

TECHNICAL UNIVERSITY OF KOŠICE

FACULTY OF ELECTRICAL ENGINEERING AND INFORMATICS

Visualization of Garbage Collection Algorithms in JRE

Master's Thesis

2012 Bc. Martin Škurla

TECHNICAL UNIVERSITY OF KOŠICE

FACULTY OF ELECTRICAL ENGINEERING AND INFORMATICS

Visualization of Garbage Collection Algorithms in JRE

Master's Thesis

Study Programme: Informatics

Field of study: 9.2.1 Informatics

Department: Department of Computers and Informatics (KPI)

Supervisor: doc. Ing. Ladislav Samuelis, CSc.

Consultant: doc. Ing. Ladislav Samuelis, CSc.

Košice 2012 Bc. Martin Škurla

Abstract

The vast majority of the currently developed software systems is not implemented

using low-level programming languages, but rather using higher-level programming

languages that are executed in virtual machines. Garbage Collection (GC) is the process

dealing with automatic memory management including the cleanup of no longer used

objects. GC turns out to be one of the most important research areas around virtual

machines over the last decades. There are many metrics that could measure the

efficiency of the particular GC algorithm, but one of the most natural one is the

visualization of the GC process. The main goal of this thesis is to analyze, design and

implement a GC visualization tool built on top of the original GCSpy project

foundations.

Keywords

Garbage Collection, Java Virtual Machine, Memory management, Visualization

Abstrakt

Väčšina súčasne vyvíjaných softvérových systémov nie je implementovaná

použitím nízkoúrovňových programovaních jazykov, ale použitím programovacích

jazykov vyššej úrovne, ktoré sú vykonávané vo virtuálnych strojoch. "Garbage

Collection" (GC) je proces zaoberajúci sa automatickou správou pamäte v rátane

odstraňovania nepoužívaných objektov. GC sa stalo jednou z najvýznamnejších oblastí

výskumu v rámci virtuálnych strojov v posledných desaťročiach. Existuje mnoho

metrík, ktoré hodnotia efektivitu konkrétnych GC algoritmov, ale jedna z

najprirodzenejších metrík je vizualizácia procesu GC. Hlavným cieľom tejto diplomovej

práce je analýza, návrh a implementácia vizualizačného nástroja postaveného na

základoch pôvodného projektu GCSpy.

Kľúčové slová

Java virtuálny stroj, Manažment pamäte, Odstraňovanie nepoužívaných objektov z

pamäte, Vizualizácia

Declaration

I hereby declare that this my own work and effort. Where other sources of

information have been used, they have been acknowledged.

Košice, 10.5. 2012 ..

 Signature

Acknowledgement

I would like to express my sincere thanks to my supervisor doc. Ing. Ladislav

Samuelis CSc., the main Supervisor, for comments and expert opinions during the

creation of this thesis.

I would like to say thanks to my family for patience and constant support during

my study.

To all other who gave a hand, I say thank you very much.

Preface

We are recently witnesses of continuous performance improvements both in the

hardware and software worlds. However, for current software systems with millions of

requests and users, performance is still a very important aspect. One of not so obvious

performance optimization techniques is garbage collection algorithm selection and

tuning. Garbage collectors save us a lot of time (programmers do not need to manually

deallocate unreferenced objects) and shield us from low-level memory errors including

dangling pointers, double memory frees, premature memory frees and memory leaks.

To be able to take full advantage of garbage collection, we need to make the

garbage collection exploration process easy. Visualizing the garbage collection includes

visualizing events, memory abstractions and historic memory consumption observation.

All previously mentioned aspects are critical parts for the performance tuning, lowering

the memory allocation frequency and memory allocation pauses caused by automatic

memory management.

Garbage collection visualization is not only important for garbage collection

researchers and implementers, but also for anybody who would like to understand the

memory management characteristics of one's application better.

The goal of this thesis is to introduce garbage collection in a nutshell, introduce the

traditional GCSpy project together with its main goals and characteristics, look at the

main disadvantages of the GCSpy project, suggest improvements, implement the

proposed changes and provide a working prototype.

Contents

List of Figures .. 9

List of Tables ... 10

List of Symbols and Abbreviations ... 11

List of Terms ... 13

Introduction ... 14

1 The problem expression .. 15

2 Analytical considerations.. 16

2.1 Maven .. 16

2.1.1 Convention over configuration .. 17

2.1.2 Reuse of build logic ... 18

2.1.3 Declarative execution ... 18

2.1.4 Coherent organization of dependencies ... 18

2.1.5 Maven default build lifecycle .. 19

2.2 Java Virtual Machine Tool Interface ... 22

2.2.1 JVMTI phases .. 23

2.2.2 JVMTI capabilities ... 24

2.2.3 JVMTI programming style .. 24

2.2.4 The tricky parts of JVMTI ... 25

2.3 NetBeans Rich Client Platform ... 26

2.3.1 Main characteristics ... 27

2.4 Garbage collection ... 29

2.4.1 Terms ... 30

2.4.2 Garbage collection metrics .. 31

2.4.3 Classifying collectors ... 31

2.4.4 Conservative vs. precise collection .. 32

2.4.5 Generational collection .. 33

2.4.6 HotSpot Virtual Machine collectors .. 34

2.5 Original GCSpy project ... 36

2.5.1 GCSpy abstractions .. 36

2.5.2 GCSpy architecture .. 38

3 Proposal .. 40

3.1 Design goals .. 40

3.2 High level overview .. 41

4 Implementation details ... 42

4.1 Build infrastructure .. 43

4.1.1 Initial considerations .. 43

4.1.2 Design decisions .. 45

4.1.3 How does it work? ... 47

4.1.4 Dependency management .. 50

4.1.5 Maven profile activation strategy .. 52

4.1.6 Building modules ... 54

4.2 Runtime infrastructure ... 56

4.2.1 Initial considerations .. 56

4.2.2 Groovy scripting advantages .. 56

4.2.3 Design decisions .. 57

4.2.4 Groovy script enrichment .. 57

4.2.5 How does it work? ... 59

4.3 Test infrastructure .. 60

4.3.1 Dealing with garbage collection indeterminism .. 61

4.4 Socket communication protocol .. 64

4.4.1 Sent data semantics .. 64

4.4.2 Connection management .. 66

4.4.3 Thread model ... 67

4.4.4 Blocking states ... 68

4.5 Portability .. 69

4.5.1 Operating system portability .. 69

4.5.2 Virtual machine portability .. 75

4.5.3 Java portability ... 75

4.6 Comparison with original GCSpy ... 77

5 Conclusion .. 79

Bibliography .. 80

Appendices ... 82

FEI KPI

 9

List of Figures

Fig. 1 Declaring Maven dependency .. 19

Fig. 2 Conceptual structure of the NetBeans IDE ... 27

Fig. 3 NetBeans Platform architecture .. 28

Fig. 4 Original GCSpy data gathering ... 37

Fig. 5 Original GCSpy architecture .. 39

Fig. 6 Proposed GCSpy high level overview .. 41

Fig. 7 GCSpy Maven lifecycle mapping ... 48

Fig. 8 GCSpy Maven dependency management ... 50

Fig. 9 Executing GCSpy with Groovy runner script ... 59

Fig. 10 Executing GCSpy with Java command .. 59

Fig. 11 Java implementation of the socket communication protocol 66

Fig. 12 Example of operating system specific code on native level 70

Fig. 13 Example of operating system specific code on application level 72

Fig. 14 Example of operating system specific configuration on build

infrastructure level .. 73

FEI KPI

 10

List of Tables

Tab. 1 Maven default build lifecycle ... 20

Tab. 2 Garbage collection terms .. 30

Tab. 3 Garbage collection metrics ... 31

Tab. 4 GCSpy Maven profile activation strategy .. 53

Tab. 5 GCSpy operating system portability handling .. 74

Tab. 6 Original and proposed GCSpy comparison .. 77

FEI KPI

 11

List of Symbols and Abbreviations

API Application Programming Interface

CL Command Line

CMS Concurrent Mark-Sweep Garbage Collector

CORBA Common Object Request Broker Architecture

CPU Central Processing Unit

C4 Continuously Concurrent Compacting Collector

DLL Dynamic Link Library

DSL Domain Specific Language

EAR Enterprise Archive

GC Garbage Collector / Garbage Collection

GCC GNU Compiler Collection

GCSpy Garbage Collection Spy

GUI Graphical User Interface

G1 Garbage-First Garbage Collector

IDE Integrated Development Environment

JAR Java Archive

JDK Java Development Kit

JNA Java Native Access

JNI Java Native Interface

JRE Java Runtime Environment

JLS Java Language Specification

JPDA Java Platform Debugger Architecture

JSR Java Specification Request

JVM Java Virtual Machine

JVMS Java Virtual Machine Specification

JVMDI Java Virtual Machine Debug Interface

JVMPI Java Virtual Machine Profiler Interface

JVMTI Java Virtual Machine Tool Interface

FEI KPI

 12

LAF Look and Feel

MOJO Maven plain Old Java Object

MSVC Microsoft Visual C++

NAR Native Archive

OS Operating System

OSGi Open Services Gateway initiative

POM Project Object Model

RCP Rich Client Platform

RMI Remote Method Invocation

SA Serviceability Agent

SCM Source Code Management

SoC Separation of Concerns

SPI Service Provider Interface

STW Stop-The-World Garbage Collector

TCP/IP Transmission Control Protocol / Internet Protocol

VM Virtual Machine

WAR Web Archive

XML eXtensible Markup Language

YAML YAML Ain't Markup Language

FEI KPI

 13

List of Terms

Bytecode instrumentation is a technique dealing with the manipulation of bytecode.

Manipulation typically means insertion or any other kind of changing the

bytecode during compilation or runtime execution.

Classpath is a list of directories where the java compiler will try to find java source

files and the java interpreter will try to find java class files or JAR files. Classpath

can be set either as CLASSPATH environment variable or on command line. In a

standard application the System ClassLoader will load classes from classpath.

JavaBean is a naming convention for reusable software components written in the Java

programming language. Simplified requirements force every JavaBean object to

implement java.io.Serializable interface, to have a publicly accessible

constructor with zero parameters and to have getter and setter methods for

accessing object properties.

Java Bytecode is an intermediate language that could be executed inside a JVM. Java

bytecode is typically compiled from the Java programming language source files,

but there are plenty of other languages that produce a Java bytecode including not

only, but also Clojure, Groovy, JRuby, Jython and Scala. Java bytecode

instructions are defined in the Java Virtual Machine Specification.

Java Virtual Machine is a virtual machine that allows to execute Java bytecode. Java

virtual machine is distributed together with core Java APIs and optionally also

development tools.

MOJO is an abbreviation for Maven plain old Java Object. Every MOJO represents a

particular plugin's goal and has to implement org.apache.maven.plugin.Mojo

interface. MOJO can be written in Java or other scripting languages. A packaged

set of MOJOs creates a Maven plugin.

Virtual Machine is either a software emulation or a hardware virtualization completely

isolated from host operating system. One of the fundamental characteristics of

virtual machines is the fact that the software running inside a virtual machine is

limited to the resources and abstractions provided by the running virtual machine.

FEI KPI

 14

Introduction

Garbage collection turns out to be one of the most important research areas around

virtual machines over the last decades. Providing a visual way to measure the particular

garbage collection algorithm can be beneficial for virtual machine and garbage collector

implementers. In the case when the visualization will be easy to incorporate and use, it

can be useful for everyday developers as well. The visualization of garbage collection

should be as non-intrusive for the observed system as possible.

