Figure 35: I2C Slave Data Unit 
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Table 8: I2C Registers list 

Name Function 

CYCLE_COUNTER Cycle counter for counting bit positions during I2C communication, 

addresses bits in Reg0 and Reg1 according to cycle number 

ERR_REG Storing type of error occurred in I2C communication 

INTR_BITS_CLR_REG1 Resynchronization register for clearing interrupt bits 

NTR_BITS_CLR_REG2 Resynchronization register for clearing interrupt bits 

Reg_ADDR Storing I2C Slave address 

REG0 Storing bits coming from I2C Write command 

REG1 Storing data from TX FIFO used for I2C Read command 

RST_SYN_REG1 Resynchronization register for reset 

RST_SYN_REG2 Resynchronization register for reset 

SCL_CURR Current SCL value 

SCL_PREV Previous SCL value 

SDA_CURR Current SDA value 

SDA_PREV Previous SDA value 

SELECTED_BIT I2C Slave selected bit (interrupt bit for APB) 

START_BIT Start condition bit (interrupt bit for APB) 

STOP_BIT Stop condition bit (interrupt bit for APB) 

 

4.3.8 APB 

The basics of this protocol were already described in chapter 2.2. The complete 

documentation that was used for the APB design can be found under (ARM, 2004). The 

APB device implemented in this design is a APB Slave. 

4.3.8.1 Functions, modes 

The APB bus is a parallel addressed as well as data bus. Address and data busses 

are each separated. The device can provide operations read/write data, read device status 

and change I2C Slave address. More concrete description of addressing these operations 

was described in chapter 4.3.4. 

4.3.8.2 Block diagram 

The structure of the APB block of the device shown in Figure 36 is traditional – 

there is a FSM and a data unit, which are connected together. Except the usual connection 

of FSM and standard unit, there’s also a multiplexor used for determining whether the 
input of TX fifo is the I2C Slave default address or data from PWDATA. 



45 

 

APB Slave

FIFO_RX_DATA[7:0]

EN_FIFO_RX

PENABLE

PSELx

PCLK

PWRITE

PADDR

PWDATA

PRDATA

RESET_FIFO_I2C

FIFO_TX_DATA

EN_FIFO_TX

FIFO_RX_FULL

APB Slave

State Machine

PRDATA

PRESETn

FIFO_TX_FULL

I2C_RST_CH_ADDR

PRESETn

APB Slave

Data Unit

FIFO_TX_EMPTY PCLK

PREADY

PSLVERR

APB_INTR

START_BIT_SET

START_BIT_CLR

ERR_SET[1:0]

INTR_BITS_CLR

APB_INTR

STOP_BIT_SET

SELECTED_BIT_SET

 
Sel_outp_fifo

`I2C_DEFAULT_ADDRESS

SEL_OUTP

 

Figure 36: APB Block diagram 
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4.3.8.3 FSM 

 
Figure 37: APB FSM Diagram 

I2C FSM Diagram is described in Figure 37. A detailed description of the states is 

in Table 9. The most outstanding state is the IDLE state. The device stays in this state 

whenever it’s waiting for a command from APB Bridge. All operations start from the 

IDLE State on request from the APB Bridge. 
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Table 9: APB FSM States 

State name Function Next state 
INIT  Init state after reset SAVE_INIT_ADDR  - used if 

default i2c address set 

IDLE   - used if default i2c 

address not set 

SAVE_INIT_ADDR Saves the Default I2C Slave Address to 

the I2C Slave 

IDLE 

IDLE Idle state Various, see Figure 37 

READ_DATA Save data at TX fifo output to prdata_o 

register 

READ_DATA_TO_OUTPUT 

READ_DATA_TO_OUTPUT Enables the next data in TX fifo to output PREADY_BEFORE_IDLE 

PREADY_BEFORE_IDLE Pready on high, but APB FSM not in the 

IDLE state yet to prevent premature 

operation recognition 

IDLE 

RESET_I2C Resets the I2C Slave + memories, sets 

wait counter to zero 

WAIT_RESET_DONE 

WAIT_RESET_DONE Waits several cycles before saving the 

new I2C Slave address to TX Fifo to let 

the FIFOs get ready 

WRITE_NEW_ADDR 

WRITE_NEW_ADDR Saves the new I2C Slave address to TX 

Fifo 

PREADY_BEFORE_IDLE 

FIFO_TX_GET_STATUS Waits as long as TX Fifo is full WRITE_DATA 

WRITE_DATA Saves data to TX Fifo PREADY_BEFORE_IDLE 

WRITE_INTR_MASK Writes a new Mask to the Interrupt mask 

register 

PREADY_BEFORE_IDLE 

READ_INTR_REG Saves the content of the interrupt register 

to prdata_o register, which means that the 

data from interrupt register gets to output. 

Deletes set interrupt bits in I2C Slave 

(intr_bits_clr_o <= 1'b0 because of 

inverted logic) 

PREADY_BEFORE_IDLE 

READ_INTR_MASK Saves the Interrupt mask to prdata output PREADY_BEFORE_IDLE 

UNSPECIFIED_READ Puts all Zeros to output PREADY_BEFORE_IDLE 
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4.3.8.4 Data Unit 

FIFO_RX_DATA[7:0]

 
SEL_OUTP[1:0]

FIFO_RX_FULL
FIFO_TX_FULL
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Figure 38: APB Block Data Unit 

The APB Data unit presented in Figure 38 contains only a few registers, this is 

caused by the simplicity in which the APB transactions are done. The output PRDATA of 

the device is registered. Further detailed description of the registers is to be found in 

Table 10. 

Table 10: APB Registers list 

Name Function 

INTR_MASK_REG Interrupt mask register 

INTR_REG Interrupt register 

PRDATA_O PRDATA registered output 

RESYNC_INTR_BITS Resynchronization cell for signals from I2C 

clock domain 

WAIT_COUNTER Waiting for memory + I2C reset  to be done 

after change of I2C Slave address 
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4.3.9 FIFOs 

Two FIFOs both of the size 16x8 bytes are used in the design. 

4.3.10 Clock requirements 

4.3.10.1 Minimum I2C Slave frequency 

To be able to count the minimum I2C Slave frequency, the maximum amount of 

clock ticks which the I2C FSM needs during SCL high and SCL low needs to be know. 

The minimum length of the high and low signals is given by the I2C standard in (B.V., 

2007). Knowing these facts, we divide the minimum high and low length of these signals 

by the amount of clocks that need to be done in the I2C FSM and we get two lengths of 

signals, from which we count the frequency. The higher frequency of these two 

frequencies is the minimum frequency that the I2C Slave can operate with. 

The I2C FSM needs 4 cycles during SCL high (transitions between states 

GET_OPERATION, SEND_FIFO_FULL, FIFO_POP, SAVE_FIFO_DATA, 

SEND_ACK_RD_WAIT) and 2 cycles during SCL low (transitions between states 

FIFO_POP_NEXT_DATA, SAVE_NEXT_FIFO_DATA, SEND_DATA). 

Table 11: I2C Slave minimum frequency 

 I2C SCL frequency 

 100kbit/s 400kbit/s 1Mbit/s 

Min. SCL high 4000ns 600ns 260ns 

Rounded (Min. SCL high / cycles 

needed) 

1000ns 150ns 66ns 

Minimum frequency for SCL high 1MHz 6.67MHz 15.15MHz 

    

Min. SCL low 4700ns 1300ns 500ns 

Rounded (Min. SCL low / cycles 

needed) 

2350ns 650ns 250ns 

Minimum frequency for SCL low 430kHz 1,54MHz 4MHz 

    

Minimum I2C Slave frequency 1MHz 6.67MHz 15.15MHz 

 

The minimum I2C Slave frequencies mentioned in Table 11 were used during the 

verification. 

4.3.10.2 Minimum APB Slave frequency 

There is no minimum APB Slave frequency, because the I2C Slave uses clock 

stretching. However the following relationship should be fulfilled: fapb<=fi2c.  

In case that the APB interrupt is generated based on RX fifo full/not empty 

signals, it is recommended to keep the APB frequency at least equal or higher as SCL 

frequency ( SCLAPB ff  ) to be able to be able to correctly generate signals for APB 

interrupt. On the other hand this recommendation is often fulfilled automatically since 

APB frequencies are usually higher than SCL frequencies. In case that the interrupt based 
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on RX fifo_not_empty / fifo_full signals is not necessary and APB interrupt for bits 

related with RX FIFO are masked (interrupt generated based on selected bit), this 

recommendation does not apply. 

4.4 Analysis of clock gating use in the design 

4.4.1 Clock gating types 

In order to achieve results that would be comparable, I chose the following four 

kinds of clock gating use. 

 CG_NONE - No clock gating used at all. 

 CG_AUTO - Automatic clock gating used in DC Shell during Synthesis as 

described in chapter 3.4.1. 

 CG_MAN - Manual clock gating – manually added clock gating cells that 

were marked as dont_touch cells. 

 CG_MAN_AUTO - This variant is a combination of automatic and 

manual clock gating. 

4.4.2 Clock-gating analysis in I2C block 

This following analysis was used for manual inserting of clock gating cells. 

4.4.2.1 I2C FSM 

The FSM controls when clock gating is used to enable registers. In addition, clock 

gating was used also clock gating inside the FSM. An extra signal was added to determine 

if next state is different from the current state. If so, the clock for the register that stores 

the current state is enabled. 

