
Insert here your thesis’ task.

Czech Technical University in Prague

Faculty of Information Technology

Department of Software Engineering

Master’s thesis

Tool for authoring of HTML5 presentations
with capabilities of real-time users’ interac-
tions.

Bc. Petr Mikota

Supervisor: Doc. Ing. Tomáš Vitvar, Ph.D.

4th May 2012

Acknowledgements

I would like to sincerely thank my supervisor Tomáš Vitvar for provided gui-
dance, overall technology insight, helpful comments and new ideas throughout
the thesis work.

I’m also thankful to my family and friends for unconditional support and
facing difficulties on making my education foremost priority.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations sti-
pulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive au-
thorization (license) to utilize this thesis, including any and all computer pro-
grams incorporated therein or attached thereto and all corresponding docu-
mentation (hereinafter collectively referred to as the “Work”), to any and all
persons that wish to utilize the Work. Such persons are entitled to use the
Work in any way (including for-profit purposes) that does not detract from its
value. This authorization is not limited in terms of time, location and quan-
tity. However, all persons that makes use of the above license shall be obliged
to grant a license at least in the same scope as defined above with respect to
each and every work that is created (wholly or in part) based on the Work, by
modifying the Work, by combining the Work with another work, by including
the Work in a collection of works or by adapting the Work (including trans-
lation), and at the same time make available the source code of such work at
least in a way and scope that are comparable to the way and scope in which
the source code of the Work is made available.

In Prague on 4th May 2012 .

vii

Czech Technical University in Prague
Faculty of Information Technology
c© 2012 Petr Mikota. All rights reserved.
This thesis is a school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Petr Mikota. Tool for authoring of HTML5 presentations with capabilities
of real-time users’ interactions.: Master’s thesis. Czech Republic: Czech
Technical University in Prague, Faculty of Information Technology, 2012.

Abstract

This thesis presents design and implementation of environment for creating,
managing and hosting of HTML5 presentations with backend server writ-
ten in Node.js. Node.js is coming out as an emerging JavaScript server-side
technology for creating efficient and scalable network applications with high
performance and yet low memory consumption. The framework also provides
ways for users to interact with presentation and it presents a feedback to a
lecturer.

Keywords HTML5, Node.js, presentations, social networks

Abstrakt

Tato práce pojednává o návrhu a implementaci nástroje pro tvorbu, správu a
hostováńı prezentaćı vytvořených v technologii HTML5. Součást́ı nástroje je
server napsaný v Node.js, což je server využ́ıvaj́ıćı jazyk JavaScript na straně
serveru pro tvorbu výkonných a škálovatelných aplikaćı. Nástroj zároveň
umožňuje interakci uživatel̊u se samotnou prezentaćı a poskytuje zpětnou
vazbu přednášej́ıćımu.

Kĺıčová slova HTML5, Node.js, prezentace, sociálńı śıtě

ix

Contents

Introduction 1

1 Analysis 7

1.1 Objectives . 7

1.2 Requirements . 7

1.3 Definitions . 9

1.4 Mockup design . 12

1.5 Related work . 14

2 Principles and Technologies 17

2.1 Web 2.0 . 18

2.2 REST . 19

2.3 Cloud . 21

2.4 HTML5 . 22

2.5 JavaScript . 23

2.6 Application Server . 27

2.7 Database . 32

3 Design and Implementation 37

3.1 Architecture Design . 37

3.2 Libraries . 38

3.3 Server . 39

3.4 Client . 46

3.5 Portal . 51

4 Evaluation 55

4.1 Requirements . 55

4.2 Integration . 57

4.3 Project License and Hosting . 58

Conclusion 59

Bibliography 61

xi

A Acronyms 63

B Installation 65

C Screenshots 67

D Contents of enclosed CD 69

xii

List of Figures

0.1 Humla architecture overview . 5

1.1 User interactions with Humla . 10
1.2 Mockup of Portal application . 12
1.3 Mockup of comments on slides . 14

2.1 Protocols, data collected on March 11th, 2012 from http://www.

programmableweb.com/apis/directory/ 20
2.2 Architecture of Node.js (Courtesy: [5]) 28
2.3 CAP Theorem and visual guide to NoSQL (Courtesy: [10]) 33

3.1 Full application stack . 38
3.2 Activity diagram of server execution 40
3.3 Humla REST Endpoints . 44
3.4 Humla client architecture . 46
3.5 Humla integration of web APIs . 50
3.6 Sequence diagram of OpenID authentication (Courtesy: [1]) 52

C.1 Humla Portal Application . 67
C.2 Humla Client Application . 68

xiii

http://www.programmableweb.com/apis/directory/
http://www.programmableweb.com/apis/directory/

List of Tables

3.1 Extension Methods . 49

4.1 Supported browsers . 56

xv

Introduction

One of the main characteristics of current era is the vast amount of data
produced in every single second. If we desire to provide those data to so-
mebody, we need to analyze, process and conclude the right answers, which
are complete yet simplified enough to be presented to a man and lead him
to his own goals. With the raise of social networking sites, like Facebook or
Google+, the number of human interactions has increased significantly and
as a consequence the Bacon’s number applied on all humans’ relations has
decreased1. One single person is able to give away information to 300 people
he has listed as his “friends” and he has a good chance that majority will get
that information. One could say that new technologies allow one person to
have bigger one-to-many impact that he could have before 20 years. But what
about school lectures? Has there been any improvement lately?

Not that far in the history the only way to give a lecture was with white
chalk on the blackboard, from which students would remember, for teacher
inaudible, scraping sound of sliding chalk. With information technologies
the abilities to give a presentation have increased significantly and in many of
lectures is the spoken word supported with showing slides with data-projector.
This development provides not only relief for student’s ears, but it also means
a big challenge for new methods of education.

So what is the main goal of someone giving a lecture? He wants to deliver
information to his listeners and for that he needs to attract their attention.
Apart from choosing correct words and have a great presenting abilities, he
has to react to student’s feedback even if it’s only from their facial reactions.
Standard desktop slides have no ability to track any feedback. They are only
static entity, which don’t make use of any interaction from listeners.

And this is exactly the problem that is solved in following chapters. The
focus is on improvements of current presentation possibilities and also on work
with feedback from listeners since majority of currently used tools doesn’t
actually count with any feedback at all.

1Kevin Bacon defines Bacon’s number at http://findthebacon.com/ as average actor-
to-actor distance through common movies to Kevin Bacon.

1

http://findthebacon.com/

Introduction

Motivation

Let’s imagine one example situation. A teacher is giving a lecture about
some programming related subject and he is trying to educate all his 150
students. As he is going through his lecture he has noticed three different
students. First student writes everything down to his notes. He is focused
whole lecture and from time to time he asks various topic related questions. He
even found one teacher’s error. Second student, somehow average, is listening
the whole presentation, but he is struggling as his mind keeps slipping away.
He makes few notes from what he thinks is interesting or useful. Third student
occasionally pays an attention to the lecture and when he finally does he just
takes few notes from what the teacher just said. He is that exact type that
keeps all his actual studying for home. At home he reads all slides and other
sources and he is trying to understand all those things only by himself.

Teacher’s goal is to figure out the way how to teach them all. He needs
something that would help the first student with his questions and it would
provide him with extended information. The second student would welcome
different interesting ways of interacting with presentation to keep his mind
focused. And the third one would be happy with a system where he could
ask questions and interact with the presentation even after the lecture itself
is over. For all that they would need a web application, which is fast and
responsive along with support for large number of simultaneous users, but
also which is easy to use and doesn’t impose any extra requirements on users.

Project

The objective of this thesis is to create a presentation environment for mana-
ging slides with social interaction possibilities. Humla, a front-end framework
originally created by doc. Ing. Tomáš Vitvar, PhD.2, is extended with server-
side part and further extensions. The name of the project remains Humla3

and as that it is reffered in further chapters. Tomáš Vitvar uses Humla as a
tool to present HTML5 slides at two main subjects in field Software and Web
Engineering. Those subjects are Web 2.0 (MI-W20) and Middleware and Web
Services (MI-MDW). One of the goals is to make a framework for even wider
support of these subjects and for wider use at the Czech Technical University
in Prague.

This thesis is a part of a larger project maintained by a group of 3 people
including myself. Each of us aims at different goals and implements different
part of the whole project. Vladimı́r Ř́ıha is aiming at faceted browsing of stu-
dying materials; Vojtěch Smrček is improving presentation possibilities with
HTML5 technology. Each of us had tasks as shown on the Figure 0.1.

2Original front-end version can be found at https://github.com/tomvit/humla
3The name Humla is derived from Nepal district called Humla.

2

https://github.com/tomvit/humla

List of functionalities which original Humla provides:

• Humla Core — browsing through presentations, definition of presenta-
tion structure, configurable loading system of core files and extensions,

• Default styling — default CSS stylesheet template,

• View modes — support for 4 different view modes and switching
among them using keyboard shortcuts,

• Client-side extensions system — provides user extensions and some
extensions are already incorporated (Github, Google Drawings etc.),

• Syntax highlighter — highlighting source code’s syntax.

Complete list of functionalities I’ve developed:

• Server Core. I’ve designed architecture and implemented the server
side application with minor help from Vladimı́r Ř́ıha. This server core
can also be used as a module in other applications.

• Portal. I’ve designed and developed Humla Portal application for ma-
nipulation with presentations (browsing, editing etc.).

• Comments extension. As a part of managing social interactions bet-
ween lecturer and listeners, I’ve implemented both client and server side
extension for posting comments under single slide.

• Likes extension. Every logged user can like/dislike any slide to provide
feedback information to a lecturer.

• Tests. The creator of the presentation can add simple yes/no tests to
the presentation using Tests extension.

• OpenID login. I’ve implemented core functionality to both server and
client to authenticate user using OpenID protocol.

• Menu interface. I’ve implemented on-slide Menu with ability to show
menu items from extensions.

• Social networks integration. Every user can share presentation on
the three most common social networks (Facebook, Twitter, Google+).

3

Introduction

Thesis Structure

This thesis is divided into five different chapters. Chapters are sorted in the
same order as the development phases.

Chapter 1 describes requirements, system analysis and user interface design.

Chapter 2 describes a survey of suitable technologies regarding following
implementation.

Chapter 3 describes implementation, structures and different framework parts.

Chapter 4 describes fulfilling of previously stated requirements and tests de-
veloped framework with different setups under different circumstances.

Chapter Conclusion makes final statement, summarizes work done and
makes recommendation for future work and improvements.

4

Figure 0.1: Humla architecture overview

5

CHAPTER 1
Analysis

This chapter is devoted to the definitions and system requirements for design of
Humla presentation environment. System design follows user interface design
and finally, it discusses research of related works to compare and evaluate
efforts in making new presentation environment.

1.1 Objectives

The first goal is to create presentation environment that is based on origi-
nal Client-side application Humla and to extend it with server application for
hosting presentations and ability to provide further information about presen-
tations.

The second goal of this thesis is to enrich both server-side and client-
side application with capabilities of real-time users’ interactions. The social
element is based on possibility to comment and rate each slide in similar way
as it’s already implemented on users’ posts on social websites. This goal also
introduces ways of getting feedback from listeners using tests on slides. The
goal is to make all those interaction easier for both lecturers and listeners.

The third goal is to make Humla easy extendable with users’ extensions
and to make Humla able to deploy in various situations and environments.

1.2 Requirements

The main requirement for Humla presentation environment is ability to show
presentation itself. Since Humla uses quite lot of advanced features it is ap-
propriate to make a requirements analysis. Requirements analysis is usually
divided between two parts, Non-functional and Functional requirements. The
first stands for requirements that are laid as conditions to system whereas the
latter specifies requirements, that define specific behavior or functions.

7

1. Analysis

Note again that since Humla is developed as a collaboration of three stu-
dents, in the following list are mostly requirements that I’m responsible for or
that I’ve participated on.