The aim of this thesis is to analyze, design and implement a garbage collection

visualization tool built on top of the original GCSpy project foundations.

The first chapter describes the problem expression.

The second chapter summarizes analytical considerations. The analytical

considerations describe the main technologies, used concepts and necessary theoretical

background used across the thesis. The second chapter analysis Maven as not only build

tool, Java Virtual Machine Tool Interface as low-level API for gathering virtual

machine specific data and NetBeans Rich Client Platform, the only OSGi and Swing

based modular desktop application framework. Second chapter also describes garbage

collection terms, concepts, metrics, classification and concrete garbage collection

algorithms that are part of the standard JRE. Last but not least, original GCSpy project

abstractions and architecture description is also part of this chapter.

The third chapter addresses design goals and high level overview.

The fourth chapter deals with implementation details, problems and solutions of

chosen topics. The content of the fourth chapter includes the description of initial

considerations, design decisions and parts describing how it works for both the build

and runtime infrastructure. The majority of the test infrastructure part is the description

of dealing with garbage collection indeterminism. The content of the socket

communication protocol chapter deals with sent data semantics, connection

management, thread model and blocking states. Every kind of portability including

operating system, virtual machine and java portability is described in details. At the end

of the fourth chapter the summarization of deployment and the comparison with the

original GCSpy project is described as well.

The fifth chapter summarizes the conclusion.

FEI KPI

 15

1 The problem expression

The aim of this thesis is to analyze, design and implement a garbage collection

visualization tool built on top of the original GCSpy project foundations.

Before the actual creation of the visualization tool, it is necessary to analyze the

garbage collection principles, concepts and concrete garbage collection algorithms. It is

also necessary to study the architecture and characteristics of the original GCSpy

project to be able to propose changes. Based on the lessons learned, it is required to

design and implement the visualization tool. The documentation is required part of the

solution.

FEI KPI

 16

2 Analytical considerations

2.1 Maven

Maven is not only a build tool. According to the book Better Builds with Maven

[1], Maven is a project management framework, a combination of ideas, standards and

software. There is also another interesting explanation of what Maven is in that book:

"Maven is a declarative project management tool that decreases your overall time to

market by effectively leveraging cross-project intelligence. It simultaneously reduces

your duplication effort and leads to higher code quality."

Maven simplifies the process of managing a software project by simplifying the

build, documentation, distribution and the deployment process. Maven is an Apache

Software Foundation open-source project [2].

Maven defines a set of build standards, the notion of local and remote artifact

repository, dependency management, multi-module project structure, standard lifecycle

for building, testing and deploying Java software artifacts.

In Maven, the build lifecycle consists of a set of phases that will be executed in

defined order. Each phase can execute one or multiple executable actions related to that

phase. These actions are called goals. Goals that are at lower level in the build lifecycle

hierarchy will be automatically executed behind the scene.

Maven defines the content of Project Object Model (POM), which is a text file that

declaratively describes the project.

Maven was inspired by Brad Appleton's pattern definition published in his article

Patterns and Software: Essential Concepts and Terminology [3]:

"Patterns help create a shared language for communicating insight and experience

about problems and their solutions."

FEI KPI

 17

As a result, the following Maven core principles were defined:

 convention over configuration,

 reuse of build logic,

 declarative execution,

 coherent organization of dependencies.

2.1.1 Convention over configuration

One of the fundamental steps where Maven will remove a lot of complexity is by

providing a sensible set of default values as part of the configuration. You are still

flexible and able to change any of those default configuration values, but most of the

time it saves enormous amount of time by just respecting Maven defaults.

The idea of "Convention over configuration" was largely popularized by Ruby on

Rails web framework [4].

Maven is incorporating convention over configuration by defining:

 standard directory layout for projects,

 one primary output per project,

 standard naming conventions.

Standard directory layout for projects includes well-defined directory structure for

project source files, resource files, resource filters, configuration files and any kind of

output including compiled classes, packaged artifacts, documentation, tests results and

integration tests results.

One primary output per project is supported by the SoC
1
 principle. The code base

should be divided into multiple modules with well-defined dependency management

and thus respect modularity. In Maven, every project including multi-module build, will

produce only one output artifact.

Standard naming conventions include naming conventions for directories and build

artifacts. All build artifacts will be named according to the following scheme:

artifactId-version.extension and will be located relative to the Maven local

repository inside the directory: groupId/artifactId/version.

1
 Separation of Concerns

FEI KPI

 18

2.1.2 Reuse of build logic

Maven architecture is built on top of very simple, but also very extensible core.

The vast majority of Maven's functionality is provided by Maven build plugins. You

can find a Maven plugin for pretty much anything you will need to do as part of the

build process, but you can also develop your own plugin. Maven build plugins are the

example of the reuse of build logic.

2.1.3 Declarative execution

Every kind of Maven configuration is done declaratively as part of its POM
2
.

Traditionally the only supported language to write the POM in was XML
3
. Starting

from Maven-3 as part of the polyglot Maven initiative, it is possible to write the POM

using multiple DSLs
4
 in languages other than XML. Current support includes Clojure,

Groovy, JRuby, Scala and YAML
5
.

2.1.4 Coherent organization of dependencies

Now let us talk about the Maven dependencies. Maven dependency is uniquely

identified by the trio:

 groupId,

 artifactId,

 version.

The groupId uniquely identifies the company, organization or development

group that created the artifact.

The artifactId uniquely identifies the artifact among all artifacts from the same

groupId. For modular applications it is common to create one artifact per module.

The version represents the version of the artifact. Version could be represented

as version range, could contain classifier and could represent a snapshot version.

Maven will automatically download all required dependencies (and their transitive

dependencies) from remote Maven Central repository and all specified remote

2
 Project Object Model

3
 eXtensible Markup Language

4
 Domain Specific Language

5
 YAML Ain't Markup Language

FEI KPI

 19

repositories into Maven local repository as part of the build process. Maven will also

correctly place the required dependencies on compile and test classpath according to

their scope.

The example of dependency declaration to GCSpy
6
 "utilities" module will

look as follows:

<dependency>

 <groupId>org.crazyjavahacking.gcspy</groupId>

 <artifactId>

 org-crazyjavahacking-gcspy-utilities

 </artifactId>

 <version>1.0</version>

 <scope>compile</scope>

</dependency>

Fig. 1 Declaring Maven dependency

All projects declaring the same Maven artifact dependency will share exactly the

same copy of the artifact from Maven local repository. This effectively reduces the

overall disk space consumption by eliminating the need to copy the library JAR
7
 files

for every single project.

2.1.5 Maven default build lifecycle

There are three Maven build-in build lifecycles:

 default,

 clean,

 site.

The default lifecycle handles the project build, test and deployment.

The clean lifecycle handles the project cleaning.

The site lifecycle handles the generation of project documentation.

6
 Garbage Collection Spy

7
 Java Archive

FEI KPI

 20

According to the article Introduction to the Build Lifecycle [5], the default Maven

build lifecycle contains 23 phases. Not all of phases are connected with goals, but some

of them were created as a placeholder for additional plugins because of flexibility.

The following table summarizes all Maven default build lifecycle phases together

with their descriptions:

Tab. 1 Maven default build lifecycle

Lifecycle phase Phase description

validate validates if the project is correct and all necessary

information is available

initialize initializes build state (e.g. set properties or create

directories)

generate-sources generates source code for inclusion in the compilation

process-sources processes the source code (e.g. filter values)

generate-resources generates resources for inclusion in the package

process-resources processes and copies the resources into the destination

directory

compile compiles the source code

process-classes does the post-processing of files generated from

compilation (e.g. bytecode enhancement)

generate-test-sources generates test source code for inclusion in the

compilation

process-test-sources processes the test source code (e.g. filter values)

generate-test-resources creates resources for testing

process-test-resources processes and copies the resources into the test

destination directory

test-compile compiles the test source code into the test destination

directory

process-test-classes does the post-processing of files generated from test

compilation (e.g. bytecode enhancement)

FEI KPI

 21

test runs tests using a suitable unit testing framework

prepare-package performs any operations necessary to prepare a package

before the actual packaging

package takes the compiled code and packages it in its

distribution format (e.g. JAR)

pre-integration-test performs actions required before integration tests are

executed (e.g. setting up the required environment)

integration-test processes and deploys the package (if necessary) into

an environment where integration tests will run

post-integration-test performs actions required after integration tests have

been executed (e.g. cleaning up the environment)

verify runs any checks to verify the package is valid and

meets quality criteria

install installs the package into the local repository, to be able

to use it as a dependency in other projects

deploy copies the final package to the remote repository for

sharing with other developers and projects

FEI KPI

 22

2.2 Java Virtual Machine Tool Interface

Java Virtual Machine Tool Interface [6][7] is a C/C++ interface for accessing

low-level JVM
8
 functionalities. JVMTI

9
 was introduced in Java SE 5 as part of the

JSR
10

-163: Platform Profiling Architecture. JVMTI is the lowest level of the JPDA
11

[8].

JVMTI allows you to inspect the state of the JVM and control the JVM execution.

JVMTI is mainly used by debuggers and profilers and is a replacement for previously

used JVMDI
12

 and JVMPI
13

 APIs
14

 [9]. JVMTI is built on top of the JNI
15

 and JNI

types are naturally used across the JVMTI source base.

JVMTI provides unique functionalities that are not part of the JDK
16

 such as:

 the ability to do the bytecode instrumentation before any Java class will be

loaded into the JVM,

 the ability to follow all direct and indirect references of given object,

 the ability to force the garbage collection,

 the ability to get the line number and local variable tables,

 the ability to iterate over all, reachable or unreachable objects in the heap

memory,

 the ability to set and clear breakpoints,

 the ability to suspend and resume any of the currently running Java threads.

 In order to execute the JVMTI code, the C/C++ code using JVMTI API has to

be compiled and linked into a shared library. The shared library will then be loaded and

linked together with the JVM at runtime by specifying one of the two possible java

command line arguments:

 -agentlib:<agentName>=<agentOptions>,

 -agentpath:<agentPath>=<agentOptions>.

8
 Java Virtual Machine

9
 Java Virtual Machine Tool Interface

10
 Java Specification Request

11
 Java Platform Debugger Architecture

12
 Java Virtual Machine Debug Interface

13
 Java Virtual Machine Profiler Interface

14
 Application Programming Interface

15
 Java Native Interface

16
 Java Development Kit

FEI KPI

 23

The JVMTI programming style includes two functionalities. You are able to

directly call the JVMTI functions and be notified about events.

2.2.1 JVMTI phases

JVMTI defines the following order of JVM execution phases:

 ONLOAD,

 PRIMORDIAL,

 START,

 LIVE,

 DEAD.

The ONLOAD phase represents the state of the JVM during the execution of the

Agent_OnLoad function. During this phase no bytecode has been executed, no classes

have been loaded and no objects have been created yet.

The PRIMORDIAL phase represents the state of the JVM between returning from

the Agent_OnLoad function and entering the VMStart event callback function.

The START phase represents the state of the JVM between returning from the

VMStart and entering the VMInit event callback function.

The LIVE phase represents the state of the JVM between returning from the

VMInit and entering the VMDead event callback function.

The DEAD phase represents the state of the JVM after returning from the VMDead

event callback function.

JVMTI agent library can be started in either the ONLOAD or LIVE phase and

appropriate JVMTI functions must be exported by the shared library. The exact

mechanism of attaching the agent during the LIVE phase is not a part of the JVMTI

specification and thus is implementation and JVM specific.

The important note about the JVMTI is the fact that some functions can be called:

 only during ONLOAD phase,

 only during LIVE phase,

 only during START or LIVE phase,

 during all phases.