4.4.2.2 I2C Data Unit 

For the analysis of where to use clock gating, we have to decide which registers 

have to be part of the always-on logic and which can be used for clock gating. In this 

design it is important to keep the registers on that are used for generating interrupt signals 

for APB and those registers that are used for controlling I2C communication such as for 

determination of start, stop condition and SCL edges. These registers are listed in Table 

12. 

Table 12: I2C Always-on registers 

Register Reason 

ERR_REG Error register (interrupt signal for APB) 

INTR_BITS_CLR_REG1, 

INTR_BITS_CLR_REG2 

Synchronization registers for clearing 

interrupt bits 

RST_SYN_REG1, RST_SYN_REG2 Synchronization registers for reset 

SCL_CURR, SCL_PREV Generating SCL rising edge, SCL Falling 

edge, start condition, stop condition 

SDA_CURR, SDA_PREV Generating start condition, stop condition 

START_BIT Start bit (interrupt signal for APB) 

STOP_BIT Stop bit (interrupt signal for APB) 
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This leaves us with registers that will not need to be clocked in some cases. FSM, 

however, generates enable signals for these registers anyway, so these signals will be 

used for enabling the clock cell. Registers in this design where clock gating is useful, are 

those that are used only during communication and the register for saving I2C Slave 

address, since this is used only at the beginning of the communication for saving the 

address. Table 13 provides a list of registers where clock gating was used. It also shows 

bit width of these registers. It is recommended to have at least 3-4 bits for an enable 

signal, and all these registers satisfy this condition. Therefore clock gating was used on 

them. Reg0 always changes only 1bit during a write operation in this register, but it is a 

8bit register, therefore it is convenient to use clock gating for this register as well. 

Register Wait_Counter is a 2bit register. Therefore, clock gating wasn’t used on this 
register. 

 All these registers have one thing in common – their enable signals are mostly on 

low. Therefore it is convenient to use clock gating on them. 

Table 13: I2C Registers that can be clock gated 

Register Bits Reason Write enabled when CG used 

Reg0 8 Used only during 

communication. Change 

only 8x per transfer 

Data received from I2C 

Master 

Yes 

Reg1 8 Used only during 

communication. Change 

only 8x per transfer 

Data written from TX 

fifo (for transfer to I2C 

Master) 

Yes 

Reg_Addr 8 Used for saving I2C 

Slave address, address 

saved at beginning of 

communication, stays 

without change during 

most of the time of use 

I2C Slave address stored 

from TX fifo 

Yes 

Cycle_Counter 4 Used only during 

communication. Change 

only 8x per transfer 

Counting bit indexes 

when receiving / sending 

data bits 

Yes 

WAIT_COUNTER 2 Used when I2C Slave 

address changed 

Reseting I2C Slave + 

memories after I2C Slave 

address change 

No 

 

4.4.2.3 FIFOs 

Both TX and RX fifos are IP that have inconsiderable consumption. It is therefore 

important to take this into account. Clock signals for Fifos don’t only serve for data 

push/pop, but also for generating state signals (full, empty,…). This makes it more 
complicated. For this reason there was an extra signal called i2c_active added to the I2C 

FSM that expresses when a transaction is being done. When this signal is on high, the 

Fifos I2C clock is enabled. 
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4.4.3 Clock-gating analysis in APB block 

4.4.3.1 APB FSM 

Clock gating was also used for APB FSM. The way it was done is similar to the 

way clock gating was applied to I2C FSM, the description is in chapter 4.4.2.1. 

4.4.3.2 APB Data Unit 

Table 14 lists the always-on registers. These are registers that are used for 

interrupt signals. They always have to be on for proper generation of the interrupt signal 

towards APB Bridge and therefore for correct function. 

Table 14: APB Always-on registers 

Register Reason 

INTR_REG Interrupt register 

RESYNC_INTR_BITS Resynchronization of interrupt bits from 

I2C Slave 

 

The registers list where clock gating is used is in Table 20. There are two registers 

and both of them are 8-bit registers which is wide enough to use clock gating on them. 

One of them is the register for storing interrupt mask, this value doesn’t usually change 
very often, and therefore it is convenient to use clock gating with this register. The other 

register is for registering data output and its value changes only during communication. 

Table 15: APB Registers with applied clock gating 

Register Bits Reason Clock enabled when 

INTR_MASK_REG 8 Interrupt mask, change only 

on request from APB Bridge 

Request from APB Bridge to 

write new interrupt mask 

PRDATA 8 Registered data output New data on output for APB 

Bridge 

 

4.4.3.3 Fifos 

As already mention in chapter 4.4.2.3, it is important for the fifos to have the 

clock active longer than just for data transfers to generate signals. For this reason, the 

signal i2c_active was synchronized on the top level to the APB clock domain and was 

used along with pselx and pready signals to enable clock for the FIFOs. The 

resynchronization cell for signal i2c_active becomes a part of the always-on logic. 

4.4.4 Clock-gating code example 

The following code describes an example of using a clock gating cell. It shows 

that the use of clock gating on RTL level doesn’t do any major changes; however, it 

enlarges the code. 

The first part of the code describes the case in which clock gating is used. First, an 

extra wire is instantiated for the gated clock and follows the instantiation of the gating 

cell. This gating cell is marked as a “dont_touch” cell for synthesis, so that the DC Shell 
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doesn’t change this cell in any way. The register then follows the description with the use 

of gated clock and without an enable signal. 

The part of the code that follows after the `else command is the usual RTL 

description of a register without use of clock gating. 

 
Figure 39: Clock gating code example 

4.5 RTL 

4.5.1 Coding 

The device was coded according to the specification in Verilog 2001. It is a fully 

synchronous, fully synthesis-able design. The code itself can be found on the enclosed 

CD. 

4.5.2 Resynchronization between the clock domains 

4.5.2.1 Resynchronization of data 

The data are sent through asynchronous FIFOs between the two clock domains. 

Therefore all the resynchronization is done in the fifos. Further description of these FIFOs 

is in chapter 4.5.6. 

4.5.2.2 Resynchronization of signals 

The signal resynchronization is done by resynchronization units consisting of two 

flip flops. 

I2C Slave sets state signals for the APB Slave. These signals are synchronized in 

the APB domain by a multiple-bit resynchronization unit (the unit is called 

RESYNC_INTR_BITS). 
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The INTR_BIT_CLR signal that goes from APB to I2C domain is implemented to 

reset the registers (SELECTED_BIT_SET, START_BIT_SET, STOP_BIT_SET, 

ERR_SET) in the I2C domain. This signal is also resynchronized by two flip flops in the 

I2C domain to ensure the right function. The INTR_BIT_CLR signal is set active when 

interrupt register is read by APB master to reset registers in I2C domain that set interrupt 

signalizing values of I2C communication. The sequence of this steps is described in 

chapter 4.3.2. 

4.5.3 Signals for DFT 

Signals for DFT are not used in this design. This device is either considered as a 

hard-macro or as a soft-macro where DFT is implemented on the top-level of the chip. 

4.5.4 I2C Slave Default address 

I2C Slave can have set a default address. This is done by instantiating the module 

in the design by setting an instantiation parameter. 

4.5.5 Changing APB addresses for operations 

If the user wishes to change the addresses for any APB operation, you can do so in 

the dp_s_global_consts.v file by changing the values of the constants. The names of 

constants that need to be changed of each operation are in Table 16. 

Table 16: Names of constants and their APB functions 

Default APB address APB Constant name Function 

000 PADDR_READ_DATA Read data from FIFO_RX 

001 PADDR_READ_INTR_REG Read interrupt register 

010 PADDR_ I2C_ADDR Changes the I2C Slave address 

011 PADDR_WRITE_DATA Write data to FIFO_TX 

100 PADDR_WRITE_INTR_MASK Write interrupt mask 

 

4.5.6 Fifos 

In the beginning I was using FIFO models generated by Xilinx Coregen, I was 

developing in Xiling ISE so that I would be able to work from home.  

After migrating the files with RTL to S3 Group environment, I had to use new 

fifos that were synthesizable. Both TX and RX Fifo were generated by the DesignWare 

Synopsys tool. There were some challenges and changes with using these fifos, because 

they have the first data on output right after writing it in the FIFO and not after a request. 

These fifos also have inverted reset signals and separate signals for full and empty 

signaling. Changes had to be done to fix these problems and differences before continuing 

to the next steps. 

4.6 RTL code check (Hal) 
RTL code check is done by Cadence Hal program. This program checks for 

different conditions and mistakes in the code starting from white spaces that might be 
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causing problems for other programs later during the design to unconnected wires or 

latches. 

The design was run through this program and all the errors were corrected as well 

as most warnings. 

Most of the errors were caused by white spaces and wrong coding (codes were 

imported from MS Windows environment to Linux environment). Whitespaces (tabs) had 

to be replaced by simple spaces. 

Hal also reported errors in resynchronization. This was solved by adding a 

resynchronization cell for several parallel signals instead of several resynchronization 

flip-flops that were each 1 bit width in the APB Slave. The hardware specification wasn’t 
changed, but the description in Verilog was corrected. 

4.7 Verification 

4.7.1 Introduction to verification 

Based on the specification of the design, a list of steps that need to be verified 

(called verification items) were written in a list and based on this list a Verification plan 

(see Table 18) was written. The verification tests were written afterwards based on the 

Verification plan. 

