Slovak University of Technology in Bratislava
Faculty of Informatics and Information Technologies

FIIT-5220-47937

Bc. Katarina Valalikova
CONSISTENCY IN THE IDENTITY MANAGEMENT

Diploma thesis

Supervisor: Ing. Radovan Semancik, PhD.

2012, May

Slovak University of Technology in Bratislava
Faculty of Informatics and Information Technologies

FIIT-5220-47937

Bc. Katarina Valalikova
CONSISTENCY IN THE IDENTITY MANAGEMENT

Diploma thesis

Degree course: Software Engineering

Field of study: 9.2.5 Software Engineering

Institute of Applied Informatics, Faculty of Informatics and Information Technologies
Supervisor: Ing. Radovan Semancik, PhD.

Education supervisor: Ing. Anna PovaZanova

2012, May

Thanks,

to Ing. Radovan Semancik PhD., for his patience, the time which he invested to me and for
presious advices.

ANOTACIA

Slovenska technicka univerzita v Bratislave
FAKULTA INFORMATIKY A INFORMACNYCH TECHNOLOGII
Studijny program: Softvérové inzinierstvo

Autor: Bc. Katarina Valalikova
Diplomova préca: Konzistencia Udajov pri sprave podnikovych identit
Veduci diplomovej prace: Ing. Radovan Semancik, PhD.

Pedagogicky veduci: Ing. Anna Povazanova
maj, 2012

Systémy na spravu podnikovych identit su integraéné systémy sliziace na automatizaciu
procesov spojenych s manazovanim pouzivatelov. Pomocou systémov na spravu
podnikovych identit su riadené pristupy do réznych koncovych systémov, ktoré obsahuju
citlivé data. Udrziavanie konzistencie medzi koncovymi systémami sa preto javi ako
dolezitd stcast’. Praca sa zaoberd problémami pri sprave podnikovych identit, ktoré mozu
vyustit’ do vzniku nekonzistencie medzi datami a zaroven hl'adanim mechanizmu, ktory by
dokdzal eliminovat vznik takychto nekonzistencii. Vysledkom prace je mechanizmus,
ktory je zalozeny na troch principoch, ato CAP teoréme, kompenzaciach a modeli
relativnych zmien. Navrhnuty mechanizmus pozostdva z dvoch casti, ato okamzitej
reakcie na chyby arekoncilidcie. Rekoncilidcia slazi na zistenie rozdielov medzi
jednotlivymi databdzami a nasledne odstranenim tychto rozdielov. Mechanizmus bol
implementovany do existujuceho systému sa spravu podnikovych identit s ndzvom
midPoint a bude zahrnuty do nasledujldceho oficidlneho vydania (verzia 2.0). Testovanie
mechanizmu bolo vykonavané takisto vyuzitim systému midPoint.

KTIacove slova: systémy na spravu podnikovych identit, konzistencia, dvojfazovy
odovzdavaci protokol, ACID, Sagas, BASE, S3

ANNOTATION

Slovak University of Technology Bratislava
FACULTY OF INFORMATICS AND INFORMATION TECHNOLOGIES
Degree Course: Software Engineering

Author: Bc. Katarina Valalikova
Diploma thesis: Consistency in the Identity Management
Supervisor: Ing. Radovan Semancik, PhD.

Education supervisor: Ing. Anna Povazanova
2012, May

Identity management solutions are integrative solutions that automate processes associated
with managing of users and theirs life-cycle. The identity management solutions provide
accesses to different end resources, which can contain sensitive data. Consistency in the
identity management is therefore an important issue. The thesis concerns on the issues
related with the identity management which can lead to the inconsistencies. There is also
tendency to find such mechanism which is able to minimize the risk of inconsistencies and
if they ever happened it can reasonably react and bring the data to the consistent state. The
result of the thesis is mechanism based on the tree essential concepts: CAP theorem,
relative change model and compensations. Proposed mechanism consists of two parts:
error handling and reconciliation. Reconciliation is used for finding the differencies among
the databases and for eliminating these differencies. Mechanism was implemented and
tested in one of the open-source solutions called midPoint and it will be included in the
official release 2.0.

Key words: identity management, consistency, two-phase commit protocol, ACID, Sagas,
BASE, S3

Table of contents

INTRODUCGTIONcuuiiiieiiiiienniiinnnsieienssisisnssesisnsssstsnssossssssssssnssssssnssssssnssssssnssssssnssssssssssssssssssssnsssssnnsssssnssssssnne 1
1 PROBLEM ANALYSIS ...ccciiiiiiiiinnentiniiisssssssesssssssssssssessnsassssssssssssssssssssssssssnnsssss 3
1.1 IDENTITY MANAGEMENT 1..uvtteitteeetteesuteassteessseassseessseessseessseassseessssassseessssessssssssssssesessssensssessssessseesssesssseesssesssses 3
O I Yol =X X QT T To [0 [=31 =1 1 1 PP 4

1.1.2 ROIE BASEA ACCESS CONLIOI ..ottt ettt ettt ettt ste et te e sataette e saae e btaesateensteenaseens 5
1.1.31dentity PrOVISIONINGccceeeeiueiesiieiii ettt ettt ettt ettt e st e e st e st eeseesaeeeneeeas 7

1.2 CONSISTENCY t.uvteeureerureenueeesueeesseeessseensesessseessesessessnsssesssesssesessssensesesssssssssssssessssssssseensseessesnsseesnseesssessnsesnsses 8
N T O 1) PP 8

J.2.2 SOQAS oottt a e e aaaaaes 9

J.2.3 CAP TREOICM ettt ettt ettt ettt sttt et e st e st e st este e s beesasessabseanbassssasseasasaasnseas 10

1.2.4 Basically Available, Soft state, Eventually CONSIStENT............ccceeevueeeveirsiiieeieieee e 11

1.2.5 SiMPIE STOIAGE SEIVICE. ..cc...uvveeeieieeeeeeeseeeeeeeee e ettt e e et tea e e ettt e e et ata e e s ttaeaaatsaaessssaeesssssasasseseesses 11

1.3 CONSISTENCY IN IDENTITY IMIANAGER ...vecuvveeiureeteeestteeseeesssesssssasssessesasssessssassssessssasssesssssesssesssssensessssssssssenes 12
0 T=10 /- 1 PRSP 13

.32 0PCNIDM ... e e e aaaaas 15

R 0111 o I PRSP 16

N 1V o | o/o [TR 17

2 OBUECTIVES.....uuuueiiiiiiiiiiiinneeeiiissississsesssessnssesssssss 21
2.1 IDENTIFIED SITUATIONStttttetesesaaueteteeeeesasausreteeeeesesaasseeeeeesesaansseteeeessaasnseeeeeeesaannsesaeeeesesansnnneeeesssannnnnnee 21
2.2 GOALS OF THE THESIS t.euteeruteeeueesuteesseesuteesseesuteesseesaseessseesaseessseesaseesnseesaseesseesaseessseesaseesnsessaseesnseesnseesnseess 22
2.3 USE CASE IMIODEL ..eieeeiiiitttteteeeeeittete e e e e e esib et eeeeeesasba et e eeeeesaasese e e eeeesaasnbe e e aeeeaeaaanbsbeeeaeeesansanaeeeeeesannnnrnee 22

3 SOLUTION DESIGNccoiiunreeiiiiiissisunneetiisssssssssseesssisssssssssssssssssssssssssssssssssssssssesssssssssssssssssssssssssssnssssssssss 25
3.1 CHOOSING THE BEST SOLUTION ..euutteeuteerureesseesuteesseesuteessseesuteesnseesaseesuseesasessnsessasessnseesseesseesnseesnseesasessnseess 25
3.2 MIDPOINT SOLUTION IN DETAIL. .. ieteteteeeeeiitet et e e e e e sttt e e e e e s ettt e e e e sessnbeeeeeeesesaanbebaeeaeeesansnneeeeeeesannnnreee 26
3.3 CHOOSING THE IMIECHANISIM ...utteiteeeuttesiteeeuteesuteesseesubeessseesateesuseesabeesaseesabeesaseesabaesaseesabeesnseesabeesaseesareesnseens 27
3.4 RESOURCE FAILURES «...uuitettteteee sttt ee e e s e sttt e e e s e saabee et eeeeesaanes et e eeeesaasebeeeeeaeseaannbebbeeaeeesansanneeeeeesannnnnnee 29
3.4.1 AQd RESOUICTE ACCOUNT ...ttt ettt e e sttt s e st e st asbaesseesbaessessbeasseanas 29

3.4.2 Delete RESOUICE ACCOUNTueeeeeeiieeeiiee ettt ettt e e st e e et e e et e e s sabta e e e ttesessasteaessseeas 31

3.4.3 MO RESOUICE ACCOUNLeeeeeeeeeeeeeeee e eeeteea e e e e ettt e e e e e e e ettt e e e e e e sttsssaaaaeeesssssssanaaaeeaanaes 34

4 VERIFICATION ...uuuuiureeiiiiiiiisisnneeiiiisssssssssesssisssnsssssssssssssannnnes 39
4. IMPLEMENTATIONtttteeeeeeauusteteteeeaaaustteeeeeeaesaunseeeeeeesesananneeeeeeeesaaaanbaeeeeeeseaannbeeeeeeeaesaannnneeeeeessaaannranaeaeesannan 39
4.1.1 Creation Of EFTOr RANGIEKcccc.eeeeeeeie ettt e et e e e st e e e e tae e e st aeestaaassnteaenansees 40

4.1.2 Calling the Error RANGIETKoccooeeeeeeeeeeeeeeeeeeeee ettt e e ettt e e e e e sttt a e e e e e s ssassaaaaaaeeeaans 41

4.1.3 UNPIOCESSADIE @ITOIS ...t ee et e e ettt e et e e et e e e st e e s anseaesssseeassssaaesanseaesaanenas 42

4.1.4 CommuNication €rror RANGIEEcccouvevieeeiiieeiiieeeeiee ettt ettt e e et e e s siteaesiaeeas 42

4.1.5 0bJect NOt fOUNT NANGIEEcc..ueeeeeeeeeeeeeeeee ettt e ettt e e e et a e et a e e etraaeeasneas 43

4.1.6 Object already eXiSt RANAIEEc.c..eeeeeeeeeeeeeee et e e ettt e s e e e tee e e st e e e ssaeaeesseaenanns 43

B B L= Tolo g Lot [[1 [¢ FO OO OO U OO 44

4,2 USED TECHNOLOGIES .uuuuuuuuuununennnnnnnnnnnnnnnnnnnnnnsnnnnsnnnnnnnsnsssnsnsnsnnnsnsnsnssnsnsssssssssnsssnnsssnssnnssnnssnsnnsnnnnnnssnssnssnnnnnnn 45

£ 3 EVALUATIONS .ueeeeeeertuteeeeeeeeerstneeeessessssnaesesssssssanaeeessssssnnnasesessssssnnseseesssssssnnsesessssssssnnsesessssssnnesessessssnnnnns 45
I I 1V Lo T 10 Lo IR (=X T USRS 45

4.3.2 AULOMQALIC TESEING .ccoooeveeeeeeeeeeeiee ettt ettt ettt et et et e e et ee e s e s e eesesesesssasssssaeaeaeees 47

S DISCUSSION ...cuuiitieieitreeierteereetereseerenssestenssessenssessenssesssnssesessssesssnssssessssssessssesssssssssssssssennssessnsssssensssssannane 49
CONGCLUSIONccucitteierteeneertenneeteeeseerenssesssnssesssnssesssnssesssnssesssnssesssnssssssnssssssnssesssnsssssnnssessnnsssssnnsssssnsssssannane 55
BIBLIOGRAPHY ...cuuiiiieeiiitenniitteenieteensierenssseresssestesssessssssesssnsssssenssesssnssesssnssesssnssssssnssssssnsssssanssssssnssssennssssanne 57
APPENDIX A - REQUIREMENTS ANALYSIS AND SPECIFICATION....ccccctttmeerrennerrenescerennsesrenssesrenssessenssessannnns 59
APPENDIX B = MIDPOINT PRODUCT DESCRIPTION.....cccccieittmniiinnninienneniensesisnsssisnssssssnssssssnssssssnsssssannnns 67
APPENDIX C — SOLUTION DESIGN DIAGRAIMScccciititnneiienncniennesiensesisnssssssnssssssnssssssnssssssnssssssnsssssannnns 75
APPENDIX D = TESTS RESULTS.....cccuiittiiettennerteenertennsestenssessenssessenssesssnssesssnssssssnssssssnssssssnssssssnsssssansssssannnns 78
APPENDIX E - GLOSSARYiteutiiieeneiiranentsnsiessenssesisnssesssnssssssnssssssnssssssnssssssnssssssnssssssnsssssanssssssnssssssnsssssannnss 83
APPENDIX F - ADMINISTRATION IMANUALccteuteitetnerrenenertennserrenssesrenssessenssesssnssssssnssesssnssssssnsssssansssssannnns 85
APPENDIX G - PAPER ACCEPTED FOR HIT.SRC ...ccuucitteueriennnerrennseerennsesrenssessenssessenssesssnssessenssessensssssansssssansnns 94
APPENDIX H - SOURCE CODE (MEDIUM) ...ccitttitiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeseessesesessssssssessssssssssssssssssssssens 101

APPENDIX | - RESUME........coiiiiiiiiiiiiinniiieiiiieinseesinsssnsssssssssssesissssssssssssesssssssssssssssessssssssssssssesssssssans 103

Introduction

Identity management systems are integrative solutions that manage identities and their
access to various heterogeneous systems. The results of identity management solution can
be thought of as (loosely coupled) distributed systems. Many of the end resources
managed by the identity management systems do not support transactions or other
traditional consistency mechanisms therefore there is a real risk of inconsistencies. It is
important to solve the “inconsistency problem” for many reasons. For example, the identity
management solution interacts with various systems and information about user identities
is stored in more than one database. Without any reliable consistency mechanisms the
databases may diverge and it may not be clear which data record should be used.

Another reason why it is needed to solve the problem with inconsistencies may be
security. The identity management solutions are security-sensitive systems because they
manage accesses to other systems. Consistency of security policy is important to maintain
good security level and also to be able to monitor overall security of an organization. For
instance, potential attacker can intentionally cause inconsistency and escape the “security
police”.

Many mechanisms for ensuring the consistency were proposed in the literature.
There are many sources describing various mechanisms that can be used in the database
systems. For instance, the two-phase commit protocol that uses lock and log mechanism is
often used for distributed database systems, Sagas which are based on the sub-transactions
with defined compensation mechanism and so on. However, these mechanisms are not
suitable for identity management solutions. The aim of the thesis is to design practical
mechanism which ensures the consistency of data in the typical identity management
scenarios.

The thesis is organized as follows. Section 1 is devoted to analyze the current state
of the art. It surveys the field of identity management and related technologies in general,
the known mechanism dealing with the consistency issues and also the existing solutions
of identity management. The section 2 defines the objectives of the thesis including
specification of use cases. In the section 3 Solution design is described. There is provided
detailed view on the mechanism design and also there are described the decisions made by
designing the mechanism.

The section 4 Verification deals with the concrete implementation of the mechanism
and provides the view on the way, how the mechanism was tested and evaluated. The
section 5 Discussion is there to generalize the proposed mechanism and to discuss its
strengths and weaknesses. The section 6 Conclusion summarizes the whole thesis and
states the possibilities for the next work.

1 Problem Analysis

In this section the analysis of the current state will be provided. Sequentially, the intension
will be made for the identity management and the common technologies used by it. Then
the section will be concentrated to analyze the known mechanisms for ensuring the
consistency in the databases and distributed systems. Finally there will be analyzed
existing identity manager solutions to provide better view what they do for ensuring the
consistency.