1.2.1 Non-functional requirements

Platform Independent. Humla can run on different most used platforms.
The server part runs on all major operating systems (Linux, Windows
and Mac OS). The Front-end application works in all major browsers
that adopt HTML5 specification.

Various Devices Support. Humla can be used on mobile devices (tablets,
mobile phones etc.) as well as on personal computers.

Used Technologies. Humla runs on Node.js (JavaScript based server-side
technology) and it extends the original Humla project with new ex-
tensions as well as core modifications. The front end application uses
HTML5 since most of current smart-phones, tablets and PCs are capable
of displaying HTML5 web pages.

RESTful API. Humla provides access to 3rd party applications through web
services using RESTful technology. This enables other applications to
get and use information about lectures.

1.2.2 Functional requirements

Managing courses and presentations. Lecturer can create course with
one or more lectures. On those lectures Humla provides way to fill
additional information (e.g. abstract) and select if the presentation is
visible to other users or not. After the lecture is created Humla provides
way to select and edit desired lecture details.

Browsing through lectures. User can browse and filter all courses, select
desired course and then choose desired lecture from that course. Humla
provides further information about lecture (abstract and contents). Humla
is open source and thus it’s not intention to restrict access to presenta-
tions. All presentations stored in Humla are public.

Tests in presentations. Lecturer can add a simple quiz with yes/no ques-
tions into the presentation. Test usually takes place at the end of the
presentation or at the end of some significant chapter. After the listener
finishes the test Humla will show the test results. The purpose of those
tests is to refresh students’ memory on what they’ve learned in previous
parts of the lecture.

8

1.3. Definitions

Menu in presentations. During presentation Humla provides the way to
display menu in which the user can change different views on presenta-
tion and view comments or likes/dislikes. Menu also provides an inter-
face for extensions to add further menu items.

Adding Comments on slides. Any authenticated user can add comments
on a single slide and read comments from other users.

Adding Likes on slides. Any authenticated user can provide interest by
“liking” or “disliking” any slide. Humla displays statistics of likes/dis-
likes from other users for each slide.

Administration. Humla Server allows simple configuration. User can confi-
gure server setups and the list of enabled extensions.

Social networks integration. Humla provides way to share presentations
on a widely used social networks such as Facebook or Twitter.

Different sizes of presentations. Humla supports wide range of presenta-
tion sizes from one-to-one presentation to presentations for huge au-
diences. There should be no problem to interact with many users at the
same time and everybody should have the same user experience.

1.3 Definitions

User roles that appear in further parts of this thesis are:

Lecturer presents presentation to one or more listeners using various types
of supplementary tools (e.g. slides, live examples, blackboard writing).

Listener listens to a lecture, asks further questions, and usually takes notes,
either to his paper notebook or his laptop.

Note that those are only roles and in real situation listeners also may create
and present slides before the whole class (for example to show the results of
their research assignments).

The lecture materials are also used by listeners for study purposes. Lis-
teners try to understand things that didn’t make it the first time, and they
possibly have questions which they can usually ask on the following lecture.

Other desktop tools for creating presentations are Microsoft PowerPoint,
or Impress from LibreOffice1. Some presentations may be made in LaTeX and
there may be some innovative approaches as replacement of black board with
writing by hand on tablets.

9

1. Analysis

Figure 1.1: User interactions with Humla

1.3.1 Architecture

Humla acts in 3 different roles:

Application. In this particular context it is Web Application that is acces-
sible through commonly known web address. User is able to create and
show presentations as well as setup some of the presentation settings.

Framework. Easy extendable application which provides ability to be run
from your own computer and make your own presentation in simple
markup. Humla can be executed either as a standalone front-end web
application or front-end application with server behind. For the first
option user only needs to include one file into your HTML presentation
file without any need for running server. The second option provides
ability to host Humla on users’ own environment. Example usage would
be to host Humla for single university or its department. Both Server
and Client part can be extended by user written extensions.

Module. Humla can be used as a module, which is to be included and run in
other projects. This provides ability to use utilities and functions from
Humla in other applications (build on top of similar technologies).

Humla can be divided into 3 main parts (also see Figure 1.1):

Server

Server is the heart of the whole system and it has to take care of all components
of the system. It is the only part that can access a database. It has to take
care of answering requests and database accesses.

1OpenOffice.org stopped its development and its biggest successor is LibreOffice.org

10

1.3. Definitions

Portal

Portal is mostly standard web application that provides capability to create
and modify courses and lectures filter and show available lectures (after login).
Another portal goal is to provide list of available REST endpoints and services
and further information about lectures.

Client

Client is responsible for the presentation itself. It provides different ways of
showing slides. Client allows listeners to post their comments and further
questions, or provide information about how they liked the slides. Client also
provides little tests at the end of the lecture, where every listener chooses
answers and when the test ends it will show correct results as well as further
statistics. Note that this part is able to run without server.

1.3.2 Data Layer

As mentioned earlier, information for each Course and Lecture is stored in da-
tabase, so the server can retrieve them later and use them as a user expierence
enhancement.

Courses are collection of single course records, which stores information
about a course owner and a course name as well as a base course URI.

Lectures are associated with single Course via courseID and in Lectures
collection are defined lecture metadata about author and about lecture
itself (its Abstract).

Comments define collection of comment records. Each comment has fields
for identifying its author and for linking it with particular Course, Lec-
ture and Slide. Note that slides are not persisted in database because
the actual presentation is serialized to a HMTL file.

Likes collection is used for persisting likes/dislikes for each slide. It is coupled
with slide through slideID, lectureID and courseID and it stores array
of users which had clicked on like or dislike button.

Tests holds data assigned to each test. Each entry in this collection represents
one test on one particular presentation and slide. Each test has questions
and answers whith correct ones marked as well as the list of people’s
answers and additional information.

For persisting data is used NoSQL Key-Value pair database, so the actual
data model may differ and even different lectures (e.g. newer) may have
slightly different data model (e.g. due to another set of enabled extensions)
and everything will still be able to work correctly. That is also one reason
why I haven’t defined that precisely all of the fields in all collections.

11

1. Analysis

1.4 Mockup design

As said before our application is composed of three parts out of which only
two interact directly with user. The first one is the portal that hosts all
presentations and course materials and the second one is the presentation
itself. Both user interfaces has to be enough simple and minimalistic, yet they
have to follow common usage standards and UI patterns. For creating smart
UI designs it’s important start with making sketches and mockups to realize
what will user see and what interactions will be needed. The goal is to display
for user only what he needs at that particular moment and make the next step
more obvious and easy to distinguish.

The main Portal window (as shown on the Figure 1.2) is the first thing user
will see and it provides him with all information needed to select and open
presentation. The second part is the presentation itself (HTML5 slides and
Client underneath) with menu and extensions. Design is slightly different as
shown on the Figure 1.3, because both parts serve a different purpose. Portal
is mostly for searching and selecting presentations and Client is for viewing
presentations.

Figure 1.2: Mockup of Portal application

12

1.4. Mockup design

1.4.1 Heuristic Analysis

The main goal of heuristic evaluations is to identify and give a name to any
problems caused by wrong design of user interfaces. This method was develo-
ped by usability consultant Jakob Nielsen based on his experience in teaching
and consulting about usability engineering.

Jakob Nielsen’s ten rules of Heuristic Analysis [17] of Graphical User In-
terface applied on Humla Portal and Humla Client:

1. Visibility of System Status. Humla doesn’t make any high perfor-
mance computations, so there’s no need for any progress-bars, but the
visibility of system status is assured even during loading of lectures. In
the Portal part are guiding labels (i.e. “Choose lecture first”) to make
sure user knows what next step he should take.

2. Match between system and the real world. Humla’s presenta-
tions structure matches real world lectures, because in the real world is
usually course that have one or more lectures associated with it. Buttons
have consistent names and in the Client application are used intuitive
pictographs as menu buttons.

3. User control and freedom. User freedom on Portal is assured by
displaying all needed information and ability to change every chosen
option and application behaves almost statelessly. In the Client user
can browse through slides freely using keyboard arrows, mouse buttons
or touch gestures on devices with touch support.

4. Consistency and standards. In both Portal and Client are used stan-
dard button names and design is consistent thanks to standard HTML
controls.

5. Error prevention. In Humla there are only few user input fields
(mostly while creating or managing new presentations). Validation is
executed on those fields before the form is submitted. Whenever an
error occurs, Humla shows an Error PopUp window explaining what
caused the error.

6. Recognition rather than recall. On Portal user doesn’t need to
remember the previous steps in presentation search or selection, because
all steps are still visible.

7. Flexibility and efficiency of use. Humla can be controlled using key-
board and mouse with all standard keyboard shortcuts (either from web
browser or operating system). Humla uses intuitive slide control using
keyboard arrows. Portal controls are similar to other web applications.

13

1. Analysis

8. Aesthetic and minimalist design. In the application is displayed
only the information needed and specially during viewing the presen-
tation, there are no distracting elements, just the slides and menu bar
with opacity.

9. Help users recognize, diagnose, and recover from errors. Humla
displays error messages directly both on Portal and on Client applica-
tion.

10. Help and documentation. Humla Portal offers About tab, where are
further details about whole environment and links to documentation.
The client application doesn’t offer any type of help or documentation
as it’s control is very intuitive.

Figure 1.3: Mockup of comments on slides

1.5 Related work

This section provides an overview of related projects in the field of displaying
slides online. Main focus is on possible ways of social interactions between
slides and users.

Slideshare

Slideshare2 is probably the most used service for sharing presentations
on the internet with more than 1 million of registered users. After uploa-

2http://www.slideshare.net

14

http://www.slideshare.net

1.5. Related work

ding in Microsoft Office PowerPoint or PDF format users can provide
name, description, tags, language and visibility of presentation. User
can later attach a soundtrack in MP3 to his presentation. Presentations
are provided using HTML5 and they show various links for sharing on
other social networks. Advantages of Slideshare are login via Facebook
account and ability to search through presentations index. One of the
disadvantages is that it’s not possible to make an interactive presenta-
tions and the second disadvantage is that the uploaded file will generate
HTML5 code without correct usage of semantic tags and with some
other problems caused by conversion. Although it’s possible to com-
ment the whole presentation, there is no way to comment on a single
slide. For every presentation there are usage statistics and buttons to
share presentation in common social sites.

Prezi

Prezi3 provides users with ability to create really beautiful slides using
interactive editor. Then you can create slides with defined path in 2D
space to move around slides with zooming and other effect. Application
is made using Adobe Flash and it allows users to login using Facebook.
Prezi allows comments and likes, but there are no further social interac-
tions that would be usable in school. Prezi’s main goal is to make more
“marketing” and appealing slides that attract listeners’ attention.

SlideRocket

SlideRocket4 enables users to create own slides as well as upload files in
PowerPoint format. Presentation editor is quite similar to PowerPoint.
Presentation is in Adobe Flash, so most of the mobile devices won’t
be able to display it, although recently SlideRocket introduced HTML5
viewer. Even though it’s possible to import YouTube videos or other web
pages, the resulting slides are mostly static with only few animation
possibilities. SlideRocket doesn’t offer any direct interaction between
lecturer and his listeners, but it provides measurements of presentation
effectiveness through analytics page.

Authorstream

Authorstream5 supports uploading of presentations created in Micro-
soft PowerPoint (i.e. files extensions PPT, PPS, PPTX and PPSX).
Users can upload presentation either anonymously or under registered
username. Presentation frontend is made using Flash technology with
available control menu. Users can comment on presentations and also

3http://prezi.com
4http://www.sliderocket.com
5http://www.authorstream.com

15

http://prezi.com
http://www.sliderocket.com
http://www.authorstream.com

1. Analysis

like them using standard Facebook components. It’s possible to embed
voice into the presentation.