A third-party I2C Master bock that was downloaded from (Herveille, 2006) was 

used for the verification. In order to cover all the useful possibilities of the design 

behavior, the verification contains the following steps: 

 Direction APB to I2C 

o I2C Slave address change through APB command 

 Direction I2C to APB 

o Sending data from I2C Master to APB Bridge 

 
Figure 40: Testing sending data in the I2C to APB direction 

 Direction I2C->APB ->I2C (typical communication scenario) 

o Sending a request from I2C Master, getting a response from APB 

Bridge to I2C Master 

DP Device

APB /I2C

DATA

I2C MasterI2C bus

Test bench

--compare data--

Report

-successfull tests

-failed tests
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DP Device

APB /I2C

DATA

I2C MasterI2C bus

Test bench

--compare data--

Report

-successfull tests

-failed tests

I2C Master

 
Figure 41: Typical communication test scenario – I2C->APB->I2C 

 APB Interrupt 

o Fifo TX full 

o Fifo RX full 

o Fifo RX not empty 

o Unspecified error after START CONDITION (error caused by a 

start condition during data transfer) 

o Unspecified error after STOP CONDITION 

o Reading data error after START CONDITION 

o Reading data error after STOP CONDITION 

o Writing data error after START CONDITION 

o Writing data error after STOP CONDITION 

o Start bit 

o Stop bit 

o Selected bit 

 Other 

o Verifying different I2C speeds - 10, 50, 100, 200, 400 kb/s and 

1000kb/s 

A script used to run all the tests at once. There are different tests and there were all 

run in different speeds – 10, 50, 100, 200, 400 kb/s and 1000kb/s. The speeds 100, 400 

and 1000kb/s are given by the I2C standard, the other were used to verify compatibility 

with lower speeds. 

4.7.2 Verification strategy 

Assertions for I2C and APB protocols were not available during the design. A third party 

I2C Master was used to verify the correct communication of the I2C Slave. To model the 

APB Bridge, I wrote a model of this bridge for writing and reading data from the APB 

Slave. This decision was done based on the fact that APB is a quite easy protocol and in 

agreement with the submitter of this project. 

All of the tests used for verification are self-checking, which means that after they run, a 

PASS/FAIL report is generated. They also generate logs during the simulation that 

include time of each log line, which help to determine and track the behavior of the 

device during the simulation. At the end of running the set of tests, a regression report is 

also generated that represents an overview of the tests passing/failing. Such a regression 

report can be found in Appendix B. 
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4.7.3 Frequencies used during verification 

Frequencies for I2C Slave that were used are the minimum frequencies, which are 

mentioned in Table 11 and the reasons why these frequencies in chapter 4.3.10.1. 

The frequency for APB Slave used during verification was set, so that fapb<fi2c 

would be fulfilled. I chose a ratio fapb : fi2c approximately 3.33:1. This means that for I2C 

speed 100kbit/s the frequency was 300 kHz (I2C Slave frequency 1MHz), 400kbit/s 

speed the frequency was 2MHz (I2C Slave frequency 6.67MHz) and for 1MBit/s I2C 

speed the frequency was 4.54MHz (I2C Slave frequency 15,15MHz). 

Table 17: Frequencies used during verification 

I2C Speed 100kbit/s 400kbit/s 1Mbit/s 

I2C Slave frequency 1MHz 6.67MHz 15,15MHz 

APB Slave frequency 300 kHz 2MHz 4.54MHz 

 

The I2C frequencies were used the lowest possible to ensure that the device works with 

these frequencies. This was done, because for low power reasons, it is convenient to use 

the lowest frequencies possible. 
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4.7.4 Verification Plan 

Note: In several places in the Verification plan, “send several data” is stated – 

these data were sent in a cycle which was controlled by a variable and usually 5 or 6B of 

data were transferred during these operations. 

Table 18: Verification Plan 

Abbreviation Description How to achieve 

TC_TX000 Changing the I2C Slave 

address through a APB 

command (after default 

address) 

Use default I2C address, generate reset (presetn). 

Then write to APB the command with the address 

PADDR=`PADDR_WRITE_I2C_ADDR and set a new I2C 

Slave address to PWDATA (different from default 

address), set PSELx=1 and in the next PCLK clock set 

PENABLE=1. Hold these values as long as PREADY=0. 

To verify that the device responds to this address, 

write data to RX fifo and read them through I2C 

Master. 

TC_RX000 Writing data  several bytes 

data through I2C Master to 

APB using burst mode at 

I2C. Using I2C default 

address 

Reset the device (by PRESETn). Use default I2C 

address for I2C Slave. Send data from I2C Master to 

I2C Slave. Read the data through APB Master and 

compare the data. The data received by APB Master 

has to be the same as sent by I2C Master. 

TC_RX001 Writing new I2C Slave 

address without using a 

default address first. 

Writing data  several bytes 

data through I2C Master to 

APB using burst mode at I2C  

for varification that the I2C 

Slave actually 

communicated at the new 

address. 

Comment the constant I2C_SLAVE_ADDRESS (in 

dp_s_global_consts.v file). Then reset the device (by 

PRESETn), after reset set 

PADDR=`PADDR_WRITE_I2C_ADDR and set a new I2C 

Slave address to PWDATA, set PSELx=1 and in the 

next PCLK clock set PENABLE=1. Hold these values as 

long as PREADY=0. Then Send data from I2C Master 

to I2C Slave 

TC_RX002 Verifying APB device is 

returning Zeros for 

unspecified read operation 

Generate reset (presetn),  send a not-specified 

address as a read-request to APB device.  

TC_RXTX000 Change of direction during 

I2C communication 

Use default I2C address, generate reset (presetn). 

Write data to RX fifo, then I2C Master generates 

repeated start, changes the direction. After data is in 

RX fifo, read the data from RX fifo and write the same 

data to TX fifo. If data is not in TX fifo yet when 

required from I2C Master, the I2C Slave has to pull 

SCL to low. Then I2C Master reads data from TX fifo 

TC_INTR000 Verifying APB Interrupt - 

fifo TX full 

Use default I2C address, generate reset (presetn). Set 

the tx_fifo_full bit in the mask register to 1 and all 

other bits of the mask register to 0.  Fill up the whole 

TX Fifo. Then set all bits of the mask register to zeros. 

TC_INTR001 Verifying APB Interrupt - 

fifo RX full. Verifying 

NACK to I2C Master after 

sending more data to I2C 

Slave 

Use default I2C address, generate reset (presetn). Set 

the rx_fifo_full bit in the mask register to 1 and all 

other bits of the mask register to 0. Fill up the whole 

RX fifo. Then try to write one more byte. Then set all 

bits of the mask register to zeros. 
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TC_INTR002 Verifying APB Interrupt - fifo 

RX not empty 

Use default I2C address, generate reset (presetn),  

write interrupt mask with rx_not_empty bit on 1. 

Write data in RX memory through I2C. Then set all 

bits of the mask register to zeros. 

TC_INTR003 Verifying APB Interrupt - 

unspecified error after 

START CONDITION 

Use default I2C address, generate reset (presetn). 

Write data to both RX and TX Fifo.  Write interrupt 

mask with error bit on 1 and all other bits zeros. Send 

a START CONDITION to I2C Slave and in the middle of 

sending the address bits send a new START 

CONDITION to the I2C Slave. Then set all bits of the 

mask register to zeros. 

TC_INTR004 Verifying APB Interrupt - 

reading data error after 

START CONDITION 

Use default I2C address, generate reset (presetn). 

Write data to both RX and TX Fifo.  Write interrupt 

mask with error bit on 1 and all other bits zeros. 

Write data to TX FIFO. Start reading data from I2C 

Slave and then in the middle of the transfer start a 

new START CONDITION. Then set all bits of the mask 

register to zeros. 

TC_INTR005 Verifying APB Interrupt - 

writing data error after 

START CONDITION 

Use default I2C address, generate reset (presetn). 

Write data to both RX and TX Fifo.  Write interrupt 

mask with error bit on 1 and all other bits zeros. Start 

writing data to I2C Slave and then in the middle of the 

transfer start a new START CONDITION. Then set all 

bits of the mask register to zeros. 

TC_INTR006 Verifying APB Interrupt - 

unspecified error after STOP 

CONDITION 

Use default I2C address, generate reset (presetn). 

Write data to both RX and TX Fifo.  Write interrupt 

mask with error bit on 1 and all other bits zeros. Send 

a START CONDITION to I2C Slave and in the middle of 

sending the address bits send a new STOP 

CONDITION to the I2C Slave. Then set all bits of the 

mask register to zeros. Then set all bits of the mask 

register to zeros. 

TC_INTR007 Verifying APB Interrupt - 

reading data error after 

STOP CONDITION 

Use default I2C address, generate reset (presetn). 

Write data to both RX and TX Fifo.  Write interrupt 

mask with error bit on 1 and all other bits zeros. 

Write data to TX FIFO. Start reading data from I2C 

Slave and then in the middle of the transfer start a 

new STOP CONDITION. Then set all bits of the mask 

register to zeros. Then set all bits of the mask register 

to zeros. 

TC_INTR008 Verifying APB Interrupt - 

writing data error after 

STOP CONDITION 

Use default I2C address, generate reset (presetn). 

Write data to both RX and TX Fifo.  Write interrupt 

mask with error bit on 1 and all other bits zeros. Start 

writing data to I2C Slave and then in the middle of the 

transfer start a new STOP CONDITION. Then set all 

bits of the mask register to zeros. 