1.1 ldentity management

Identity management can be defined as a convergence of technologies and business
processes [23]. It is integrative solution that usually consists of different systems and
techniques [2]. Identity management solution cannot be the same for different companies
because each company has its own requirements on the business processes and
technologies so they need to have a specific instance of identity management. The main
goal of identity management is to handle a lot of identities and their life-cycle including
creation, usage, updating and revocation of the identity [2]. Identities have different roles
and different permissions to access specified resources. There is a need to have different
identities to work with the same system, or to have the same identity to work with different
systems [23].

The definition of identity can be found in several resources [[18], [23]]. According
to [18] identity is defined as attributes’ set which can identify individual of any set of
individuals. There is difference between “I” and “Me”. While “I” refers to an instance
accessible only by the individual self, “Me” refers to the social attributes defining human
identity [18].

According to [23] identity can be defined as something (e.g., people, computers,
applications) that is the same today as it was yesterday. Identity does not refer only to the
person, but also to the computer or computer applications, that need to work with other
systems. Today, a lot of enterprises use identity management to manage their employees.
The need of identity management in the enterprises is obvious, for example:

e there is a lot of employees, that need to have access to the different resources,

o the roles of employees can change, and also their rights to the resource must be
changed,

e the new employees are hired so they need to have also access to the some
resources,

e some of them may be fired and should not have more access to the resources [23].

The main objectives of the Identity Management according to [23] are:
e “Enable a higher level of e-business by accelerating movement to a consistent set

3

of identity management standards.

e Reduce the complexity of integrating business applications.

e Manage the flow of users entering, using, and leaving the organization.

e Support global approaches/schemas for certain categories of operational tasks.

e Respond to the pressure from the growing numbers of Web-based business
applications that need more integration for activities such as single sign-on.”

1.1.1 Access management

Access management plays a crucial role in many systems. It is very important to secure
resources especially in the systems with sensitive data such as identity management. First
of all, authentication is needed to verify that the users are who they claim to be. After the
user was authenticated, authorization is needed to permit user's access to specified
resources. Next, main technologies used by identity management solutions are described.

One of the main technologies used in Identity Management solutions are Directory
Services. Directory Services are used for storing users and their attributes in the tree
structure. The common protocol used for accessing Directory Services is Lightweight
Directory Access Protocol (LDAP) [[21], [23]] that is based on the X.500 protocol [24].
LDAP does not support transactions [24] or standards for access control [23], such details
are specified individually for each LDAP deployment.

Other technology used in the identity management solution is Public Key
Infrastructure [23]. Users are authenticated presenting their credentials, which is usually
password or a public key certificate. The basic idea of authentication based on public key
certificate is that the identity attributes are bound to the public key. Public key is unique for
each user and according to this public key the messages can be encrypted and decrypted
and only the user with the right public key is able to access them without additional sharing
secrets between senders and recipients. The public key certificates are issued by
certification authority and verification and life-cycle of public key certificates are
controlled by Public Key Infrastructure [2].

Common technology used by the identity management solution is Single Sign-On
systems. Authenticated user doesn't have to log in to different resources again and again.
Single sign-on transaction is used to reuse authenticated user to access to different
resources instead of repeated log-ins. This doesn't mean, that the single sign-on (SSO)
systems unifies all user accounts for different resources, instead user can have more local
accounts that are bound to the account used for authentication in SSO system (as shown in
figure 1.). After the user was logged into the SSO system, other attributes including
accounts characteristics are bound to the logged user. SSO system reduces the need of
authentication for different systems using session [2].

Application

Client
application
Application
Authenticate -— PP
- S8 \
Application
Application

Figure 1. Single sign-on architecture

A variety of architectures can be used to implement single sign-on systems. Broker-based,
Agent-based and Reverse proxy-based architecture are well-known [2]. Broker-based
architecture is based on the central node, where the subjects are authenticated. After
authentication they get the ticket, which can be used to access requested applications.

Agent-based architecture assumes that for each application server there is an agent,
which plays a role of a translator between credentials and the authentication protocol used.
Reverse proxy-based architecture as the name indicates, consist of the proxy, which filter
identity credentials submitted by external subject, and if they are incorrect, the subject can
be redirected to authentication server to get proper credentials. Proxy is usually located at
the endpoint of the applications and the systems. Similar taxonomy is provided in [17].

The well-known broker-based protocol is Kerberos [11] that is used for client-
server application. The authentication is performed using symmetric encryption. As the
authors in the [2] mention, there is an authentication server which mediate authentication.
After the client was authenticated, it gets a ticket which can be used for granting the rights
to the various servers.

1.1.2 Role Based Access Control

Today applications need to manage access to secured resources. There are different ways to
do that. One of them is Role Based Access Control (RBAC) [5]. RBAC defines access
policies using roles. Users don't have individual permissions to secured resources, instead
of that they are assigned to the corresponding role. The role has defined privileges which
resources can access and which can't and it usually represents a job position [20].

RBAC is not a ready-made solution. It depends on a specific application and its
requirements. The privileges, roles and constraints are defined according to the application

5

and user can be assigned to more than one role. The benefit of RBAC is simple
administration of users and their rights. For example, when employee changes his job
position, new role is assigned to him, instead of setting all privileges related to the new job
position [20]. Relationships between roles, users, objects (application to access) and
constraints are shown in figure 2. The term transformation is used in the sense of applying
defined constraints [5].

User 1%‘) e Object 1
wo®

member of transformation

User 2 > Object 2

l‘f‘e
i s
y N
User 3 Object 3

Figure 2. Role relationships [5].

y

Sophisticated RBAC solution is able to include role-role, permission-role and user-role
relationships. This offers the ability to define role hierarchies, which means that the
privileges can be inherited from the different roles. For example, if there is a role of project
manager that inherits from the role of developer, the project manager would have
privileges to project management resources and also to developer resources [20].
According to [20] RBAC supports three well-known security policies:
e Least privileges — means that to the roles are assigned only those privileges that are
needed for the users in the role tasks.
e Separation of duties — in situation, when two mutually exclusive roles are needed to
complete the task, using example from the paper [20] for instance requiring
accountant clerk and account manager to participate in the issuing clerk.
e Data abstraction — means, that abstract permissions could be set instead of typical
read, write and execute permissions used e.g. in the operating system.
Many applications use a concept of groups, but it cannot be mixed with the concept of
roles. The group defines a set of users but not necessarily their privileges. Privileges for
users belonging to specific group are defined separately for each user or resource, for
example in the Unix, the privileges are defined for the each file. The role means a set of
users and includes also their privileges [20].

It must be mentioned that RBAC is not a panacea to all access management issues.
In some situations RBAC is not a sufficient solution. For example for situations that
control operation sequence other access control mechanism should be used [20].

1.1.3 ldentity provisioning

The main idea of identity provisioning is to automate processes for managing users.
Provisioning systems manage changes that happened and replicate these changes to the
different resources (figure 3.). For example, if a new employee is hired, there is a new
record created about this person in Human Resource system. Provisioning system detects
this new record, assigns the correct role to the user and according to this role creates
accounts in the corresponding resources. Another example should be changed job position
and so user's role was changed. Provisioning system detects this change and according to
this new role creates corresponding accounts [21].

Directory
Server

Authoritative
sources

A

Human
Resource
System

Y

Identity Manager

(User Provisioning System)

Other
repositories

External Resources

Figure 3. Architecture of the Identity Management [22].

Provisioning systems are well-equipped for managing user's records in the heterogeneous
systems, where the single directory system fails. Reasons why directory system is
insufficient are according to [21] following:

e There is not one source of information for a single user.

e In many cases there is a need for a local user database.

e Some services need to keep state.

o Different systems might have different meaning for role names and access control

attributes.

There are two major problems related to provisioning system according to [21], risk of
inconsistency and slow operation. Inconsistency may occur, when provisioning doesn't
identify the change immediately or when some problem happened in the synchronization
process. Problem with slow operation is associated with synchronization processes, which

7

can take substantial amount of time.

Synchronization processes in the direction from information source to end systems are
usually performed asynchronously and they are able to immediately react to the change.
But sometimes an interaction with user is needed which may take significant amount of
time. In the reverse direction, from end systems to provisioning systems, the
synchronization processes are not usually performed asynchronously and they may take
several hours or days.

1.2 Consistency

This section describes various mechanisms that are used to provide consistency, such as
ACID transactions, Sagas, BASE, Simple Storage Service. Each mechanism is described in
more detail to explain the main principle. CAP theorem according to which in distributed
systems there cannot be guarantee of consistency, availability and partition tolerance at the
same time is also mentioned.

1.2.1 ACID

Consistency in the database systems is guaranteed by transactions. According to [8]
transaction can be described as transformation from one state to another while maintaining
atomicity, durability and consistency. Authors in [8] equate transactions to the contract,
where at least two parties are required, and the contract is successfully concluded only if
all parties agree. Transaction management is responsible for transactions to decide whether
the transaction would be applied (operation was successfully) in the database or rolled
back (operation failed).

Transactions are described using ACID properties, which stands for A — atomicity,
C — consistency, | —isolation, D — durability. Atomicity means that all operations appear as
one that is either successfully completed or aborted. If an operation is aborted the initial
state is preserved and no one can detect that anything happened. Isolation means that if the
transactions run concurrently, each transaction appears as if there were no other
transactions at the same time. Durability means, that if the transaction completed
successfully and the changes were written into the database, such changes are permanent.
And consistency means, that the consistency constraints must be preserved when new data
are added [25].

Transactions in the distributed systems are realized using two-phase commit
protocol. Two-phase commit protocol (2PC) is responsible to coordinate all of the
participants in the transaction and to decide if the transaction will be committed or rolled
back. Before all transaction are committed or aborted, the data in the database are locked to
enforce concurrency control [26]. As the name two-phase indicates, there are two phases
called voting phase and decision phase. In the voting phase, the participants are able to

abort the transaction and in the decision phase the participants decide whether the
8

transaction will be committed or aborted with maintaining atomicity of the transaction [1].

1.2.2 Sagas

Long living transactions are introduced in [6], transactions that can execute hours or days.
Applications that use such long transactions cannot use standard lock and log mechanism,
mechanism used in database systems using ACID transactions.

The paper [6] describes an approach where a long transaction called saga is divided
into shorter sub-transactions. Such sub-transactions can be mixed-up with any others
transactions. Each sub-transaction has its own compensation mechanism. If transaction
failed, compensation mechanism is called to undo this transaction. It necessarily doesn't
mean that compensation mechanism return database to the same state as before transaction
run because it is able to run another transaction using this data.

If saga is interrupted by failure, there are two mechanisms to recover from this
error, backward recovery and forward recovery. Backward recovery means that each sub-
transaction of saga has its own compensation mechanism that is invoked to restore
previous state. Running sub-transaction is rolled back and for completed sub-transactions
is called compensation mechanism in reverse order [6].

In the case of forward recovery, the saga execution component needs to have
reliable copy of code and save points. If the save points are defined at the beginning of
each sub-transaction, the process is called pure forward recovery. The running sub-
transaction is aborted and saga is restarted at the point where this aborted sub-transaction
has started. But, if there are no save points at the beginning of each sub-transaction, it is
called backward/forward recovery. In this case executing sub-transaction is aborted and
other sub-transactions compensation mechanism is called to restore the state to the save
point and then saga is restarted [6].

Critique of this approach is provided in [9]. Author explains that sagas fails to
cover all cases where compensation is needed, using an example of e-procurement
scenario. For example, author mentions, that in some cases there is a need to write null
compensator. Such a compensator acts as if the compensation ended successfully and
enclosing scopes have no idea if the activity of undo was performed correctly.

Compensation mechanism might be not correct also in other cases, e.g. if there are
concurrent activities. In such case the compensation mechanism has access to the state
captured by the original activity and also to the stored state in database, but there is no
knowledge about current state of running activity. The example of this case is
demonstrated in [9] using order cancellation case and the current state of the order
delivery. The appropriate rollback mechanism is affected by whether the invoice was sent
to the customer or not.

According to this paper the compensation mechanism for the transaction is not
satisfactory in all cases. Sometimes there is a need for doing more than just call the

9

compensator to undo the operations. However, even if the compensator succeeds, it is not
guaranteed to restore the original state. This can result in relaxed consistency requirements
but ensuring eventual consistency (eventually the data would be consistent) [9].

1.2.3 CAP Theorem

Services in the computer network usually try to achieve three distinct quantities:

e guarantee strong consistency — such as database systems using ACID transactions,

e achieve high availability — services should be as accessible as the network where

they run,

e provide fault-tolerance — services should act as expected, even if some node crash.
According to CAP theorem [7] it is impossible to guarantee consistency, availability and
partition tolerance at the same time in distributed systems. The CAP theorem explains that
it is possible to guarantee only two of them. The paper [7] provides a proof of the theorem
using asynchronous network model.

Availability means that every request must have appropriate response apart how
long the process is running. Even if some crash occurs or the node is down, the process
must be eventually terminated. Consistency should be described using atomic objects. It
means that the operations must act atomic, as if they were executed at a single instant. In
the [7] authors explain consistency on the concept of distributed shared memory. Requests
in the distributed shared memory are processed one a time, and outwardly they look as if
they were performed on a single node. The concepts of availability and consistency are
introduced with respect to the partition tolerance which allows losing some messages send
from one node to another.

At first, authors in the [7] describe different combinations of two guarantees
(consistency — partition tolerance, consistency — availability, availability — partition
tolerance) in the asynchronous network model and they mention situations in which each
of combination should be used. Then the notion about weaken consistency in the partially
synchronous model is introduced.

It depends on the system characteristics when to prioritize consistency instead of
availability. If availability is chosen it means that the consistency would be weaken. Then
if partition fails, some messages should be lost and therefore inconsistencies may occur. If
the operations are commutative it can be easy to restore the consistency. Many
commutative operations have non-commutative exception, what means that they are late or
incorrect. It brings the possibility for more operations using the concept of non-
commutative exceptions to be considered as commutative and it can simplify the eventual
consistency. In the paper [4] author thinks about this exceptions also as compensations
which can be used to restore consistency.

At the end of the paper [4] author mentions that in fact most real wide-area
systems use concept of compensation mechanism to restore consistency. In such as systems

10

the audit trails and recovery are preferred to prevention and author suggests expanding and
formalizing of the role of compensation in the complex systems.

1.2.4 Basically Available, Soft state, Eventually consistent

BASE means Basically Available, Soft state and Eventually consistent system [19]. This
approach is opposite to ACID, where each operation must result in consistent state of
database. BASE allows temporary inconsistence of database systems. It allows partial
failures without total system failure.

Whereas BASE provides availability it results according to CAP theorem to relax
consistency. But the consistency issues are very important for the success of the application
so there must be guarantee that the database would be eventually in the consistent state.
Author in the [19] suggests to establish persistence message queue and to divide the
database tables across functional groups, such as table for user, transactions, messages, etc.
The problem with the persistence messages is that to avoid the usage of two-phase commit
protocol (2PC), there must be guarantee that the backing persistence is on the some
resource as the database. Otherwise, if the user host is included, there is a 2PC situation.

Idempotent operations with persistent message queue can be considered as a
solution to allow for partial failures without using two-phase commit protocol. ldempotent
operations are the operations that can be executed one time or multiple times with the same
result. However, update operations are mostly not idempotent and if there is no guarantee
that the order of the update operations would be preserved, the system can get into the
wrong state [19].

Storing the main properties of transaction in the database table should be one of the
possible solutions which are able to guarantee eventual consistency. This properties could
consist of transaction ID describing the update operation and the user ID to which the
transaction was applied. Messages describing what should be done with user properties are
stored in the message queue. Each message is peeked from the queue and is processed. If
the operation was successful, the message is removed from the message queue otherwise it
is re-tried [19].

Two transactions may be considered, one for the database operations and one for
the message queue with assumptions that database transaction are committed before
message transactions. Such an algorithm supports partial failures without using two-phase
commit protocol [19].

1.2.5 Simple Storage Service

Amazon provided Simple Storage Service [3] several years ago. Simple Storage Service

(S3) serves as distributed storage mostly for multimedia data. Users can use S3 to store

their data for a small payment. S3 uses both, REST and SOAP interface and try to reach
11

scalability and high availability by replicating stored data and try to provide consistency as
much as possible. S3 together with Simple Query System (SQS) and Elastic Computing
Cloud (EC2) belongs to Amazon Web Services.