FEI KPI

 24

2.2.2 JVMTI capabilities

JVMTI provides the following comprehensive set of self-describing events:

 accessing local variable,

 forcing early method return,

 generating breakpoint, class load hook, compiled method load, exception,

field access, frame pop, garbage collection, method entry, method exit,

modification, monitor, native method bind, object free, resource exhaustion

heap, resource exhaustion threads, single step and vm object alloc events,

 getting bytecode, constant pool, current contended monitor, current thread

CPU
17

 time, line numbers, monitor info, owned monitor stack depth info,

source debug extension, source file name, synthetic attribute and thread

CPU time,

 maintaining original method order,

 popping frame,

 redefining class,

 retransforming class,

 setting native method prefix,

 signaling thread,

 suspending and resuming thread,

 tagging object.

2.2.3 JVMTI programming style

The general JVMTI programming style consists of steps in the following order:

1. registering capabilities,

2. registering event callbacks,

3. turning on event notifications.

First you need to register capabilities. Because of performance reasons, you should

always register just the capabilities you will really use. A subset of the JVMTI API is

17

 Central Processing Unit

FEI KPI

 25

event-based and will execute event callbacks you have previously registered. At the end

you need to turn on event notification of events you would like to be notified about.

2.2.4 The tricky parts of JVMTI

Programming JVM agents could be tricky because there are many subtle details

that you have to respect and know about, such as:

 JVM native agent will be linked together with the JVM at runtime and will

not run in the managed environment. Due to the linkage, errors in C code

(such as NULL pointer dereference) will trigger the collapse of the whole

JVM without throwing an exception.

 Because the native agent code will not run in the managed environment as

every other Java code will, fatal errors (e.g. NULL pointer dereference) will

not throw an exception, but will crash the whole JVM.

 All memory fragments passed by reference to the JVMTI functions have to

be allocated using the JVMTI allocation functions. If you have a code that

uses the standard C malloc()/calloc() memory allocation functions,

you need to allocate a memory space (with the same size) using JVMTI

allocation functions and copy the original space content.

 Some JVMTI functions can be called only within the execution of some

JVMTI phases.

 All JNI functions, except the JNI Invocation API, can only be used during

the START or LIVE phase.

 Heap callback functions must respect a few restrictions. Those functions

cannot directly use other JVMTI or JNI functions except callback-safe

functions.

FEI KPI

 26

2.3 NetBeans Rich Client Platform

The NetBeans Platform is an open-source generic framework for creating modular

loosely-coupled desktop Swing applications.

NetBeans Platform will provide you a lot of functionality [10] that you can directly

use without spending time to develop your own solution. One of the most difficult

pieces of software from the architecture point of view these days are IDEs
18

.

What could be a better proof of NetBeans RCP's flexibility and overall design than

the fact that NetBeans IDE is built on top of NetBeans RCP? In fact, the NetBeans

RCP
19

 was extracted from NetBeans IDE after the first few releases and you can see the

conceptual structure in Fig. 2 Conceptual structure of the NetBeans IDE.

Before any further diving into NetBeans RCP, let us first describe what is the rich

client. The definition of "Rich Client" according to the book The Definite Guide to

NetBeans Platform [11] is as follows:

"In a client server architecture the term “rich client” is used for clients where the

data processing occurs mainly on the client side. The client also provides the graphical

user interface. Often rich clients are applications that are extendable via plugins and

modules. In this way, rich clients are able to solve more than one problem. Rich

clients can also potentially solve related problems, as well as those that are completely

foreign to their original purpose."

The main characteristics of a rich client are:

 flexible and modular application architecture,

 platform independence,

 adaptability to the end user,

 ability to work online as well as offline,

 simplified distribution to the end user,

 simplified updating of the client.

As you can see, the rich client is naturally tight to the modular application design.

18

 Integrated Development Environment
19

 Rich Client Platform

FEI KPI

 27

Fig. 2 Conceptual structure of the NetBeans IDE

2.3.1 Main characteristics

NetBeans Platform consists of multiple layers and a set of APIs and SPIs
20

 on

those levels. For more details see Fig. 3 NetBeans Platform architecture.

According to DZone Refcard Getting Started with NetBeans Platform 7.0 [12] the

following are the main features of the NetBeans RCP:

 Module System,

 Lifecycle Management,

 Pluggability,

 Service Infrastructure,

 File System,

 Window System,

 Standardized UI Toolkit,

 Generic Presentation Layer,

 Advanced Swing Components,

 JavaHelp Integration.

20

 Service Provider Interface

FEI KPI

 28

Fig. 3 NetBeans Platform architecture

You can use either standard NetBeans Platform modules or OSGi
21

 bundles and

NetBeans will handle the versioning support. The NetBeans runtime container provides

lifecycle services and allows you to install/uninstall and activate/deactivate modules.

NetBeans Platform provides an infrastructure for registering and retrieving service

implementations and provides stream-oriented access to flat and hierarchical structures.

NetBeans window system allows you to maximize/minimize, dock/undock and drag-

and-drop windows. NetBeans APIs provide a generic model for presenting data.

Because of Swing, portability and ability to change the LAF
22

 is guaranteed.

Another set of characteristics of the NetBeans RCP is summarized in the [11]:

 User interface framework,

 Data editor,

 Customization display,

 Wizard framework,

 Data systems,

 Internationalization,

 Help system.

21

 Open Services Gateway initiative
22

 Look and Feel

FEI KPI

 29

2.4 Garbage collection

I cannot imagine a better start of the garbage collection chapter as by quoting the

idea from Joshua Bloch, the Chief Java Architect at Google, which he told as part of his

talk Java: The good, the Bad and the Ugly parts during Devoxx 2011 conference:

"Garbage collection isn't magic, but is pretty close."

Garbage collection [13] is a form of automatic memory management and was

invented by John McCarthy in 1958 as part of the Lisp programming language. The first

description of garbage collection according to the article Recursive Functions of

Symbolic Expressions and Their Computation by Machine [14] is as follows:

"Nothing happens until the program runs out of free storage. When a free register is

wanted, and there is none left on the free-storage list, a reclamation cycle starts.

 First, the program finds all registers accessible from the base registers and makes

their signs negative. This is accomplished by starting from each of the base registers

and changing the sign of every register that can be reached from it by a car - cdr

chain. If the program encounters a register in this process which already has a

negative sign, it assumes that this register has already been reached.

After all of the accessible registers have had their signs changed, the program goes

through the area of memory reserved for the storage of list structures and puts all the

registers whose signs were not changed in the previous step back on the free-storage

list, and makes the signs of the accessible registers positive again."

Garbage collectors save us a lot of time (programmers do not need to manually

deallocate unreferenced objects) and shield us from low-level memory errors including

dangling pointers, double memory frees, premature memory frees and memory leaks.

FEI KPI

 30

Garbage collection turns out to be one of the most important research areas around

virtual machines over the last decades, even if the beginnings were not easy [13] :

"The first online demonstration of garbage collection was to an MIT Industrial

Liaison Symposium. Unfortunately, mid-way through the demonstration, the IBM 704

exhausted (all of!) its 32k words of memory. Fifty years on, garbage collection is no

joke but an essential component of modern programming language implementations."

2.4.1 Terms

During this chapter we will talk about garbage collection in more details, but first

let us create a shared vocabulary by defining important terms:

Tab. 2 Garbage collection terms

Term name Term description

collector
Collector executes garbage collection code, discovers

unreachable objects and reclaims their storage.

compaction
Compaction performs relocation, moves live objects

together and reclaims contiguous empty space.

liveness of an object
Object is "life" if it is accessible from the root references

(thread stacks, global storage, statics, ...).

memory fragmentation

Memory fragmentation emerges over time when

contiguous dead space between objects may not be large

enough to fit new objects.

mutator

Mutator executes application code, allocates new objects

and mutates the object graph by changing reference

fields

pause
Pause is a time duration in which the mutator is not

running any code.

promotion Promotion is allocation into an older generation.

stop-the-world Stop-the-world is something that is done in a pause.

FEI KPI

 31

2.4.2 Garbage collection metrics

Comparing garbage collectors using various metrics can reveal their behavior,

weak and strong characteristics. The following table summarizes garbage collection

metrics:

Tab. 3 Garbage collection metrics

Metric name Metric description

allocation rate how fast data are allocated

compaction time
how long it takes the collector to free up memory by relocating

objects

cycle time how long it takes the collector to free up memory

heap population how much of heap is alive

marking time how long it takes the collector to find all live objects

mutation rate how fast references in memory are updated

object lifetime how long objects live

sweep time how long it takes the collector to locate dead objects

2.4.3 Classifying collectors

Garbage collection theory has defined multiple types of collectors and the most

important ones are:

 monolithic collectors,

 stop-the-world collectors,

 concurrent collectors,

 parallel collectors,

 incremental collectors,

 "mostly" variation of some of the previously mentioned collectors.

FEI KPI

 32

Once a monolithic collector is started, it cannot be stopped until it finishes the

whole collection.

A stop-the-world collector (also known as serial collector) performs the garbage

collection while the application is completely stopped.

A concurrent collector performs garbage collection work concurrently with the

application's own execution.

A parallel collector uses multiple CPU cores to perform garbage collection.

An incremental collector performs a garbage collection process as a series of

smaller discrete operations with gaps in between.

There also exist variations of previously mentioned collectors, the ones that

contain "mostly" in their names. In this context "mostly" means sometimes is not and

this usually means a different fall-back mechanism exists. For instance "Mostly

concurrent" collector means concurrent as long as it could be and then it is not

concurrent anymore and another kind of collector will perform the collection.

2.4.4 Conservative vs. precise collection

A collector is conservative if it is unaware of all object references at collection

time, or is unsure about whether a field is a reference or not.

A collector is precise if it can fully identify and process all object references at the

time of collection. A collector has to be precise in order to move objects. All

commercial server JVMs use precise collectors.

All precise garbage collection mechanisms have the following steps in common:

1. identify the live objects in the memory heap,

2. reclaim resources held by dead objects,

3. periodically relocate live objects.

Mark-Sweep-Compact collector, which is commonly used for old generations,

performs these operations in 3 different steps. Copying collector, which is commonly

used for young generations, performs mentioned operations in one step.

FEI KPI

 33

2.4.4.1 Mark, sweep and compact phases

Mark phase, also known as Trace, starts from roots. In this phase all reachable

objects will be "painted". At the end of the mark phase, all reachable objects will be

marked "live" and all non-reachable objects will be marked "dead".

Sweep phase scans through the heap, identifies the dead objects and tracks them

(usually in some form of free list or card map data structure).

Compact phase moves objects in memory and corrects all object references to

point to the new object locations. At the end of the compact phase, heap memory will be

defragmented.

2.4.4.2 Copy phase

Copy phase moves all live objects from a "from" space to a "to" space and

reclaims "from" space.

At the start of the copy phase, all objects are in the "from" space and all references

point to the "from" space. Copy phase starts from "root" references, copies all reachable

objects to the "to" space correcting all references as it goes. At the end of the copy

phase, all objects are in the "to" space and all references point to the "to" space.

2.4.5 Generational collection

According to the article Garbage Collection in the Java HotSpot Virtual Machine

[15], the following two observations are known as "weak generational hypothesis":

 most allocated objects will die young,

 few references from older to younger objects exist.

That is the reason why most garbage collection algorithms will focus efforts on

young generation. Because the live set in the young generation is a small fraction of the

whole memory space, moving collectors are usually used for young generation (because

the work is linear to the live set). Young generation serves as a "generational filter" and

reduces the rate of allocations in older generations. Objects that live long enough will be

promoted to older generations. Collectors keep surviving objects in young generation

for a while before promoting them to the old generation. Immediately promotion can

dramatically reduce generational filter's efficiency, but waiting too long to promote can

FEI KPI

 34

dramatically increase copying work. Older generations will only be collected as they fill

up.