TC_INTR009 Verifying APB Interrupt -

stop bit 

Use default I2C address, generate reset (presetn),  

write interrupt mask with stop bit on 1 and all other 

bits zeros. Write data (1 byte) to I2C Slave through 

I2C Master. Then set all bits of the mask register to 

zeros. 
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TC_INTR010 Verifying APB Interrupt - 

start bit 

Use default I2C address, generate reset (presetn),  

write interrupt mask with start bit on 1 and all other 

bits zeros. Write data (1 byte) to I2C Slave through 

I2C Master. Then set all bits of the mask register to 

zeros. 

TC_INTR011 Verifying APB Interrupt -

selected bit 

Use default I2C address, generate reset (presetn),  

write interrupt mask with selected bit on 1 and all 

other bits zeros. Write data (1 byte) to I2C Slave 

through I2C Master. Then set all bits of the mask 

register to zeros. 

TC_OTHR_000 Verify the reset values of all 

registers 

Use default I2C address, generate reset (presetn), 

Verify the reset values of all registers 

 

4.7.5 Code coverage 

Code coverage describes how much the code is covered by the verification tests. 

Cadence NCSim simulator was used for running the tests. Another tool by Cadence ICCR 

is also able to view the code coverage and parts of the code that are not covered as well as 

visualize final state machines and show which states are covered. Fifos were excluded 

from the code coverage, because they were generated Synopsys Design Ware and are not 

a part of the master’s project development.  

The test tc_rx001 doesn’t use the default I2C address and a whole new different 
run of make file had to be done for this test, which means that this test can’t be merged 

with the other tests (not available by the development tools) in order to view the code 

coverage merged for all the tests together. Therefore there are two different sections, the 

section 4.7.5.1 contains the main tests and section 4.7.5.2 contains only the tc_rx001 test 

that verifies the case when default I2C address isn’t used and so the only differences 

between using and not using the I2C default address will be mentioned there. 

4.7.5.1 Verification tests using I2C Slave address 

 Figure 42 shows percentage coverage of the merged tests. The coverage isn’t 
100% which is given by two different facts. The first fact was described above (the use of 

default I2C Slave address). The other fact is that the ICCR tool expects to cover every 

“else” branch of any “if” command. The FSM was written by a “case” command where at 
the very beginning the current state is assigned as the next state and then possibly the next 

state is changed, but doesn’t have to be changed. Therefore the “else branch” is written in 
the code, although the ICCR tool doesn’t understand this. 
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Figure 42: Code coverage summary 

 
Figure 43: Code coverage code/data overview 

 
Figure 44: Implicit else example 
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Figure 45 shows the state and transition coverage for APB part of the device. The 

transition between INIT and IDLE state isn’t covered, because that is the transition that is 

used in cases when default I2C Slave address isn’t used. Therefore the INIT state is 
colored purple. 

 
Figure 45: APB FSM state coverage (not using default I2C Slave address) 

Figure 46 shows the state and transition coverage for the I2C FSM. The diagram 

shows that all states and transitions are covered.  

State ERR_SIGNALING is assigned from all other states (except those states and 

conditions when it is not useful) whenever an error in the I2C communication occurs. 

Therefore this condition is coded as an “if” command after the “case” statements in the 
FSM process for selecting the next state. This is also the reason why this state is colored 

in a purple color. 
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Figure 46: I2C FSM state coverage 

4.7.5.2 Verification tests without using default I2C Slave address 

Figure 47 displays state coverage of test tv_rx001. The only purpose of this 

diagram and these tests is to prove that the transition from state INIT to state IDLE which 

isn’t covered in Figure 45 is also covered by the verification tests. 

 

Figure 47: APB FSM state coverage (using default I2C Slave address) 

Code coverage is useful to make sure all the important parts of code are covered. 

By being able to view the FSM, I found out some redundancies that I removed after 
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realizing them. I even found one state that was never reached and didn’t even have any 
transition going out to another state. 

I also found that some parts of the code were not covered although the tests were 

supposed to cover them. This signalized a mistake in the particular tests, which I 

corrected thanks to being able to know that the test is a wrong-pass. 

4.8 Synthesis 

4.8.1 What happens during synthesis 

Synthesis is a step where RTL code (written in Verilog in this case) is translated 

into standard logical cells connected by nets – so called netlist.. The input for synthesis is 

the RTL code and Library files. The library files were used for the technology TSMC 

65nm (tcbn65lp – low power). 

Synthesis also generates warning (or error) reports concerning the design. This 

can be e.g. warnings about latches in the design, nets without a type, driver, fanout etc. 

etc. 

DC Shell also generates consumption estimation during synthesis, which is further 

described in chapter 4.8.2 and 5.1.  

Synthesis was run 4 times in this design according to the kind of clock gating that 

was used in the design. This is a nonstandard solution and was done in order to be able to 

compare different consumption results by the end of the project. Automatic clock gating 

described in chapter 3.4.1 can be added during synthesis just by changing one command 

in the synthesis command script. 

4.8.2 Synthesis power consumption 

A power consumption estimation report is generated by the Synopsys DC Shell 

tool during synthesis. This report is based on an approximate expected signal and clock 

activity. The consumptions are in stated mW. 

4.8.2.1 Synthesis power consumption – without Clock gating 
-------------------------------------------------------------------------------- 
                                       Switch   Int      Leak     Total 
Hierarchy                              Power    Power    Power    Power    % 
-------------------------------------------------------------------------------- 
dp_s_top                               9.99e-04 3.67e-02 1.26e+03 3.90e-02 100.0 
  apb_slave (dp_s_apb_slave)           1.87e-04 2.01e-03  152.869 2.35e-03   6.0 
    apb_data_unit (dp_s_apb_data_unit) 2.38e-05 1.26e-03   84.136 1.37e-03   3.5 
      resync_intr_bits (dp_s_resync)   3.46e-07 3.49e-04   14.218 3.64e-04   0.9 
    apb_fsm (dp_s_apb_fsm_10)          6.48e-05 7.08e-04   63.168 8.36e-04   2.1 
  i2c_slave (dp_s_i2c_slave)           1.80e-04 7.65e-03  213.076 8.04e-03  20.6 
    i2c_fsm (dp_s_i2c_fsm)             1.06e-04 3.35e-03  128.057 3.58e-03   9.2 
    i2c_data_unit (dp_s_i2c_data_unit) 7.34e-05 4.30e-03   83.935 4.46e-03  11.4 
  fifo_tx (dp_s_top_dp_s_fifo_1)       3.04e-04 8.39e-03  442.418 9.14e-03  23.5 
  fifo_rx (dp_s_top_dp_s_fifo_0)       2.73e-04 1.86e-02  451.683 1.94e-02  49.7 
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4.8.2.2 Synthesis power consumption – with automatic Clock gating 
-------------------------------------------------------------------------------- 
                                       Switch   Int      Leak     Total 
Hierarchy                              Power    Power    Power    Power    % 
-------------------------------------------------------------------------------- 
dp_s_top                               1.12e-03 1.73e-02 1.23e+03 1.97e-02 100.0 
  apb_slave (dp_s_apb_slave)           2.34e-04 1.59e-03  153.907 1.98e-03  10.1 
    apb_data_unit (dp_s_apb_data_unit) 2.33e-05 8.06e-04   81.414 9.11e-04   4.6 
      resync_intr_bits (dp_s_resync)   3.46e-07 3.49e-04   14.218 3.64e-04   1.9 
    apb_fsm (dp_s_apb_fsm_10)          8.41e-05 7.37e-04   66.329 8.87e-04   4.5 
  i2c_slave (dp_s_i2c_slave)           2.59e-04 5.37e-03  213.367 5.84e-03  29.7 
    i2c_fsm (dp_s_i2c_fsm)             1.81e-04 3.53e-03  123.225 3.83e-03  19.5 
    i2c_data_unit (dp_s_i2c_data_unit) 7.87e-05 1.84e-03   89.058 2.01e-03  10.2 
  fifo_tx (dp_s_top_dp_s_fifo_1)       3.00e-04 4.97e-03  439.221 5.71e-03  29.1 
  fifo_rx (dp_s_top_dp_s_fifo_0)       2.71e-04 5.36e-03  426.900 6.06e-03  30.8 
 