Simple Query System (SQS) is used to manage (virtually) infinite number of
queues which are able to have (virtually) infinite capacity. Queues consist of the messages
which can be sent using both REST-based and HTTP-based interface. Each message in the
queue has a unique id, according to which the message can be read, locked and deleted
form the queue. Messages may contain any byte stream, no pre-defined schema is required.
Clients are never blocked by other clients or system failure, the request by the clients can
be initiated at any time [3].

According to [3] if user updates some stored data it takes some time to view
updates also by another users. It means that data can be partially inconsistent so S3 should
only guarantee that eventually data became consistent. This is also known as eventual
consistency. The replicas can be updated at any time by any user, clients are not blocked by
other clients or system failures. If more than one user updates the replica, replicas are
merged using reconciliation process on the “last win” basis. It brings persistence guarantee
which means that updated replicas can be changed or undone only with new update
request. The reconciliation process also guarantees full read and write availability even
when a data center fails. In this case, the last updated replica in other data center is used to
merge all replicas in the same state.

The protocol suggested in the [3] consists of two steps. In the first step, the log
records about each update committed as a part of transaction is generated and then in the
second step the checkpointing applying log records to the stored pages on S3 is used. The
first step should be performed at a constant time, what follows from assuming that clients
are never blocked and that the SQS are virtually always available. The second step,
checkpointing includes the synchronization process. Even using synchronization process,
the clients are never blocked by other client or the system failure. The synchronization
process can be performed asynchronously, whit no impact on the execution of the client
application.

The protocol is also resistant to the failures. In the case that the client fails during
commit, the log records are resent. Then log records are applied again and it can result to
applying the same records twice. However, this is not a problem, because log records are
idempotent, which means that applying them one or more times result in the same state.
But if the client crashes during commit, it is also possible that some log records may be
lost or the client cannot come back. This case violates the atomicity, because some log
records after the client crash are not applied [3].

1.3 Consistency in Identity Manager

In this section existing solutions of identity management are described. It was chosen
12

open-source projects such as OpenlAM, OpenIDM, MidPoint and OpenPTK. The focus is
on the provisioning part, which provide synchronization and reconciliation processes. This
processes are used to manage flow of changes and to propagate this changes to desired
resources. If the changes are not detected immediately or some crash occurred, it can result
to inconsistencies.

1.3.1 OpenlAM

OpenlAM is an open-source identity and access management project. This solution is
based on the Service Oriented Architecture (SOA) and it combines both SOA and Identity
standards. The heart of the OpenlAM is an Enterprise Service Bus (ESB) through which
services are exposed. The ESB brings portability, which means that services can be
consumed using different technologies. OpenlAM supports all common use cases of
identity management, for example creates new user, provisions user into systems which he
needs to access, revokes user's access when he left the company [12]. Architecture of the
OpenlAM solution is presented in the figure 4.

Identity Management Architecture

¢ Enterprise Applications

IDM Application ' e

i f Sales

[p J [Administration] ! -“Dlrecto’ -

Self Service !
Console

Custom Apps

{Authoritative Data Source’

[HR System] *

[Other Repositories] :

Identity Middleware

Synchmniza!xori . 2
Process Engine Reportin
Identity Management [9] [poreng]
Servi
e { Scheduler][Scripting }

— IDM Server
Application Server /| ESB
t |

Provision / Reconciliation

..................................... 4 ¥

Legend

{ (D OpenlAM Products IAM Repository [
i (D 3"Party Products

Audit and
Compliance

Figure 4. Architecture of the OpenlAM solution [12].

OpenlAM as well as other identity management solutions needs to protect resources and
manage access to them. For that reason, authentication is needed. According to project wiki
page [12] OpenlAM provides authentication based on Password and Security Tokens, but
there is an opportunity to extend authentication service to provide other forms of
authentication using Login modules. Password Authentication might be used with different
repositories, such as LDAP repository, Active Directory (AD) or relational database.

The provisioning engine of the OpenlAM supports synchronization of the resources

13

managed by OpenlAM. Synchronization processes are initiated in the case of events when
user is created, modified, terminated or the password is changed or reset. It is also possible
to define additional events that are relevant for the organization. There are two ways of
detecting an event found on the project wiki page [12]:

e Event Based — where application specific module is created to detect changes in the
real time.

e Reconciliation based — used when event based approach is not possible, e.g. some
applications do not allow to detect the changes of users. Reconciliation allows
detecting changes through plugin or polling. In the former case (through plugin),
the plugin is integrated to the application provider and if the change occur, the
plugin is called. The latter case, detecting changes through polling requires the
configuration file for each source system. This configuration file consist of the
elements describing system, query which extracts the information, OpenlAM
record to compare with, frequency of calling process etc.

There are Synchronization Routing interfaces [12]:
e Routing Web Service,
e SPML 2 Router — XML Profile and
e SPML 2 Router — DSML 2 Profile.

Routing services receive messages which describe the change occurred. Each authoritative
source must have defined the validation policy and the modification policy which needs to
be performed by routing interface. These policies can be configured through the OpenlAM
web console interface. The validation policy is used to check the content of the received
messages and to check, that the authoritative source provides only those attributes which it
owns. Modification policy is used in the cases, when some additional information to the
message or the transformation to the suitable form is needed. This additional information
may be derived from the known information [12].

Routing services perform the validation and modification policies and then the
decision about which provisioning connector to use may be made. There are several ways
to do this decision as the project wiki page [12] mentions. In the case of the new user a Job
Role based or a Policy based decision can be used. If the Job Role based decision is made,
the user is provisioned according to his role describing the needed accesses. Policy based
decision have defined policies according to which the user is provisioned. These policies
usually contain job codes, departments, etc.

The OpenlAM project has a very poor documentation which is also inconsistent.
The architecture overview is brief and there are no details about the design. The technical
details are included in the developer documentation section, which may be a little bit
confusing. The consistency issues are not mentioned on the project wiki page [12]. The
only remark to a potential consistency problem was found in the OpenlAM issue tracking

14

system Jira [13]. It also seems that the community is not sufficiently strong because only
few names repeatedly appear in the issue tracking system and also on the project wiki
page. The project has roadmap for the next year, but there are only releases planned and no
details about features supported in each next release.

1.3.2 OpenIDM

OpenIDM is an open-source identity management solution. The OpenIlDM team is trying
to bring lightweight, developer friendly, modular and flexible solution of identity
management. The architecture of the OpenIDM is shown in the figure 5.

Clients User Interface Clients
- - - - [
REST / http(s) / RESTlet
Access
\ RESTful Java API
M
Core Manages Synchonization System
Services bj Reconciliation Objects
Infrastructure
Modules

Framework Serviet (Optional)

Modularity “

Figure 5: OpenlDM architecture [15].

OpenIDM solution, as shown in figure 5 is divided into five layers, Modularity
Framework, Infrastructure Modules, Core Services, Access and Clients. Modularity
Framework, as the name implies, is supposed to provide modularity to the OpenIDM and
to reduce complexity of the solution using OSGi. RESTful HTTP access to the managed
objects and services can be done with the Servlet technology, which is optional [15].
The aim of the Infrastructure Modules layer is to provide the functionality needed

for the core services. It consists of:

e Scheduler that is mostly used by synchronization and reconciliation.

e Script Engine that provides triggers and plugin points for OpenIDM.

15

e Audit Logging which is used to log operations on the internal managed objects and
external system objects, and also by the reconciliation as the basis for the reporting.
e Repository, standing for persistence layer. There can be NoSQL, relational
databases, LDAP or flat files repositories.
The Core Services layer is the heart of the OpenIDM. There are definitions of objects and
features that OpenIDM can do. Managed objects describe identity-related objects managed
by OpenIDM using JSON-based data structures. These objects are stored in the OpenIDM
repository. Representation of the external resources objects is done through the System
objects. Policies how should be managed objects transformed to the system objects and
opposite are defined through the mapping. These mapping policies are used also by
synchronization and reconciliation [15].

Access layer provides the public API and the user interface for communicating with
the OpenIDM repository and its functions. Using REST API there is a possibility to make
your own user interface [15].

OpenIDM supports synchronization and also reconciliation. These two processes
are used to detecting changes between system objects and managed objects and according
to the defined policies process these changes. However, the documentation does not
contain any mention about the inconsistencies which should occur when something went
wrong by these processes. In addition, the OpenIDM documentation is very confusing,
finding out the desired information take a lot of time. The structure of the OpenIDM wiki
page is not logical. There is a lack of information about the particular components of
OpenIDM, e.g provisioning part.

1.3.3 OpenPTK

OpenPTK is an open-source User Provisioning Toolkit. It was developed under the Sun
Microsystems community program and now it seems that the Oracle took over the project.
OpenPTK serves as the tool for developing user management systems. The sample
applications are also provided to make the usage of the OpenPTK easier. Web developers
and Java developers can integrate custom applications with the provisioning system using
OpenPTK [16].

The aim of the OpenPTK is to provide the toolkit, which can make the development
of user management systems easier. Because of each enterprise has different requirements
and developers may have various experiences with various technologies, OpenPTK
provides various client interfaces. Project is built on the concept of a three tier architecture
allowing developers to focus on the business logic and hiding the work with the underlying
repositories. The three tiers according to project wiki page [16] are:

e Server Tier — provides RESTful Web Service (supporting JSON, XML).
e Framework Tier — integrate Server Tier and Service Tier, support authentication,
authorization, representations, monitoring, logging, debugging, request/response
16

etc.
e Client Tier — interfaces that extend the RESTful Web Services. There are several
development options to choose from.
Service Tier provides the back-end user data repository [16]. The architecture of the
OpenPTK solution is shown in the figure 6.

-
=5 5 IEM
AR} # | Eramework Tier SPMLv1 ,.-/§§ T |
R Authentication ,ﬁé [Omacle [ca |
= S Authorization i
K | & | Representations | sPmLvz ¥l 4
MET = o | —~ Actions @ FA -
< g E & Relationships = 3 _,.-Eﬁ [mysaL |[oez |
2| (S]] Chugns | g | ey
~ 50 & Monitoring 2 |connestor 51'5 | oracle || msFT |
21 = Context 2 ! -
g T [t & Attribute / Function ﬁ
= = =
bl iE E £ | Request / Response JDBC 11 Y P
2 | = Cls Logging Yo i [s J[Em]
|8 “0 & Security EE
2l s Exception JNDI SB[oOrace || ca |

Figure 6. OpenPTK architecture [16].

The documentation to the OpenPTK project is very brief. It is missing an overview about
architecture or mechanisms used in the project. The project wiki page [16] is confusing and
finding out desired information may take a lot of time. Documentation has the form of
tutorial explaining how to use OpenPTK rather than the architectural guide which
describes what was done and why it was done in this way. Consistency issues were not
founded on the project wiki page [16]. The OpenPTK is developed under Oracle
supervision so it may imply a community with more members.

1.3.4 MidPoint

Architecture of the midPoint is designed to bring the modularity to the system. The main
idea is to bring a set of components that should be composed together according to the
needs of the certain company. Components can be likened to the Lego bricks and they can
be built together as needed. This architecture solution allows easily add new component,
remove component or replace existing component with the custom solution according to
company needs [10].

Subsystems of the midPoint listed on the project wiki page [10] are User Interface
Subsystem, Bussiness Logic Subsystem, IDM Model Subsystem, Provisioning Subsystem,
Persistence Subsystem, Utility Subsystem and Infrastructure Subsystem (Figure 7.). Each
of them carries out different function [10]:

e User Interface Susbsystem provides interaction with user implementing end user
interface or administration interface.
e Bussiness Logic Interface carries out the business processes that are implemented

17

using BPEL. Such business processes might be handling of special cases,
provisioning processes, handling of exotic situations etc.

IDM Model Subsystem contains implementation of Role Based Access Control,
Rule Based Access Control, which are helpful by automatically creating accounts
on the target systems (according to user role) or detection of account attributes
(according to policy rules).

Provisioning Subsystem provides management of accounts, accounts attributes,
groups, roles, etc.

Persistence Subsystem which main function is persist the data.

Utility Subsystem provides stateful services used by many components covering for
instance configuration, monitoring, management, rule processing, policy
evaluation, etc.

Infrastructure Subsystem contains stateless component, such as logging, tracing,
spring and similar libraries.

User
Interface {l T~~~

Subsystem S~

A*CP
I'. Business gl
' Logic

M Subsystem

CP

High-level
Utility gl IDM Model @ components

-+

— Subsystem] Subsystem .
| = - components
i L “Q
I i == -
: ’z - ==
, -
"f QS‘ Provisioning {I
Subsystem
Persistence gl
Subsystem
Infrastructure Subsystem gl

Figure 7. Architecture of the midPoint solution [10].

Provisioning subsystem of midPoint is responsible for managing accounts, groups, roles,
entitlements and other objects related to identity management. The aim of provisioning
part is to connect midPoint with other managed resources including directory servers,
human resource servers, mainframes, etc. It provides communication among these external
Resources and manage changes which are able to occur in Resources. Changes that

18

occurred are propagated by synchronization processes [10].

Synchronization process synchronizes data to be as up-to-date and complete as
possible. It means that the synchronization process propagates changes from midPoint to
external resources and vice versa. The data in the midPoint itself and in the external
Resources may not be the same, but the intention is that they are not contradictory.
Synchronization process is supposed to be near-real-time process that should quickly
respond to the changes that occured. But, in some situation the synchronization process is
not sufficient. For example, the external Resource might be down so the changes might not
arrive or some changes may be missed so they are not propagated to the desired resources.
In such situation, the reconciliation is needed [10].

Reconciliation process manages changes by comparing the absolute state of the
resources and IDM which might bring better reliability than the synchronization process.
Disadvantage of reconciliation is that it is a long task so it cannot run very often. The effort
of the midPoint is to use the same interfaces for synchronization and reconciliation
processes so they could be unified. The changes are then processed in the same way apart
of the process which detect them [10].

MidPoint has a rich documentation, covering architecture and design of the solution
in the depth. The division into the individual sections is logical and less confusing as
compared to similar documentation of the OpenlAM project. The project wiki page [10]
also mentions the consistency issues and it is still open problem. Community involved in
the project seems to be stronger than the team of OpenlAM solution.

19

20

2 Objectives

The goal of the thesis is to find an appropriate way to solve the consistency issues in
identity management systems. The identity management system must be able to recover
from unexpected errors and continue to work without limiting the users. It is unacceptable
to allow identity management to be in the inconsistent state for a long time because this
could result to the malfunction of the system. It is also important to solve the
inconsistencies because of security of the system. ldentity management system usually
holds secure data about the users, it manages the access to the various external systems and
if the inconsistencies will not be solved this should harm the security of the system.

In this section there are first described the identified situations by which the
inconsistencies should occur. Situations are divided into the categories according to their
nature. Next, the intension is made for specifying the goals of the thesis. After the goals are
specified, use cases are introduced to cover the consistency issues of the relevant parts of
the solution.

2.1 ldentified situations

Identity management systems provide automation of the processes related to the users and
their life-cycle in the company, from hiring new employee through changing his position to
firing employees. Each of employees usually has multiple accounts in the various systems
to be able to perform his work properly. Therefore there are a lot of external resources
which need to communicate with the identity management systems. External resources
contain information about the employees and their access rights. One employee should
have accounts in the different resources and may also have more than one account in the
same resource.

Accounts are created in different ways, e.g. using central identity management
system, by synchronization of changes on external resources, or by adding the user to the
role which defines that an account should be created etc. Unexpected situations and errors
may happen during the user management processes, e.g. the account may not be created,
exceptions may be thrown, etc. Ultimately, this may lead to the inconsistency of the record.
Many situations by which inconsistencies may occur exist. According to the way they
originate, they should be divided into the following categories:

e Resource failures — this group describes failures that happened on the external
resource by propagating changes that was made by end user using identity manager

(e.g. add account on the external resource, modify account on the external resource,

etc.).

e Synchronization failures — describes failures that happened by synchronization.