Because most objects die young, the frequency of promotion is much lower than

the frequency of allocation. Generational collection is a great way to keep up with high

allocation rate. Generational collection tends to be more efficient by at least the order of

magnitude.

The generational collection could be applied to multiple generations, but only

young and old generations are practically used.

2.4.6 HotSpot Virtual Machine collectors

The HotSpot Java Virtual Machine currently contains the following 3 garbage

collectors [16]:

 Parallel garbage collector,

 CMS
23

 garbage collector,

 G1
24

 garbage collector [17].

Let us summarize the main characteristics of all of them in the following

subchapters.

2.4.6.1 Parallel garbage collector

The characteristics of parallel garbage collector within JRE
25

 are:

 Parallel garbage collector is the default JRE GC
26

.

 Parallel garbage collector uses monolithic STW
27

 copying collector for

young generation.

 Parallel garbage collector uses monolithic STW Mark-Sweep-Compact

collector for old generation.

23

 Concurrent Mark-Sweep Garbage Collector
24

 Garbage-First Garbage Collector
25

 Java Runtime Environment
26

 Garbage Collector
27

 Stop-The-World Garbage Collector

FEI KPI

 35

2.4.6.2 CMS garbage collector

The characteristics of CMS garbage collector within JRE are:

 CMS garbage collector can be turned on by specifying the

"-XX:+UseConcMarkSweepGC" argument as part of the java command.

 CMS garbage collector uses monolithic STW copying collector for young

generation.

 CMS garbage collector uses mostly-concurrent, non-compacting Mark-

Sweep collector for old generation. Mostly-concurrent means mostly-

concurrent marking and concurrent sweeping phase with fallback to full

collection (monolithic STW compaction).

2.4.6.3 G1 garbage collector

The characteristics of G1 garbage collector within JRE are:

 G1 garbage collector can be turned on by specifying the

"-XX:+UseG1GC" argument as part of the java command.

 G1 garbage collector uses monolithic STW copying collector for young

generation.

 G1 garbage collector uses mostly-concurrent marking phase and STW

mostly-incremental compacting phase for old generation with fallback to

full collection (monolithic STW compaction of popular objects and

regions).

There are two problems with all the mentioned standard Java garbage collectors:

1. Young generation always uses STW collector which will eventually cause

unacceptable pauses with big enough heaps.

2. Old generation always uses STW compaction phase which will again cause

unacceptable pauses with big enough heaps.

The only currently known JVM that does non-STW compaction phase and both

young and old generations use truly concurrent collectors is Azul's C4
28

 collector [18].

28

 Continuously Concurrent Compacting Collector

FEI KPI

 36

2.5 Original GCSpy project

Let us first start with the description of the original GCSpy project [19]:

"GCSpy is a heap visualization framework. It is designed to visualize a wide variety

of memory management systems, whether they are managed by a garbage collector or

implement explicit deallocation. Its target users are mainly memory management

implementers and it allows them to observe the behavior of their system. GCSpy is

not limited to small toy systems; it can also visualize loads of realistic sizes, and do so

dynamically, as the system operates. However, if the user needs it, a trace storing and

replaying facility is also available."

Original GCSpy could visualize any software system that was created by a number

of components (usually low number) and these components can be further divided into a

number of partitions (usually large number).

Original GCSpy allowed the visualization of both local and remote software

systems and the visualization of already running system was also possible. Original

GCSpy was especially suited for visualizing the heap memory fragmentation.

As the program executes, the state of the heap changes because the program acts as

a mutator. The original GCSpy project periodically captured the current state of the

heap and sent it to the visualizer.

2.5.1 GCSpy abstractions

According to the research paper GCSpy: An Adaptable Heap Visualisation

Framework [20], the original GCSpy project defined the following abstractions:

 spaces,

 blocks,

 streams.

FEI KPI

 37

2.5.1.1 Spaces

Each system consists of one or more components. Each component consists of one

or more spaces. The heap memory is an example of such a component. In the case of the

generational garbage collection, generations are examples of spaces.

Each space is described by the following characteristics:

 space name,

 number of blocks (size),

 space streams.

2.5.1.2 Blocks

Each space consists of one or more blocks. The memory block with well-defined

size is an example of a block. Blocks define granularity of the visualization. Blocks

from within different spaces do not have to have the same size.

Every block of the same space has exactly the same attributes. Blocks are visually

represented as tiles and have an integer fixed-range values.

Fig. 4 Original GCSpy data gathering

FEI KPI

 38

2.5.1.3 Streams

Each block within a space could have multiple attributes and all blocks of the same

space have exactly the same attributes. These attributes are modeled as streams.

The current state of the stream is described as a sequence of integers, one integer

value per each block.

Each stream is described by the following characteristics:

 stream name,

 stream description,

 stream type,

 type and range of stream data values,

 other presentation information.

2.5.2 GCSpy architecture

The architecture of the original GCSpy was strictly client-server with TCP/IP
29

socket communication. This choice was made mainly because the need of language

independence and performance. From the architecture point of view, the observed

system acts as a server and the visualization GUI
30

 acts as a client.

Data transmission between client and server usually happens at "safe points". Safe

point represents a STW situation where all mutator threads (every thread except

memory observer thread) are stalled.

The communication between the client and the server is performed through a

driver. The driver has 2 responsibilities:

 do the mapping between the collected data and the appropriate streams

within spaces,

 collect any additional data (e.g. control and summary streams).

Driver extracts data specific for every garbage collection algorithm and provides

the data further to the lower layers of GCSpy. Every driver is specific for a particular

system (e.g. JVM) and component (e.g. various GC algorithms).

29

 Transmission Control Protocol / Internet Protocol
30

 Graphical User Interface

FEI KPI

 39

Fig. 5 Original GCSpy architecture

FEI KPI

 40

3 Proposal

After summarizing all the main technologies, used concepts and necessary

theoretical background, let us describe proposed main design goals together with high

level system overview.

3.1 Design goals

Main design goals of proposed GCSpy are:

 the ease of use,

 modular design and reusable components,

 non-intrusiveness,

 preciseness of visualization,

 transparency,

 virtual machine independence.

The ease of use is one of the most important goals of the project. A user should be

able to use the system in a very easy way although the initial process of setting the

system up does not have to be trivial (because of the overall complexity of the system).

Very crucial aspect of the system is modular design and reusable components.

System should be composed from modules with proper dependencies from day one.

General functionality should be abstracted and reusable for other parts of the system

(build, runtime and test infrastructure) as well as end users (GCSpy Data Provider API).

To provide good user experience, non-intrusiveness is very important. The system

should be as performing as possible and should not cause huge performance penalties.

System could apply performance optimization techniques if those will be done behind

the scenes and transparently.

Preciseness of visualization includes two aspects. The visualization (and thus also

the data gathering code) should provide fine-grained data. Preciseness also means

lowering the amount of data in the heap that are not related to the observed application,

but are used because of observing code (e.g. anything starting from Java sockets to

higher level concurrency support).

FEI KPI

 41

The need of transparency is obvious because of the system complexity. There are

two examples of transparency that system should provide. From user perspective,

system should be transparent in the way how the application will be started. The

difference between the start up of the application with and without observation should

be minimal. From the programmer perspective, the build process should be transparent

even if native code (and its build and linkage) is part of the code base. The data

provision should be transparent as well. It does not matter what was the real source of

the data (e.g. real observed JVM or just a stored trace on disk), but all should implement

the same interface.

Last, but not least virtual machine independence plays an important role in the

overall design. Unlike original GCSpy, proposed solution should be virtual machine and

garbage collection algorithm independent and thus the portability, with comparison to

the original GCSpy, should be easier to achieve.

3.2 High level overview

The system should be designed according to the following figure:

Fig. 6 Proposed GCSpy high level overview

The essential part of the high level overview is the GCSpy Data Provider API. The

visualization should use the API and should not depend on any of the API

implementations. One of the implementations should be using sockets with a

well-defined communication protocol between the observed and visualizing JVM.

FEI KPI

 42

4 Implementation details

This chapter will focus on the implementation details. We will go through the

build infrastructure, runtime infrastructure, test infrastructure, socket communication

protocol, portability and we will put things together in the last chapter.

Some of the following chapters will be divided into these three subchapters:

1. "Initial considerations",

2. "Design decisions",

3. "How does it work?".

The part “Initial considerations” summarizes the initial thoughts and

considerations I made either before further implementation or in the very early stage of

the development process. There were always multiple ways how to solve a given task

and that part will be summarizing possible options.

The part “Design decisions” summarizes decisions I made during the development

process together with explanations of the reasons and comparisons of possible options

including their advantages and disadvantages.

The part “How does it work?” describes in more details how things work, what is

required to do in order to make things working correctly. This part also contains

limitations of the given solution.

FEI KPI

 43

4.1 Build infrastructure

Build infrastructure was clearly one of the most important parts of the application

design. It was not trivial to develop such infrastructure totally from scratch, but from the

long-term perspective, it definitely deserved its cost of development. Being able to build

not only Java classes, but also native code as part of one central step is a huge win.

One of the main design goals of the build infrastructure was not to be forced to

commit any binary data into SCM
31

 tool. This complicated the development process

quite significantly, especially from the beginning until the build, runtime and test

infrastructures were fully developed, but later proved as a good idea.

As a result you are able to build the whole application including Java and C source

code into proper deployment units within one build step and no binary data will have to

be committed into SCM repository.

4.1.1 Initial considerations

The decision to choose Maven as a build infrastructure technology was obvious

right from the development beginning. The question was how the native code (in our

case written in the C language) will be compiled and linked. There already exist 2

Maven subprojects trying to introduce C/C++ support for Maven:

1. Maven Native plugin (supported directly by Sonatype),

2. Maven NAR
32

 plugin (community driven effort).

However none of them was chosen for building the native part of GCSpy mainly

because they did not really fit into the overall GCSpy architecture. First let us focus on

the Maven Native plugin and its disadvantages:

 Maven Native plugin is not under active development and is still in the

alpha development cycle.

 Maven Native plugin uses customized lifecycle, however it is quite

complex and still not powerful enough to do simple tasks easily.

 Maven Native plugin uses "exe" or "uexe" packaging type for producing

executable files. This is however not flexible because you need to define 2

31

 Source Code Management
32

 Native Archive

FEI KPI

 44

Maven projects with different packaging types if you would like to build

the same code to be executable on different platforms.

 Maven Native plugin uses "dll" and "so" packaging types for producing

shared libraries which introduces exactly the same problem as mentioned

with "exe" and "uexe" packaging types.

 Maven Native plugin supports only GCC
33

 + GCC, BCC32 + ILINK32 and

CL + LINK as compiler and linker pairs.

 Maven Native plugin requires you to define the proper packaging type,

compiler and linker provider together with environment factories (most of

which could be automatically determined according to the underlying

running platform).

 Maven Native plugin's lifecycle contains "install" and "deploy"

phases. This does not fit into the GCSpy architecture at all. It does not

make sense to do the installation into the local Maven artifact repository or

the deployment into the remote Maven artifact repository.

Secondly, let us focus on the Maven NAR plugin and its disadvantages:

 Maven NAR plugin is much more flexible (for instance it supports

integration tests among other interesting features), but it is still missing

some essential features.

 Maven NAR plugin will produce a NAR archive (zip compressed file with

all native OS
34

 and platform specific binaries) and will install packaged

modules into local Maven artifact repository.