4.8.2.3 Synthesis power consumption – with manual Clock gating 
-------------------------------------------------------------------------------- 
                                       Switch   Int      Leak     Total 
Hierarchy                              Power    Power    Power    Power    % 
-------------------------------------------------------------------------------- 
dp_s_top                               3.33e-03 3.05e-02 1.32e+03 3.51e-02 100.0 
  apb_slave (dp_s_apb_slave)           2.17e-04 1.67e-03  169.495 2.05e-03   5.8 
    apb_data_unit (dp_s_apb_data_unit) 2.29e-05 8.10e-04   91.296 9.24e-04   2.6 
      i_clk_gate_1 (dp_s_top_gating_cell_1)    0.000 2.77e-05    4.880 3.25e-05   0.1 
      i_clk_gate_2 (dp_s_top_gating_cell_2) 7.52e-07 3.30e-05    4.873 3.86e-05   0.1 
      resync_intr_bits (dp_s_resync)   3.46e-07 3.49e-04   14.219 3.64e-04   1.0 
    apb_fsm (dp_s_apb_fsm_10)          9.59e-05 8.13e-04   72.631 9.81e-04   2.8 
      i_clk_gate_11 (dp_s_top_gating_cell_3) 1.51e-05 1.23e-04    4.547 1.43e-04   0.4 
  i2c_slave (dp_s_i2c_slave)           1.44e-04 4.78e-03  239.313 5.17e-03  14.7 
    i2c_fsm (dp_s_i2c_fsm)             6.16e-05 2.87e-03  132.755 3.07e-03   8.7 
      i_clk_gate_10 (dp_s_top_gating_cell_4) 2.81e-06 1.20e-04    4.867 1.28e-04   0.4 
    i2c_data_unit (dp_s_i2c_data_unit) 8.25e-05 1.91e-03  105.473 2.10e-03   6.0 
      i_clk_gate_6 (dp_s_top_gating_cell_5) 4.34e-08 9.25e-05    4.880 9.74e-05   0.3 
      i_clk_gate_5 (dp_s_top_gating_cell_6)    0.000 9.22e-05    4.880 9.71e-05   0.3 
      i_clk_gate_3 (dp_s_top_gating_cell_7) 6.51e-06 1.67e-04    4.841 1.78e-04   0.5 
      i_clk_gate_4 (dp_s_top_gating_cell_8) 9.31e-07 9.98e-05    4.877 1.06e-04   0.3 
  fifo_tx (dp_s_top_dp_s_fifo_1)       3.02e-04 7.53e-03  444.298 8.27e-03  23.5 
  fifo_rx (dp_s_top_dp_s_fifo_0)       2.72e-04 1.59e-02  454.980 1.66e-02  47.2 
  resync_active (dp_s_resync_BIT_WIDTH1) 1.17e-06 8.42e-05    3.221 8.86e-05   0.3 
  i_clk_gate_9 (dp_s_top_gating_cell_9) 5.77e-04 1.36e-04    4.485 7.17e-04   2.0 
  i_clk_gate_8 (dp_s_top_gating_cell_0) 1.76e-03 4.39e-04    4.533 2.21e-03   6.3 

4.8.2.4 Synthesis power consumption – with manual + automatic Clock gating 
-------------------------------------------------------------------------------- 
                                       Switch   Int      Leak     Total 
Hierarchy                              Power    Power    Power    Power    % 
-------------------------------------------------------------------------------- 
dp_s_top                               2.12e-03 1.62e-02 1.29e+03 1.96e-02 100.0 
  apb_slave (dp_s_apb_slave)           2.49e-04 1.71e-03  166.879 2.12e-03  10.8 
    apb_data_unit (dp_s_apb_data_unit) 2.33e-05 8.15e-04   88.852 9.27e-04   4.7 
      i_clk_gate_1 (dp_s_top_gating_cell_1) 1.84e-07 2.88e-05    4.878 3.38e-05   0.2 
      i_clk_gate_2 (dp_s_top_gating_cell_2) 2.21e-07 3.37e-05    4.872 3.88e-05   0.2 
      resync_intr_bits (dp_s_resync)   3.46e-07 3.49e-04   14.219 3.64e-04   1.9 
    apb_fsm (dp_s_apb_fsm_10)          9.90e-05 8.49e-04   71.861 1.02e-03   5.2 
      i_clk_gate_11 (dp_s_top_gating_cell_3) 5.62e-06 1.23e-04    4.553 1.33e-04   0.7 
  i2c_slave (dp_s_i2c_slave)           1.46e-04 4.83e-03  239.315 5.21e-03  26.6 
    i2c_fsm (dp_s_i2c_fsm)             6.20e-05 2.87e-03  132.730 3.07e-03  15.6 
      i_clk_gate_10 (dp_s_top_gating_cell_4) 2.85e-06 1.20e-04    4.867 1.28e-04   0.7 
    i2c_data_unit (dp_s_i2c_data_unit) 8.35e-05 1.95e-03  105.500 2.14e-03  10.9 
      i_clk_gate_6 (dp_s_top_gating_cell_5) 9.95e-09 9.25e-05    4.880 9.74e-05   0.5 
      i_clk_gate_5 (dp_s_top_gating_cell_6)    0.000 9.22e-05    4.880 9.71e-05   0.5 
      i_clk_gate_3 (dp_s_top_gating_cell_7) 3.08e-06 1.67e-04    4.841 1.75e-04   0.9 
      i_clk_gate_4 (dp_s_top_gating_cell_8) 9.46e-07 9.99e-05    4.877 1.06e-04   0.5 
  fifo_tx (dp_s_top_dp_s_fifo_1)       3.01e-04 4.41e-03  439.986 5.15e-03  26.3 
  fifo_rx (dp_s_top_dp_s_fifo_0)       2.71e-04 4.60e-03  427.782 5.30e-03  27.0 
  resync_active (dp_s_resync_BIT_WIDTH1) 1.17e-06 8.42e-05    3.220 8.86e-05   0.5 
  i_clk_gate_9 (dp_s_top_gating_cell_9) 2.71e-04 1.34e-04    4.487 4.09e-04   2.1 
  i_clk_gate_8 (dp_s_top_gating_cell_0) 8.25e-04 4.32e-04    4.534 1.26e-03   6.4 
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4.8.3 Synthesis power consumption summary 
Chyba! Chybný odkaz na záložku. shows the consumption estimations after synthesis. 

Automatic clock gating has quite a big effect here, it saves approximately 50%. Manual clock 

gating has obviously less impact with the signal and clock activity the synthesis tool uses. This is 

caused because the consumption modes are basically not used. 

Table 19: Power consumption results – after synthesis 

Netlist type Clock gating type 
Units 

NONE AUTO MAN MAN_AUTO 

After synthesis, no 

timing, estimated 

switching activities 

39.00 19.70 35.10 19.60 uW/1s 

 
 

4.9 Formal verification RTL to Gate 
Formal verification that compares the equivalence of the RTL and Gate level 

netlist was also run in the Synopsys Formality tool. This tool compares there two netlists 

and as a result gives a report whether the two are equivalent or not. This has been used to 

make sure that the synthesis was run successfully without any changes in the design in 

any of the synthesis steps. 

4.10 Verification – Gate level simulation without timing 
After having the netlist generated through synthesis, I also did a gate level 

simulation by running the verification test on the netlist. This resulted in some failed tests 

which I had to fix. Minor changes had to be done in the RTL code and also some data was 

one clock cycle late on the output. I fixed these problems and continued towards the 

physical design. 

4.11 Physical design 

4.11.1 Introduction 

For the Physical design of the device, the following steps were used, which will be 

further described: 

 Floorplan 

 PlaceCells 

 CTS (Clock Tree Synthesis) 

 Route 

 Export 

 Extract 

 

In addition to these basic steps, several optimization scripts were also run that are 

usually connected with one of the steps. 
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Four different rundirs had to be made for physical design and the physical design 

was run under them to be able to make four different designs to be able to measure four 

different consumptions. This is a step that’s very unusual for development and had to be 
done for the purpose of being able to get several different consumption estimation values. 

4.11.2 Floorplan 

Area allocation is done during the Floorplan step. This means that measures of the 

chip are defined. Power supply and ground is defined by placing a ring around the chip. 

Port placement is also set. Macro cells are also placed in this step, but they were not used 

in this design. All these steps are defined by the designer. 

Four metallization layers were used for the design. Density of cells is 70%. These 

numbers were recommended by the S3 Group designers. 

The proportions of the measurements of the chip were chosen in approximate 

ration 1:2. The sizes are 157um and 82um, which gives 12874 um
2
 of area. 

4.11.3 Place cells 

Standard logical cells are placed in the area and time optimization is done. 

4.11.4 Clock tree synthesis 

Clock tree synthesis serves for defining the clock tree in the chip. This is one of 

the most important steps. It is an interesting point of how different the clock trees are in 

the different uses of clock gating, which will be described in the next following chapters. 

4.11.4.1 Logic clock tree 

Figure 48 and Figure 49 show the logic clock tree for I2C / APB of DP device. 

There is no clock gating used, therefore the clock signal leads to all registers. 

 
Figure 48: I2C clock tree – no clock gating 

 
Figure 49: APB Clock tree – no clock gating 
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Figure 50 shows the clock tree of automatic clock gating. It is very obvious and 

visible how DC Shell implements clock gating by using functional clock gating. Since 

most registers in the design are 8bit, so are usually 8 registers connected to each gating 

cell. 

 
Figure 50: I2C Clock tree – automatic clock gating 

 
Figure 51: APB Clock tree – automatic clock gating 
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Clock tree with manual clock gating is shown on Figure 52 and Figure 53. It is 

very obvious that there are only those gating cells that were placed manually since there 

are only a few. 

 
Figure 52: I2C Clock tree – manual clock gating 

 
Figure 53 APB Clock tree – manual clock gating 
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Figure 54 and Figure 55 show I2C clock tree for combined clock gating. Here we 

can see how first the manual clock gating divides the tree in several branches and then in 

these branches automatic clock gating was used. 

 
Figure 54: I2C Clock tree – Manual + automatic clock gating 

 
Figure 55: APB Clock tree – Manual + automatic clock gating 
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4.11.4.2 Physical clock tree 

The following pictures show the physical clock tree of the chips. The clock pins 

are purposefully placed close to the middle of the sides of the chip, because the Cadence 

tool does the routing of the clock tree from the center of the chip to make possibly short 

ways to all registers. 

 
Figure 56: Clock tree – no clock gating  

Figure 57: Clock tree – automatic clock gating 

 
Figure 58Clock Tree – manual clock gating 

 
Figure 59: Clock Tree – manual + automatic 

clock gating 
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4.11.5 Root 

In this step all cells and gates are connected. 