Changes on the external resource was detected and propagated to other external

21

resources and also to the identity manager but some crash occurred.

e Dependencies — describes inconsistencies that should happened by creating account
that may have dependencies to other accounts (e.g. Account in the application is
depended on the account in the operation system. The account in the application
should be created only if there is an account in the operation system, etc.).

e Groups — describes failures that happened when some operation with the group was
made (e.g. Creation of account and adding it to the group are in LDAP two
different operations.).

e Role Assignment — describes inconsistencies that occurred while working with
roles (e.g. User has assigned role which describes that four different accounts
should be created, but only two of them are created successfully, the role is in the
inconsistent state.).

Defined categories contain many kinds of operations. These operations are described in
detail in the Appendix A — Requirements Analysis and Specification in the part A.l
Situations. For the further thesis purposes the decision is to consider only the one of the
identified groups of problems.

2.2 Goals of the Thesis

The goal of the thesis is to find such mechanism which will be able to minimize the
formation of inconsistencies and if they ever happen, this mechanism will be trying to
resolve them and bring the system back to the consistent state. This mechanism will be
designed with respect to the existing identity management solutions and technologies. The
known mechanisms used by existing solutions and the mechanisms used by traditional
transactions system will be also supposed.

The next aim of the thesis is to design and implement such mechanism and in this
way provide the practical proof to the solution. The solution for ensuring the consistency
will concentrate on the fact that most of the external resources connected to the identity
manager are not transactional and so they mostly don't support transaction operations.
Therefore there is need to find new mechanism similar to that used by traditional
transactions systems described earlier in the section 1.2 Consistency.

The goal of the thesis can be also formalized to supporting transactions in the non-
transactional environment. It means using benefits and ideas of transactions and expanding
them to be able to use them also by the non-transactional systems.

2.3 Use Case Model

Categories of situations that lead to inconsistencies were identified in the section 2.1
Identified situations and they are detailed described in the Appendix A — Requirements

22

Analysis and Specification (part A.2 Use cases). From the presented categories the
resource failures were chosen for a more detailed analysis. The resource failures category
describes the inconsistencies which can occur by propagating the changes from the identity
manager to the external resource.

Situations belonging to this category will be used to define what is needed to be
solved. The use cases identified from these situations which will be implemented in the
system are:

e Add account extended with the failures of

o schema violation,

o oObject already exist,

o generic error and

o error in the communication with the connector.

o Delete account extended with the failures of

o object not found on the resource,

o generic error and

o error in the communication with the connector.

e Modify user or accounts attributes with the failures of

o objects not found,

o schema violation,

o generic error and

o error in the communication with the connector.

All these identified use cases are described in detail in the Appendix A — Requirements
Analysis and Specification.

23

24

3 Solution Design

The content of this section will concentrate to design the solution to the presented use
cases in the previous section. The solution proposed in this thesis will not be created on a
green field. It will be rather based on an existing identity management platform. First, the
substantiation for chosen starting platform will be provided, comparing the pros and cons
of analyzed platforms in the section 1.3 Consistency in ldentity Manager. The chosen
platform will be described in more details in Appendix B — MidPoint Product Description
to provide better view on its architecture and also the state of the platform development
before the work on this thesis began.

The summary of the analyzed mechanisms follows in the section 1.2 Consistency
and the substantiation of chosen mechanism will be made. Next chapter will be devoted to
design the mechanism for ensuring the consistency with respect to the chosen identity
manager solution. In this chapter there will be introduced some concepts and ideas how
should these mechanism behave in various situations. After description of concrete
situations and the behavior of the consistency mechanism in these situations, the summary
for the consistency mechanism will be provided.

The diagrams used in this section are based on the UML concepts, but they are not
strictly following the UML specification. Primarily, they are used to describe the ideas of
the designed mechanisms that can be understand by engineers, therefore formal correctness
of the diagrams is relaxed in favor of understandability. In the sequence diagram used in
the section, the mechanisms and the parts proposed as a part of this thesis are color-coded
to clearly distinguish them from the parts that existed before or were developed
independently by other developers.

3.1 Choosing the Best Solution

The scope of this thesis includes a practical proof of the theoretical concepts discussed in
it. Therefore an appropriate platform is needed as a basis to implement the consistency
mechanisms. It is obvious that the scope of this work cannot include creating a complete
identity management system from the ground up. The idea of creating a mock (incomplete
implementation) identity management system just for this thesis also does not seem
appropriate. Such minimal implementation will be still very difficult to implement and the
quality of a demonstration using such an incomplete system would be questionable.
Therefore it was decided that use of an existing identity management system and extending
it with consistency mechanisms seems to be the best approach.

Numerous open-source identity management systems were considered as was
described in section 1.3 Consistency in Identity Manager. MidPoint identity management
project was chosen as the basis for this work. Comparing midPoint with other mentioned

25

open-source identity management solution, the midPoint seems to be the best choice. It has
better documentation than others with the clear description of all its parts. Also principles
and goals are described more in depth than by other mentioned solutions.

The comparison of wiki pages and theirs structure also brings the reason why to
choose the midPoint solution. By the others solution there is confusing structure, it takes a
lot of time to find desired information. The wiki pages except midPoint wiki page are
mostly poor in information. They seem to be not maintained regularly. Some important
details, e.g about provisioning or synchronization are missing on these pages. The aim of
this thesis practical part is to add consistency guarantee to the existing solution, but it could
be considerably hard to do this without the good knowledge of the existing solution.

With respect to the consistency mechanism it is a significant advantage for this
thesis to choose an architecture that allows for adding consistency mechanisms without
breaking the existing design and philosophy of the system. By studying existing solutions
other than midPoint, there was no point discussing the consistency issues. It should mean
that these solutions do not take care about the data consistency or they do this without
telling how and this is not suitable for the thesis purposes.

At midPoint wiki page [10] there is a mention about following the weak
consistency model which means that there are no guarantees of the data consistency all the
time. However, the idea is to have the mechanism which will be able to minimize the risk
of inconsistencies and if they nevertheless happened, this mechanism will be able to solve
the problem reasonably. Consistency mechanism has been not proposed yet in the midPoint
and it is still open issue. For the thesis this may be the right place where to start with the
practical proof. This fact also brings another reason why to choose midPoint solution.

However, all of the mentioned solutions are open-source, and it means that it is able
to modify or add implementation to the existing one. The choice was influenced also by the
fact that 1 am a member of the midPoint’s development team so | have practical
experiences with this product. This brings same advantages for me, such as the architecture
is well-known for me or that I can influence the development. This fact contributed to the
other arguments specified above to choose midPoint as a basis for the practical part of this
thesis.

3.2 midPoint Solution in Detail

It is very important to have detailed information about the solution in which the
mechanism will be placed. Therefore in the Appendix B — MidPoint product Description
there is provided the deeper view into the midPoint’s basic principles and supported
features in the release 1.9. At a time when this part of the thesis was written, the release 1.9
was the latest release of the midpoint.

For the thesis purposes, the provisioning part of the midpoint was chosen. This part
seems to be the best for placing the consistency mechanism, since it is the part responsible

26

to communicate with other external resources. The mechanism there can immediately react
to the errors occurred on the external resources. The provisioning part and also its current
state in the release 1.9 are detailed described also in the Appendix B — MidPoint Product

Description.

For the sake of completeness the table 1 defines some of the common terms used in the
midPoint project and also in the Identity Management field. Because of that they will be
used also in the next text. The terminology is kept in the main text of the thesis because it
is needed for understanding the right meaning of the further text. In the further text, these
terms will be written using italics style.

Table 1: Commonly used terms in midPoint

Term Definition

Resource target or end system, which is supposed to be connected with the midPoint

Resource objects like accounts, groups, roles, entitlements or similar objects that exist on

Objects the resource. The structure of these objects is based on the resource where they
exist.

Shadows objects like accounts, groups, roles, entitlements or similar objects that are
stored in the midPoint repository. These objects are local copies of any resource
objects, they represent resource object in the midPoint but they have another
form as Resource Objects.

Objects All objects that can in midPoint exist, e.g. user, account, group, role etc.

Properties Individual properties related to the specific object, e.g. user has properties:
name, givenName, fullName etc.

End user User who is working with the midPoint. It is not the object, but the human being.

Account It is used to describe the account which exist on the external resource.lt is a
complete account with all attributes.

Account Shadow of the account. It is used to describe account which is stored in the local

shadow midPoint’s repository. This account is not complete. There are only mandatory
fields and attributes contains only identifiers (from the resource account).

ICF Identity Connector Framework — connectors used for communication with the
external resources.

UCF Unified Connector framework — the extension of the ICF that should fix some
known ICF issues.

3.3 Choosing the Mechanism

Each of the situations described in the previous section should be solved to avoid of
inconsistencies in the system. These situations were divided into five categories to which
the solution should be found. This thesis will not deal with all of them because of the

27

current identity management system state described in the Appendix B — MidPoint
Product Description. The chosen category which will be discussed to the depth is resource
failures.

Proposed solution will follow the model of the eventual consistency which means
that midPoint would be not guarantee that data will be consistent all the time. Instead, the
temporary inconsistencies will be allowed and the attention will be made for the
mechanism which solves the inconsistencies and eventually brings the data to the
consistent state. This model of eventual consistency may be compared to the midPoint
weak consistency model.

There exists several reasons why to use weak consistency (or eventual consistency)
instead of strong consistency in software like midPoint is. They results from fact, that
midPoint is an integrative solution that integrates a lot of target systems and in this way the
loosely coupled distributed system is built. For such system, it is required to guarantee high
availability and so you can read and write to the system all the time. Every request to the
system must have appropriate response even if some crash occur (e.g. one of the node is
down). It doesn't matter if the operation was successful, but it must be terminated and the
result returned to the user. Even, if some message sent from one node to another is lost, the
system must continue to operate.

According to CAP theorem described in section 1.2.3 CAP Theorem it is
impossible to simultaneously guarantee availability, consistency and partition-tolerance in
the distributed systems. Because the midPoint is trying to guarantee availability and
partition-tolerance, the consistency is weakened. In addition, many of the target systems
usually don't support traditional ACID transactions and it also impacts the consistency. It is
influenced by the fact that identity management provides long running transactions which
should run several hours or days. The standard lock and log mechanisms ensuring the
strong consistency used by traditional ACID transactions will be therefore not suitable to
use for such long running transactions.

In the section 1.2.2 Sagas there was also introduced compensation transactions for
long running transactions called Sagas. In this way, one transaction is divided into the sub-
transactions and each sub-transactions has defined its own compensation mechanism. If the
sub-transaction failed, the compensation mechanism is invoked to restore the changes to
the state before the sub-transaction run. If all sub-transactions are successful, the
transaction is also successful. But there was a critique to this approach that discusses the
problem with the coverage of the problematic cases and explains difficulty for creating
compensation mechanism for some situations.

In addition, in some cases even if the compensation mechanism is able to be
defined and it seems to be successful, it cannot be with certainty said that it really reflects
the previous state. This problem is also possible to be solved introducing the eventual
consistency. For those facts, the eventual consistency seems to be the best choice for the
thesis and it will be considered also by further design.

28

3.4 Resource Failures

Resource failures are related to execution of some operation in identity manager and
propagating these changes to the external resources which should generate some error.
Some of the errors are processable and they should be treated. At the beginning it is
important to divide the errors into the processable and unprocessable errors and then
design the solution for them.

Under the processable errors we consider errors which can harm the consistency
constraints and we know to write the compensation to eliminate the issues. Under
unprocessable errors we consider errors which do not harm the consistency constraints and
also we do not know to write the compensation for them. While the errors are depended on
the executed operation, they will be discussed later.

It is obvious that there is no sense to treat the unprocessable errors. Such errors will
be just propagated to the end user to tell him what went wrong and the solution is left to
the end user. In the case of processable errors, the appropriate reaction should be designed.
The reaction is conditional upon the operation as well as the error which invokes the
reaction. The most common operations by which such processable errors should occur are:

e add account,

e delete account,

e modify account attributes and
e modify users attributes.

3.4.1 Add Resource Account

Operation add resource account is responsible for creating new account for existing user
on the specified resource and also for creating account shadow in the local repository. The
account attributes should be added manually by the end user, or the resource should have
defined policies — outbound expressions, according to which the attributes are
automatically generated. By adding account to the external resource four different
exception listed in table 2 should occur.

Exceptions described in the table 2 are divided into processable and unprocessable.
The Schema violation exception is assigned as unprocessable. It means that the mechanism
will not be interesting in these exceptions. This exception might mean that the end user
doesn't fill required attribute. In this case, it has no sense to process this exception and try
to re-add the account because the result will be always the same — it fails because of
missing attribute. Therefore the schema exception is thrown to upper layer and also to the
end user with the clear message for him. Then, it depends on the end user, what to do next,
if he will try to add missing attribute and re-add the account or he will do nothing.

29

Table 2: Exceptions by the add resource account operation.

Exception type |Description Processable

Schema violation |Exceptions binding to the schema, e.g. some required NO
attribute is missing.

Generic error Various exceptions depended on the connector type, e.g. NO
it can be some SQL exception.

Communication |Exceptions with communication with the external YES
error resource, e.g. timeout exception, connection refused
exceptions, etc.

Object already|Exceptions that object we are trying to add already exist YES
exist on the external resource.

Under the Generic errors various exceptions should be hidden. But this exception is rare
and it should not result to the inconsistencies. Therefore no attention will be made for such
errors. They will be simple thrown to the upper layer and also to the end user with the clear
message what went wrong. The next operation is left on the end user.

More interesting exception for the thesis practical proof is thrown by
communication problems. This can be the timeout exception or connection refused
exception etc. Such exceptions are processable and they should be solved. If we get the
timeout exception we don't know what was done in fact. The timeout exception should be
thrown during the response phase and so the account could be created and it really exists
on the resource. However, the midPoint got the timeout exception and it doesn't know
about created account. On the other hand, other exceptions should be thrown and the
account couldn't be created.

In such situation, it will be probably the best to store the requested account to the
repository as shadow. This shadow will contain all attributes that the account should have
and midPoint can try again later to add this account. It results to the creation of mechanism
which will be able to scan midPoint’s repository for such unsuccessfully handled shadows
and find those which should be processed again later. This mechanism will be the
reconciliation process described later.

Finally, there may be a situation when the account already exists on the external
resource. This situation is more complex than the previous. The reasons, why the account
already exists may be different. For example the midPoint was down and the administrator
manually adds account to the external resource. Since the midPoint was down, the change
of the new account wasn't detected and so it wasn't propagated to the midPoint. Besides
how was the consistency problem formed, it must be solved but the question is how it
should be done.

First, the shadow for arrived account is created in midPoint repository and then it

30

must be find out if the account on the external resource is legal what belongs to the model
(understand one of the midPoint component) responsibilities. The account and the obtained
facts will be therefore sent to the model to find out what to do next. If the model declares
the account as legal, than it is possible that it is the account we want to add for the user.

Ownership of account can be identified by the correlation and confirmation rules
adjusted in the resource definition. Correlation rule describes policies according to which
the owner of the account is found. Actually, the result of the correlation rule can contain
more than one account owner and then the confirmation is needed. The confirmation rule
is used to specify more concrete rules to find the concrete user.

Evaluation of these rules is also the responsibility of the model component so it will
be ask model to make the decision. If the model declares account on the resource as the
one that should be created, it is only needed to link this account to the existing user.
Otherwise, the new identifier for the account must be generated and then try to add it
again.

The situation when the account is illegal is quite different. If the model declares
account as illegal, the account shadow and the account existing on the resource must be
deleted and new account added. In the provisioning can be this situation obtained by
looking up the resource for this account and if no match is detected it just means that the
previous existing account was illegal, but it was removed and so correct account may be
added. Object already exist situation is shown in figure 8.