SlideVenue

SlideVenue6 comes with ability to upload PPT and PPS files and then
the presentation is converted to JPEG files runnable as a slideshow.
Users can rate and comment on presentations, but the system is full of
advertisements that may spoil the overall impression.

Prezentit

Prezentit7 is quite simple tool with JavaScript based editor and user
interface similar to what is known from PowerPoint. It allows users to
cooperate on presentation creation. Thanks to JavaScript the Prezentit
is usable on most of the smart mobile devices, but the system is still
under ongoing development and it doesn’t provide users with any ways
of social interaction.

MyPlick

MyPlick8 provides, apart from standard uploading of ODP, ODR, PPT,
PPS, PDF, an interesting ability to upload also sound files. Presentation
itself is again made using Flash and provides an ability to insert presen-
tation to users webpage. User can rate, comment or share presentations.

As shown in the list of related project mentioned above, there are already
available solutions for creating and showing presentations. There’s no solution
directly usable for social interaction between listeners and lecturer and yet
usable for schools. Other options like drawing on slides or various view modes
are also usually missing. There is no way to make a polls or small tests at the
end of presentation.

6http://www.slidevenue.com
7http://prezentit.com
8http://www.myplick.com

16

http://www.slidevenue.com
http://prezentit.com
http://www.myplick.com

CHAPTER 2
Principles and Technologies

Any application that can be
written in JavaScript, will
eventually be written in
JavaScript.

Jeff Atwood

World Wide Web is only 23 years old, since it has been proposed by Tim
Berners-Lee at CERN in 1989 [13] as a system for “high energy physicists
to share data, news, and documentation.” The first release consisted of a
web server, which would communicate with web browser, both written in
Objective-C. From that little project came something that its authors couldn’t
outguess. Web went through astonishing and dramatic evolution and became
one of the most important technological milestones in the last century. World
Wide Web had complied its name and became used world-widely with current
rate of 32.7% of people with access to the internet (78.6% in North America)1.
Nowadays, because of the wide usage, the World Wide Web can be referred
only as Web. The main principles of Web architecture are:

• Standard-based — builds on top of a common agreement and allows big
spread and adoption,

• Separation of Concerns — enables independent innovation (using stan-
dard interface between layers),

• Royalty-free technology — a lot of open source, no fees.

1Stats from 12/31/2011, http://www.internetworldstats.com/stats.htm

17

http://www.internetworldstats.com/stats.htm

2. Principles and Technologies

2.1 Web 2.0

First web pages contained only static content, which was simply served as it
was stored on servers’ hard drives, later the content got generated on the server
from data usually stored in relational databases. And even later it became
possible to customize pages by manipulating with a HTML Document Object
Model (DOM) using JavaScript and separate styling to CSS style rules. The
meaning of the Web had moved from static pages to highly interactive Web
applications. Another huge milestone happened thanks to eBay, that launched
a Beta version of their Application Programming Interface (API) in November
2000 [12]. This was a beginning of third party applications integration and
web mashups. During these years the Internet sector and related fields noticed
steady commercial growth and became interesting for many Internet-based
companies and venture capital specialist, which created an environment, where
investors were able to forget everything they’ve learned, forget the risks and
invest huge amount of money for Web pages that had “e-” prefix and “.com”
at the end. This era is called dot-com bubble.

After the dot-com bubble burst (around Fall 2001) all investors were sus-
picious about everything Internet related, so Internet companies had to think
about new approaches and new paradigms. This is where Web 2.0 comes into
the play. The term Web 2.0 came from a name of a series of web conferences
by Tim O’Reilly [9].

Web became a platform and the way users and developers interact with
the Web changed significantly. Web 2.0 enables users to not only consume in-
formation but also produce their own values and information on various web
applications. This change was based on ability to dynamically send and receive
data using Asynchronous JavaScript and XML (AJAX) with XmlHTTPRequest.
Web applications became usable as a desktop applications and it became pos-
sible to use the application with any computer connected to the internet, since
the application downloaded from a remote server and after that executed lo-
cally. The only required condition from the user is a compatible web browser.
The trend is to move applications from desktop to web browser, since this
provides benefits for both, users and developers. Users have synchronized
content through all their smart mobile phones, laptops or desktops and de-
velopers don’t have to keep in mind differences between platforms since they
can just write application only for one application server with frontend writ-
ten in JavaScript (though they ought to solve some browser incompatibilities).
There is also almost instant update of new versions and to push bug-fixes to
users is fairly easier.

The current web as a platform extends user possibilities and with growing
number of web applications, where users create their own content by posting
to various social services. Developers can also create mashup application of
other applications using their APIs. The importance of APIs has increased
significantly [15]. And developers can publish their applications much early,

18

2.2. REST

so they are often in Beta state even though they are widely used.

Web is based on three main architectural concepts:

• Identification — universal linking of resources using URI,

• Interaction — different protocols to retrieve resources (e.g. HTTP),

• Formats — standardized resource representation of data and metadata
(HTML).

Let’s have a look at Identification, because it is crucial to have a single glo-
bal identification system and for Web it’s Uniform Resource Identifier (URI).
With URI can be addressed concrete resources and navigate through them via
hypertext. URI identifies a resource, but the resource doesn’t have to phy-
sically exist, so for locating the resource is used Uniform Resource Locator
(URL).

1scheme":"["//"authority]["/"path]["?"query]["#"fragment]

Listing 2.1: Structure of URI

In Listing 2.1 are stated different parts of URI. URI consists of scheme (usually
used for specifying protocol), authority (registered name, or server address),
path and query (identifies resource) and fragment (refers to a part of a re-
source).

One of the most important Web protocols is Hypertext Transfer Protocol
(HTTP)2 which is used for exchange of hypertext documents. Hypertext do-
cuments are usually represented using Hypertext Markup Language (HTML).
However hypertext is not only HTML, but every representation of a resource
with URI links will do.

2.2 REST

Representational State Transfer (REST) is a resource-oriented model of Web
APIs for Web Services created by co-author of HTTP, Roy Fielding [7]. The
REST is strongly based on Client-Server architecture and it is possible to sim-
ply use HTTP for realization of REST (then the realization is called RESTful),
which provides many features of HTTP like Caching, Addressability and Uni-
form Interface. Thanks to HTTP it is possible to use highly scalable Web
infrastructure (caching and/or proxy servers) and that’s one of the reasons of
good world-wide adoption of REST. In Figure 2.1 it’s apparent that REST is
the most used protocol (at least on http://programmableweb.com). As a side
note, SOAP3 was there first so big companies and state administration use

2Currently used version of HTTP is 1.1.
3http://www.w3.org/TR/soap/

19

http://programmableweb.com
http://www.w3.org/TR/soap/

2. Principles and Technologies

SOAP more since it is easier to standardize using WSDL4. REST can also be
formalized for example using WADL5, but formalization is still under ongoing
research and good practice is to create a developer-friendly documentation.

Figure 2.1: Protocols, data collected on March 11th, 2012 from http://www.

programmableweb.com/apis/directory/

RESTful uses HTTP methods (GET, PUT, POST, DELETE and others)
to manipulate with resources. Data representation can be in different formats,
like XML, YAML or JSON. For Humla project the most appropriate to use is
JSON because of its JavaScript nature, but some of the main REST endpoints
also return XML to reach wider group of developers.

The status of HTTP response is expressed by one of the defined HTTP
response codes. Server has to set correct response codes to express situation
caused by clients request.

Response codes are categorized into 6 different classes6:

• 1xx Informational — indicates a provisional response,

• 2xx Successful — indicates that action requested by client has been
successful and accepted correctly,

• 3xx Redirection — indicates that client has to take additional action to
complete the request,

• 4xx Client Failure — informs about error on client side,

• 5xx Server Failure — informs about server failure to a valid request,

4http://www.w3.org/TR/wsdl/
5http://www.w3.org/Submission/wadl/
6Status codes definition can be found at http://www.w3.org/Protocols/rfc2616/

rfc2616-sec10.html

20

http://www.programmableweb.com/apis/directory/
http://www.programmableweb.com/apis/directory/
http://www.w3.org/TR/wsdl/
http://www.w3.org/Submission/wadl/
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

2.3. Cloud

• 6xx Global Failure — indicates that there’s an unspecified general error.

In RESTful HTTP status codes has to be setted up correctly for each
response.

2.2.1 State

“State is a set of values or data that application holds. The state is distri-
buted to both clients and servers and statelessness does not mean there is no
state.”[21] Every application has some notion of a state and the main diffe-
rence is in how the state is represented. Application servers can be divided to
Stateless and Statefull — the first one holds state in data being communicated
but doesn’t save it between connections, whereas the latter holds state in its
memory and sometimes it even persists state to DB.

In REST the server is stateless so it uses the Hypertext as the Engine of
Application State (HATEOAS), where the link realizes a transition between
application states. One of the advantages of this approach is loose coupling
of server and clients.

2.3 Cloud

Cloud Computing is sharing hardware or software resources over common
network (typically the Internet). Users of “clouds” approach to delivery of
computing as a service rather than a product.

The main advantages over the standard hosting are higher availability and
reliability, lower costs and easier scalability. Cloud has become a widely used
technology and more and more companies start to use Cloud on different levels.
As Imad Mouline, CTO of Gomez – a web performance measurement company,
says: “The cloud is being adopted by the biggest, stodgiest companies out there,
whether they know it or not.”[16] Big companies use their own Clouds in their
datacenters, where different departments lease desired CPU time. There are
also companies that allow users to use their datacenters’ capacity for their
own projects for a little fee based on consumed CPU Time. Examples of this
approach would be: Google AppEngine, Microsoft Azure or Amazon AWS.

There are 3 different levels of Cloud Computing7:

• SaaS — Software as a Service: mainly web-based software for end-users,

• PaaS — Platform as a Service: preconfigured development environment
for developers,

• IaaS — Infrastructure as a Service: physical computers or virtual ma-
chines with network middlewares and available CPU time.

7There are also few humorous abbreviations: EaaS - Everything as a Service or FaaS -
Fun as a Service.

21

2. Principles and Technologies

Humla is the example of SaaS cloud application where users create their
presentations online.

2.4 HTML5

HTML5 is backward compatible specification of HTML markup language pro-
posed by World Wide Web Consortium (W3C) which builds on top of HTML
4. HTML5 is in state Last Call Working Draft and is expected to get to Re-
commendation state around year 2022 [11]. HTML5 is widely supported by
various companies including Google, Adobe and Microsoft.

2.4.1 History of HTML

We can date beginnings of HTML to year 1993 [19], when HTML 1.0 was
proposed as a draft to the Internet Engineering Task Force (IETF). HTML
spread around the world with the expansion of Internet but there always has
been an argument between browser vendors, web developers and people from
W3C. Most of HTML revisions were defined just to reflect what browsers al-
ready support and most of the web sites have at least one syntactic problem.
So to satisfy users browser vendors had to make their browsers able to display
even very corrupted HTML page (at least somehow) and then web develo-
pers have started optimizing their code for those browsers which meant a big
trouble. One example would be initial versions of Internet Explorer (Micro-
soft licensed first browser Mosaic to create Internet Explorer), which added
new proprietary features instead of fixing bugs and obeying standards (e.g.
, <marquee>). With Internet explorer (IE) started the first “browser
war”. Other web browsers were in worse starting position because the IE
was bundled with every Windows installation. This led IE to dominating of
market, which has culminated in 2002 with 95% share. The noteworthy fact
is that IE during it’s highest shares wasn’t following standards in corner cases
and it gained a label of being “buggy”. This was ideal opportunity that other
browser vendors could take advantage of. As a result, other browsers started
to fight about market share with browsers obeying standards (more or less).

In October 2006, Tim Berners-Lee, the founder of the W3C, announced
that the W3C would work together with the WHAT Working Group to evolve
HTML. One of the first things the newly re-chartered W3C HTML Working
Group decided was to rename currently developed “Web Applications 1.0” to
“HTML5.”