4.11.6 Export 

The netlist of the layout is exported after the physical design steps. 

4.11.7 Extract 

Extract serves for extracting a .spef (Standad Parasitic Extraction File) file with 

parasitics (resistances and capacitances) of the design under the best and worst 

conditions. This file will serve for generating a SDF (Standard Delay File). 

4.11.8 Final Floorplan 

The following pictures show the final floorplan after all the steps of the physical 

design of the chip (according to using the clock gating). As the pictures show, Cadence 

tool always used a different placement for different parts of the design. We can see that it 

always placed the I2C Slave close the left side, because the I2C pins are places on the left 

and APB Slave is placed towards the right side since the APB pins are on the right side. 
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4.11.8.1 Floorplan – no clock gating 

 
Figure 60: Floorplan – no clock gating 

 
Figure 61: Floorplan no clock gating with nets 

 

4.11.8.2 Floorplan – automatic clock gating 

 
Figure 62: Floorplan – automatic 

clock gating  

 
Figure 63: Floorplan – automatic clock gating 

with nets 
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4.11.8.3 Floorplan – manual clock gating 

 
Figure 64: Floorplan – manual clock 

gating 

 
Figure 65: Floorplan  – manual clock gating 

with nets 

 

4.11.8.4 Floorplan – manual + automatic clock gating 

 
Figure 66: Floorplan – manual + 

automatic clock gating 

   

 
Figure 67: Floorplan  – manual + automatic 

clock gating with nets 
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4.12 Layout Verification with timing 

4.12.1 Description 

The layout verification serves as the final verification in this design and it serves 

especially for measuring the power consumption. Therefore, there was only one 

verification test used and this was the tc_rxtx000, which is the standard behavior test. 

The inputs of this verification are a wave dump file (VCD file) and standard delay 

file (SDF). All of these are for four different variants according to the kind of clock 

gating that was used (CG_NONE, CG_AUTO, CG_MAN, CG_MAN_AUTO). VCD 

files are generated for IDLE mode and COMMUNICATION mode. SDF files are also 

generated for best and worst cases, which mean there are 8 VCD files and 8 SDF files. 

The output of Layout verification is a PASS/FAIL report (specifying if the test 

passed or failed) and a Power Report. Timing reports for worst case of timing are in 

chapter 4.12.2. The following numbers and results in this document are only for timing 

worst case, because worst case is obviously more important to pass than best case. 

The power estimation results were measured for 1Mbit/s speed transfers. The 

lowest possible frequency (15.15MHz) was used for the I2C Slave as the goal was to 

reach lowest power consumption possible and frequency influences dynamic power 

consumption. The reasons for using the frequency of 15.15MHz are mentioned in chapter 

4.3.10.1. 

4.12.2 Layout Verification Power reports for timing worst case 

The following values are mentioned in mW. 

4.12.2.1 Layout Verification Power report – no clock gating, Idle mode 
Group                           Internal   Switching     Leakage       Total  Percentage  
                                Power      Power         Power         Power  (%)         
----------------------------------------------------------------------------------------- 
Sequential                       0.03493   3.572e-06   0.0007587      0.0357       72.91  
Macro                                  0           0           0           0           0  
IO                                     0           0    4.57e-10    4.57e-10   9.335e-07  
Combinational                  7.971e-09           0   0.0005272   0.0005272       1.077  
Clock (Combinational)           0.002272     0.01043   3.913e-05     0.01274       26.01  
----------------------------------------------------------------------------------------- 
Total                            0.03721     0.01043    0.001325     0.04896         100  
----------------------------------------------------------------------------------------- 
 

4.12.2.2 Layout Verification Power report – no clock gating, Communication mode 
Group                           Internal   Switching     Leakage       Total  Percentage  
                                Power      Power         Power         Power  (%)         
----------------------------------------------------------------------------------------- 
Sequential                       0.03315   0.0001125   0.0007459     0.03401        71.7  
Macro                                  0           0           0           0           0  
IO                                     0           0    4.57e-10    4.57e-10   9.634e-07  
Combinational                  0.0001592   0.0002734   0.0004715    0.000904       1.906  
Clock (Combinational)           0.002236     0.01025   3.891e-05     0.01252        26.4  
----------------------------------------------------------------------------------------- 
Total                            0.03555     0.01064    0.001256     0.04744         100  
----------------------------------------------------------------------------------------- 
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4.12.2.3 Layout Verification Power report – automatic clock gating, Idle mode 
Group                           Internal   Switching     Leakage       Total  Percentage  
                                Power      Power         Power         Power  (%)         
----------------------------------------------------------------------------------------- 
Sequential                       0.01501   0.0003347   0.0009836     0.01633       54.82  
Macro                                  0           0           0           0           0  
IO                                     0           0   7.901e-08   7.901e-08   0.0002652  
Combinational                  1.523e-06   2.374e-06   0.0003836   0.0003875       1.301  
Clock (Combinational)           0.004542    0.008446   8.705e-05     0.01307       43.88  
----------------------------------------------------------------------------------------- 
Total                            0.01956    0.008783    0.001454     0.02979         100  
----------------------------------------------------------------------------------------- 

4.12.2.4 Layout Verification Power report – automatic clock gating, 

Communication mode 
Group                           Internal   Switching     Leakage       Total  Percentage  
                                Power      Power         Power         Power  (%)         
----------------------------------------------------------------------------------------- 
Sequential                       0.01346   0.0003558   0.0009657     0.01478       52.04  
Macro                                  0           0           0           0           0  
IO                                     0           0   7.901e-08   7.901e-08   0.0002782  
Combinational                  0.0001444   0.0002665   0.0003324   0.0007434       2.618  
Clock (Combinational)           0.004475    0.008316    8.68e-05     0.01288       45.35  
----------------------------------------------------------------------------------------- 
Total                            0.01808    0.008939    0.001385      0.0284         100  
----------------------------------------------------------------------------------------- 

4.12.2.5 Layout Verification Power report – manual clock gating, Idle mode 
Group                           Internal   Switching     Leakage       Total  Percentage  
                                Power      Power         Power         Power  (%)         
----------------------------------------------------------------------------------------- 
Sequential                      0.006285   0.0001088   0.0008658    0.007259       40.95  
Macro                                  0           0           0           0           0  
IO                                     0           0    2.01e-08    2.01e-08   0.0001134  
Combinational                   4.57e-08   5.802e-08   0.0005284   0.0005285       2.981  
Clock (Combinational)           0.004933    0.004831   0.0001765     0.00994       56.07  
----------------------------------------------------------------------------------------- 
Total                            0.01122    0.004939    0.001571     0.01773         100  
----------------------------------------------------------------------------------------- 

4.12.2.6 Layout Verification Power report – manual clock gating, Communication 

mode 
Group                           Internal   Switching     Leakage       Total  Percentage  
                                Power      Power         Power         Power  (%)         
----------------------------------------------------------------------------------------- 
Sequential                       0.02736   0.0004649   0.0008172     0.02865        56.9  
Macro                                  0           0           0           0           0  
IO                                     0           0    2.01e-08    2.01e-08   3.992e-05  
Combinational                  0.0001974    0.000337   0.0004422   0.0009766        1.94  
Clock (Combinational)           0.008208     0.01239   0.0001197     0.02072       41.16  
----------------------------------------------------------------------------------------- 
Total                            0.03577     0.01319    0.001379     0.05034         100  
----------------------------------------------------------------------------------------- 

 

4.12.2.7 Layout Verification Power report – manual + automatic clock gating, Idle 

mode 
Group                           Internal   Switching     Leakage       Total  Percentage  
                                Power      Power         Power         Power  (%)         
----------------------------------------------------------------------------------------- 
Sequential                      0.006596   0.0001538    0.001017    0.007767       45.09  
Macro                                  0           0           0           0           0  
IO                                     0           0   9.079e-08   9.079e-08   0.0005271  
Combinational                   4.57e-08   6.305e-08   0.0003927   0.0003928        2.28  
Clock (Combinational)           0.004382    0.004526   0.0001561    0.009064       52.63  
----------------------------------------------------------------------------------------- 
Total                            0.01098     0.00468    0.001566     0.01722         100  
----------------------------------------------------------------------------------------- 
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4.12.2.8 Layout Verification Power report – manual + automatic clock gating, 

Communication mode 
Group                           Internal   Switching     Leakage       Total  Percentage  
                                Power      Power         Power         Power  (%)         
----------------------------------------------------------------------------------------- 
Sequential                       0.01252   0.0004771   0.0009923     0.01399        47.2  
Macro                                  0           0           0           0           0  
IO                                     0           0   9.079e-08   9.079e-08   0.0003064  
Combinational                  0.0001918   0.0003663   0.0003115   0.0008696       2.935  
Clock (Combinational)           0.006229    0.008437   0.0001089     0.01477       49.86  
----------------------------------------------------------------------------------------- 
Total                            0.01894     0.00928    0.001413     0.02963         100  
----------------------------------------------------------------------------------------- 
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5 Power consumption results 

5.1 Power consumption results 
There are two main consumption modes for this device – the Idle mode and 

Communication mode. Both of these modes were measured since the device stays in Idle 

mode part of time of its use and the consumption is lower during this period. A transfer of 

6bytes both ways (I2C-> APB, APB -> I2C) was run during the communication mode to 

avoid inaccuracies which might be caused by not transferring enough data. 