3.4.2 Delete Resource Account

When the delete account is called, the result should be that the account shadow is removed
from local midPoint's repository and account is removed from external resource. The
operation delete account should be called in many ways, e.g. the user was deleted and also
all his accounts should be deleted or the specific account should be deleted etc. By deleting
account from external resource, there might be some issues obtained. The issues leads to
generate the errors listed in the table 3.

Table 3: Errors by delete resource account operation.

Exception type |Description Processable

Generic error Various exceptions depended on the connector type, e.g. NO
it can be some SQL exception.

Communication |Exceptions with communication with the external YES
error resource, e.g. timeout, connection refused, etc.
Object not found |Object we are trying to delete in not on the resource. YES

31

TargetSystem

In this sequence
diagram is shown
situation when the
end user try to add
account, but the
target system
actually contain
this account.

% GUI Model ProvisioningService ShadowCache UCF Repository|
veer : : : : : : :
| add(accShadow) | ! ! ! ! ! !
"] add(accShadow) ! | | i i
> add(accShadow) _ | | } | |
L add(accShadow) _ | dd t | i i
add(account) create(account) .J
| >
. ____:ObjectAlrea E’X‘%"J%‘Eﬁiﬂ@l‘ _____ U
|
Check for the save(accShadow) C :
tsr;tuatlon - th' _ notifyChange(accountShadowChangeDescription) l 7 I
e account is -
legal or illegal |7| |—| The midPoint got the exception that the object already exists in the target system. Now it is
checkSituation(accountShadow) ! needed to send this fact fo the model to choose what fo do next. We need to know if the
} : object is legal (should exist) or it is ilegal (should be deleted and the new account added).
| | | 1 |
opt } | | | |
[detected|shadow on the resourceiis legal] i i i i
| | | |
createAccountShagow{accountShadow} _ get(accShadow) ! ! !
| = get(accShadow) |
: | : %
! . N ! .I !
i modlfy(prewostSaV?dAccount. accountlderlilll'ler) !
‘ ‘ v |
| | | | |
| link(accountShadow, user) | i |
f + f - |
1 : 1 : |
opt 1 | 1 | |
[detectef| shadow on the resourcei is illegal] i i i i
delet Shad | ‘ | |
e e(ac‘c adow) ' delete(accShadow) | ! !
‘ - delete(account) |
| i : "
The end ! delete(accShadow) S |
user gets the| } } T |
message ! add(accShadow) ! ! !
whether the | 'U add(account) i
account is ! ‘ : L:J
created. | add(accShadow) o !
T ; - 1 - T |
| | |

Figure 8: Sequence diagram for situation add resource account - object already exists.

As in the previous scenario of add account, also by the delete account action there must be
specified which errors will be processed and which won't. The generic error is probably
something what cannot be influenced by the system and it means that it has no sense to
handle this error. It can happen rarely and its results should not lead to the inconsistencies
because nothing is done on the target system.

The situation by communication error while deleting account is quite similar than
was by the adding account operation. It is also needed to know about this operation for the
future. Since, it is not clear if the account was actually deleted from the resource (e.g. the
timeout exception was thrown during response), it is needed to store the information to the
midPoint’s repository that this account should be deleted and sign it as the “dead” account.
Later, calling reconciliation process the account is tried to be deleted again from resource
and account shadow from midPoint’s repository. This situation is shown in figure 9.

% GUI Model ProvisioningService| |ShadowCache UCF Repository | [TargetSystem
i | | | | | —
delete(shadow) ! ! ! ! ! -
! - i i i i i | | This
' i i i i | |sequence
delete(shac.if\liv) ! ! ! ! | d;]agram
> i I I I I |shows
delete(shadgw) | | | | |whatis
> ! } } | |done if
delete(shadow)l : : : communic
' i | |ation error
delete(shadf\.:v) ! ' |is thrown.
o I I
delete(account) |
S
- L
:CommunicationException
Tell the user, i i P i
that the
resource is The communication exception was thrown. Now we
not need to store the account which should be deleted
reachable. to the repository and sign it as a "dead" account.
but after it Later by reconciliation process when we detect this
will be. the shadow we according to this sign can known that
account will this account should be deleted.
be deleted. modify(shadow) ! !
T 1 T T T | 1 |

Figure 9: Sequence diagram for situation delete resource account — communication problem.

By deleting account it can be also thrown exception that the required object was not found
on the external resource. It means, that the user tries to delete absent account from the
target system, but account shadow to this account seems to be still stored in the midPoint’s
repository and the user object is linked with this account. The reasons why there is the
account shadow stored in the repository but not on the resource can be several, e.g. the
account was deleted from the resource, but the synchronization process didn't detect this
change so the change wasn't propagated to the midPoint.

In this situation seems to be the best to lookup the midPoint’s repository if the
account shadow still exist here and if the match is found, the account shadow will be

33

deleted from midPoint's repository. If the match was not found the error probably is that
the user object is still linked with the absent account, so we need to remove this link
between the user and the account. This situation is probably good to solve immediately
when the error is thrown so the end user should get the message if the account was deleted
successfully or the operation failed.

3.4.3 Modify Resource Account

Modify resource account operation is supposed to modify the accounts attributes on the
resource. The change of account attributes might be conditioned either by change of user's
object or directly by changing the account's attributes. As well as by the previous use cases
also by modifying account's attributes there might happened some unexpected situations
which avoid to correct termination of the modify operation. These situations are described
in the table 4.

Table 4: Errors by modify resource account operation.

Exception type |Description Processable

Schema violation |Exceptions binding to the schema, e.g. some required NO
attribute is missing.

Generic error Various exceptions depended on the connector type, e.g. NO
it can be some SQL exception.

Communication |Exceptions with communication with the external YES
error resource, e.g. timeout exception, connection refused
exceptions, etc.

Object already|Exceptions, that object we are trying to add already YES
exist exist on the external resource.

The schema violation errors and generic errors are also categorized as unprocessable like
by the previous scenarios of add and delete resource accounts. By these errors it is not
responsibility of the midPoint to solve the problem, because they are coupled with the
interaction with end user. The solution is to throw the error to the upper layer and lets the
end user to choose what will be done next.

The communication error is similar as it was by add and delete resource accounts.
In the situation when the external resource throws the communication error, for the
midPoint it is not known what was done in fact. We also need to store the state of the
required changes of account to be able to find out later what fails. By the modify account
we therefore need to store the description of changes and apply this description later by the
reconciliation process.

If we get the error that the account cannot be found on the external resource it can
34

be pretty interesting. The end user wants to modify attributes of account that is no more on
the external resource. First, we need to find out if the account should exist on the resource
or if it shouldn't. But in the provisioning where this mechanism will be applied we do not
have such a possibility. This is the responsibility of the model component that can find out
if the user should have the account according to the user's assignments. These assignments
are stored with the user object and they describe which accounts, groups or roles should
user have.

The model component according to the user's assignments decides that the user
either should have the account or shouldn't. If the decision is made for the positive
example (user should has this account on the resource but it was deleted for some reason),
model component send the provisioning the message to create the account on the external
resource. After the account is created on the external resource, the changes should be
applied.

If the model component decides, that the account actually should not exist on the
resource, the changes description is discarded and the account shadow is removed from the
midPoint’s repository. The end user gets the message that it is not possible to modify the
account because of the detected inconsistencies of the system. The additional information
to this message will be that the shadow was deleted from the local repository because it
should not exist. The modify resource account when the object not found exception is
thrown is shown in figure 10.

A.1.1 Reconciliation Process

Now, it is needed to specify the policies for reconciliation process according to which the
unsuccessful created accounts will be picked from repository. This brings the idea that
storing only account shadow attributes is not enough. If there is not additional information
to such account shadow, it is quite impossible to declare it that it was unsuccessful and to
find it in the repository for the later usage. Therefore it is needed to expand the account
shadow with some additional information which provides the detailed view about what and
why went wrong.
There are three different operations which were supposed to create inconsistencies.
Each operation work with different object types and therefore they must be considered by
expanding the account. In the situation when the account should be added but the operation
fails, it is probably good to have stored:
o all the account attributes (not only identifiers, but also other attributes describing
the account),
e operation result which will give the status of the operation and also the error which
occurs (it also provides the hierarchical results of all called operations),
e some information about the operation and the type of error which occurs,
e number of the attempts made for re-try of operation.
35

% Gul Model ProvisioningService ShadowCache UCF
o ! : : : :
modify(shadow) ity (shadow)! ! | |
| | | |
Tl modify(shadow
U bl modify(shadow) _ | , l
4 modify(account) |
|
I
- notifyChange(shadow)
o~ U L]
| |
checkSituation |
- : |
1 |
opt | |
d
|
|
|

AN
Finally, we need to
tell user, what was
done infact. There is
possibility that the
error was eliminated|
new account was
added and the
changes was
applied or the other
possibility is, that the
account should not
exist and it was
successfully
removed form the
repository and also
unlink from user.

Repository|

modify(account)

TargetSystem

TS
This sequence
diagram shows
how is the
abject not found
error handled

‘-:.; _____________ —[______________
:ObjectNotFoundException
|

while modifying
account

attributes.

The target system throws exceptions, that the required account which should be
modified cannot be find on the resource. Therefore we first need to known, if the
account should exist and the changes will be applied, or it can't and the link between
the account and the user must be therefore deleted. We call model to find out the

situation which should be processed.

[the accgynt

according to the

delete(shadow)

o
-

delete(shadow)

o
L

ser's assignment should not exist.]

delete(shadow)

]

opt

-4

L

|
[the account according to the yser's assignments shojild exist..]
|

add(shadow)

o

-

add(shadow)

o
-

add(shadow)

) J

modify(shadow)

A |
R A AR ——

add(aécount)

A |

|
|
modify(account)

Y

I

Y

I

S O e Y S s

Figure 10 Sequence diagram for situation modify resource account - object not found error.

i
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
il
I
I
il
:
|
|

By the modifying account there is probably good to have stored:

e modifications description of account (it means relative changes to the account
which should be applied),

e operation result which will give the status of the operation and also the error which
occurs,

e some information about the operation and the type of error which occurs,

e number of the attempts made for re-try of operation.

For deletion of account it is probably good to have stored:

e account which should be deleted, but hasn't been deleted yet (it means that the
account shadow will be not deleted from the midPoint’s repository, but rather it will
be signed as a “dead” account),

e operation result which will give the status of the operation and also the error which
occurs,

e some information about the operation and the type of error which occurs,

e number of the attempts made for re-try of operation.

All the proposed expansion of account shadow object above might be summarized in the
following one, storing:

e all the account attributes when operation fails,

e description of changed properties,

e operation result which will give the status of the operation and also the error which

occurs,

e some information about the operation and the type of error which occurs,

e the number of the attempts made for re-try of operation.
Now, the account shadow in the repository contains also information about operations and
theirs results. The reconciliation process will be used to scan the repository for the failed
accounts and to try to run the failed operation again. The scanning will be done with filter
on the failed accounts but the important role will also have the number of the attempts
which was made to retry the unsuccessful operation. The number of attempts is important
to prevent for repeating the re-try operation endlessly.

If the account is found according to the specified filter, the system triggers the
failed operation with the account again. The information about which operation went
wrong and what was the reason of crash can be found in the account's properties stored in
the repository. If the account should be added, add account operation giving the account
(with all properties stored temporary in the repository) will be called. If the account should
be deleted, delete operation should be called and if the account should be modified, the
modify account will be called. Input for modify account will be the change description
stored with the account in the midPoint’s repository.

The reconciliation process ends either successfully or it also can fail. It will be

37

implemented in the way to not limit the end user for his activity. After defined number of
attempts it will not be interesting in the solving the inconsistencies and it will try to restore
the state before the failed operation occurs. The idea of reconciliation process is shown in
figure 11.

PravisioningService| |ShadowCache UCF Repository | [ReconciliationTaskHandler| [TargetSystem

D scan(failedAccount,
The account that previously failed to be added was MAX_ATTEMPTS)
found. This account shadow contains whole L
account object that should be created. It also
contain information about the operation which was
failed and the number of attempts that was made to
repair the previous error. In this example we refer to
the communication failure during add account.

-‘foundAccount

add(accShadow)

i
' L

| checkSituation(foundAcc)
|

|

'

add(accShadow)

|
-

add(accShagow]

!

modify(accShadow)

add(account)

A |

|

--rt----+---------—-—-——-—————|—-——-——-———-——- |]
|
|
|
|
|
|
|
I
|
\I',i

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!
L|_|
|
|
|
|
|

Figure 11: Reconciliation process.

38

4 Verification

Section Solution Verification is divided into three subsections, Implementation, Used
technologies and Evaluation. Subsection Implementation concentrates to describe concrete
implementation of the mechanism which was made in the open-source identity
management solution called midPoint. In this section are step by step described the
individual methods needed for the consistency mechanism. In the next section, there are
also stated used technologies. The last subsection, Evaluation, describes how the
implemented mechanism was tested and results of the tests.

4.1 Implementation

In this section is provided brief view on the concrete implementation of the mechanism in
the midPoint solution. The main part of the implementation is placed in the provisioning
component. After small refactoring of provisioning component introduced in detail in the
Appendix C — Solution Design Diagrams we got the suitable place for the designed
mechanism and it is the ShadowCache class.

This class first calls the ShadowConverter to propagate the changes to the external
resources and if something went wrong one of the mentioned error is thrown (e.g
CommunicationException, ObjectAlreadyExistException, ObjectNotFoundException, etc).
All the thrown errors should be treated either only telling the user that the operation failed
or trying to solve the problem.

The mechanism will rely on the UCF framework and will use its interface instead
of ICF interface. UCF provides to us more friendly error handling where the ICF
exceptions are wrapped to the few groups of exceptions. UCF also takes care for the result
of operations (if they were successful or failed) and the hierarchy of called methods is
placed in the OperationalResult which can be interesting for us by the reconciliation
process.

The idea is that after the error is thrown the system chooses one of the mechanisms
which will be suitable for the error. Therefore we decide that it will be implemented using
the strategy design pattern. The concrete error handler will be constructed using the factory
method according to the thrown error and then the mechanism for chosen error handler
will be called.

Each error handler is implemented with respect to the error thrown. Error handlers
for unprocessable errors are implemented in the simple manner and their responsibility
stand for notifying the end user about the detected issue. Processable errors have specified
more complex error handler. By the ObjectNotFoundException or
ObjectAlreadyExistException the error handler tries to solve the inconsistencies
immediately.

39

Resolution of inconsistencies implies success and the initial operation should
continue. Otherwise, the error is thrown to the user to let him known about the
inconsistencies. By the CommunicationException is the role of error handler to prepare
objects in the repository for the reconciliation process. Reconciliation process will then use
these objects to re-try the operations again. Proposed class diagram is shown in figure 12.

class Class diagram J

ObjectNotFoundHandler

+ handleError(AccountShadowType) . void

ObjectAlreadyExistHandler

«strategy»
> ErrorHandler

+ handleError(AccountShadowType) : void

+ handieError{AccountShadowType) : void

SchemaExceptionHandler

+ handleError(AccountShadowType) : void

GenericErrorHandler

+ handleError(AccountShadowType) - void

CommunicationExceptionHandler

+ handleError{AccountShadowType) : void

ProvisioningServicelmpl ShadowCache

addObject(Filter) : void
modifyObject() : void
synchronize() : void
deleteObject() : void
searchObjects() - void

addShadow() : void
modifyShadow() : void
deleteShadow() - void
fetchChanges() : void
fetchCurrentToken() : void

+ o+ ko
+ o+ + + +

«factory»

ReconciliationTaskHandler ErrorHandlerFactory

+ reconcile(AccountShadow) : void

+ createErrorHandler(Class) - ErrorHandler

Figure 12: Class diagram for proposed mechanism.

Detailed view on each error handler and also other steps needed for the mechanism is
detailed described in the next text.

4.1.1 Creation of Error handler

Creation of the concrete error handler is situated in the class ErrorHadlerFactory. The
method createHandler() takes the Exception as the input. According to the Exception, the
concrete instance of the ErrorHandler is constructed. Exceptions and related ErrorHandlers
are stated in the table 5.