 Maven NAR plugin's lifecycle contains "install" and "deploy"

phases. It is again the same problem as with Maven Native plugin.

 Maven NAR plugin will do the compilation and the linkage process

together in one step. This effectively blocks any further considerations

about choosing this plugin.

As a result, none of those 2 Maven plugins was suitable for what I needed to

achieve and thus I have decided to develop my own Maven packaging type together

with customized build lifecycle.

33

 GNU Compiler Collection
34

 Operating System

FEI KPI

 45

4.1.2 Design decisions

Unlike Maven Native plugin or Maven NAR plugin, I have created "shared-

library" packaging type, which differs from both of them quite significantly. Let us

summarize the most important design decisions and characteristics of the custom

"shared-library" packaging type:

 The only supported packaging type is "shared-library" which will

produce a shared library, whatever it means on the underlying platform (on

Windows machines it will produce a DLL
35

 file and on Linux/Unix/Solaris

machines it will produce a SO file). This allows to create just one Maven

project with C source files and package them automatically according to

the running platform.

 There is no direct way how you can produce any other deployment format

(like for example executable file). This is intentional, but appropriate API

backs that kind of functionality.

 Current support includes Windows platform together with MSVC
36

compiler and linker.

 There is an easy way how you can add additional compiler support which

will be automatically recognized on defined platform.

 The only thing you need to do, in order to execute the packaging, is to

define the "shared-library" as packaging type and add compiler and

linker executables to the PATH environment variable. Everything else will

be handled automatically behind the scenes (the default platform compiler

and linker pair will be selected and any required system properties,

environment variables and settings will be set).

 There is neither direct nor indirect mapping into Maven "install" or

"deploy" phases because it does not make sense to install binary artifacts

into local or remote Maven artifact repository.

 There is a build-in support for integration tests within the packaging type

(using standard Maven Failsafe plugin). As a result you do not need to

specify the Maven Failsafe plugin explicitly in the project's POM that uses

35

 Dynamic Link Library
36

 Microsoft Visual C++

FEI KPI

 46

the "shared-library" packaging and so the project POM is more clear

and concise.

 Compile and linkage processes are not done in the same step. This turns

out to be a very good and useful idea and I am taking advantage of the

separate build and link process within tests.

 The compiler and linker abstractions are implemented as a well-defined

API. This allows me to be able to do the programmatic compilation and

linkage.

 Some of the compiler and linker options were general enough to be

abstracted away. For instance you should be able to link a set of object files

into an executable file or a shared library (whatever it means on underlying

running platform). Another example of a very common option is the ability

to define the output directory (output directory is actual compiler working

directory where all compiled or linked files will be created). Last but not

least, the API also handles compiler standard and error output. This is

important not only for Maven MOJOs
37

, but also for testing purposes and

Groovy runner script.

For the above mentioned reasons, those functionalities are abstracted away

to be part of the API. Most of the remaining attributes are not general

enough to be abstracted away but they are rather compiler or linker

specific. The build infrastructure is flexible enough to be able to specify

any number of compiler and linker arguments as a set of String based

options passed to the compiler and linker.

The reason why I am mentioning those design decisions in details is the fact that

most of the other parts of the system were designed in a very similar fashion (find

minimal suitable abstraction that will be abstracted away as part of the API, encapsulate

what varies, use proper level of abstraction, ...).

37

 Maven plain Old Java Object

FEI KPI

 47

4.1.3 How does it work?

Instead of creating a completely new Maven build lifecycle, I decided to reuse and

customize the default Maven build lifecycle (mainly because the default Maven build

lifecycle contains 23 phases and is flexible). I am only mapping my MOJOs together

with a subset of chosen standard Maven MOJOs to the final GCSpy build lifecycle.

Only the phases required by GCSpy are part of the mentioned mapping.

There is one fundamental difference between the lifecycle mappings of both the

Maven Native plugin as well as the Maven NAR plugin and GCSpy "shared-

library" plugin. When I was thinking about the mapping that should be used for C-

based projects I have found similarities between C compilation/linking and Java

compilation/packaging processes.

From the Java perspective, source code is saved in *.java files and then

compiled into *.class files. Those *.class files can be used independently, but

usually they will be packaged into bigger deployment units (JAR, WAR
38

, EAR
39

, ...)

with well-defined structure described by appropriate JSRs. In the case where a JAR file

contains appropriate key-value pair as part of its manifest to define the main method

("Main-Class") or a WAR file contains appropriate data in its deployment descriptor,

the deployment unit could be understood as "executable".

I tried to apply similar semantics to the C compilation/linking MOJOs. Both

Maven Native plugin and Maven NAR plugin do the compilation/linking either together

in one step, or as two independent steps one after another. In their case the "package"

phase is used to package all the produced files into Zip archives. In the case of GCSpy,

"compile" phase is mapped to Compilation MOJO and the linkage will be performed

later as the part of the "package" phase where linkage will produce the shared library.

For the purpose of "shared-library" packaging, the following phases are

mapped into standard Maven MOJOs:

38

 Web Archive
39

 Enterprise Archive

FEI KPI

 48

 process-test-resources,

 test-compile,

 test,

 integration-test,

 verify.

The exact mapping is showed on the following figure:

<compile>

 org.crazyjavahacking.gcspy:

org-crazyjavahacking-gcspy-shared-library-packaging:compile

</compile>

<process-test-resources>

 org.apache.maven.plugins:maven-resources-plugin:testResources

</process-test-resources>

<test-compile>

 org.apache.maven.plugins:maven-compiler-plugin:testCompile

</test-compile>

<test>

 org.apache.maven.plugins:maven-surefire-plugin:test

</test>

<package>

 org.crazyjavahacking.gcspy:

org-crazyjavahacking-gcspy-shared-library-packaging:link

</package>

<integration-test>

 org.apache.maven.plugins:maven-failsafe-plugin:integration-test

</integration-test>

<post-integration-test>

 org.crazyjavahacking.gcspy:

org-crazyjavahacking-gcspy-shared-library-packaging:verify

</post-integration-test>

<verify>

 org.apache.maven.plugins:maven-failsafe-plugin:verify

</verify>

Fig. 7 GCSpy Maven lifecycle mapping

FEI KPI

 49

The following Maven best practices are used along the GCSpy project:

 Convention over configuration:

 Standard directory layout for projects:

src/main/native/header - directory for all C header files

src/main/native/source - directory for all C source files

target/obj - directory where all object files will be created

dist/sharedLibrary - directory where shared library will be

created

The compilation step will compile all C source files located in

"src/main/native/source" directory and put them into

"target/obj" directory. The final shared library will be linked from

all produced object files located in "target/obj" into

"dist/sharedLibrary" directory relative to Maven parent project.

 One primary output per project

 Reuse of build logic:

Both compiling and linking MOJOs will just reuse prepared utility classes,

which are part of the "utilities" module. Other parts of the system

infrastructure could reuse those parts as well. One example of such reuse is

unit tests.

 Declarative execution:

 Maven's project object model:

The usage of both plugins is wrapped by packaging type which is

used in a declarative way and executed automatically every time a

build will run.

 Maven's build life cycle:

The fact that I am reusing default Maven build life cycle allows

further customization.

FEI KPI

 50

4.1.4 Dependency management

Fig. 8 GCSpy Maven dependency management

The upper figure visualizes Maven dependency management. As you can see,

project currently contains the following Maven modules:

 Utilities,

 Bytecode Instrumentation Bridge,

 Shared Library Packaging,

 JVM Native Agent,

 GCSpy Data Provider API,

 GCSpy Socket Data Provider.

The purpose of GCSpy Parent module is to unify the properties, versioning of

dependencies, build plugins and profiles.

Utilities module contains various reusable components including compiler and

linker abstractions, external process execution wrappers, file utilities, file system

watching wrappers, socket utilities, test utilities and utility classes specific to operating

system and virtual machine.

FEI KPI

 51

Bytecode Instrumentation Bridge contains just one class serving as bridge between

Java calls (which were added as a result of the bytecode instrumentation process) and

native calls (returning the execution back to the native code).

Shared library packaging contains all Maven specific code required to integrate the

"shared-library" packaging. This includes 3 MOJOs - compiling, linking and

verifying MOJO. Module contains lifecycle mapping as well.

JVM Native Agent is the most important module, the one that contains core

HotSpot VM
40

 integration. This includes bytecode instrumentation, server socket

implementation and JVMTI bridge.

GCSpy Data Provider API is a high level object-oriented java API, which allows

you to register object, VM and GC type of listeners.

GCSpy Socket Data Provider is a socket-based GCSpy Data Provider API

implementation. In fact it is the high-level counterpart to the low-level socket-based

communication protocol.

Very important aspect is the fact that there is no direct or indirect dependency

from JVM Native Agent to GCSpy Socket Data Provider or vice versa. This is exactly

how it should be because C code cannot have dependency to any java code and java

client socket implementation has no dependency to the C-based server socket.

There are 4 types of dependencies:

 direct compile dependency,

 direct test dependency,

 indirect compile dependency,

 indirect test/runtime dependency.

Direct compile dependencies are required in order to compile the module. Those

dependencies will be automatically put on compile classpath.

Direct test dependencies are required in order to test the module. Those

dependencies will be automatically put on test-compile classpath.

Direct Maven dependencies are referenced by Maven <dependency>

declarations. They will effectively dictate the order in which the modules will be

compiled.

40

 Virtual Machine

FEI KPI

 52

Indirect dependencies are not forced by Maven in any way. They exist either

because a module needs another module to function properly, but the dependency is not

required during the compilation (JVM Native Agent requires Bytecode Instrumentation

Bridge at runtime, otherwise runtime error will occur) or because a module is packaged

using nonstandard packaging type that is defined in another module (JVM Native Agent

requires Shared Library Packaging, otherwise the build process will fail).

4.1.5 Maven profile activation strategy

Maven profiles are a way how to customize the build process. In the GCSpy

project, profiles are useful because they will allow you to build only "shared-library"

packaging, determine if the final shared library will be 32bit or 64bit and allow you to

pass compiler and linker specific options. Currently, the GCSpy project contains the

following profiles:

 buildOnlySharedLibraryPackaging,

 buildAllModules,

 32BitNativeAgent,

 64BitNativeAgent,

 windowsOS.

The first profile "buildOnlySharedLibraryPackaging" will only build the

"shared-library" packaging. The purpose of this profile will be described in the

following chapter. This profile has to be activated manually mentioning it on the

command line.

The second profile "buildAllModules" will build all modules. This profile will

be activated by default.

The third and fourth profiles "32BitNativeAgent" and

"64BitNativeAgent" will set the "nativeAgentBits" system property to 32 or

64. This system property will be propagated to both Maven Surefire and Failsafe

plugins. Most of the users will probably use the 32bit JVM that is why the

"32BitNativeAgent" will be selected by default and the latter one will have to be

activated manually on the command line.

FEI KPI

 53

The last profile "windowsOS" is used to set all Windows operating system

specific settings to build plugins (including compiler and linker options). This plugin

will be activated automatically on Windows operating system.