2.4.2 HTML5

HTML5 is a collection of individual features, so it’s currently impossible to
just simply detect “HTML5 support”. HTML5 is successor of HTML 4 which
and everything that worked in HTML 4 is still functional in HTML5 although

22

2.5. JavaScript

there may be a better and simple way. Browsers that don’t support HTML5
markups still work (almost) correctly but perhaps the result wont’t be so user
friendly. Current versions of most browsers support HTML5 at least partially
and since the HTML5 specification still isn’t in state of Recommendation it
can’t be stated if browser has full support or not. But it appears that in the
future all major browser vendors will support HTML5 as they take part in
W3C HTML Group.

From the name it may look like HTML5 is only markup language, but the
markup itself is only one small part. One could say that HTML5 is actually set
of different JavaScript APIs which evolved from use cases that users already
used, but had to implement them with some (mostly JavaScript) workarounds.

Local Storage

Developers have desire to save user settings and user local information in-
side browser. The main reason is usually better user experience and lower
amount of transferred data and server load. Before HTML5 developers had
two options:

Save data inside hidden HTML elements — This option is still used by
large server frameworks to manage application state,

Cookies — Cookies are simple key–value pairs for saving almost any seria-
lizable data, but they are limited in size (4KB) and they are sent back
to the server with every request. That leads to unnecessary data com-
munications.

HTML5 comes with better solutions. HTML5 storage provides way to save
various string based data in user’s browser (usually in designated browser’s
folder). User can load saved data even after browser restart. Local Storage
API used to be part of the main HTML5 specification, but it got separated,
because HTML5 Working Group realized that HTML5 specification is getting
too big. So as said by Mark Pilgrim in his book [18]: “If that sounds like slicing
a pie into more pieces to reduce the total number of calories. . . well, welcome
to the wacky world of standards.” LocalStorage (and SessionStorage as a
matter of fact) is object that implements the HTML5 Storage interface. Local
Storage is accessible via localStorage variable inside browser’s DOM (Data
Object Model) window object.

Local Storage has quite simple API for clearing all items, getting item,
setting item and deleting item.

2.5 JavaScript

JavaScript is multi-platform, object-oriented scripting language developed ori-
ginally by Brendan Eich from the company Netsape. JavaScript derives its

23

2. Principles and Technologies

syntax from Java, its first-class functions from Scheme and inheritance mo-
del from language called Self [8]. Standardized version of JavaScript is called
ECMAScript, which refers to the name of the standardization organization
ECMA. Current version of ECMAScript is ECMA-262 version 5.1.8 ECMAS-
cript 5 offers new properties to make objects immutable and other new fea-
tures. From ECMAScript are derived other implementations like ActionScript.

“JavaScript is an important language because it is the language of the web
browser. Its association with the browser makes it one of the most popular
programming languages in the world. At the same time, it is one of the most
despised programming languages in the world. The API of the browser, the
Document Object Model (DOM), is quite awful and JavaScript is unfairly
blamed. The DOM would be painful to work with in any language. The
DOM is poorly specified and inconsistently implemented.”[3]

JavaScript is built on top of very good ideas, but it has also many flaws.
Let’s have a look at both sides:

The Good Parts

The really good parts of JavaScript are its functions implementation as
first class object with (mostly) lexical scoping, loose typing, dynamic
object and expressive object literal notation. It has prototypal inheri-
tance which means one object can inherit properties from other object
without using concept of classes. “Deep down, JavaScript has more in
common with Lisp and Scheme than with Java. It is Lisp in C’s clo-
thing. This makes JavaScript a remarkably powerful language.”[3] One
of the strengths is also build in event-loop as a language feature — this
is particularly important for asynchronous I/O servers like Node.js.

JavaScript is fairly stable language. There have been no new design
errors since 1999, but this changes again with ECMAScript 5.

The Bad Parts

The bad ideas include a programming model based on global variables,
non-intuitive scoping problems with closures (functions returned from
another functions) and other implementation failures like non-transitive
equals operator. Let’s have a look at the following example:

1undefined ==false // false

2false ==null // false

3undefined ==null // true

JavaScript has also other problems with automatical type coercion of ==
operator, so the good habit is to use ===, which doesn’t coerce automati-

8Specification can be found at: http://www.ecma-international.org/publications/

files/ECMA-ST/ECMA-262edition5.1,June2011.pdf

24

http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262 edition 5.1, June 2011.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262 edition 5.1, June 2011.pdf

2.5. JavaScript

cally. Another really interesting examples of JavaScript implementation
oddities are (with results in commment part)9:

1[] + [] // ’’

2[] + {} // {}

3{} + [] // 0 (or {} in V8)

4{} + {} // NaN

Those are reasons why JavaScript programming language is referred by
Douglas Crockford as “the most misunderstood language”. It has gained bad
reputation during 95% IE market share era, but its biggest strength is the
availability almost in every single web browser.

In Humla the JavaScript is used for both client and server side.

2.5.1 JSON

JSON10 is simple universal data interchange format made as part of the EC-
MAScript standard. JSON (the abbreviation stands for JavaScript Object
Notation) format has been defined by Douglas Crockford and it is based on
a subset of the JavaScript Programming Language, Standard ECMA-262 3rd
Edition — tangibly it is based on JavaScript’s object literal notation. JSON’s
MIME (Internet media type) is application/json. These days many popular
sites, like Google or Yahoo, publish their data through various mostly REST
webservices also in JSON format.

Big benefits of JSON are the speed of processing and the easiness of use,
because it is recognized natively by JavaScript. ECMA has defined in 1999
the eval() function that parses the format. But all modern browsers sup-
port more secure approach JSON.parse(param) and JSON.stringify(param)

functions. A correctly implemented JSON parser will accept only valid JSON,
preventing potentially malicious code from running.

JSON actually differs slightly from JavaScript definition in line ending
characters, because Douglas Crockford forget to add that to standard [3].

JSON is built on top of two popular structures:

• Array is ordered list of values, which is surrounded by two brackets,

• Object is unsorted collection of name/value pairs, which is surrounded
by two braces.

Both structures can be nested inside each other and values and pairs are
separated by commas. Value can be one of string, number, object, array,
true, false or null. An example of JSON with object and inner arrays
representing single presentation would be:

9Examples from Gary Bernhardt’s lightning talk from CodeMash 2012 https://www.

destroyallsoftware.com/talks/wat
10http://www.json.org/

25

https://www.destroyallsoftware.com/talks/wat
https://www.destroyallsoftware.com/talks/wat
http://www.json.org/

2. Principles and Technologies

1{

2"title": "Diploma thesis presentation",

3"keywords": ["Humla"," HTML5"," presentation"],

4"numberOfSlides": 17,

5"images": [],

6"codeBlocks": [

7{ "slideURL": "/Diploma/lecture2.html #!/14",

8"language": "JavaScript"

9}]

10}

Listing 2.2: JSON Example

One of the modifications based on JSON is JSONP, which is JSON with
Padding, a usage pattern commonly employed when retrieving JSON from a
webpage from another domain.

JSONP is based on loading data through src attribute of the <script>

HTML element and thus outsmart the Same Origin Policy security concept.

First, the browser reads src attribute of the <script> element. Then
browser sends a GET request to the server:

1http:// example.com/user?Id =1234& jsonp=parseResponse

Then server returns JSON padded with a function call:

1parseResponse ({"Name": "Foo", "Id" : 1234})

Received JSON data are evaluated by the JavaScript interpreter, because
browsers don’t parse them using JSON parser. This allows to save received
data to any variable in client’s parseResponse() function. Without JSONP
the data would embedded into the HTML document.

Modern alternative to JSONP would be Cross Origin Resourse Policy
(CORS), which uses designated HTTP headers to negotiate ability to access
resources from other domains. CORS is supported by majority of modern
browsers.

2.5.2 Humla

The original Humla (OH) presentation environment by Tomáš Vitvar is Ja-
vaScript library that uses HTML5 and ECMAScript 5 to show presentations
in browser window. Supported browsers are Google Chrome and Safari. It
offers different ways do display slides (via Views) and it is controlled by key-
board. The presentation is in pure HTML5 and the only thing that’s needed
is to include humla.js and humla.css files into the HTML header. OH loads
other necessary files dynamically. OH provides a config.json file in which it
is possible to set up behavior, views and extensions.

OH doesn’t have any underlying server included so it has to be hosted in
form of static files from a server. It’s currently not possible to run OH directly

26

2.6. Application Server

from the file system, because the dynamic script file loading is disabled by
default in the majority of browsers.

2.5.3 jQuery

JQuery is a fast and concise JavaScript Library that simplifies HTML docu-
ment traversing, event handling, animating, and Ajax interactions for rapid
web development.11 JQuery is used on the Humla’s Portal administration
sites for filtering, field manipulation and events handling.

2.6 Application Server

Building frameworks represents a set of challenges which needs to be solved
and the solution itself depends a lot on the chosen technology. Since most of
the use cases defined before can be done asynchronously for backend of the
Humla is used Node.js, which has got peak popularity between its enlarging
community due to its non-blocking nature and event handling mechanism.

2.6.1 Node.js

Node.js12 is young13 event driven JavaScript environment with non-blocking
I/O based on JavaScript implementation V8. V8 also stays under the hood
of Google Chrome web browser. One of the Node.js’ goals is to make an
easy way of developing scalable network programs. It is influenced by other
event driven frameworks and systems like Twisted (Python) or Event Machine
(Ruby). Node’s author, Ryan Dahl, comments Node as a “bunch of sugar on
top of a very complex virtual machine written by Google”14

Even some major technology companies invested in and use Node.js for
solving some of their performance and other problems. Examples would be15:

Microsoft invested money and time to make Node.js working correctly on
Windows and also made it possible to use Node.js in Azure, Microsoft’s
cloud service,

Ebay choosed Node.js as the runtime stack in ql.io: a data-retrieval and
aggregation gateway for HTTP APIs,

LinkedIn has build their entire mobile software stack on top of Node.js,

11http://jquery.com/
12http://nodejs.org
13Ryan Dahl announced Node.js on 02/09/2009 at http://four.livejournal.com/

963421.html.
1411/08/2009 Ryan’s presentation of Node.js at JSConf 2009 resulted in applauded ova-

tion.
15extended list from http://nodejs.org

27

http://jquery.com/
http://nodejs.org
http://four.livejournal.com/963421.html
http://four.livejournal.com/963421.html
http://nodejs.org

2. Principles and Technologies

Yahooo uses Node.js for some inside startups and for supporting browsers
without JS enabled by generating plain HTML,

Facebook is using Node.js for experiments with JSGameBench (an HTML5
game benchmarker), mobile JS framework and for traffic analysis and
load testing.

Figure 2.2: Architecture of Node.js (Courtesy: [5])

As shown in figure 2.2 Node.js’ core is built in C/C++ on top of Google’s
V8 JavaScript implementation. V8 compiles the source JavaScript directly
to machine code the first time it is executed, so there is no bytecode format
and JavaScript is not interpreted. Although the main part is V8, Node.js also
relies on other libraries:

• libeio for thread pool and asynchronous I/O,

• libev for event-loop mapping to underlying operating system,

• c-ares for asynchronous DNS support,

• OpenSSL for cryptography and SSL/TLS support.

All those libraries are written in C/C++, whereas Node.js standard library is
written in JavaScript and there are plenty of helpful bits like REPL command-
line interface and URL parser. Standard library layer can only access to
the main thread, but in lower C levels it is possible for Node.js to take and
advantage of multi-threading programming.

Node.js is capable of handling thousands of incoming connections at the
same time on a single computer16 and that’s the limit where other technologies
have often failed. The reason for this behavior is that other technologies like
Apache usually scale by spawning threads for each incoming connection, Node
does it in a different way by firing event for every HTTP request using only

16The theoretical problem is called C10K http://www.kegel.com/c10k.html

28

http://www.kegel.com/c10k.html

2.6. Application Server

single process (although there are situations where few more processes are
possible and more accurate).