40

Table 5: Exceptions and theirs error handlers.

Exception ErrorHandler
CommunicationExcetpion CommunicationErrorHandler
GenericErrorException GenericErrorHandler

ObjectAlreadyExistException ObjectAlreadyExistHandler

ObjectNotFoundException ObjectNotFoundHandler

SchemaViolationException SchemaViolationHandler

However, there is no guarantee that the inputted Exception will be one of the above
mentioned. In such situation ErrorHandler is not constructed but instead the
SystemEXxception is thrown. SystemExcpetion is instance of the RuntimeExcpetion and it
is used, when we do not know the Error which occurrs.

4.1.2 Calling the Error handler

After the concrete instance of the ErrorHandler is created, it is needed to call it to perform
the compensation to the error. Compensations are implemented in the method
handleError() in each of the error handler separately. However, before the error handler is
called, the correct values for the inputs must be set. This is done with the method
setAdditionalParams() placed in the ShadowCache. Inputs for this method are:
e Shadow
o by the add action, the whole account which should be created,
o by the modify and delete action the actual shadow stored in the midPoint's
repository.
e Failed operation type
o describing the type of the operation that failed, ADD by add action, MODIFY
by modify action, DELETE by delete action.
e Resource
o identifier of the resource, where the account (should) exist(s).
e Operation result
o hierarchically sorted summary of the steps in processing the concrete action
with the account. In this summary there is information about which actions
were called and what was the result of these actions. It also contains the reason
what a why went wrong.
e Changes
o description of changes which should be applied to the account. They are needed
in the case of modify action failed.
41

Method setAdditionalParams() returns the shadow enriched with the additional information
needed for compensating the error. Returned shadow is then passed as the input argument
for the handleError() method.

4.1.3 Unprocessable errors

Generic errors and schema violation errors were classified as unprocessable errors to
which compensations cannot be specified. For example, it can reflect that some of the
mandatory attribute was not filled, or the shadow description does not satisfy the desired
structure. By these errors theirs error handler is called, but the function of the
handleError() method is only to throw exception and let the user known about the error. All
the others steps are depended on the user decision.

4.1.4 Communication error handler

Responsibility of the compensation for the communication error is to store the processed
account with all the additional information to the midPoint's repository. It provides
preparation for the reconciliation process. There are small differences in attributes which
need to be stored with the account depending on the concrete action executed (add, modify,
delete). More implementation details and also additional attributes needed for individual
action are introduced in the table 6.

Table 6: Account's additional information to individual failed actions.

Action |Attributes stored in the midPoint's repository |Next steps

Add Whole account with all attributes, resource|Link account to the user. Return
account |identifier, failed action, operational result success to the end user.

Modify |Original account, changes made to the|Return success to the end user.
account |account, failed operation type, operational
result

Delete |Original account, failed operation type Unlink account form the user.
account Return success to the end user.

As the table shows, the compensation to modify account is implemented to only store the
changes to the account in the repository. In the other two operations, there are additional
steps. If the addition of account failed, besides storing the account to the repository, there
is also need to link this account to the concrete user. Opposite continuation, unlink account
from user, is processed when the initial action was deletion.
Compensations to the communication errors are implemented in the manner to not
42

tell end user, that the action may be unsuccessful. The end user gets the message that all his
changed was done successfully. Even by the add action and delete action can end user see
the changes immediately.

4.1.5 Object not found handler

Object not found handler contains definition for two different actions — modify account
and delete account. First of all, if the method handleError() in the ObjectNotFoundHandler
is called, there is decision which compensation should be called. Compensation for delete
action calls the method to delete account shadow from the midPoint's repository. After
deleting this account shadow from the midpoint's repository, the success is returned and
then follows the action that unlinks non-existed account from the user.

Compensation for the modify action is little bit complicated. It results from the fact
that it first must be decided, if the not found account should exist or not. For that reason,
the synchronization mechanism is called to decide if the account will be re-created and the
modifications will be applied, or the account will be deleted and unlinked from the user.

The account is re-created if the user has assignment' for such account. Newly
created account is then linked to the user. Old account shadow is deleted from the
repository and the link to the old account is removed from the user. Since the re-created
account has a new identifier, applying the changes cannot be executed. We first need to
find out the new identifier to be able to apply the changes.

When the account is re-created by the synchronization mechanism, the identifier is
saved to the operation result as the return parameter. Then, in the compensation mechanism
is this identifier retrieved from the operational result. Old identifier in the change
description is replaced with the new identifier and the changes are applied calling the
method modifyObject() from the ShadowCache.

No assignments imply deletion of the account. In addition, also the link to this
account is removed from the user. In both cases the end user gets the message which closer
describes the situation. If the account was re-created and the changes were applied, end
user gets the success message, otherwise there is a message informing, that the changes
were not applied because the account was not found.

4.1.6 Object already exist handler

Object already exist hander is a compensation for the action add account. This
compensation is implemented in the two midPoint's components — provisioning and model.

1 Assignments are used to declare which role, group or account should user have. If user has assigned some
account, this account MUST exist until the assignment exists. It means that if someone deletes such
account without deleting assignment, the account should be re-created. If the assignment is removed, the
account is deleted.

43

In the provisioning component, when the handleError() is called, the synchronization
mechanism is invoked. Input for the synchronization mechanism is account from the
resource’. It is obtained by the searchObject() method. Search filter for this method is set
according to initial account's® identifier.

Synchronization mechanism performs the individual steps with the found account
and results can be more. By running the synchronization mechanism it is possible that:

e the found account can be deleted from the end resource,

e the found account can be linked to this user,

e the found account can be linked to different user,

e new user is created to the found account.
Since it is not clear to the provisioning which action was actually performed, the
provisioning cannot reasonably react and compensate the error. Therefore, after the
synchronization mechanism run, the ObjectAlreadyExistException is re-thrown back to the
model component. Implementation in the model component is responsible to invoke the
initial action again, but with the new knowledge.

This results to the calling synchronizeUser() method to re-compute the changes
which should be made. If the account was linked to the user by the synchronization
mechanism run from the provisioning, there exists no more changes to be applied and the
end user gets success message, that the account was created but with the new identifiers. If
the account was deleted by the synchronization mechanism run in provisioning, the
recomputed changes contain initial account which is tried to add again.

In the other two mentioned cases, the method sycnhronizeUser() re-computes the
account's identifiers and the account is tried to add with these new identifiers. If new
identifiers satisfy constraints, the account is added on the external resource and the end
user gets the success message about the account which was added. Otherwise, the
identifiers are re-computed again and again until constraints are not satisfied or the number
of max iterations is not exceeded.

4.1.7 Reconciliation

Reconciliation consists of two steps. In the first step, the failed accounts are searched and
then the failed action is invoked to be re-tried. Search is done in the midpoint's repository
with the filter that satisfies only failed accounts. After the accounts are found, the failed
action is invoked and runs again with the original parameters. The failed action which
should be called is stored with the account in the midPoint's repository:.

Reconciliation is either successful or failure. Success of the reconciliation process
implies that the account shadow in the repository is cleaned. It means, that the additional

2 This is an account, which already exists on the resource and we must decide what to do with this account.
3 Initial account is the account which should be created by the add action initiated from the end user.

44

information stored with the account are removed and there is stored only corresponding
account shadow”. Such cleared account is then no more found by reconciliation process.

Failure of the reconciliation process implies increase for number of attempts. The
account is processed by the reconciliation process only until the number of attempts
exceeds the specified limit. After crossing the limit for the account, the midPoint's
repository is cleaned of the account, e.g. if the failed account was formatted by the add
action, the account is removed from the midPoint's repository and also unlinked from the
user.

4.2 Used technologies

Mechanism was implemented using Java programming language and technology Spring
and JAXB. The runtime environment for midpoint is application server Tomcat 6.0. Each
of ErrorHandler-s is represented as a Spring bean and it is left to the spring container to
carry out the life-cycle of the instances. JAXB technology is used for translating between
XML and Java objects.

Automated test are implemented using a testing framework TestNG which provides
functionality similar to JUnit test framework. The tests are provided against the XML
repository called BaseX and SQL repository MySql. The external system used for testing is
OpenDJ. Tests and mechanism was developed in the development kit eclipse.

4.3 Evaluations

Proposed mechanism was implemented and tested. Tests provided on the mechanism
implementation in the first phase were done manually and in the second phase they were
done automatically. Each action was simulated and the actual results were compared with
the expected one. In the next sections the individual steps needed for manual and automatic
tests are detailed described.

4.3.1 Manual testing

By the manual testing, the midPoint solution was deployed to the application server
Tomcat 6.0. The prerequisites are also OpenDJ as an external system and BaseX as the
local midPoint’s repostiory. The tests was provided by using Chrome browser.

The communication problem was tested in the way that we temporary stopped the
OpenDJ and we try to add, modify and delete some accounts. Then we check the
midPoint’s repository if it contains the additional information to these accounts. After the

4 In the midPoint's repository there are stored accounts that contains name, resource identifier, account type
and the attributes which represents the resource account identifiers.

45

check and the success of the previous situations, the reconciliation process was tested
whether it can repair previous inconsistencies. We first tested the reconciliation with the
stopped OpenDJ.

The reconciliation is triggered after importing the reconciliation task. This task
describes the reconciliation policies, e.g. how often the reconciliation is triggered, which
resource should be reconciled etc. After the reconciliation run we check the repository
again. There were the same accounts with the same additional information but the attempt
number was increased. This is the expected result.

Then we started the OpenDJ and tested the reconciliation again. The results were as
expected. After the OpenDJ was started, the failed operation was re-tried and they resulted
with the success. We found this out after the checking the local midPoint’s repository and
also the state in the OpenDJ accounts. The local midPoint’s repository contained only
corresponding accounts without additional information.

The situation when object that is not found on the external resource is modified was
also manually tested. In the first step in these tests we disabled synchronization of changes
from resource to the midPoint. The tests were done so that we first got user and its
accounts. Then we provided some modification of account’s attributes and before the
submit button was pressed, we deleted the account directly from the resource.

Then we expected two situations. If the user had the account created by assignment,
we expected that the account will be re-created and the changes will be applied. In the
other case (if the user had no assignment to the account) we expected that the account
shadow will be deleted from the midPoint’s repository and unlinked from the user. After
checking the midPoint’s repository we found out that both situations were performed as
expected.

Addition of account that is already present on the external resource we also tested
by the disabled synchronization of changes from external resource. We first intentionally
harm the consistency of the data and manually add the account directly on the external
resource. Then we created new user with the name satisfying the identifier of previously
created account on the resource. After that we try to add new account to the user through
the midPoint’s web interface. We expected that the previously created account on the
resource is linked to the user. And after checking the resource and also the midPoint’s
repository it was true.

Another example for situation that object already exists was manually tested. It
describes the situation when we try to add the account that already exists on the external
resource and is also linked to other user. In this case we expected, that the initial account’s’
identifiers are re-computed and the account is re-tried to add with these new identifiers.
This situation also performs correctly.

Manual testing does not cover all the situations. It was rather performed to cover

® Account that we try to add.
46

the base examples and it should demonstrate the basic behavior of the mechanism. The
more complicated scenarios were tested using automatic testing.

4.3.2 Automatic testing

The identified situations we also tested automatically. There was created project with the
end-to-end tests. These tests simulate the end user’s actions and they are executed across
the whole system. It means that instead of using web user interface and manually clicking
desired actions, we use the model web service interface and write short functions to call
desired actions. Also we do not use mock object, but real implementation.

Automatic tests use embedded OpenDJ instance as an end resource and there may
be chosen the local midPoint’s repository. It can be SQL repository MySQL or XML
repository BaseX. In the tests the synchronization of changes from the resource is disabled
and there is also possibility to start and stop the embedded instance of OpenDJ as needed.

The other difference between manual and automatic tests is that we needed to
prepare some example of objects (users, resource, accounts). These examples takes form of
an XML and are used as inputs for calling the model web service. In the XML we describe
how the object should look like, but also the actions that should be done. In the resource
XML there are set reactions on the synchronization situations, for example. In the change
description XML there is described the type of the change (modify, add, delete) and also
the concrete attributes which should be changed (attribute’s name and also its value).

The concrete situation which was tested and also theirs results are detailed
described in the Appendix D — Test Results.

47

48

5 Discussion

In the previous sections we tried to design the algorithm which will be able to minimize
the risk of inconsistencies and also it should be able to solve the problems and eventually
brings the data to the consistent state. This mechanism was designed with respect to the
facts, that the traditional transaction operations are not suitable, so it cannot be used any of
the known mechanism for transactional systems.

The primary scientific contribution of this work is the possibility to perform the
operations on the non-transactional systems with some of the benefits comparable to
traditional transactions, bringing some consistency guarantees into such systems (with
respect to the CAP theorem). We decided to use similar mechanism used by transactional
systems that are able to recover from the errors. This mechanism attempts to solve the
consistency issues by individual operation using the compensations and if it does not
succeed after several attempts, it returns the data to the state before the operation was
executed.

Proposed solution follows the model of the eventual consistency which means that
the system does not guarantee that data will be consistent all the time. Instead, the
temporary inconsistencies are allowed and the attention is made for the mechanism which
solves the inconsistencies and eventually brings the data to the consistent state. The
mechanism is based on the three base concepts:

e CAP theorem,
e relative change model,
e compensations for the unsuccessful operations.

CAP theorem shows that in the distributed system there cannot be guarantee for
consistency availability and partition tolerance at once and it must be chosen only two of
them. In our solution we choose availability and partition tolerance instead of strong
consistency. This can be also called weak consistency model as we mentioned before.

We decided to weaken the consistency instead of availability because for such
systems like identity management solutions are, it is required to guarantee high availability
and so you can read and write to the system all the time. Every request to the system
must have appropriate response even if failures occurs (e.g. one of the node is down). It
does not matter if the operation was successful, but it must be terminated and the result
returned to the user. Even, if a message sent from one node to another is lost, the system
must continue to operate.

Another important concept for the proposed mechanism is a relative change model.
Relative change model is used to describe changes made to the objects. Instead of sending
the whole object even when only one of its attribute was changed, we send only the real
change. The changes are computed with respect to the old object and the result of

49

computation is the change description shown in the figure 13.

Changes:
REPLACE: attributes/fullname = Jameson Bond
ADD: attributes/surname = Bond
DELETE: attributes/additionalName = jameson

Figure 13: Relative change model - changes description.

In the figure 13, we can see the change of three attributes. The first parameter of the
change is the change type. It describes if the attribute should be added, deleted of replaced
with the new value. The second parameter describes the path to the attribute which should
be changed and the last parameter is the value of the attribute. The changes are then
patched and the new object is formed. It is shown in the figure 14.

Account OLD Changes:
attributes: REPLACE:
name = jbond attributes/fullname = Jameson Bond
fullname = James Bond ADD:
firstName = James attributes/surname = Bond

- pachio>
Account PATCHED
attributes:
name = jbond
fullname = Jameson Bond
firstName = James
surname = Bond

Figure 14: Relative change model - patching changes.

The advantage of using relative change model instead of absolute model is that the data do
not need to be locked while they are used by some process. Also, if the object is modified
with two different processes at almost the same time, the changes applied by the process
which ends first may not be known to the other process and they will be replaced with new
changed object. On the other side, if we are using relative change model we do not worry
about such situation. Because not the whole object is replaced, but only the real changes.

Last concept that is important for the mechanism is compensations. Compensations
are reactions for the errors. They are used for trying to eliminate the errors or to react to the
errors and find appropriate way that will not harm the consistency constraints. Each
executed operation can end successfully or unsuccessfully. If the operation ends with an
error, first must be decided if the error is processable or not. Processable errors can have
defined compensations, but unprocessable errors cannot. If the error is processable, then
defined compensation mechanism is called to resolve the problem, otherwise the only think
we can do is notify user about the error.