Now let us summarize all the aspects of Maven profile activation in the following

table:

Tab. 4 GCSpy Maven profile activation strategy

Profile id
Profile
activation

Activation
process

Modules to build

buildOnlySharedLi
braryPackaging

manually by mentioning the

profile explicitly

on CL
41

utilities,

shared-library-

packaging

buildAllModules automatically by default utilities,

shared-library-

packaging,

bytecode-

instrumentation-

bridge,

jvm-native-agent,

gcspy-data-provider-

api,

gcspy-socket-data-

provider

32BitNativeAgent automatically by default -

64BitNativeAgent manually by mentioning the

profile explicitly

on CL

utilities,

shared-library-

packaging,

bytecode-

instrumentation-

bridge,

jvm-native-agent,

gcspy-data-provider-

api,

gcspy-socket-data-

provider

windowsOS automatically on Windows OS -

41

 Command Line

FEI KPI

 54

4.1.6 Building modules

Until now everything looked like customized, but not very special Maven-based

project. Here comes the place where it is getting more interesting.

You should be able to compile the project executing:

mvn clean install

Maven will try to compile the modules in the following order:

1. GCSpy Parent

2. Utilities

3. Shared Library Packaging

4. Bytecode instrumentation bridge

5. JVM Native Agent

6. GCSpy Data Provider API

7. GCSpy Socket Data Provider

What might be not so obvious from the Fig. 8 GCSpy Maven dependency

management, is the consequence of the indirect compile dependency of "jvm-native-

agent" module to "shared-library-packaging" module. The important point is

the fact that the "shared-library-packaging" module is part of the GCSpy parent

module and thus will be built every time the whole application will be built. This

decision was made in the very early stage of the development process and I still think it

was a good choice. The "shared-library-packaging" module is not

general-purpose packaging type with tons of settings to build the final shared library,

but it was created specifically for "jvm-native-agent" module. All of the

implemented features were driven by requirements from the "jvm-native-agent"

module. That is why it is part of the multi-module Maven project and not in an

independent Maven project. The question is: Why do I mention this issue?

It is important because for the first time, the mentioned command will not work

and the build will fail. The problem is the fact that the packaging type is a part of the

same module hierarchy and it is not a standalone Maven module. Further, Maven treats

packaging with higher priority in comparison to common modules, it will fail because it

will be not able to find or download "shared-library" packaging (not available in

the local Maven artifact repository yet and not exported to the Maven Central repository

at all).

FEI KPI

 55

The overall build will fail because Maven will not be able to find the packaging

type. However the packaging type cannot be compiled until the parent module will be

successfully resolved. And parent module will not be successfully resolved until all of

its child modules (including the packaging) will be build. As a result we have just

described a "deadlock-like" situation.

Now the purpose of the "buildOnlySharedLibraryPackaging" profile

should be obvious. For the first time one will build the project, one is required to build it

using the mentioned profile. So for the first time, you need to execute the following

Maven command:

mvn -P buildOnlySharedLibraryPackaging clean install

FEI KPI

 56

4.2 Runtime infrastructure

Because of the overall build infrastructure complexity, running the whole

application is not as easy as it might look like. In the simplest situation you have to set

bootclasspath, agentpath and multiple system properties (not including any other Java

interpreter options every user can specify).

Nobody really wants to write extensive command on command line and hope that

there is no typo in that command. To simplify the experience of starting the application,

the notion of runtime infrastructure was added.

4.2.1 Initial considerations

Most of the open-source projects use system specific launcher scripts (*.bat files

on Windows and *.sh on Linux/Unix). I did not want to do that mainly because of the

need to maintain multiple scripts written in different scripting languages.

Instead of doing that, I decided to use Groovy. Groovy is a dynamic programming

language that runs on top of the JVM. Groovy was chosen because of its very similar

syntax to Java, its dynamic typing and scripting capabilities. At the end of the day you

will have to maintain only one script.

One important aspect that every user should have in mind is the fact that the

Groovy script is just a recommended way to start the whole java application with given

JVM native agent and required libraries. Nobody is forced to use it and one can write

native OS shell scripts or build the final java command manually.

4.2.2 Groovy scripting advantages

Right after I established the runtime infrastructure it turned out that using Groovy

for scripting added multiple advantages:

1. You do not have to maintain multiple scripts (adding code to multiple

scripts, synchronizing between them and the necessary testing on multiple

platforms).

2. Because of Groovy powerful language construct called Grape, I was able to

reuse statically typed code already implemented and well tested in the

"utilities" module. Grape is a Groovy language extension that allows

FEI KPI

 57

you to reuse Maven artifacts in Groovy script (both from local Maven

artifact repository and remote Maven Central artifact repository). Important

thing is the fact that Grape will put the artifacts to runtime classpath of the

Groovy script. This will however not change the runtime classpath of the

final java command.

3. Runtime infrastructure is validated every time the build will run. In fact

integration tests use the Groovy runner script. This significantly reduces

the code needed to run the integration tests by simplifying the application

startup.

4.2.3 Design decisions

The fact that Groovy script will run in a fully initialized JVM environment turns

out to be essential. You can get any of the system properties and pass them to the final

Java command as command line arguments. Operating system specific scripts will need

to gather the values of Java system properties in other way (they will probably need to

startup a JVM anyway).

The final java command will be executed as an external process. For external

process execution a process execution wrapper from "utilities" module is used

instead of build-in Groovy process support (mainly because of much higher flexibility).

Groovy script will accept various command line options and will preprocess, filter

and transform them into the final java command. Let us be more specific about what

Groovy script will really do.

4.2.4 Groovy script enrichment

Groovy script will do a lot of things behind the scenes. It might not be obvious, but

Groovy script will:

1. Accept and validate the existence of the following arguments:

 -nativeAgentBits,

 -nativeAgentDebugPrint,

 -serverSocketHost,

 -serverSocketPort,

FEI KPI

 58

 any other arguments starting with the prefix "-J".

2. Transform Groovy arguments into Java arguments or system properties by:

 transforming optional argument "-nativeAgentDebugPrint"

into "-DnativeAgentDebugPrint",

 transforming required argument "-serverSocketHost=..."

into "-DserverSocketHost=...",

 transforming required argument "-serverSocketPort=..."

into "-DserverSocetPort=...",

 removing the "-J" prefix from any argument starting with that

prefix.

3. Add additional argument "-DhostJVMArchitectureBits=...".

4. Enrich the bootclasspath by adding all JAR files from

"dist/bootclasspath" directory and the end of bootclasspath.

5. Register JVM native agent from "dist/sharedLibrary" directory.

6. Improve performance by:

 removing "-client" argument if available,

 adding "-server" argument if not already available,

 adding "-XX:+TieredCompilation" if not already available.

As you can see, some of the arguments have no meaning outside the Groovy script

and thus need to be transformed into Java arguments. The transformation will create

additional system properties and Java command arguments. Groovy script will enrich

the bootclasspath by adding items at the end of it and register a JVM native agent.

Groovy script will also optimize the performance. Even if you explicitly define to

execute the java code using the HotSpot C1 compiler ("-client" switch), Groovy will

filter this option and the final command will always execute the HotSpot C2 compiler

(using "-server" switch).

Groovy script will also turn on the newly added JDK 7 feature called "Tiered

compilation" automatically.

FEI KPI

 59

4.2.5 How does it work?

Let us say you are running you application with following java command:

java -server -cp build/classes ... myPackage.MainClass

or similarly executing a main class part of a JAR file:

java -client -cp build/dist ... -jar Main.jar

In general you are executing either

java [options] class

or

java [options] -jar file.jar

which could be practically handled as a special case of the first command. For both

cases incorporating the Groovy runner script should be as seamless as possible. Ideally,

just putting the Groovy command together with the Groovy runner script should be

enough.

In the GCSpy case, the general scheme is to use

groovy absolutePathToGroovyRunnerScript [options] class

groovy absolutePathToGroovyRunnerScript [options] -jar

file.jar

Fig. 9 Executing GCSpy with Groovy runner script

instead of

java [options] class

java [options] -jar file.jar

Fig. 10 Executing GCSpy with Java command

As you can see, the only difference is the replacement of the java command by

groovy command and the addition of "absolutePathToGroovyRunnerScript" at

the end of the groovy command. Everything else remains the same.

FEI KPI

 60

4.3 Test infrastructure

Test infrastructure is the last missing puzzle piece to the overall understanding of

the overall application architecture. The test infrastructure always plays an important

role in software development and our project is no exception. Testing infrastructure

includes both "Unit" as well as "Integration" testing.

The best way to start is to quote a very interesting idea from David Farley, the

author of the book Continuous Delivery, which he told as part of his talk Continuous

Delivery during Devoxx 2011 conference:

"Build binaries once. We want to be damn sure that the software we were

performance testing, the software we were acceptance testing, the software that gets

released into manual test environments, the software that gets released into production

is precisely the same version that we build and verified earlier in the stage. Otherwise

those tests are at some level invalid."

This idea turns out to be a crucial aspect which significantly influenced the test

infrastructure. Building binaries once is important in Java, but even more important in

native code (like C), where all the optimizations are done at compile time. If you will

compile the C source codes with and without the optimizing "/O2" compiler argument,

it will definitely produce different binary files. In general you can specify a lot of

compiler options effectively creating different binary packages.

Different parts of the C source base are located in different header and source files.

Those compiled parts needed to be tested independently and ideally outside the

integration testing.

Let us describe how the socket communication is tested. After the compilation of

winsock2ServerSocket.c on Windows platform, winsock2ServerSocket.obj

object file will be created. It is however not something we can directly execute because

it is neither executable nor shared library file. There is a C source file, with the main

function that uses the functionalities defined in serverSocket.h header file, for

testing purposes. That testing file will be first compiled and then linked together with

WinSock2 server socket implementation into an executable file. This executable file will

be executed in the background thread waiting for client connection and then sending it

FEI KPI

 61

test data. From within the test method java socket client will be created and all the

received data will be checked. Other native (C-based) parts are tested in similar way.

4.3.1 Dealing with garbage collection indeterminism

One generally interesting aspect of the garbage collection is the transparency.

Garbage collection will be handled behind the scenes and the programmer has no direct

option to influence the garbage collection process. From the programmer point of view,

the garbage collection is a nondeterministic process because the programmer has no

idea if and when the garbage collection runs.

Because of the garbage collection transparency, no further implementation details

of garbage collection are part of the JLS
42

 [21] or JVMS
43

 [22]. This is how it should

be, however this also makes the testing process much more difficult. Without deeper

understanding of garbage collection algorithms and HotSpot virtual machine specific

details, testing process is tricky.

Even if there is a standard Java API for invoking garbage collection by calling

System.gc() method, after careful reading the indeterminism leaks out. The method

contract states that:

"Calling the gc method suggests that the Java Virtual Machine expend effort

toward recycling unused objects in order to make the memory they currently occupy

available for quick reuse. When control returns from the method call, the Java Virtual

Machine has made a best effort to reclaim space from all discarded objects."

Did you catch it? The method contract does not guarantee that the garbage

collection will really run. So in practice no code, including the tests, could ever rely on

that assumption.

The Javadoc of the OutOfMemoryError exception class is pretty much the only

guarantee about the garbage collection in every current JVM implementation, with the

following content:

"Thrown when the Java Virtual Machine cannot allocate an object because it is

out of memory, and no more memory could be made available by the garbage

collector."

42

 Java Language Specification
43

 Java Virtual Machine Specification

FEI KPI

 62

That practically means that you will not get an OutOfMemoryError exception if

there is a free space in the memory heap (either directly free, or occupied by no longer

used objects that will be removed by garbage collector) and the space will be big

enough to allocate requested object.

Now let us focus on concrete problems. From the test perspective, there are two

problematic situations we need to test:

1. we need to force the garbage collector to run,

2. we need to force the garbage collector to move objects in the heap

memory.

There is the need to test both of these situations because these functionalities are

part of the GCSpy Data Provider API.

So, how did I solve the garbage collection indeterminism problem?