Tedd Ziuba mentioned reasons to or not to choose Node.js prior to other
technologies in his article “Node.js is Cancer” [4].

The objections are following:

• “‘Node.js is scalable because it never blocks’ is a lie” — There will al-
ways be blocking in the sense of CPU computation, but in the world
of Web applications that isn’t usually the main problem causing regres-
sions. Node.js is using JavaScript to make it easier not to block on
I/O operations, which usually take by magnitude more time than CPU
operations.

• “Node.js doesn’t employ separation of responsibility and is not enough
loosely coupled” — This objections is accurate and even though Node.js
includes own HTTP server it is often proxied using Nginx or other HTTP
proxies. Node.js architecture is more similar to Python’s standard li-
brary, which is written in Python, but with performance crucial blocks
of code implemented in C.

• “Node.js is server written in JavaScript” — This is completely rea-
sonable objection since JavaScript is simple dynamic programming lan-
guage with many flaws, but if used correctly it becomes easier and faster
to write applications. The stability of Node.js is still questionable due
to its maturity.

Simple HTTP server in Node.js returning text with HTTP header 200 OK
would look like this:

1var http = require(’http’);

2

3http.createServer(function (req , res) {

4res.writeHead (200, {’Content -Type’: ’text/plain’});

5res.end(’Hello World\n’);

6}).listen (1337, "127.0.0.1");

7

8console.log(’Server running at http ://127.0.0.1:1337/ ’);

Listing 2.3: Node.js Server Example

As shown in Listing 2.3, there are two important facts, which acquired
Node.js a lot of attention. First, a function is passed as a parameter to be exe-
cuted as a callback to incoming request using JavaScript language constructs
and inner event loop. Second, due to JavaScript it is fairly easy to understand
what is happening and still be able to write high-performance application.

From previous paragraphs it is apparent that event-loop approach may
provide better performance conditions and lower memory consumption, but
let’s take a look at real example of how event-loop works:

29

2. Principles and Technologies

1function example () { console.log(’A: In next tick’); }

2process.nextTick(example);

3console.log(’B: Standard ’);

Output is:

1B: Standard

2A: In next tick

Considering the order of commands it would be intuitive that Node.js inter-
preter prints output ”A: In next tick” and then ”B: Standard”. It is actually
the opposite because of process.nexTitck() function, which is scheduling
execution of function example() for next loop of JavaScript’s event-loop.

Node.js or Java EE

“Support for multiple users in Enterprise Java applications is provided by the
application server in the form of multi-threading. Each user-request is map-
ped to a thread, which takes care of responding to the user-request. Asyn-
chronous event-driven frameworks do exist in the Java world. Examples are
the jboss.org project Netty and Apache MINA, which are both based on the
Java NIO (New I/O) API. ... Problem is that these frameworks are outside of
the JEE specifications. In the Enterprise Java world it is the JEE specification
that lays out the way applications deal with concurrency, and so far they are
sticking to the multi-threaded model. If you want to be JEE conform you
have to use multi-threading for concurrency.”[6]

The conclusion is that Node.js is useful for both highly concurrent applica-
tions with a large user base and with thousands of concurrent requests and it
is still easy to write small prototype applications. Node.js uses almost exclu-
sively asynchronous I/O, whereas Java EE usually maps requests to threads.

2.6.2 Node.js and libraries

Node.js without its growing community of developers couldn’t raise interest
around the internet and it would come back to dust as other startup appli-
cations and companies. After three years of Node’s lifespan there has been
amazing spread between users and developers of Node.js.

With larger community comes bigger amount of libraries (Node.js develo-
pers call them modules), that have been created to interact with other services
(e.g. database connectors and object mappers, web services’ clients or different
authentication plugins) and to make development easier (various frameworks
and middlewares). Modules can be installed using Node Package Manager
(npm)17 using simple command line interface.

Examples of most used and forked modules would be:

17As of Node.js version 0.6.3 npm has been incorporated into the Node’s distribution.

30

2.6. Application Server

• Forever by Nodejitsu Inc — A simple CLI tool for ensuring that a given
node script runs continuously (i.e. forever),

• coffee-script by Jeremy Ashkenas — CoffeeScript is a little language
that compiles into JavaScript,

• Express by TJ Holowaychuk — Sinatra inspired web development fra-
mework,

• socket.io by Guillermo Rauch — Real-time apps made cross-browser &
easy with a WebSocket-like API,

• jsdom by Elijah Insua — A javascript implementation of the W3C
DOM.

All these modules can be found in the GitHub (http://github.com) or in
the website of npm.

Express

Express.js is Sinatra18 inspired web development framework for Node.js de-
veloped by TJ Holowaychuk. Express is built on top of Connect, which is a
set of common HTTP server related middlewares for Node.js. Express makes
it easy to create high performance applications with its caching and HTTP
header manipulating middlewares [20].

Features as listed from http://expressjs.com:

• Built on Connect

• Robust routing

• HTTP helpers (redirection, caching, etc)

• View system supporting 14+ template engines

• Content negotiation

• Focus on high performance

• Environment based configuration

• Executable for generating applications quickly

• High test coverage

18Sinatra is web application library and domain specific language written in Ruby. Fur-
ther details can be found at http://www.sinatrarb.com/

31

http://expressjs.com
http://www.sinatrarb.com/

2. Principles and Technologies

2.7 Database

One of the problems of real-life communication is that it’s not from definition
recorded and to obtain some only spoken information again, student has to
ask teacher to repeat that and even then it’s not guaranteed that student will
remember the information later. And there comes into play our presentation
environment, which may save some comments and other student-teacher inter-
actions to persistent database (DB). One of the goals when choosing the right
Database Management System (DBMS) is good integration with JavaScript
and Node.js.

Database plays really important role on scaling of web application. Stan-
dard relational database management systems may cause read/write delays
and in some cases may be a bottleneck. Regarding this problem there’s an
option to use NoSQL19 databases, which are principally designed for web ap-
plication with focus on their performance and scalability.

2.7.1 CAP Theorem

“In theoretical computer science, the CAP theorem, also known as Brewer’s
theorem, states that it is impossible for a distributed computer system to
simultaneously provide all three of the following guarantees:” [2]

• Consistency means that all nodes are able to see the exactly same data
at the same time,

• Availability provides us with a guarantee that for every request there
will be a response about the result, whether it was successful or not,

• Partition tolerancemeans that system will keep operating and be able
to even if some data is lost due to communication or hardware problems.

The theorem says that it is possible to satisfy any two guarantees, but not
all three at the same time.

As shown in Figure 2.3, there are various databases on every side of CAP
triangle. The most used NoSQL Database engines are:

• CouchDB,

• MongoDB,

• Riak,

• Cassandra,

19NoSQL is an umbrella term for a loosely defined class of non-relational data stores that
break with a long history of relational databases and ACID (atomicity, consistency, isolation,
durability) guarantees. Data stores that fall under this term may not require fixed table
schemata, and usually avoid join operations. The term was first popularized in early 2009.

32

2.7. Database

Figure 2.3: CAP Theorem and visual guide to NoSQL (Courtesy: [10])

• Memcache,

• BigTable.

The most appropriate database system for Humla is MongoDB because
of its good integration with Node.js, wider user-base, replication abilities and
because of an option to use Mongoose, which would bring us a schema like
approach for easier access to data. It is also possible to migrate database from
MongoDB to similar databases like CouchDB.

2.7.2 MongoDB

MongoDB20 is a scalable, high-performance, open source non-relational BSON
based database management system, which provides well-known API with
JavaScript & JSON like syntax.

“MongoDB is a document-oriented database system with a strong focus
on flexibility, scalability and performance. Document-orientation involves lea-
ving the row-centric concept of the relational database model, and introdu-

20http://www.mongodb.org

33

http://www.mongodb.org

2. Principles and Technologies

cing the much more flexible notion of a document. Document-orientation
avoids rigid database schemata and also promotes a certain degree of denor-
malization which allows embedding documents into each other, leading to
potentially much better performance by avoiding the need for expensive join
operations.”[14]

MongoDB provides:

• Document oriented storage,

• Full Index Support,

• Replication & High Availability,

• Auto-Sharding,

• Rich Document based queries,

• Map/Reduce,

• Command line interface.

MongoDB is document-oriented DBMS, so instead of focusing on the “row”
as primary data entity, the core of MongoDB is a “document”. Documents are
in collections in which no predefined schema is enforced, thus the documents
in a collections don’t have to share the same structure.

During replication process MongoDB uses master-slave architecture and
data is replicated from master instance to configured slaves.

BSON

BSON21 is the main data format which is used in MongoDB to store data to
disk as well as use them for communication. BSON is based on JSON and the
main difference is that BSON is binary format whereas JSON is plain-text.
The reason for encoding data in binary format is efficiency — numbers don’t
have to be converted to/from text, which is faster than with JSON numeric
strings. BSON defines few own data types that it parses directly. The JSON
string {"hello": "world"} is represented (in standard JavaScript/Python
notation) as:

1\x16\x00\x00\x00\x02hello\x00

2\x06\x00\x00\x00world\x00\x00

21http://bsonspec.org/

34

http://bsonspec.org/

2.7. Database

Mongoose

Mongoose22 is a JavaScript library designed to run within the Node.js environ-
ment. Mongoose makes working with MongoDB easier by providing a more
intuitive API. Mongoose also provides the ability to define data models that
act as a gatekeeper protecting your data. Models offer typecasting on field,
validation, default values, output formats and other options.

Mongoose holds DB connection in internal variable and thus it is possible
to access to MongoDB via Mongoose only by requiring mongoose module and
then making requests like in the following example:

1var mongoose = require(’mongoose/’).Mongoose ,

2db = mongoose.connect(’mongodb :// localhost/test’),

3Collection = mongoose.noSchema(’test’,db);

4

5Collection.find ({}).each(function(data){

6// request result is in the variable data

7});

Listing 2.4: MongoDB data access using Mongoose

22http://mongoosejs.com/

35

http://mongoosejs.com/

CHAPTER 3
Design and Implementation

Everything runs in parallel
except your code.

Mikito Takada

With an introduction to the most suitable technologies in previous chapter,
this chapter is dedicated to architecture design and implementation of Humla
presentation environment.

3.1 Architecture Design

As shown in Figure 3.1 Humla is composed of three main parts:

Client is downloaded from Server and executed in user’s browser and it ba-
sically allows users to view presentations. Client interacts with Server
through REST API and it is extendable through JavaScript extensions.

Portal is also downloaded from Server and executed in user’s browser. Portal
allows users to create courses and lectures and to edit further information
about them. User can select desired course and open the presentation.

Server is Express.js HTTP server with access to MongoDB (via Mongoose
module). Server runs on top of Node.js. Server hosts both Client and
Portal and it is extendable via extensions.

3.1.1 Behavior

Whole process starts when user opens Portal Page (with standard HTTP
GET request), the webpage is being downloaded to user’s browser and then
it makes an AJAX request for available Courses and their Lectures. User can

37

3. Design and Implementation

Figure 3.1: Full application stack

login using OpenID and then, if he has sufficient rights (e.g. he is a Lecturer),
he can create course, or lecture in selected course.

Let’s get back to motivation situation mentioned in the first chapter, where
teacher is making presentation for his students. Teacher creates Course in
which he creates new Lecture and then he just gives his students information,
where Humla is hosted (if that’s not the first lecture, they will already know).
After that teacher opens a presentation, which is represented as a single HTML
file with link to the Client application (There’s only one link to humla.js and
it dynamically loads other necessary files through dynamic content loading)
and the client will take care of the whole initialization, so the teacher is able
to start lecturing right away. The lecturer can send a URL link to students or
students can open the Portal page, search and select the currently narrated
lecture and open it. Then they are able to interact live with the teacher.