The mechanism is proposed to minimize the formation of the inconsistencies and if

50

they ever happened, it should reasonably react and bring the system to the consistent state.
The mechanism was designed with respect to the one of the identified groups of problems
in the field of identity management — resource failures. It consists of two parts. The first
part tries to handle the unexpected error that occurred and the second part, called
reconciliation, is used to compare the state of the object stored in the repository and in the
end resource.

It has to be known if the error that occurred is processable or not in the first part. If
the error is processable, there are specified compensation mechanisms as the reaction to
the error. Each error has its own compensation mechanism. Individual compensation
mechanisms were described earlier in the section 3 Solution Design. If the error is not
processable it means, that we do not know how to implement the compensation to the
error. Such an error can be also considered as fatal, and then the user help is needed for its
reparation. The example of the triggering compensation mechanism for failed operation is

shown in the figure 15.
Identity Manager (IDM) | add(Account) > -
exception:
Account add(Account) Account already exist External
resource
| add(newAccount) :>

Cosistency mechanism

e.g. OpenDJ
success |

1. Try error is processable or not -> true
2. Run compensation:
a. try if the account is legal -> true
b. try if the account is the right one -> false
c. recompute account idetifiers -> newAccount

Figure 15 The first part of the mechanism (compensation for the situation where the account already exist on
the resource).

Compensations can either eliminate error at the moment they originated, or it can postpone
the error and try to eliminate it later. If the error is eliminated immediately, the result of the
compensation should preserve the consistent state of the data. But, if the error cannot be
eliminated immediately, it can harm the data consistency. Since we are not able to react
immediately, we must store somewhere the error description.

Later, according to such stored error description it should be possible to find out
what (operation), why (reason) and which data went wrong. Since it is not desired
(especially in the systems like IDM are) to have inconsistencies in the data, there must be
defined the way how can we return to this error and try to process it later. For that reason
we proposed to use the reconciliation process.

Reconciliation process can be described as a process by which we can find

51

differences among replicas on various resources. These differences are then merged to the
one that is applied on other replicas. In our solution we propose to use the reconciliation
process also to find previous errors and to trigger the operation which can eliminate the
error. It should be executed in the regular interval but only a limited numbers of times.
After the set number of attempts is exceeded, the data are returned to the state before that
operation. The reconciliation process is shown in the figure 16.

IDM
[add(account FAILED) :>
Extema
Consistency mechanism resource
d reconciliation SUCEESS |

search failed
accounts

A
Account FAILED \\

0id="dbb0c37d-9eeb-44a4-8d39-016dbce1cccc”
name = jbond
externalResourceld= ef2bc95b-76e0-59¢2-86d6-
3d4f02d 3ffff
attributes:
name = uid=jbond,ou=People,dc=example,dc=com
fullname = James Bond
firstName = James
failedOperation = add
attempts = 0
error = timeout H

Figure 16 Reconciliation process.

It can’t be said that the proposed mechanism is perfect. It was designed with respect to
only one of the defined groups of problems. So, there exists the possibility that it will need
to be extended of some steps if considering also other defined groups of problems. If we
consider inconsistencies which occur by the synchronization process, there should be a
little bit different behavior. These operations are performed asynchronously and maybe it
could be nice to tell the user if something went wrong and with the compensation it was
postponed to be corrected later. Probably some notification mechanism will be needed.
Notification mechanism can be also good for other groups of problems. Imagine
that the error is compensated and postponed to be handled later. If it is not successful after
specific number of attempts, the data are returned to the state before the error was formed.
The failed operation could be addition of account and the result is that the account was not
added after specific number of attempts and the account was deleted from the local
(identity manager) repository. End user has no possibility to know that the account was
deleted. Notification should tell this to the end user and he could execute the action again.
We can also consider the inconsistencies which can occur while working with groups
or dependencies. For example, LDAP has addition of account and assigning it to the group

52

implemented as two different operations. There is not defined in the account that it belongs
to the group, instead the group contains information about which accounts belong to it.
However, addition of account and assigning it to the group consists of two different
operations and it should be nice to provide it atomically or at least there must exist
guarantee, that the result will be consistent.

53

54

Conclusion

This thesis focused on the consistency in the identity management. At the beginning, the
concept of identity management was introduced to explain the main principles and reasons
for using identity management solution in the enterprise. Some of the main technologies
used in the identity management solutions were introduced, such as single sign-on system,
public key certificate, directory servers, LDAP or the provisioning engine. It was described
that existing identity management solutions usually does not provide sufficient consistency
guarantees. The aim of this thesis is to add a consistency guarantee to identity management
solution. For that reason, known mechanisms used by variety of systems and the existing
solutions of identity management were described.

Systems that were analyzed manage changes to maintain data in resources to be not
contradictory by synchronization and reconciliation processes. But this is not enough.
Another mechanism is needed to ensure that data after changes will be consistent. Because
many of the resources managed by the identity management do not provide transactions,
there cannot be used any of the known mechanism for ensuring consistency (like
transactions). According to analyzed transaction mechanisms, one possibility is following
the model of eventual consistency. It means that the data may be temporary inconsistent
and we can only guarantee that eventually they will be consistent.

We decide to choose this way, so by designing the appropriate mechanism we were
inclining to the eventual consistency. We designed the mechanism which was in detail
described in the previous section (discussion). The mechanism is composed from two
parts: error handling and reconciliation. It is also based on the three base concepts:
compensations, CAP Theorem and relative change model. Pros and cons of the proposed
mechanism are also concluded in the previous section (discussion).

Proposed mechanism was also implemented and tested. There were implemented
automated tests and also the manual tests were executed. Automated test was implemented
in the end-to-end manner and it simulated the actions by which the inconsistencies should
occur. Automated tests were evaluated towards the expected results and they were
successful. Although the automated tests run were successful and also by manual testing
we get the expected results, it does not necessarily mean that the mechanism is perfect.

The mechanism was written in respect to one of the identified groups of problems —
resource failures, and tests follow the issues in this group. If some operation of other
identified group (synchronization problems, groups, role assignments, dependencies) fails,
it is possible that the mechanism cannot reasonably react to the error and the
inconsistencies occur. The next work on the mechanism should be focused on other
identified situations by which inconsistencies may occur.

Proposed mechanism was also presented on the student’s conference IIT.SRC. The
implementation is a part of one existing open-source solution called midPoint and it will be

included in the next release (2.0) of that project.
55

56

Bibliography

[1] Abdallah, M., Guerraoui, R., Pucheral, P. 2002. Dictatorial Transaction Processing:
Atomic Commitment Without Veto Right. Distrib. Parallel Databases 11, 3 (May
2002), 239-268.

[2] Bertino, E., Takahashi, K. 2010. Identity Management: Concepts, Technologies and
Systems. ISBN 13: 978-1-60807-039-8. Publisher: artech house, publish date:
December 2010.

[3] Brantner, B., et al. 2008. Building a database on S3. In Proceedings of the 2008
ACM SIGMOD international conference on Management of data (SIGMOD '08).
ACM, New York, NY, USA, 251-264.

[4] Brewer, E. 2010. A certain freedom: thoughts on the CAP theorem. In Proceeding
of the 29" ACM SIGACT-SIGOPS symposium on Principles of distributed computing
(PODC '10). ACM, New York, NY, USA, 335-335.

[5] Ferraiolo, D.F, Kuhn, D.R. 1992. Role Based Access Control. 15" National
Computer Security Conference. pp. 554-563.

[6] Garcia-Molina, H., Salem, K. 1987. Sagas. In Proceedings of the 1987 ACM
SIGMOD international conference on Management of data (SIGMOD '87),
Umeshwar Dayal (Ed.). ACM, New York, NY, USA, 249-259.

[7] Gilbert, S., Lynch, N. 2002. Brewer's conjecture and the feasibility of consistent,
available, partition-tolerant web services. SIGACT News 33, 2 (June 2002), 51-59.

[8] Gray, J. 1988. The transaction concept: virtues and limitations. In Readings in
database systems. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA 140-
150.

[9] Greenfield, P. et al. 2003. Compensation is Not Enough. In Proceedings of the 7th
International Conference on Enterprise Distributed Object Computing (EDOC '03).
IEEE Computer Society, Washington, DC, USA, 232-240.

[10] midPoint community. Project wiki page:
http://wiki.evolveum.com/display/midPoint/
[11] Neuman, T., et al. 2005. The Kerberos Network Authentication Service (V5). RFC

4124, Internet Engineering Task Force (2005).

[12] OpenIAM community. Project wiki page: Developer's documentation.
http://wiki.openiam.org/dashboard.action

[13] OpenlAM community. Issue tracking tool Jira.
http://jira.openiam.org/secure/Dashboard.jspa

[14] OpenICF community. Project wiki page:_http://openicf.forgerock.org

[15] OpenIDM community. Project wiki page: Architecture guide.
https://wikis.forgerock.org/confluence/display/openidm/Home

[16] OpenPTK community. Project wiki page: Overview.
http://wikis.sun.com/display/openptk/Docs+2.0+Overview

[17] Pashalidis, A., Mitchell, C. 2003. A taxonomy of single sign-on systems.
Proceedings, volume 2727 of Lecture Notes in Computer Science, Springer-Verlag,
Berlin, (July) 2003, pp. 249-264.

[18] Pfitzmann, A., Hansen, M. 2010. A Terminology for Talking About Privacy by Data
Minimization: Anonymity, Unlinkability, Undetectability, Unobservability,
Pseudonymity, and Identity Management. (August) 2010. 1 - 98.

[19] Pritchett, D. 2008. BASE: An Acid Alternative. Queue 6, 3 (May 2008), 48-55.

[20] Sandhu, R., et al. 1996. Role-Based Access Control Models. Computer, vol. 29, no.
2, pp. 38-47, Feb. 1996.

[21] Semancik, R. 2006. Choosing the Best Identity Management Technology for Your Business.
Proceedings of InfoSecOn 2006 Conference, Cavtat, Croatia, 2006. 1- 10.

[22] Semandik, R. 2005. How to Deploy Digital Identity Technology. Proceedings of Network Forum
2005 Conference, Banska Bystrica, Slovakia, pp. 48-56, 2005

[23] Slone, S. and the open group identity management work area. 2004. Identity
Management. 1-109.

57

http://wiki.evolveum.com/display/midPoint/
http://wiki.openiam.org/dashboard.action
http://jira.openiam.org/secure/Dashboard.jspa
http://wiki.evolveum.com/display/midPoint/
http://wiki.evolveum.com/display/midPoint/
http://openicf.forgerock.org/
https://wikis.forgerock.org/confluence/display/openidm/Home
http://wikis.sun.com/display/openptk/Docs+2.0+Overview

[24] Wahl, M., Howes, T., Kille, S. 1997. Lightweight Directory Access Protocol (v3). RFC
2251, Internet Engineering Task Force (1997).

[25] Wang, T., et al. 2008. A survey on the history of transaction management: from
flat to grid transactions. Distrib. Parallel Databases 23, 3 (June 2008), 235-270.

[26] Wolfson, O. 1987. The overhead of locking (and commit) protocols in distributed
databases.ACM Trans. Database Syst. 12, 3 (September 1987), 453-471.

58

Appendix A - Requirements Analysis and
Specification

A.1 Situations

In this section detailed view on the situations which can lead to the inconsistencies is
provided. These situations were introduced in the section 2.1 Identified situations and this
section should give the better understanding of the problems. The individual operations of
identified groups of problems are also shown in the figure 17 and in the next text they are
described in detail.

Attributes

Add Group Add Account
Delete
Change Role Account \ /

u Delete User
eer ehedum
Delete Role Delete CI:I)1etect
anges
Modify User & count J
Add Role

Figure 17: Use cases by which inconsistencies should occur.

Modify
Account

Create
Account

A.1.1 Resource failures

User's data are stored in the local repository and in the repository of external resource. If
new account for the user is created, it should be stored to the local repository and also to
the repository of the external resource. A situation may occur when changes are saved only
in the external resource, but not in the local repository, e.g. account was created on the
external resource, but the connector generated some exception (e.g. timeout,...). Identity
manager doesn't know that the account exists, so the end user gets the error message
stating that creation of the account failed. However, account exists in the resource but was
not propagated to the local repository of identity manager. This is inconsistent state and it
is needed to be eventually resolved.

Other example should be deletion of the existing account. Account is deleted from
the external resource but connector generated some unexpected error. Because of this error,

59

the account is not deleted from the local identity manager repository and the user still has
reference to the non-existing account. Identity manager does not know that the account
was actually deleted from the external resource but it was not deleted from the local
repository. The user gets again the error message stating that the account was not deleted.
This is also inconsistent state and it is needed to be resolved.

Also, when user is deleted, his accounts should be deleted from resources and from
local repository, too. A situation may occur when user was deleted but some of his
accounts were left behind. In addition, some resources may support additional operations
when creating, deleting or modifying user, e.g. creation of new home directory and so on.
The error may occur while executing this additional operation and it may cause the illusion
that the main operation has failed. Connector reports the error, account should be changed,
but the identity manager doesn't know it. The end user again gets the error message that
data are in inconsistent state which again needs to be resolved.

A.1.2 Dependencies and Groups

Some inconsistencies may occur when creating account dependent on other accounts. Such
an example might be creating an account in some application depending on the account in
the operation system. If the creation of the account in the operation system failed, it has no
sense to create account in the application.

Example of situation when inconsistency occurs may be also adding account to the
group. For example creation of new account in the LDAP databases and adding it to the
group are two different operations. It is needed to solve how the identity manager should
behave if the group does not exist e.g. if an exception should be thrown indicating that the
group in which the account is trying to add doesn't exist or create this group and add
account to it.

A.1.3 Role Assignment

Role in the identity management doesn't specify only user's rights but they also specify
which accounts should be created for the user. Some role might have specified that account
on the four different external resources should be created. While creating these accounts,
an unexpected error may occur. This causes that instead of four different accounts on the
four different resources, only two are created. It means that the role is not complete and it
is inconsistent state. Role shouldn't exist in the partial state and this is needed to be solved.

Employees usually change their work positions. For example the employee with the
sales role was promoted to the manager role. Not only was his specialization changed, but
also his rights and access to the connected resources. It means that role in the identity
manager should also be changed. Inconsistent state can occur by changing role when
account belonging to the old role is not deleted properly, or not all accounts for the new

60

role are created.

Similarly when deleting user's role, some accounts might not be deleted which
results in the inconsistencies. The use cases related to the consistency issues while
propagating the changes from the identity management to the target system are shown in
figure 8.

A.1.4 Synchronization

Synchronization is process by which the changes done on the external resource are
propagated to other connected resources and also to local identity manager repository.
Since delivery of synchronization notifications may fail, some of the changes may not be
detected. This may result in the permanently inconsistent state.

Inconsistent state might occur also when creating account on the external resource.
The change of adding new account was detected and propagated to the identity manager.
Identity manager tries to propagate changes to local repository, but it failed (some error
occurred that made it impossible to create user in the identity manager repository).
Account on the external resource exists, it was created also in the local repository, but no
corresponding user was created.

Other example when synchronization results to the inconsistent state might be deleting of
the account on the external resource. As in the previous example, changes are propagated
to the identity manager, but by processing the changes some exception occurred, the user is
not deleted and the reference to the account still exist. User is in the inconsistent state and
it is needed to be solved.

Change of account's attributes on the external resource might also result in the
inconsistencies. If some attribute was changed in the external resource and this attribute is
describing user, it should be propagated and changed also in the local repository. If some
error occurred while changing such an attribute, it results to the inconsistent state. The use
cases related to the consistency issues which can be caused by synchronization process are
shown in figure 9.

A.2 Use cases

In this section there are in detail described individual use cases identified in the section 2.3
Use case model. The figure 18 shows which use cases are considered by designing the
mechanism.