The first situation was not that hard. I was able to make the garbage collection

process deterministic for a concrete test case by specifying the special combination of

JVM arguments. These arguments were explicitly setting the heap sizes (both initial and

maximum). JVM initialized in such a way, together with specially prepared test method,

results in garbage collection determinism. It is important to say that it was possible only

because the thread model of testing method was trivial. In real-world applications,

where multiple threads are running simultaneously and thus all of them can allocate

objects, the thread model prevents the previously mentioned solution to be 100%

predictive and deterministic.

The second situation was more tricky. There is practically no guaranteed way how

to determine the address from java object using a java API. Moving objects in memory

is similarly transparent as the whole garbage collection process. Again, no further

assumptions can be made about when an object could change its native memory

address. This fact was confirmed by David Holmes, Senior Java Technologist, Java SE

VM Real-Time and Embedded Group, as part of our mailing conversation on "hotspot-

dev" mailing list where he answered:

"Object addressing is an implementation artifact and so has no mention in either the

VM or language spec."

FEI KPI

 63

It is clear that as part of the garbage collection (especially using the copying

algorithms) the native object memory address could change during the VM lifetime.

But, are there any other circumstances when an object could change its address? If such

circumstances exist, then the questions is: when and why? I assumed that HotSpot

should not move objects in memory except during the garbage collection and I was

right. This was again confirmed by David Holmes:

"I'm fairly sure that in Hotspot only the GC will move objects. Any movement

requires updating all references to the object and that requires locating them, which

requires at least some phases of the GC to execute."

That practically merges both mentioned problematic situations into the same one:

How to force the garbage collector to run?

FEI KPI

 64

4.4 Socket communication protocol

Now let us focus on the definition of the socket communication protocol. Socket

communication protocol in the GCSpy case is a high-level term specifying the

following items:

 send data semantics,

 connection management,

 thread model,

 blocking states.

Programmer should be able to implement additional implementation of the GCSpy

Data Provider API built on top of the communication protocol just by reading the

following contract.

The whole chapter will focus on the socket communication contract.

4.4.1 Sent data semantics

Socket is a communication abstraction to send and receive data over computer

network. From the programmer point of view, the real data that programmer will be

working with are streams of bytes. In object-oriented languages this could be wrapped

into higher-level objects (in Java it will be InputStream and OutputStream).

The real question, which arises from the general "stream of bytes" abstraction, is

the semantics of the sent data. Both the server and the client have to have exactly the

same understanding of bytes order. This includes understanding of which bytes

represent event flags and which represent the real data. We also have to distinguish

between constant and variable data length for each event.

From the architecture point of view, the sent data semantics is not directly mapped

into java API, but it is rather wrapped in a higher-level and object-oriented way. One of

the examples is the VMEventListener.vmStarted(VMDescription) event

method. Even if the socket client will receive multiple numeric values and byte arrays,

the user of the API will be working with objects on the proper level of abstraction.

Very crucial part of the sent data semantics is the synchronization between the C

and Java side. During the development communication protocol was changed every

time I have added new event. In order to guarantee the synchronization, there is a Unit

FEI KPI

 65

test part of the build that will test the proper C and Java synchronization every time the

build will run.

One aspect every client implementation has to respect is the byte order from

operating system point of view. Here we are talking about "Endianness" [23]. The

server as well as the client both need to transform the OS specific endianness to the

Big-endian (the standard for network communication).

Now let us look at the java implementation of the socket communication protocol:

package org.crazyjavahacking.gcspy.socket.api;

/**

 * Socket communication protocol.

 *

 * @author Martin Skurla (crazyjavahacking@gmail.com)

 */

public enum SocketCommunicationProtocol {

 //---

 // Constants.

 //---

 VM_STARTED_EVENT ((byte) 1),

 // followed by:

 // 1.) 1 byte (host JVM architecture bits)

 // 2.) 2 bytes (length of VM info) + x bytes (content)

 // 3.) 2 bytes (length of VM name) + y bytes (content)

 // 4.) 2 bytes (length of VM vendor) + z bytes (content)

 // 5.) 2 bytes (length of VM version) + w bytes (content)

 VM_INITIALIZED_EVENT((byte) 2), // no data follow

 VM_DEAD_EVENT ((byte) 3), // no data follow

 GC_STARTED_EVENT ((byte) 4), // no data follow

 GC_FINISHED_EVENT((byte) 5), // no data follow

FEI KPI

 66

 // followed by 4+4 bytes (object address & size)

 _32_BIT_OBJECT_ALLOCATED_EVENT((byte) 6),

 // followed by 4 bytes (object address)

 _32_BIT_OBJECT_DEALLOCATED_EVENT ((byte) 7),

 // followed by 4+4 bytes (old and new object address)

 _32_BIT_OBJECT_MOVED_IN_MEMORY_EVENT((byte) 8),

 // followed by 8+4 bytes (object address & size)

 _64_BIT_OBJECT_ALLOCATED_EVENT((byte) 9),

 // followed by 8 bytes (object address)

 _64_BIT_OBJECT_DEALLOCATED_EVENT((byte) 10),

 // followed by 8+8 bytes (old and object address)

 _64_BIT_OBJECT_MOVED_IN_MEMORY_EVENT((byte) 11),

 CLIENT_CONNECTED_EVENT((byte) 101), // no data follow

 CLIENT_DISCONNECTED_EVENT((byte) 102); // no data follow

 ...

}

Fig. 11 Java implementation of the socket communication protocol

4.4.2 Connection management

Another important thing is the connection management. Here we are not talking

about the creation of connections where both client and server are responsible for

creating their connections respectively. Rather, we are talking about closing the

connection. Connection closing is transparently handled by the server and client should

never close the socket. This is not only more transparent for the user, but the client

implementation is easier as well. Anyway, the server should manage (and close) the

connections at the first place.

FEI KPI

 67

4.4.3 Thread model

Because socket communication is by definition not thread-safe, it does not include

any kind of build-in synchronization. Because the function callbacks will be called

concurrently, in the case when multiple threads will allocate the objects or parallel

garbage collection algorithm will be selected, manual synchronization is needed.

Handling concurrency in the C language is very low-level and due to the fact that it will

be executed in the JVM, nothing else than monitors (as a model of concurrency) can be

used. For simplification, I decided to use just one global monitor for all threads. This

will quite significantly decrease the overall performance on one side, but this is the

easiest way how to deal with concurrent event notification.

Improving performance is always an important step. In this case, more important

than looking for proper monitors is to find events that will not need any kind of

synchronization at all. If we could send event object notifications, which were fired

from the same thread in the same but independent communication channel, the

synchronization will not be necessary anymore. Basically, one communication channel

per one thread will increase the performance significantly (for concurrent applications).

For this aim we will need to map an object to the thread from which it was created

and the thread to unique communication channel. The only way how you can uniquely

identify the object is by its native memory address. The native object memory address

could however be changed during the JVM lifecycle. In order not to introduce race

conditions, an internal synchronization will be needed and it will decrease the

performance.

Even more importantly, especially for applications with huge number of threads

(for example application servers), this could be not possible at all. You are allowed to

create just a limited number of socket connections because of limited number of ports,

but you can theoretically create much higher number of threads.

To sum up, more performing solution will be not usable in every situation and the

real question will be whether the performance will be increased significantly.

FEI KPI

 68

4.4.4 Blocking states

One important note about blocking states is the fact that blocking states have

nothing to do with concurrency.

The contract of blocking states is important for additional implementations of the

client and server side in order to be able to interchange implementations.

In practice, JVM will block its execution during the STARTED state until a client

will connect to the server socket. This blocking state will eliminate the need to have

code that would need to handle events until the client would connect and will also

eliminate needed concurrency synchronization. As a side-effect, memory will not be

pointlessly occupied by event data.

The second blocking state will occur when server will block the observed JVM

execution at the end of the server lifecycle until the client will acknowledge it. The

reason is the fact that all events did not have to be already processed when the JVM

reaches its DEAD state. And because the server socket will be closed right after the client

notification event will be received by the server, no additional data will be readable

from server socket after the client notification.

FEI KPI

 69

4.5 Portability

Let us start with a provocative idea from Jim McCarthy, which he wrote as part of

his article 21 Rules of Thumb – How Microsoft develops its Software [24]:

"Portability is for canoes."

Even though it may look like portability is not the case for Java applications

because everybody is familiar with the famous motto:

"Write once, run everywhere."

our application is a little bit special and the portability plays an important role

from development, testing and architecture point of view.

Portability in the GCSpy case includes three parts:

 operating system portability,

 virtual machine portability,

 Java portability.

4.5.1 Operating system portability

Operating system portability means portability across various operating systems.

This is very important because the code written in the C language will be compiled,

linked into shared library for build purposes and linked into executable for testing

purposes.

Operating system portability is the most complicated portability we will talk about.

If you would like to add support for new operating system, you would need to do

changes across various parts of the system, most likely in all of them:

 native level,

 application level,

 build infrastructure level,

 runtime infrastructure level.

FEI KPI

 70

Now let us talk about all of them in more details. For every kind of the above

mentioned levels there will be the description of the root and also the purpose, how it is

handled in code, code samples how the code looks like and also how would you

recognize that some parts of the system are not implemented for your running operating

system.

4.5.1.1 Native level

Portability on the native level (C code) makes the most sense.

Because of lack of functions inside the core C language libraries, I was forced to

use some operating system specific code. This includes:

 native server socket implementation,

 conversion of running platform endianness into network endianness,

 conversion of string (char*) into 64bit unsigned long number.

Native server socket implementation is crucial because without the data we cannot

visualize anything. Sending data also means the conversion from running platform

endianness into network endianness which is Big-endian. For testing purposes I also

needed a C function that would do the conversion from given C-based string into 64bit

long unsigned number. Because the size of the numeric types in the C programming

language depends on the running platform, it will be operating system specific as well.

All mentioned examples use conditional compilation (handled by preprocessor) to

separate operating system specific functionality. As an example, let us look how the

string conversion into 64bit long number looks like for Windows host operating system:

#ifdef _WIN32

 testNumber = _strtoui64(argv[3 + count], NULL, 10);

#else

 fprintf(stderr, "!!! Conversion from string to 64bit

number is not implemented on running platform !");

 exit(-1);

#endif

Fig. 12 Example of operating system specific code on native level

FEI KPI

 71

As you can see from Figure 12 (and it is also a general principle), operating system

specific code is always placed in conditionally executed code blocks guarded by

preprocessor. If you will try to run the binaries on different platform (even if it makes

sense only in some combinations of Solaris/Unix/BSD/Linux operating systems) you

will get an error at runtime. However, because the native code is executed as part of

tests that are part of the build, at the end of the day, this will cause the compilation to

fail.

4.5.1.2 Application level

Portability on the application level (Java code) is important because of core

libraries and abstractions I made on top of them.

There were multiple situations when I needed to implement operating system

specific behavior in the Java code:

 compiler and linker support,

 ability to execute executable file,

 operating system specific file extensions.

Compiler and linker support will naturally differ on different operating systems,

not only because of various compiler and linker pairs (MSVC, GCC, ...) but also

because different kinds of initializations could be needed for different compilers

(MSVC needs to set a lot of system properties to work properly). The next example is

the way how to run an executable file. Also operating system file extensions will be

different for various operating systems (for example a shared library will have *.dll

extension on Windows, but *.so on the Solaris operating system).