Humla is easily extendable via extensions on both server and client side.
Extensions usually exist in pairs, so the client part is able to communicate
with its Server side extension through REST API.

3.2 Libraries

For server part are used following Node.js modules (with current versions):

38

3.3. Server

• Mongoose 2.5.13

• ExpressJS 2.5.1

• Cron 0.1.3

• Jsdom 0.2.10

• Passport 0.1.1

Libraries may have their own dependency packages, since the Node package
resolution finds the nearest node_modules folder in the filesystem tree. All
those packages are easily maintaned using NPM.

Humla can be run in Cloud, because both MongoDB and Node.js are able
to run on Cloud computing hosting. For IaaS it’s possible to deploy Node.js
for example to Amazon EC21 or JoyentCloud2, for PaaS it’s possible to deploy
Node.js to Nodejitsu, Heroku and many others.3

3.3 Server

Humla is built on top of Node’s asynchronous I/O. And the asynchronous
approach is realized through the set of callbacks for every single I/O task,
which avoids executions blocking. Also there is no overhead as in systems
with one thread per request. Some of the initialization steps have to be done
in a synchronous way to be able to load all necessary system parts before
server starts to listen on a selected port.

The whole initialization process is shown in Figure 3.2. The most impor-
tant steps are:

• Server execution. User can run Humla using console command node
index.js.

• Load and parse configuration file. In this step the server confi-
guration (from server-config.json) is passed to the server instance.
Configuration file consists of paths, domain, port and list of enabled
plugins. This configuration is passed to Express.js server with other
middlewares (e.g. sessions, logger, passport).

• Load Models, Handlers and Extensions. Humla loads files re-
presenting Models (/models/), Handlers (/handlers/) and Extensions
(server_ext) using standard Node.js require() method. So for models
the requiring loop looks like follows:

1http://aws.amazon.com/ec2/
2http://www.joyentcloud.com/
3The list of hostings is at https://github.com/joyent/node/wiki/Node-Hosting

39

http://aws.amazon.com/ec2/
http://www.joyentcloud.com/
https://github.com/joyent/node/wiki/Node-Hosting

3. Design and Implementation

Figure 3.2: Activity diagram of server execution

1models.forEach(function (model){

2require(model);

3});

For models and handlers all files from their folders are loaded, whereas
for extensions only files that are defined directly in server-config.json

are loaded.

After all steps are done the server starts listening on a given port.
Server has few different responsibilities and the first one is to statically

serve requested files over the internet. Humla uses Express static route (see
Listing 3.1).

1app.configure(function () {

2var oneYear = 31557600000;

3app.use(express["static"](webroot), {

4maxAge: oneYear

5}));

6});

Listing 3.1: Usage of express static route

40

3.3. Server

Then for the following HTTP GET request to the Humla:

1GET / HTTP /1.1

2User -Agent: curl /7.21.1 (i686 -pc -mingw32)

3Host: localhost :1338

4Accept: */*

Humla server responds with the correct parameters as set in Express.js
configure:

1HTTP /1.1 200 OK

2X-Powered -By: Express

3Date: Thu , 22 Mar 2012 21:02:54 GMT

4Cache -Control: public , max -age =31557600

5Last -Modified: Tue , 20 Mar 2012 19:37:52 GMT

6ETag: "6643 -1332272272000"

7Content -Type: text/html; charset=UTF -8

Then for every incoming request the Express routing chain is executed as
well as various middlewares4, like body and cookie parsers as well as session
storage with OpenID support.

Express utilizes the HTTP methods names through routing API. For
HTTP GET request we simply call get methods with parameters of route
strings that are parsed internally in Express, and function callbacks to exe-
cute when the request is ready:

1app.get(’/’, function(req ,res) {

2res.redirect("/pages/index.html");

3});

In this example is shown the default redirect to the main portal page.

With default options come few handlers defined in /handlers/default.js

for retrieving default data for Portal and standard error pages.

3.3.1 Humla as a Node.js Module

Apart from using Humla as a standalone server it is also possible to use Humla
server extensions in other Node.js modules and applications. The definition
file for Humla used as a module is humla.js in the project root. When other
developers desire to use Humla in their own projects, they can simply require
”humla” module. Example of Humla initialization looks like following:

1var humla = require("humla");

2humla.init({

3"administration":{"enable":true},

4"atom":{"enable":true},

5"slideindex":{"enable":true}

6},true);

4Express.JS uses middlewares as tools to interact, manipulate and filter data in incoming
request.

41

3. Design and Implementation

7

8console.log(humla.administration);

This example loads Humla (line 1), then Humla loads extensions as listed in
the init method. The first parameter of the init method on the line 6 is
object with listed extensions. This parameter is optional and when it is not
provided, Humla will load all default extensions from server-config.json.
The second parameter is boolean value from which Humla chooses if it should
enable or disable database. The last line (line 8) in this example will list all
available methods for administration extension.

After initialization, Humla object provides access to all enabled extensions’
methods simply as attributes of humla variable. Example usage of extensions
is following:

1humla.administration.getCourse("MI-MDW",undefined ,

2function(err ,data){

3if(!err) console.log(JSON.stringify(data));

4else console.log("MI -MDW not found");

5});

In this example Humla returns course data for course with courseID “MI-
MDW”.

3.3.2 Humla module definition

In the file package.json is definition of the whole structure of Humla envi-
ronment with dependencies. As shown on Listing 3.2 the versions of modules
and of Node.js are defined, so the NPM is able to download and install all
necessary modules if needed.

1{

2"version" : "0.1.0",

3"name" : "Humla",

4"description" : "Presentation Environment.",

5...

6"dependencies" : {

7"express": ">= 2.4.1",

8"jsdom": ">= 2.0.1"

9...

10},

11"engines": {

12"node": ">= 0.4.1 < 0.7.0"

13},

14"repository": "git:// github.com/bubersson/humla",

15"main": "index"

16}

Listing 3.2: Humla module definitions.

42

3.3. Server

This definition file is required for publishing of Humla into the standard
NPM modules registry. It describes required versions of all modules and the
version of Node.js.

3.3.3 Database

For mapping of database entries are used Mongoose schemata stored in folder
models/. Every model has definition of the schema and then the server regis-
ters all schemata to Mongoose’s internal models array. To illustrate schema
definition see the following shortened version of CommentSchema:

1var CommentSchema = new Schema ({

2courseID: String ,

3body: String });

4mongoose.model(’Comment ’, CommentSchema);

On the line 4 is registration of the new Comment model and after this step
extensions can access Comment schema using:

1var Comment = mongoose.model("Comment");

Models are loaded automatically during server start-up and accessible from
all handlers and extensions.

3.3.4 REST API

Humla provides API for interacting with data using RESTful. Every user
can interact with public REST endpoints. Also the communication between
Client and Server is done using the same REST API’s.

3.3.5 Extensions

Server loads extensions during initialization process using Node’s require()
method. Each extension then registers its routes on globally accessible app

variable that represents Express.js server.

Extensions are simple JavaScript files, which are stored in /server_ext/

folder. It’s a good habit to create separate folder for each extension. For
server extensions no explicit initialization in extension file is needed, but path
to extension has to be defined in plugins array in server-config.json. For
example extension called “example”, the definition should look like this:

1"plugins": [

2{ "id":"example","enable":true ,

3"src":"./ server_ext/example/example_ext.js"},

4...]

The JavaScript object in plugins array also includes the enabled property
to setup if extension should be loaded during server initialization. Extensions
contain two types of functions. Private functions are accessible only from

43

3. Design and Implementation

Figure 3.3: Humla REST Endpoints

the current file and globally accessible functions are accessible in the whole
project. Global functions are assigned to the exports global Node.js variable.
This provides the way to encapsulate functionality and provide only desired
interface.

Comments

The Comments extension is a pair of server and client extensions. On the
server side, it is simple RESTful API that provides the way to list all comments
for selected slide. The client side is discussed in Section 3.4.3. The route for
Express.js is following:

1app.get(’/api/: course /: lecture /: slide/comments ’,

2function(req ,res ,next){

3...

44

3.3. Server

4});

During path resolution Express.js replaces all strings that start with a colon
for actually passed values and injects them into the request object variable
(req) passed to the callback function.

When client Humla application, or any other HTTP client, makes a GET
request to this URI and provides courseid, lectureid and slideid, then
Comments extension makes a query to MongoDB and returns an array of
comments serialized in JSON.

The client can save new comment by sending a POST request to the same
URI with a comment text as a body of this request, but the User has to be
authorized. When user is not authorized, the server will return HTTP Code
401 Unauthorized.

Likes

The Likes extension is quite similar to the comments extensions in the sense
of implementation. Instead of comments users vote on slides. The Express.js
path is following:

1’/api/: course /: lecture /: slide/likes’

For GET request on this URI the extension returns number of likes and dislikes
associated with selected slide. With POST request users can vote on selected
slide. Then URI is slightly different:

1’/api/: course /: lecture /: slide/likes/:op’

The :op parameter can be either ”like” or ”dislike”.

When User tries to vote on one slide more than once, this extension checks
whether he or she is listed in between users that already voted. If the same
user is found Humla won’t count his second vote.

Ajax Crawling

AJAX Crawling extension checks if the query parameter in received URI is
” escaped fragment ”. If it is, the extension will return only the HTML of
selected slide instead of the whole presentation. This makes AJAX crawling
possible so the crawling robots can index single slides and then provide links
to them without need to execute Humla JavaScript core files.

Crawler (for example Google) searches through the page and finds pretty
AJAX URLs containing fragment part. Rather than using a hash, #, the Ajax
Crawling protocol requires using a hash and an exclamation point: #! (this
is usually called “hashbang”). Then the crawler requests the content with
” escaped fragment ” query parameter instead of the hashbang parameter.
Humla provides single slide HTML page for this URL so Crawler can index
only the desired data.

45

3. Design and Implementation

3.4 Client

The client is responsible for the presentation itself. It provides different ways
of showing slides and interacting with users. The client can be configured via
config.json file which is in the /public/humla/lib/ folder.

3.4.1 Architecture

Figure 3.4: Humla client architecture

The architecture and structure of the client-side Humla remains almost
the same as in the original Humla, although various parts were slightly modi-
fied and extended. There are two new classes, Menu and User, which provide
common user interaction interface and ways to authenticate user, respecti-
vely. As shown in Figure 3.4 Humla builds on top of Model-View-Controller
architecture, where array of Slides can be referred as a Model of the whole
presentation.

The following list explains roles of all objects in Humla:

• Humla is the main class and for every active page (i.e. one browser Tab)
there is only one running instance of Humla. In the system runs only one
instance of Humla which loads the code written by users and transforms
it into a presentation. It uses an instance of Utils class to load data about
extensions and views from configuration files and a Controller object
to load them into the system afterwards. Humla objects also create

46

3.4. Client

listeners for pressed keys. This object will start the presentation using
an instance of Controller class. Humla class also contains an instance
of Utils class. Humla class also provides a way to store and show errors
from the code. Humla contains all Slides of the presentation which are
loaded on the Window load.

• Controller Controller class is also a singleton. It has only one instance
which is an attribute of Humla class. It manages to load the scripts
and extensions and holds a list of instances of Extension class and View
class. The Controller decides what view is the current view and enables
us to change it. It is used to run all the Extensions.

• Utils class loads the HTML document and parses it into logical parts
(head, body). It also provides methods to create HTML elements (scripts,
styles) and parses JSON data from configuration files.

• MessageBox enables the client application to show messages and errors
to the user. It allows user to dismiss messages and other classes to add
messages.

• Browser is a singleton class representing the user’s browser. It is used
to determine whether the browser in its current version is supported or
not (older browsers do not support modern HTML5 features).

• Slide class represents a single slide of a presentation. It contains infor-
mation about the Section the slide belongs to and about the contents of
the slide. Slide has a title and a footer and contains methods to process
the slide and load all extensions it needs.