Note: Transferring 6bytes using the typical communication test took 155us. 

The results of this consumption estimation are in Table 20. This table also shows 

the consumption estimation generated during synthesis bases on an expected clock 

activity by the synthesis tool. This information is only approximate, but can be quite 

useful, because it is available right after synthesis before any steps of physical design. 

Compared with the Communication mode, this value is between 60-80% of the 

consumption in Communication mode. Because synthesis estimations are not as accurate 

as estimations after physical design, the result evaluations in chapter 5.2 is written for 

estimations run after the physical design. 

Table 20: Power consumption results 

Netlist type Consumption 

mode 

Clock gating type 
Units 

NONE AUTO MAN MAN_AUTO 

After synthesis, no 

timing, estimated 

switching activities - 39.00 19.70 35.10 19.60 

uW/1s After layout, with 

timing switching 

activity dumped from 

gate level simulations 

IDLE 48.19 29.32 17.73 17.22 

COMMUNICATION, 

transfer of 6B 

47.09 28.08 50.34 29.63 

 

Percentage consumption of different modes compared to the consumption without 

use of clock gating is described in Table 21. This is done for better and more concrete 

results evaluation. Description and evaluation of Table 21 is in chapter 5.2. 

Table 21: Power consumption energy savings 

Consumption mode 
Clock gating type 

AUTO MAN MAN_AUTO 

IDLE 39.16% 63.21% 64.24% 

COMMUNICATION, 

transfer of 6B 

40.37% -6.90% 37.07% 
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Table 22 shows the amount of instances in each design. It is expected that clock gating will have 

more logic than the case without any clock gating; this can be seen with manual clock gating. On 

the other hand it is interesting that automatic clock gating and combined clock gating has fewer 

instances than the case without clock. Obviously DC Compiler uses some kind of optimalization 

for registers with automatic clock gating done during synthesis than for registers without this 

kind of clock gating. 

Table 22: Number of instances in the design 

Clock gating type  

NONE AUTO MAN MAN_AUTO 

1538 1285 1588 1342 instances 

 

5.2 Power consumptions results evaluation 

5.2.1 Automatic clock gating 

5.2.1.1 General 

Just by using automatic clock gating the consumption drops to about 60% 

compared to not using clock gating. This means about 40% of power consumption is 

saved just by adding one command during the synthesis. So basically, it is very low effort 

for the designer.  

5.2.1.2 Idle and Communication mode compare 

Both Idle and Communication mode have approximately the same consumption. 

This is based on the fact of how the clock gating is done – it is functional clock gating 

(described in chapter 3.4.1), so basically the same logic is still on most of the time. The 

interesting thing is that since there are many gating cells that need to be supplied, the 

consumption in IDLE mode is slightly higher than in communication mode. 

5.2.1.3 Summary: 

By basically no designer effort 40% of consumption can be saved. 

5.2.2 Manual clock gating 

5.2.2.1 Idle mode 

Here is a significant power saving compared to automatic clock gating done 

during synthesis. There is 63.21% of saved consumption during IDLE mode, compared to 

automatic clock gating there was only 39.16% of saved consumption. This result is more 

than satisfactory and shows how power consumption can be saved with reasonable 

placement of clock gating cells based on activity modes. 

5.2.2.2 Communication mode 

Consumption during communication mode is higher by 6.90% than when clock 

gating wasn’t used. One of the usual characteristics of manual clock gating is that 

maximum momentary consumption is higher than when clock gating is not used, because 

more cells are in use at one time. 



80 

 

5.2.2.3 Summary: 

 This mode has high communication consumption, which is higher than without 

clock gating (6.9% higher); however the consumption in idle mode is lower than in the 

automatic clock gating. In idle mode 24% more was saved with manual clock gating than 

in idle mode with automatic clock gating. 

5.2.3 Manual + automatic clock gating combination 

5.2.3.1 Idle mode 

 In this mode the consumption saving was 64.24%. This is slightly higher than 

how much was saved in idle mode with manual clock gating and is caused by the fact that 

the use of combined clock gating gated some registers that were not gated during manual 

clock gating.  

5.2.3.2 Communication mode  

In this mode the consumption saving is 37.07% compared with the consumption 

without clock gating. This is 3.3% lower than with only automatic clock gating. It is the 

highest consumption saving in communication mode of all clock gating variants. 

5.2.3.3 Summary:  

This combination seems like a good compromise between communication mode 

(30.07% of consumption saved) and idle mode consumption (64.24% of consumption 

saved). 

 

5.3 Practical examples of use 
I prepared the following examples to show how this IP block could be used and 

how useful for saving consumption it could be with using clock gating. These following 

examples were chosen on purpose to show an example when the access through DP 

device would be used often and an example when it would be accessed only in certain 

intervals (this is closer to the actual use scenario than accessing constantly). 

5.3.1 DP IP block as a device assessing a memory 

Let’s expect that the I2C Master is accessing a memory connected to the APB 
Master. Expect 70% of time in communication mode. 

Consumption = (70% * average communication consumption + 30% * average 

idle consumption) * time of communication 

Table 23: Consumption for use to access a memory 

 Clock gating type 

NONE AUTO MAN MAN_AUTO  

Consumption 47.420 28.452 40.557 25.907 
uW/1s 

Power consumption savings - 40.00 14.47 45.36 
% 
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Table 23 compares the different clock gating technique types in an example of 

accessing memory. The consumption values are in uW per 1 second activity. The power 

consumption saving values is compared with the case without clock gating use.  

The device is able to save 40% of power consumption with automatic clock 

gating. This was already seen from Table 21.   

Manual clock gating in this case is convenient to use when the device stays in idle 

mode a lot. Here it is expected that it will be in communication mode 70% of time, 

therefore the manual mode gives the worst results with only 14.47% saved consumption.  

Manual clock gating combined with automatic clock gating thanks to the 

combination of reasonable gating cell placing dependent on the operation as well as the 

use of logic clock gating round registers gives the best result – 45.36% saved 

consumption. I would describe this as a very good result. 

5.3.2  DP IP block as a device accessing temperature measure unit 

Let’s expect that the I2C Master is accessing a unit for temperature measuring 
once every 30 seconds. It sends a 6B command and receives data of 6B. This whole 

transfer takes approximately 155us. 

This means that the device spends 155us in communication mode and 29845us in 

idle mode. 

Table 24: Consumption for use to access a temperature measure unit 

 Clock gating type 

NONE AUTO MAN MAN_AUTO  

Consumption 1438.24 875.06 529.16 513.94 
uW/30s 

Power consumption 

savings 
- 39.16 63.21 64.27 

% 

 

This example better shows the effectiveness of manual clock gating in idle mode. 

It also demonstrates a use case much closer to the actual use of this IP block than the use 

case described in 5.3.1. 

 While automatic clock gating provides the same value of about 40% of saved 

power consumption, with manual clock gating I achieved 63.21% of saved power 

consumption. This is a very good result and shows how effective clock gating can be. 

Combined clock gating gives a result of 64.27% saved consumption, which is just 

slightly higher than manual clock gating. These values are close to the values only in idle 

mode, because the device spends most of its time in idle mode. It also takes fewer 

instances in the physical design (see Table 22) by about 15%, which can be useful and is 
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one of the reasons why combined clock gating gives better results. Gating cells are also 

placed to convenient registers besides that. 

5.3.3 Summary 

The effectiveness of saved power consumption directly depends on the amount of 

time the device spends in each mode – in this case the Idle and Communication mode. 

Each mode has different consumption and it is necessary to take the actual use of the 

device in account. This is expressed by Ahmdal’s law and taking this in account is usually 
more effective than just trying to lower the consumption in all modes. Focusing on the 

modes where the device spends most of its use is very important. 
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6 Summary 

6.1 Goals 
The goal of this thesis was to design and verify a Slave IP core for transmitting 

data between I2C and APB buses using low-power consumption techniques and 

comparing the results of power consumption. 

6.2 Low-power techniques 
The thesis describes the use of low-power techniques in IP design and compares 

different techniques and their characteristics that can be used to achieve low-power 

consumption. The result of the comparison was the selection of clock gating for use in the 

design. 

To be able to compare more results, four different clock gating modes were used – 

no use of clock gating, automatic clock gating (cells placed during synthesis), manual 

clock gating (clock tree gating/ cells placed manually) and combination of manual clock 

gating and automatic clock gating. 

6.3 Workflow and power estimations 
The workflow starts from specification and goes to physical design. It includes 

verification at different points of the workflow. Power estimations are run after synthesis, 

as well as after the physical design.  

The power estimations after synthesis are done for a typical clock activity; 

therefore they’re not very accurate. The power estimations after the physical design are 

accurate, because they count with all the delays in connections. The power estimations 

after the physical design run in two different modes – idle mode and communication 

mode. Because of this, the results after physical design are very accurate.  

It was necessary to plan what tools to use for the design, since there was usually a 

limited amount of licenses. 

6.4 Verification 
A third-party I2C Master was used for the verification to communicate with the 

I2C Slave designed in the Master’s thesis. A behavior model of the APB Master (bridge) 
was written as a part of the thesis to verify the right transfer of data. The verification was 

run for all different speeds, including: I2C speed modes 10, 50, 100, 200, 400 kb/s and 

1Mb/s to verify compatibility. Self-checking verification tests were used for the 

verification. Code coverage was also run as well as FSM state coverage and graphical 

examples of the FSM coverage are a part of the thesis. 
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6.5 IP core 
This IP can be used as a hard as well as a soft macro in the designs. The size of the 

design was determined by the amount of cells and the technology (65nm). The size is 

157x82um, which equals 12874 um
2
. 