In such cases the solution is treated on the API level. As an example, let us look

how the default compiler support on Windows host operating system works:

FEI KPI

 72

public static CompilerSupport getDefault() {

 if (OSUtilities.isHostWindows()) {

 return new MicrosoftVisualCCompilerSupport();

 }

 throw new UnsupportedOperationException(

"Host operating system is not supported !");

}

Fig. 13 Example of operating system specific code on application level

As you can see from Figure 13, the error case is handled by throwing a runtime

exception. Compiling MOJO, linking MOJO, groovy script and tests are all using such

kind of operating system specific code. Because all mentioned occurrences are part of

tests that are part of the build, error cases will cause the build to fail.

4.5.1.3 Build infrastructure level

Portability on the build infrastructure level (Maven) may look like a little bit

weird, but because of native code compilation it makes sense.

There are two examples of such code:

 compiler flags,

 linker flags.

It should be obvious that different operating systems will use different compilers,

and different compilers will almost certainly require different sets of compiler and

linker arguments. As a result setting compiler and linker commands is really an

operating system specific task.

In such cases, Maven profiles are the solution. Let us see how you can set

operating system specific compiler and linker flags using Maven profile.

What may be not that straightforward from Figure 14, is the fact that if you will try

to build the application on platform that is not supported, the profile will not be

activated. Because of that, Maven will not be able to recognize the "shared-

library" packaging and thus the compilation will fail.

FEI KPI

 73

<profile>

 <activation>

 <os>

 <family>windows</family>

 </os>

 </activation>

 <build>

 <plugins>

 <plugin>

 <groupId>org.crazyjavahacking.gcspy</groupId>

 <artifactId>

 org-crazyjavahacking-gcspy-shared-

library-packaging

 </artifactId>

 <version>1.0</version>

 <extensions>true</extensions>

 <configuration>

 <compilerOptions>

 <compilerOption>...</compilerOption>

 </compilerOptions>

 <linkerOptions>

 <linkerOption>...</linkerOption>

 </linkerOptions>

 </configuration>

 </plugin>

 </plugins>

 </build>

</profile>

Fig. 14 Example of operating system specific configuration on build infrastructure level

FEI KPI

 74

4.5.1.4 Runtime infrastructure level

Portability on the runtime infrastructure level (Groovy) may look like a little bit

weird again. Portability on the runtime infrastructure level is needed because of the

multi-platform groovy script.

There is one specific example of the operating system specific handling in the

groovy script. Groovy script uses shared library file extension, which will differ across

various operating systems. That portability handling is already done in the java code,

but because the groovy script initiated the java call, the exception will be propagated

back to groovy.

4.5.1.5 Summary

Now let us summarize all the above mentioned kinds of portability in the

following table:

Tab. 5 GCSpy operating system portability handling

Level Handled by
Handling

language

Original error

handling

Propagated

error handling

native conditional

compilation

C runtime error compilation failed

application Java API Java runtime

exception

compilation failed

build

infrastructure

Maven

profiles

XML compilation

failed

compilation failed

runtime

infrastructure

Groovy script Groovy runtime error compilation failed

FEI KPI

 75

4.5.2 Virtual machine portability

Virtual machine portability means portability across various virtual machines. The

overall implementation is tight to JVMs and HotSpot specifically.

You are able to add support for additional JVMs if the required JVM supports

following technologies:

 JNI,

 JVMTI,

 Serviceability agent.

Currently there are 2 code pieces of the application that are VM specific:

 recognition of the CPU type (number of bits) the underlying JVM is

running on,

 getting the native memory heap address from object.

Recognition of the CPU type on which the underlying JVM is running on will be

JVM specific and may need the JVM to be fully initialized. In the HotSpot case it is

done by reading a HotSpot-specific system property. That situation is handled by Java

API with appropriate exception handling on error cases.

Getting native memory address from object is handled in native C code and error

cases are handled by conditional compilation.

4.5.3 Java portability

Last but not least, we need to talk about Java portability a little bit. The minimal

Java requirement for running and building the application is Java 7.

There was one very good reason to select Java 7 and not older version of Java as a

minimal requirement. Serviceability agent functionalities, which are one of the core

parts of the application, were not part of the JDK on Windows platforms until JDK

6u30. Because I started the development earlier than Java 6u30 was released, for

development purposes I had to use Java 7 naturally.

As soon as Java 7 was selected as the minimal required Java version, I started

taking advantage of most of the new Java 7 language features:

 multi-catch,

 diamond operator,

FEI KPI

 76

 try-with-resources,

 binary literals,

 underscores in numeric literals.

I am also taking advantage of NIO2, mainly for the purpose of file system file and

directory watch notification. In that case I am using WatchService Java 7 class.

If you would like to support older version of Java, first you need to be sure that

Serviceability agent is available on that platform. The porting process will include

rewriting all the code that uses above-mentioned newly added Java language features

and rewriting the native file system watch notification.

FEI KPI

 77

4.6 Comparison with original GCSpy

Finally let us summarize the most important differences between the original

GCSpy and the proposed GCSpy projects in the following table:

Tab. 6 Original and proposed GCSpy comparison

 Original GCSpy Proposed GCSpy

API not really exposed API high level object-oriented Java

API

architecture strictly client-server modular

data gathering

strategy

strictly using socket using GCSpy Socket Data

Provider Java API (with build-in

socket implementation)

data transmission

strategy

periodically the whole

heap

event-based

portability specific code for every

VM and GC algorithm is

needed

across every JVM with JNI,

JVMTI and SA
44

summary data gathered by server and

transmitted separately

gathered by client

supported

systems

already running, local or

remote

"not fully initialized" local or

remote

visualizing

systems

software systems with

components and partitions

software systems with at least

single GCSpy Data Provider

API implementation

Comparing API is easy because the original GCSpy does not really expose public

API. Proposed solution is exposing well-defined high level object-oriented GCSpy

Socket Data Provider API.

44

 Serviceability Agent

FEI KPI

 78

Original GCSpy was strictly using client-server architecture. That kind of

architecture introduced leaking abstraction when the need to read stored traces needed

to start the server. Proposed solution uses modular architecture design.

Data gathering strategy is another very different aspect of both systems. Original

GCSpy was strictly using sockets. Proposed solution can use any GCSpy Data Provider

API implementation. Current support includes socket implementation, but there many

other technologies (RMI
45

, CORBA
46

 and Google Protocol Buffers) that can be easily

incorporated.

Data transmission strategy is handled very differently at the fundamental level.

Original GCSpy was transmitting the data about the whole heap periodically. Proposed

solution is using event-based strategy.

The big disadvantage of original solution is the portability. Original GCSpy

needed code specific to every VM (or more general any software system being

observed) and specific to every garbage collector algorithm within that system.

Proposed solution will work across every JVM that supports JNI, JVMTI and SA.

Because of different data transmission strategy, handling summary data is different

as well. Summary data (e.g. number of live objects per GCSpy space) in the case of the

original GCSpy had to be gathered by server and transmitted separately. Proposed

solution is not posting any kind of summary data. Because the data sent to the client are

fine-grained, the client can count any required summary data by himself.

Original GCSpy supported already running, local or remote systems. Proposed

solution supports "not fully initialized" local or remote systems. The term "not fully

initialized" is described in the Chapter 4.4.4 Blocking states.

Last but not least there is also a difference between the kinds of systems both

solutions can visualize. Original GCSpy can visualize a software system that can be

modeled using components and partitions. Proposed solution can visualize any software

system with at least single GCSpy Data Provider API implementation supported by that

system.

45

 Remote Method Invocation
46

 Common Object Request Broker Architecture

FEI KPI

 79

5 Conclusion

Garbage collection turns out to be one of the most important research areas around

virtual machines over the last decades. Garbage collection visualization is not only

important for garbage collection researchers and implementers, but also for anybody

who would like to understand the memory management characteristics of one's

application better.

The aim of this thesis was to analyze, design and implement a garbage collection

visualization tool built on top of the original GCSpy project foundations. This goal has

been met in full and the created tool solves a lot of problems.

Together with the tool, the custom build, runtime and test infrastructures were

developed. The advantages of the tool include the ease of use, modular design, reusable

components, higher-level object-oriented Java API, non-intrusiveness, preciseness of

visualization, transparency and virtual machine independence.

The tool will cause inevitable performance penalty for the observed application

because of bytecode instrumentation, thread model, data gathering and data

transmission. The tool will be less scalable in comparison with original GCSpy because

of different data transmission strategy.

The opportunities to enhance the tool functionalities include the addition of

additional visualizations and the support for additional operating systems.

FEI KPI

 80

Bibliography

[1] Vincent Massol, Jason van Zyl, Brett Porter, John Casey, and Carlos Sanchez,

Better Builds with Maven. United Stated of America: Exist Global, 2008.

[2] Maven project home page. [Online].

http://maven.apache.org/

[3] Brad Appleton, "Patterns and Software: Essential Concepts and Terminology,"

1998.

[4] Edd Dumbill. (2005, August) Ruby on Rails: An Interview with David Heinemeier

Hansson. [Online].

http://www.oreillynet.com/pub/a/network/2005/08/30/ruby-rails-david-heinemeier-

hansson.html

[5] Introduction to the Build Lifecycle. [Online].

http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html

[6] Java Virtual Machine Tool Interface home page. [Online].

http://docs.oracle.com/javase/7/docs/platform/jvmti/jvmti.html

[7] Creating a Debugging and Profiling Agent with JVMTI. [Online].

http://java.sun.com/developer/technicalArticles/Programming/jvmti/

[8] Java Platform Debugger Architecture home page. [Online].

http://java.sun.com/javase/technologies/core/toolsapis/jpda/index.jsp

[9] The JVMPI Transition to JVMTI. [Online].

http://java.sun.com/developer/technicalArticles/Programming/jvmpitransition/

[10] Jürgen Petri, NetBeans Platform 6.9 Developer's Guide. Birmingham: Packt

Publishing, 2010.

[11] Heiko Böck, The Definite Guide to NetBeans Platform. United States of America:

Apress, 2009.

[12] Heiko Böck et al., DZone Refcard: Getting Started with NetBeans Platform 7.0.

Cary, North Carolina: DZone.

FEI KPI

 81

[13] Richard Jones, Antony Hosking, and Eliot Moss, The Garbage Collection

Handbook. Great Britain: CRC Press, 2012.

[14] John McCarthy, "Recursive Functions of Symbolic Expressions and Their

Computation by Machine, Part I," p. 34, April 1960.

[15] Tony Printezis. Garbage Collection in the Java HotSpot Virtual Machine. [Online].

http://www.devx.com/Java/Article/21977

[16] Sun Microsystems, Memory Management in the Java HotSpot Virtual Machine.,

2006.

[17] The Garbage-First Garbage Collector. [Online].

http://www.oracle.com/technetwork/java/javase/tech/g1-intro-jsp-135488.html

[18] Gil Tene, Balaji Iyengar, and Michael Wolf. C4: The Continuously Concurrent

Compacting Collector. [Online].

http://www.azulsystems.com/products/zing/c4-java-garbage-collector-wp

[19] GCSpy home page. [Online].

http://labs.oracle.com/projects/gcspy/

[20] Tony Printezis and Richard Jones, "GCSpy: An Adaptable Heap Visualisation

Framework," 2002.

[21] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley, The Java

Language Specification: Java SE 7 Edition. California, United States of America,

2012.

[22] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley, The Java Virtual

Machine Specification: Java SE 7 Edition. California, United States of America,

2012.

[23] Endianness. [Online].

http://en.wikipedia.org/wiki/Endianness

[24] David Gristwood. 21 Rules of Thumb – How Microsoft develops its Software.

[Online].

http://blogs.msdn.com/b/david_gristwood/archive/2004/06/24/164849.aspx

FEI KPI

 82

Appendices

Appendix A: CD medium – Master's thesis and appendices in electronic format

Appendix B: User guide

Appendix C: System guide