• Section class represents a Section in a HTML code which contains either
a group of Slides and/or a group of Sections. It is always an element
from the HTML document (usually div element).

• View class represents a way the presentation is represented to the user.
The document can offer several different Views according to the desired
use of the document. For example one View can be used to show the
presentation during a lecture and another one can be used to print the
document. The View contains a current Slide which is to be shown to
the user.

• Extension class represents any extension loaded from the configuration
file. It usually contains JavaScript file and optional CSS style.

• Menu enables to show menu on the bottom of each slide. There is
only one default item in the menu — selection of Views, but you can
add other items from extensions using processMenu handler. The menu
itself is loaded during the switch of Views, or the initial load of default
View.

47

3. Design and Implementation

• User class represents a currently logged user. It provides public method
isLogged(cb) to check whether the user is logged in (using OpenID).
This is only client-side check used for deciding what user should see in
terms of UI. Posting new comments, for example, is still performed as a
server-side check.

3.4.2 Presentation Structure

There are two possible ways to create presentation. The first is using our
Portal application for creating a new blank presentation and second is to
create presentation in one of the common editors as a standard HTML file. If
user chooses to edit HTML source, he has to insert between <head></head>

tags the following code:

1<link type="text/css" rel="stylesheet"

2href="/lib/core/humla.css">

3<script type="text/javascript"

4src="/lib/humla.js"></script >

User has to provide correct URLs to humla.js script and humla.css cas-
cade style sheet. The script humla.js loads other important scripts itself.

Inside <body> tag we can structure our presentation using standard se-
mantic HTML5 tags. First we can divide our presentation into the sections
<section>(but it’s not required), which represents a group of slides. Each sec-
tion should have its header (using <header> tag) and then one or more slides
(noted as <div class="slide">). Apart from that we can nest sections into
each other (supported level of nesting is 2).

So the basic one section, one slide presentation would look like this:

1<section >

2<header >Humla </header >

3<div class="slide">

4<hgroup >

5<h1>Framework Humla </h1 >

6</hgroup >

7<ul class="small">

8Humla is

9

10Presentation environment

11

12

13</div >

14</section >

Elements like <code> and <table> will also work as expected and they
are styled correctly.

48

3.4. Client

3.4.3 Extensions

All client-side extensions (plugins) are stored in /humla/lib/ext directory.
Every extension has to be enabled in config.json, which also specifies which
JS and CSS files should the extension load5 as well as other parameters. When
there are more than just few files it’s reasonable to put all inside a folder as
the structure becomes more readable.

Simple example extension, that yields ”Hello world” for every slide, would
look like this:

1var ex_example = {

2enterSlide: function(slide){

3alert(’Hello world ’);

4}

5};

Humla loads the file with this extensions and then try to call all methods as
listed in Table 3.1.

Method

enterSlide(slide)

processSlide(slide)

leaveSlide(slide)

leaveView(view)

enterView(view)

processMenu(menu)

Table 3.1: Extension Methods

Apart from what I’ve implemented, Humla provides following extensions
in standard installation: SlideIndex, Github, Outline, Params, Latex, Syn-
tax highlighter, RSS feed, Google Analytics, Google Drawings, Google Books.
Usage examples can be found in Humla documentation. In figure 3.5 a contex-
tual diagram with the content that Humla interacts with is shown. Each
extension interacts with different service.

Menu API

One of the most visible extensions is the Menu. It is visible on every slide,
although with CSS style opacity:0.3, so it won’t distract listeners from the
presentation. It gets a bigger opacity as the mouse hovers above it. In default
setting and without any other extensions, Menu only allows switching between
different Views. However when other extensions are provided, Menu becomes
more useful. It provides a common user interface for all other extensions that

5Good habit is to name all files with the same name as the extension has (e.g. likes.js
and likes.css).

49

3. Design and Implementation

Figure 3.5: Humla integration of web APIs

desire to interact with user. If extension wants to be represented as a menu
item, it has to implement method processMenu(menu). Example extension
showing menu item and menu layer would be defined like following:

1var ex_example = {

2processMenu: function(menu) {

3menu.addTab("example",{

4name:"Example",

5show_layer:true ,

6enable_login:true ,

7html:"<h1 >Example </h1 >"

8+"<div >Menu Layer </div >"

9});

10}

11}

Menu layer represents the bigger visible container, which is usually filled with
extension settings. Menu layer can be switched on with show_layer:true

parameter as shown above.

Comments

If the Comments extension is enabled, users can add a comment on every slide.
Menu layer is used for displaying comments and a textarea for posting a new
comment. When user adds a new comment, then this extension sends AJAX
POST request with the comment text and further information about slides
to the Comments REST endpoint. Humla Server then stores a comment to
the database and returns information, whether the operation was successful
or not.

50

3.5. Portal

Likes

Likes extension is again quite similar to the Comments extension. It also has
a designated Menu item, it shows a Menu layer where user can vote for the
slide.

Social Networks Integration

This extension provides ways to share presentations on three leading social
networks. Twitter, Google+ and Facebook. This extension adds a Menu item
with clickable icons to share current slide on selected network. To be able
to share links to slide, it is necessary to be logged on to a selected network;
otherwise the login will be requested.

Tests

Tests are intended for Listeners to refresh their knowledge after some major
part in lecture. Author of the presentation can simply add a new slide, but
in this case with div element attribute class="slide test". For example
the test with one simple question with three answers and only one of those
correct would look like following:

1<div class="slide test">

2<hgroup ><h1 >Test header </h1 ></hgroup >

3<div class="question">

4<h2 >Do you like this test?</h2 >

5<ul class="answers">

6<li class="true">I love it!

7<li class="false">No , I don’t.

8<li class =" false">I don’t know.

9

10</div >

11</div >

One question is surrounded by <div> element with class="question".
Inside this element is a <h2> header and unordered list with class="answers"

Every item in this list represents one answer to the question. The answer
can be either right or wrong, which is defined by class "true" or "false"

respectively. Note that those classes are not visible to listeners since the whole
slide inner content is regenerated in client and correct answers are cached in
ex_tests.results object.

3.5 Portal

Portal is simple set of HTML5 pages with JavaScript page-script which sends
requests to server REST endpoints. It lets user to search for lectures and to
view additional information about lectures and server statistics.

51

3. Design and Implementation

On the main page it’s possible to search through courses and lectures using
simple jQuery pattern matcher and filter.

Portal also allows users to create and edit courses and lectures details,
although user has to be logged in to be able to create course or lecture.

3.5.1 Authentication

For authentication Humla doesn’t force user to remember his own password
and username, but instead it uses some of the common servers where user
may have been already registered. There are two possible ways of that kind
of authentication: Pseudo-Authentication using OAuth and OpenID. With
OAuth application gets a “key” to access to the user account, whereas with
OpenID the application just gets information about user. Humla uses OpenID,
because it doesn’t intend to commit any changes to users’ account (e.g. Gmail
account) and it doesn’t need to get any information about user apart from
username.

During OpenID login authentication the sequence of steps has to be taken.
It involves communication between our Humla, OpenID provider and the end
user. In Figure 3.6 are shown steps that are taken during whole process.

Figure 3.6: Sequence diagram of OpenID authentication (Courtesy: [1])

1. In the first step Humla shows user that he has to sign in to use the
desired functionality,

2. User selects to sign in using one of the provided authentication end-
points,

52

3.5. Portal

3. Humla authorizes user requests through authentication endpoint and
if the user is not logged to that service, Humla redirects user to that
service login page,

4. if the authentication endpoint returns user identity, than Humla allows
user to use the desired functionality.

On the server side for OpenID authentication is used Passport Node.js module,
which provides universal way to interact with the major OpenID providers.

53

CHAPTER 4
Evaluation

This chapter evaluates the Humla application and discusses fulfilled require-
ments, project status and project integration.

4.1 Requirements

Following lists of functional and non-functional requirements discuss fulfillment
of requirements as stated in Chapter 1.

4.1.1 Non-functional requirements

• Platform Independent. Server side Humla runs under Windows,
Linux and Mac OS operating systems (depending on MongoDB and
Node.js installations).

Installation and execution of server side Humla was successfully perfor-
med on selected operating systems:

– Windows 7 64b

– Windows XP 32b

– Linux Mint 12 Lisa 64b

– Mac OS 10

Humla Portal application runs in all modern browsers (Google Chrome,
Safari, Opera, Firefox and Internet Explorer).

Humla Client application is able to run in the web browsers listed in
Table 4.1. Note that Microsoft Internet Explorer 9 doesn’t support used
HTML5 and CSS3 features, so it is not supported. Also Opera and Fire-
fox may have some problems with displaying slides due to unsupported
HTML5 features and DOM differences.

55

4. Evaluation

Browser Version Result

Google Chrome 13 or higher OK
Safari 5.1 or higher OK
Opera 12 minor CSS problems
Firefox 11 datafields problems
Internet Explorer 9 Not supported

Table 4.1: Supported browsers with versions

• Various Devices Support. Humla runs on iPads, iPhones, Android
smart-phones and tablets with WebKit based browser and also on the
personal computers with supported browser.

• Used Technologies. Technologies remain the same as defined in Chap-
ter 1.

• RESTful API. This requirement is fulfilled by Humla server-side ap-
plication.

4.1.2 Functional requirements

• Managing courses and presentations. Requirement is fulfilled by
Portal application. User can click on the “plus” button to add new
course or lecture, although user has to be logged in.

• Browsing through lectures. Requirement is fulfilled by Portal appli-
cation. User can filter and select both courses and lectures. When selec-
ting a lecture, additional info like lecture index and abstract is shown.

• Tests in presentations. This requirement is fulfilled by tests exten-
sion in Humla client. Creator of the presentation can simply add test
questions at the end of presentation using built-in editor.

• Menu in presentations. Menu bar is visible on every slide and it is
implemented in Humla Client Core. Extensions can add new tabs to
menu bar and bind JavaScript event listeners to them.

• Adding Comments on slides. Every logged user can add comment
on each slide thanks to comments extension in Humla client.

• Adding Likes on slides. Logged user can like or dislike selected slides
using likes extension.

• Administration. For setup it’s necessary to edit server-config.json
file in the project root. In this file is list of enabled extensions.

56

4.2. Integration

• Social networks integration. Every user can share presentation on
Facebook, Twitter and Google+.

• Different sizes of presentations. Presentation can contain any num-
ber of slides. Also thanks to Node.js’ nature it is no problem to interact
with many users at the same time.

4.2 Integration

Humla is versatile presentation environment, that can act in 3 different roles
as defined in the Chapter 1. Each role has its pros and cons and each role is
convenient in different situations. Following example situation provides short
overview of two possible ways of integrating Humla with current systems.

4.2.1 Example situation

At the Czech Technical University in Prague on the Faculty of Information
Technology a portal and content management system using open-source enter-
prise applications Liferay1 and Alfresco2 are currently being deployed. This
combination, apart from other functionalities, provides web interface for in-
teracting with files. It is useful to store presentations in this system and thus
prevent redundancies and solve problems with versioning and file hosting.
There are two simple solutions to integrate those systems with Humla.

Solution 1

The first solution is to host Humla as a Front-end only framework. This solu-
tion is quite simple in terms of deployment. The only required modification or
configuration of the CMS Alfresco is to setup a common storage for front-end
only Humla files. Then users or teachers can host HTML files of their lectures
only with their dependencies (e.g. images). In Humla a link to the humla.js
and humla.css has to be set up accordingly and also config.json would have
to be changed to disable all Humla server dependent extensions (e.g. likes,
comments).

Both HTML presentation files and Humla core files should be hosted on
the same domain to prevent problems with Cross Origin Policy. Although it’s
possible to solve this problems using CORS protocol, Alfresco would have to
be configured accordingly.