6.6 Results 
The saved power consumption estimation results were run for I2C data transfer 

speed of 1Mbit/s and the results were more than satisfactory.  

6.6.1 Automatic placing of the clock gating cells 

Automatic placing of the clock gating cells during synthesis generally saves about 

40% of power consumption, which is a very interesting and good result. What is even 

more interesting is that the use of automatic clock gating results in the use of fewer cells 

in the design – the tools are able to make good use of the logic. The synthesis tool is able 

to put gating cells even inside the FIFOs (because the FIFIOs are from the same vendor as 

the synthesis tool), which leads to achieving these results. When using automatic clock 

gating the clock is disabled for those registers that don’t change their value (input is the 
same as output of the register. 

6.6.2 Manual placing of clock gating cells 

Manual placing of clock gating cells gave better results in idle mode compared 

with automatic placing – 63% of power consumption was saved. We can see that 

reasonable gating cell placement gives good results. On the other hand, in communication 

mode, the power consumption was 6.9% higher than in the case without the use of clock 

gating. This is because there is more logic that needs to be driven during communication 

mode than in the case with no clock gating. This is the typical behavior of clock gating – 

average power consumption is lower, but maximum consumption is higher. 

6.6.3 The combination of manual and automatic clock gating 

The combination of manual and automatic clock gating provided the best results. 

64% of power consumption was saved in idle mode and 37% in communication mode. 

The higher power consumption saving in idle mode was achieved thanks to the 

reasonable manual placement of gating cells that disable clocks for larger blocks (FIFOs). 

In communication mode, the power consumption saving was achieved thanks to disabling 

the clock to those registers that don’t change their value. 

6.7 Conclusion 
The results imply that it is convenient to use automatic clock gating along with 

reasonable manual placement of clock gating cells. Automatic clock gating ensures that 

the register clock is not enabled unless the value on the input is changed. Manual clock 

gating makes sure that the clock is disabled for registers that are not needed according to 

the device mode. The device mode expresses the function of the device in the mode and 

only the designer knows best what parts of the device are used in which mode. 
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The outputs of the thesis show power consumption savings results that are more 

than satisfying. All the requirements of the assignment were fulfilled. In addition to that, I 

did not finish the project with synthesis, but continued in the workflow to the physical 

design to obtain more accurate power consumption results for idle and communication 

mode as post-synthesis power consumption estimations are not very accurate (often 30-

70% inaccurate) and they only provide results for a typical clock activity. The power 

consumption results obtained after the physical design (after the layout) provided very 

accurate and impressive results.  
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A. Appendix – Regression report 
Below is the regression report of the verification tests. This report was passed for 

all the different speeds as well as types of clock gating use. 

============================================================================ 
  Regression date: 2012-Mar-27 
    Start time   : 2012-Mar-27 10:22 CEST 
    End time     : 2012-Mar-27 10:25 CEST 
 ============================================================================ 
   tc_tx000.v           SIMULATION STATUS: PASSED  (CPU:0.1s, mem:41.1M) 
 ---------------------------------------------------------------------------- 
   tc_rx000.v           SIMULATION STATUS: PASSED  (CPU:0.1s, mem:41.1M) 
 ---------------------------------------------------------------------------- 
   tc_rx002.v           SIMULATION STATUS: PASSED  (CPU:0.1s, mem:41.1M) 
 ---------------------------------------------------------------------------- 
   tc_intr000.v         SIMULATION STATUS: PASSED  (CPU:0.1s, mem:41.1M) 
 ---------------------------------------------------------------------------- 
   tc_intr001.v         SIMULATION STATUS: PASSED  (CPU:0.1s, mem:41.1M) 
 ---------------------------------------------------------------------------- 
   tc_intr002.v         SIMULATION STATUS: PASSED  (CPU:0.1s, mem:41.1M) 
 ---------------------------------------------------------------------------- 
   tc_intr003.v         SIMULATION STATUS: PASSED  (CPU:0.1s, mem:41.1M) 
 ---------------------------------------------------------------------------- 
   tc_intr004.v         SIMULATION STATUS: PASSED  (CPU:0.1s, mem:41.1M) 
 ---------------------------------------------------------------------------- 
   tc_intr005.v         SIMULATION STATUS: PASSED  (CPU:0.1s, mem:41.1M) 
 ---------------------------------------------------------------------------- 
   tc_intr006.v         SIMULATION STATUS: PASSED  (CPU:0.1s, mem:41.1M) 
 ---------------------------------------------------------------------------- 
   tc_intr007.v         SIMULATION STATUS: PASSED  (CPU:0.1s, mem:41.1M) 
 ---------------------------------------------------------------------------- 
   tc_intr008.v         SIMULATION STATUS: PASSED  (CPU:0.1s, mem:41.1M) 
 ---------------------------------------------------------------------------- 
   tc_intr009.v         SIMULATION STATUS: PASSED  (CPU:0.1s, mem:41.1M) 
 ---------------------------------------------------------------------------- 
   tc_intr010.v         SIMULATION STATUS: PASSED  (CPU:0.1s, mem:41.1M) 
 ---------------------------------------------------------------------------- 
   tc_intr011.v         SIMULATION STATUS: PASSED  (CPU:0.1s, mem:41.1M) 
 ---------------------------------------------------------------------------- 
   tc_othr000.v         SIMULATION STATUS: PASSED  (CPU:0.1s, mem:41.1M) 
 ---------------------------------------------------------------------------- 
   tc_rxtx000.v         SIMULATION STATUS: PASSED  (CPU:0.1s, mem:41.1M) 
 ---------------------------------------------------------------------------- 
 ============================================================================ 
  Total of 17 tests, 0 failing. 
 ============================================================================ 
 
 
 
 
 
 
============================================================================ 
  Regression date: 2012-Apr-18 
    Start time   : 2012-Apr-18 15:07 CEST 
    End time     : 2012-Apr-18 15:07 CEST 
 ============================================================================ 
   tc_rx001.v           SIMULATION STATUS: PASSED  (CPU:0.1s, mem:39.0M) 
 ---------------------------------------------------------------------------- 
 ============================================================================ 
  Total of 1 tests, 0 failing. 
 ============================================================================ 
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B. Appendix – Schematics from 

Novas Verdi 
Verdi is a tool developed by Novas to view RTL schematics from Verilog code. 

The code was also run through this program to avoid some of the look-and-see mistakes 

and also to prove that the design is actually written according to the description above in 

this text. 
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Figure 68: Schematic from Verdi: dp_s_top 
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Figure 69: Schematic from Verdi: dp_s_slave 
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Figure 70: Schematic from Verdi: dp_s_apb_data_unit 
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Figure 71: Schematic from Verdi: dp_s_apb_fsm 
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Figure 72: Schematic from Verdi: dp_s_i2c_slave 
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Figure 73: Schematic from Verdi: dp_s_i2c_data_unit 
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Figure 74: Schematic from Verdi: dp_s_i2c_fsm 
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C. Structure of the enclosed CD 
 
 

/src 
 /RTL 
  dp_s_top.v - DP device top level module 
  dp_s_i2c_slave.v – I2C Slave top level module 
  dp_s_i2c_fsm.v – I2C Slave FSM 
  dp_s_i2c_data_unit.v – I2C Slave data unit 
  dp_s_apb_slave.v – APB Slave top level module 
  dp_s_apb_fsm.v – APB Slave FSM 
  dp_s_apb_data_unit.v – APB Slave data unit 
  dp_s_global_consts.v - defines and constants 
  dp_s_gating_cell_wrapper.v – wrapper for manually                 
   placed gating cell 
  dp_s_fifo.v – instantiation of asynchronous FIFO 
  dp_s_resync.v – resynchronization unit 
 
 

/TESTBENCH 
 tst_bench_top.v – test bench top file 

wb_master_model.v – third party I2C Master file 
i2c_master_top.v – third party I2C Master file 
i2c_master_defines.v – third party I2C Master file 
i2c_master_byte_ctrl.v – third party I2C Master file 
i2c_master_bit_ctrl.v – third party I2C Master file 
dp_s_pad.v – pad model 
tc.v – verification tests 

 tc_tx000.v – code for running test case tc_tx000 
 tc_rx000.v – code for running test case tc_rx000 
 tc_rx001.v – code for running test case tc_rx001 
 tc_rx002.v – code for running test case tc_rx002 
 tc_rxtx000.v – code for running test case tc_rxtx000 
 tc_intr001.v – code for running test case tc_intr001 
 tc_intr002.v – code for running test case tc_intr002 
 tc_intr003.v – code for running test case tc_intr003 
 tc_intr004.v – code for running test case tc_intr004 
 tc_intr005.v – code for running test case tc_intr005 
 tc_intr006.v – code for running test case tc_intr006 
 tc_intr007.v – code for running test case tc_intr007 
 tc_intr008.v – code for running test case tc_intr008 
 tc_intr009.v – code for running test case tc_intr009 
 tc_intr010.v – code for running test case tc_intr010 
 tc_intr011.v – code for running test case tc_intr011 
 tc_othr000.v – code for running test case tc_othr000 
 

/text 
 dp.pdf  - Master’s thesis in PDF format 
 dp.docx  - Master’s thesis in MS Word format 