Solution 2

The second solution is to run standalone Humla server, which is able to host
all presentations files. Humla server provides a way to create new presenta-

1http://www.liferay.com/
2http://www.alfresco.com/

57

http://www.liferay.com/
http://www.alfresco.com/

4. Evaluation

tions, it provides full support for comments, likes and other “social” interac-
tions. The requirement for this solution is to configure Humla server (via key
“slides raw path” in server-config.json) to store presentations in Alfresco
data store (using SMB/CIFS, FTP or WebDAV).

Conclusion

Although the deployment of the portal and CMS systems on the Faculty of
Information Technology still isn’t in its final stage, the integration with Humla
is possible. Similar to this particular problem would be the integration with
other systems.

4.3 Project License and Hosting

Humla is developed under the GPL version 33, which grants its recipients
rights to copy, modify and redistribute the software and ensure that the same
rights were preserved in all derivative works. Apart from that GPLv3 is com-
patible with Apache License 2.0.

The project itself is hosted on http://github.com and as said on the
Github page: “We make it easier to collaborate with others and share your
projects with the universe”. Those promises are not far from truth. Github
is one of the largest code hosting sites in the world with almost 2.5 millions
repositories4. Github is based on Git, the Distributed Version Control Soft-
ware. Github provides social development, so apart from abilities to fork or
clone anybody’s repositories and host your source codes, it is also possible to
comment on each commit, create wikis, or report found bugs in integrated
issue tracking system.

User with preinstalled Git can download Humla with following short console
command:

1git clone git:// github.com/bubersson/humla.git

Then the Humla is cloned to current directory. For further information see
Appendix B.

Humla also provides installation script for Debian based operating systems
(see ubuntu_debian_installer.sh in the project root).

3License agreement can be found at http://www.gnu.org/licenses/gpl.txt.
4The number is still growing as shown at https://github.com/home

58

http://github.com
http://www.gnu.org/licenses/gpl.txt
https://github.com/home

Conclusion

I’ve designed and implemented full-range framework on top of original project
Humla, which covers creation, modification and presentation of lectures. I’ve
implemented back-end server using JavaScript server-side technology Node.js.
My solution is fully configurable and extendable using extensions. I’ve also
added extensions, which enable users to interact with each other and give a
feedback to a lecturer. For each lecture I’ve added possibility for listeners to
post their comments and their rating of slides. Author of presentations can
also add a simple test at the end of the presentation for refreshing students’
memory.

In the first two chapters I’ve provided analysis and research on available
technologies suited for implementation.

In the second part of this thesis I’ve presented design and implementation
of a server, which is able to host lectures and provide REST APIs for interac-
tion with details about lectures. Building web applications using Node.js does
not represent any problem. When JavaScript is used properly it’s possible
to take advantage of its most useful features and its event-based nature with
lambda functions and closures. JavaScript seems to be usable for this kind of
tasks and still simple enough to reach wide audience of developers.

Future Improvements

Resulting implementation for sure isn’t complete, but current state provides
platform for creation of many different kinds of extensions. Since changes in
Node.js related projects happen every day, there are many possibilities as the
Node.js community grows.

This project doesn’t have to be extended only by Node.js extensions,
there also could be for example desktop application for lectures creation with
WYSIWYG editor, or installation and configuration application with “single-
click” controls.

One of the improvements that could also be done is to support more web
browsers. Humla is built on top of new technologies and standards and the-
refore the client application fully supports only few current browsers (Google
Chrome and Safari) in this moment.

59

Conclusion

Thanks to current Humla architecture based on separated components,
there’s a room for various projects and extensions. Humla can also serve as a
source for so-called mashup applications, which combine data or functionalities
from two or more applications.

60

Bibliography

[1] Federated Login for Google Account Users. April 2012. Available at
WWW: https://developers.google.com/accounts/docs/OpenID

[2] Browne, J.: Brewer’s CAP Theorem. January 2009. Available
at WWW: http://www.julianbrowne.com/article/viewer/

brewers-cap-theorem

[3] Crockford, D.: JavaScript: The Good Parts. O’Reilly Media, Inc., 2008.

[4] Dziuba, T.: Node.js is Cancer. October 2011. Available at WWW: http:
//teddziuba.com/2011/10/node-js-is-cancer.html

[5] Essel, M.: Dynamic scripting with static speed,
the best of both worlds. January 2011. Available at
WWW: http://www.victusspiritus.com/2011/01/28/

dynamic-scripting-with-static-speed-the-best-of-both-worlds

[6] Fasel, M.: Node.js From the Enterprise Java Perspective. June 2011.

[7] Fielding, R. T.: Architectural styles and the design of network-based soft-
ware architectures. University of California, Irvine, 2000.

[8] Flanagan, D.: JavaScript: The Definitive Guide Activate Your Web
Pages. O’Reilly Media, Inc., 6th edition, 2011.

[9] Graham, P.: Web 2.0. November 2005. Available at WWW: http://www.
paulgraham.com/web20.html

[10] Hoon, L. S.: Visual Guide to NoSQL Systems. March 2011. Available at
WWW: http://blog.beany.co.kr/archives/275

[11] James, J.: Features, Pain Points, Adoption Rate, and More. August 2008.
Available at WWW: http://tek.io/fhTEjf

[12] Lane, K.: History of APIs. January 2011. Available at WWW: http:
//www.apievangelist.com/2011/01/26/history-of-apis-ebay/

61

https://developers.google.com/accounts/docs/OpenID
http://www.julianbrowne.com/article/viewer/brewers-cap-theorem
http://www.julianbrowne.com/article/viewer/brewers-cap-theorem
http://teddziuba.com/2011/10/node-js-is-cancer.html
http://teddziuba.com/2011/10/node-js-is-cancer.html
http://www.victusspiritus.com/2011/01/28/dynamic-scripting-with-static-speed-the-best-of-both-worlds
http://www.victusspiritus.com/2011/01/28/dynamic-scripting-with-static-speed-the-best-of-both-worlds
http://www.paulgraham.com/web20.html
http://www.paulgraham.com/web20.html
http://blog.beany.co.kr/archives/275
http://tek.io/fhTEjf
http://www.apievangelist.com/2011/01/26/history-of-apis-ebay/
http://www.apievangelist.com/2011/01/26/history-of-apis-ebay/

Bibliography

[13] Lee, T. B.: Information Management: A Proposal. March 1989. Available
at WWW: http://www.w3.org/History/1989/proposal.html

[14] Lundström, Sebastian: Design and Implementation of a MongoDB Driver
for Prolog. 2011.

[15] Munandar, F.: The Increasing Importance of APIs in Web Development.
October 2011. Available at WWW: http://fredonfire.com/2011/10/
the-increasing-importance-of-apis-in-web-development/

[16] Needle, D.: Peer Network Tests ’Real World’ Site Performance. May
2008. Available at WWW: http://www.internetnews.com/infra/

article.php/3744331/Peer+Network+Tests+Real+World+Site+

Performance.htm

[17] Nielsen, J.; Mack, R.: Usability Inspection Methods. New York, NY: John
Wiley & Sons, 1994.

[18] Pilgrim, M.: HTML5: Up and Running. O’Reilly Media, Inc., August
2010.

[19] Reynen, S.: A Brief History of HTML. September 2009. Available at
WWW: http://atendesigngroup.com/blog/brief-history-of-html

[20] Souders, S.: High performance web sites. O’Reilly Media, Inc., first edi-
tion, 2007.

[21] Vitvar, T.: Lecture 6: Representational State Transfer. University Lec-
ture, 2012. Available at WWW: http://vitvar.com/courses/slides/
mdw/lecture6.html

62

http://www.w3.org/History/1989/proposal.html
http://fredonfire.com/2011/10/the-increasing-importance-of-apis-in-web-development/
http://fredonfire.com/2011/10/the-increasing-importance-of-apis-in-web-development/
http://www.internetnews.com/infra/article.php/3744331/Peer+Network+Tests+Real+World+Site+Performance.htm
http://www.internetnews.com/infra/article.php/3744331/Peer+Network+Tests+Real+World+Site+Performance.htm
http://www.internetnews.com/infra/article.php/3744331/Peer+Network+Tests+Real+World+Site+Performance.htm
http://atendesigngroup.com/blog/brief-history-of-html
http://vitvar.com/courses/slides/mdw/lecture6.html
http://vitvar.com/courses/slides/mdw/lecture6.html

APPENDIX A
Acronyms

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

BSON Binary JSON

CORS Cross Origin Resourse Policy

CSS Cascading Style Sheets

DBMS Databse Management System

DOM Document Object Model

ECMA European Computer Manufacturers Association

GPL General Public License

GUI Graphical User Interface

HATEOAS Hypertext as the Engine of Application State

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

IT Information Technologies

JSON JavaScript Object Notation

NPM Node Package Manager

OS Operating System

63

A. Acronyms

PDF Portable Document Format

REPL Read–Eval–Print Loop

REST Representational State Transfer

SOAP Simple Object Access Protocol

SQL Structured Query Language

UI User Interface

UML Unified Modeling Language

URI Uniform Resource Identifier

URI Uniform Resource Locator

WADL Web Application Description Language

WYSIWYG What You See Is What You Get

XML Extensible Markup Language

64

APPENDIX B
Installation

Installation is pretty straight forward and consists of installation the Humla
itself using Git and then of optional Node.js backend server and optional
MongoDB database.

Humla also provides installation script for Debian based operating systems
(see ubuntu_debian_installer.sh in the project root).

Step by step guide for installation on Windows (other operating systems
installations are similar):

1. Download Node.js server from http://nodejs.org/. Installation execu-
tables for Windows and Mac as well as packages for Linux are provided.

2. Download MongoDB database from http://mongodb.org/. Then ei-
ther follow installation guide at http://www.mongodb.org/display/

DOCS/Quickstart+Windows or do following steps:

a) Unzip the downloaded binary package to the location of your choice,

b) In this folder create default data directories using:

1C:\> mkdir \data

2C:\> mkdir \data\db

c) Run the database itself using mongod.exe,

d) To check if the database is ready start the administrative shell
mongo.exe

1C:\ mongo_dir\bin > mongo

2> db

3test

4> db.foo.insert({ a : 1 })

5> db.foo.find()

6{ _id : ..., a : 1 }

65

http://nodejs.org/
http://mongodb.org/
http://www.mongodb.org/display/DOCS/Quickstart+Windows
http://www.mongodb.org/display/DOCS/Quickstart+Windows

B. Installation

3. Install Git from http://git-scm.com/. Windows and Mac installers
are provided. To check if Git is ready run:

1D:\downloads >git --version

2git version 1.7.6. msysgit .0

4. Clone Humla to your desired directory using

1git clone git:// github.com/bubersson/humla.git

5. Install NPM packages with following commands (NPM is part of the
Node.js installation):

1npm install express

2npm install mongoose

3npm install jsdom

4npm install cron

5npm install passport

6npm install passport -local

7npm install passport -google

6. Run humla server using command:

1D:\humla >node index.js

2Humla (server) has started , 127.0.0.1:1338 , Using

Express 2.5.1, Node v0 .6.14

7. You may change the configuration in server-config.json file.

66

http://git-scm.com/

APPENDIX C
Screenshots

Figure C.1: Humla Portal Application

67

C. Screenshots

Figure C.2: Humla Client Application

68

APPENDIX D
Contents of enclosed CD

readme.txt the file with CD content description
src.......................................the directory of source codes

humla implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format

69

	Introduction
	Analysis
	Objectives
	Requirements
	Definitions
	Mockup design
	Related work

	Principles and Technologies
	Web 2.0
	REST
	Cloud
	HTML5
	JavaScript
	Application Server
	Database

	Design and Implementation
	Architecture Design
	Libraries
	Server
	Client
	Portal

	Evaluation
	Requirements
	Integration
	Project License and Hosting

	Conclusion
	Bibliography
	Acronyms
	Installation
	Screenshots
	Contents of enclosed CD