61

Scheduler T Y

User

ModifyUser

-

£ dinclude»

DeleteResourceAccount
ModifyResourceAccount

AddResourceAccount

/ \ ~ ! ~
/ \ “\A,’/ / \ S
; \ - ! ‘\ SN
. , N
K Yoo «extend» N N
i [Phe ~ / \ b
’ P S :’ \ N .
«extend» «extend» S ', «extend» . ’ 1 «extend»
K o «extend» FARN P «extend» ~ «extend» .
N . , .
Y / «extend» «extend» AL \
\ / AN A «extend» \
l/ \\ F \\ \

HanldeNotFoundError HandleAlreadyExistError

HandleCommunicationError

Handle SchemaViolation

HandleGenericError

Figure 18: Use case model.
62

A.2.1 Add Resource Account

Add resource account use case describes the action when the end user tries to add account
through the identity manager user interface. The creation of account might be automated,
e.g. by using user's attributes or it is created according to the user inputs. This created
account is provisioned to the target system. There may happen different situations why the
account was not added and another use cases is therefore called:

e |If some problem with the end user's specified attributes occurs, the use case
HandleSchemaViolation is started.

e If some problem with the communication with the external resource occur, e.g. the
resource is down, the resource throws timeout exception etc, the use case
HandleCommunicationError is started.

¢ If the situation that the account actually already exists on the external resource
occurs, the use case HandleAlreadyEXxist is started.

e If adifferent error occur, e.g. by SQL database there was bad SQL syntax
constructed, the use case HandleGenericError is started.

This extending use cases try to find out the error and call appropriate operation to solve the
problem or to prevent from inconsistencies. In some cases, there is no possibility for the
system to repair the state of the created account to be successfully added and the only
possibility is to tell the end user to correct his inputs. On the other hand, some of the errors
may be repaired either immediately or later by reconciliation process. If the extended use
case ends, the end user gets the message what happened in the system. According to the
message, the end user chooses the further action. The use case ends.

A.2.2 Modify User, Modify Resource Account

Modify user use case includes the modify resource account use case. It is influenced by the
fact that if the user was modified (e.g. modification of his name, or last name etc.) this
change must be mapped to the account's attributes change. Then by modifying account
attributes either according to user's changes or directly by account's attributes changes
defined by end user, this changes are propagated to the external resources. The external
resource might notice some issue why the accounts cannot be modified and the extending
use cases are called:
e If some problem with the modifying attributes occurs, the use case
HandleSchemaViolation is started.
e If some problem with the communication with the external resource occur, e.g. the
resource is down, the resource throws timeout exception etc, the use case
HandleCommunicationError is started.

63

e If the situation that the modifying account was not found on the external resource
occurs, the use case HandleNotFound is started.
e |If a different error occurs, e.g. by SQL database there was bad SQL syntax
constructed, the use case HandleGenericError is started.
This extending use cases try to find out the error and call appropriate operation to solve the
problem or to prevent from inconsistencies. In some cases, there is no possibility for the
system to repair the state of the modified account to successfully modify its attributes in
the external resource and the only possibility is to tell end user to correct his inputs. On the
other hand, some of the errors may be repaired either immediately or later by reconciliation
process. If the extended use case ends, the end user gets the message what happened in the
system. According to the message, the end user chooses the further action. The use case
ends.

A.2.3 Delete Resource Account

Delete resource account use case is triggered either by deleting user (because if the user is
deleted from the system all his accounts must be deleted from local repository and external
resource, too) or directly by deleting concrete user's account. However was delete resource
account use case triggered, it means that this deletion requirement is propagated to the
target system where must be corresponding account deleted, too and this can leads to
trigger the following use cases:

e If some problem with the communication with the external resource occur, e.g. the
resource is down, the resource throws timeout exception etc, the use case
HandleCommunicationError is started.

e If the situation that the modifying account was not found on the external resource
occurs, the use case HandleNotFound is started.

e |If some another error occur, e.g. by SQL database there was bad SQL syntax
constructed, the use case HandleGenericError is started.

This extending use cases try to find out the error and call appropriate operation to solve the
problem or to prevent from inconsistencies. In some cases, there is no possibility for the
system to recover from the error and the account can't be deleted. On the other hand, some
of the errors may be handled later by reconciliation process. If the extended use case ends,
the end user gets the message what happened in the system. According to the message, the
end user chooses the further action. The use case ends.

A.2.4 Reconciliation

The use case reconciliation is used to describe the mechanism which will be responsible to
detect the inconsistencies state of the system and try to solve them. According to the
comparison of the local repository and the external resource it finds the problems and tries

64

to solve them. The reconciliation will be triggered by the system and it will be run in the
regular intervals. The results will be the situation which should be triggered by the system
to repair the inconsistencies.

65

66

Appendix B - MidPoint product description

B.1.1 Basic Principles and Supported Features

The development of midPoint is governed by set of principles that reflect to the business
needs in the identity management field as the [10] states. These principles are:

Open system — midPoint is an open-source project, it is developed under CDDL
license, the source code is public, only open protocols and platforms are used and it
can be used for anyone for any purpose at no charge.

Efficient common case — the idea is to focus on the specifics of the deployment
rather than doing the same thing again and again for each deployment, e.g. data
transformation can be implemented as one-line expression, setting up the new
external resource is represented in only few clicks, there are auto-generated forms
for the target systems which brings dynamical user interface.

Extensible as needed — advanced scenarios can be supported by extending the code.
Naturally, Java is supported, but there are plans also for Groovy, BPEL and other
practical languages that the engineers should need.

Data unification — as each system has its own model for identity data, security etc.
the midPoint tries to provide a common data model for enterprise identity and so
make the integration easier.

At the time when this part of the thesis was written, the latest midPoint version was release
1.9 therefore that version is considered in this section. According to [10] this release
provide following features:

basic provisioning from midPoint administrator's point of view to the external
resources (create, read, update, delete),

integration of Identity Connector Framework, which is used for connection to the
external resources,

identity repository based on BaseX XML database,

live synchronization to propagate changes from external resource to the midPoint,
support for the XPath version 2 expressions,

enhanced logging and error reporting by introducing OperationResults,

basic task manager component,

basic Role Base Access Control (RBAC) and assignment,

lightweight structure,

support for Apache Tomcat web container,

import from file and resource.

67

B.1.2 Consistency and Release 1.9

Release 1.9 doesn't provide any consistency guarantees, there are no consistency features.
However, midPoint wiki page contains some ideas about consistency. The main idea is to
follow the weak consistency model [10]. This means that there doesn't exist guarantee that
the data will be consistent all the time, but the proposal for the solution to the mechanism
which would be responsible for preventing system from inconsistencies or that should
resolve consistency issues hasn't been made yet.

Two mechanisms for improving data consistency were proposed on the midPoint
wiki page [10], relative change model and optimistic locking. The optimistic locking is
only mentioned and no ideas about it are introduced. Some attention is made for the
relative change model and its brief overview about what it means. Relative change model
introduces the idea that only changes of properties are described and properties which were
not changed are not specified. This model seems to provide easy merging and in vast
majority of cases provide acceptable consistency without the need for locking.

All objects in the midPoint are assumed to be an XML objects. Based on the
relative change model, the objects can be added or deleted and the objects properties
values can be added, replaced or removed. Replacing is possible only for the whole
properties values, not for single character in value. In the case, when only the single
character is changed, e.g. property foo to foa, the foo property must be removed and new
value foa must be added. In the midPoint there are three operations that implement changes
[10]:

e Add object — this operation will add new object with the identifier and the property
values.
e Modify object — this operation will modify specific properties of existing objects.

Actually, there are three sub-operations:

o Add property values — add new property values to the existing property values

and has no impact on the existing properties.

o Remove property values — remove specified values and has no impact on other

properties.

o Replace property values — remove existing values and replace them with the

new set of values.
e Remove object — this operation remove specified object.
It is desired to have all these operations implemented as atomic what means that operation
is either success and the changes are durable or failure and the changes are not applied. By
some of the storage mechanisms it is possible to implement these operations atomically,
but some of them may not be able to provide atomicity or might require short transactions.
Atomicity and consistency of object by provisioning them to the target system is missing
and it is open issue as the midPoint wiki [10] sates.
The midPoint wiki page [10] also contains comparison of relative change model

68

and absolute change model. The disadvantages of absolute change model are explained on
the importance of operation order. If the absolute change model would be used, the objects
or its properties must be locked to provide reasonable degree of the consistency. By the
long running processes that are common for the identity management systems (e.g.
approvals) this lock will cause that no other changes can be applied until the previous
process ended. This approach brings the bottleneck to the systems especially for the
frequently used properties such as roles.

Relative change model also doesn't provide the wholly guarantee that all operations
will be successful and no failures which can result to the inconsistencies occur. There are
situation when it may fails and then the appropriate mechanism to handle conflicts and
errors must be used.

B.2 Provisioning Subsystem and its Current State

As mentioned before (1.3.4 MidPoint), midPoint is divided into components which can be
built together as Lego bars. For the purpose of this thesis the provisioning component of
midPoint is the primary point of the interest. This is a part responsible for talking to the
external resources. Its responsibility is to manage identity related objects like accounts,
groups, roles, etc. and propagates them to the external resources as well as to the local
midPoint repository. Provisioning component is also responsible to detect changes on
external resources and propagate them back to the midPoint.

All the logic about handling the accounts, groups, roles, entitlements or other
identity related objects is situated in this component. Therefore it seems to be the suitable
place where to have mechanism that should minimize the formation of inconsistencies.
Obviously, such mechanism cannot be responsible only for minimizing risk of
inconsistencies but it must be also able to reasonable react to such situations and produce
the solution to consistency issues.

The handling of shadows like theirs creating or modifying and transferring among
midPoint and external resources is based on the outbound and inbound expressions. These
expressions are configured in the resource description and they define the policies how the
account attributes should be transferred between systems as shown in figure 19. Inbound
expression describes account's changes which should be transformed to the user change
and on the other hand, outbound expression describes the user's changes which should be
transformed to the account change.

Administrator can also set up the policies for synchronization and so he can
influence what should happen if the new change is detected. These policies are situated
also in the resource description. The connection to the external resource is made using
Identity Connector Framework (ICF) which was originally developed under Sun
Microsystems, and now it is supported by Forgerock under the OpenlCF name [14].

69

Inbound Qutbound
expressions —\ expressions
Accout Accout
> User . »
shadow shadow
—

Figure 19: Inbound and Outbound expressions.

Because of some shortcomings of Identity Connector Framework (e.g. error handling)®,
new layer between ICF and midPoint with the name Unified Connector Framework (UCF)
was developed which is supposed to provide more friendly error reporting. For the
purposes of this thesis it is very important to have good error reporting, because it is
needed to know where the error occurred and what the reason was.

Also new mechanism for collecting operation results was already presented in
midPoint. This mechanism allows for remembering the operation, its parameters and also
the status of the operations if it was successful or failed. Failure status also provides
information about the error which occurs and the reason for the error. It was expected that
the work presented in this thesis can take advantage of this existing mechanism.

Only provisioning of the accounts is implemented, implementation of groups and
other objects or entitlements needed for identity management is missing. Also there is no
implementation of the roles and its assignment at this time. No guarantee on consistency
state of objects is made and it is also missing in the midPoint design. Therefore, the thesis
will next concentrate to design appropriate mechanisms which will be able to solve the
problem. With respect to the release 1.9 the provisioning component consists of the classes
shown in the figure 20.

Each of the classes shown in figure 20 has its own responsibility. The
ProvisioningService class should be considered as the facade provided to the other
midPoint subsystems and it is responsible to route interface calls to the appropriate place.
Except few cases where resource objects are needed, e.g. for diagnostic purposes, the
ProvisionigService is supposed to deal with the XML objects. Other responsibilities are for
resource configuration, changes detection on external resources and providing live
synchronization and discovery [10].

6__ http://wiki.evolveum.com/display/midPoint/ICF+Issues
70

http://wiki.evolveum.com/display/midPoint/ICF+Issues

class Class diagram before refactoring /

ProvisioningService ShadowCache

getShadow() : void
addShadow() : void
fetchCurrentToken() : void
fetchChanges() : void
deleteShadow(} : void
modifyShadow() - void
listObjects() : void
listResourceObjects() : void
completeResource() : void
testConnection() : void
getResourceSchemal) - void
searchObjectslterative() - void
assembleShadow() : void

getObject() - void
addObject() - void

synchronize() © void

listObjects() - void

searchObjects() - void
deleteObject() - void
getPropertyAvailableVvalues() - void
listResourceObjects() : void
searchObjectsiterative() © void
discoverConnectors() - void
testConnection() - void

B S A A

L A T T I T S

UCF

createConnectorinstance() - void
listConnectors() : void
generateConnectorSchema() - void
initialize() - void

getCapabilities() - void
getResourceSchema() - void
fetchObject() - void
searchObjects() - void
addObject() - void
modifyObject() - void
deleteObject() - void
fetchCurrentToken() : void
fetchChanges() - void

ConnectorTypeManager

+ getConnectorType() : void
+ discoverLocalConnectors() : void
+ discoverConnectors() : void

L A I T A S N T

Figure 20: Provisioning classes with respect to the release 1.9.

ShadowCache class provides the connection to the external resources using UCF. It deals
with the resource objects as well as the XML objects. Its responsibility is conversion
between native resource objects and midpoint's XML objects. Objects that shadow cache
handles are partially saved in the local repository and partially on the external resource.
These objects must be merged to the single, consistent view with aligning the
representation of shadow objects in local repository and resource objects on the external
resources. And this is what the shadow cache may do [10].

UCF stand for the Unified Connector Framework and it was designed to expand
and unify capabilities of existing connecting framework. This should be a solution to some
ICF issues’. It is still work in progress, so it should be not publicly visible. UCF deals with
the resource objects and it knows nothing about the shadow objects. The
ConnectorTypeManager is responsible for managing connector object in repository, like
creating new connector object when a new local connector is discovered, takes care of
remove connector discovery etc. [10].

7 http://wiki.evolveum.com/display/midPoint/ICF+Issues
71

http://wiki.evolveum.com/display/midPoint/ICF+Issues

B.3 Data Model and Representation

The objects in midPoint take the XML form. In fact, they should be represented also using
other custom format or even JSON because the midPoint's data model tries to be
independent on the data representation. Therefore the objects are most frequently
represented as Java objects in the computer memory. Objects can be persistently stored and
identified with generated object identifier (OID) which is supposed to provide the
uniqueness. Also the name of the object is used to identify the object with the more human-
friendly description. The objects in midPoint should be of the various types expected in the
provisioning system, e.g. user, account, resource etc. [10].

The main structure in the midPoint is the Object that can be extended to the
concrete type, e.g. account, resource, etc. All objects consist of properties which are
supposed to be understandable unit for the midPoint. Property can be single-valued or
multi-valued. It is for example the name of the account, the account attributes or the
resource host name etc. Mostly, properties are represented as a string data, but they should
take also the form of integer, enumeration or even the complex type [10].

For the thesis purposes, the account shadow objects are most interesting. With the
respect to the midPoint release 1.9 account shadow object is extension of resource shadow
object. It has defined OID, name, attributes, credentials, activation properties and reference
to the resource where it should exist. Account attributes which are saved in the midPoint
repository are only those used to identify this object on the external resource. According to
this identifying attributes it is possible to find the whole account on the external resource
and give the account to the end user. The link between the account and the concrete user is
placed in the user object.

Resource object is used to define the external resource where the account should
exist. This resource object provide the definition about the schema, where it can be find
which attributes the account is supposed to have. Resource object also contain the
configuration part, where the suitable connector is set and also synchronization part is
placed here. The synchronization part tells which different actions should occur and define
the reactions to these actions. Besides this, it can be defined also the outbound and inbound
expressions in the resource object. According to them, the account should be automatically
generated from the user's properties. The part of the data model related to the provisioning
and to the thesis purposes is shown in figure 21.

72

class Data Model /

Obejct ExtensibleObject
- 0id: Siring < - extension: Property[*]
- name: String
- description: String

I

Resource ResourceObjectShadow
- type: String ‘fhustn - attributes: xsd-any[
- namespace: URI - objeciClass: QName
- configuration: xsd:any

Entitlement

id: String
name: Siring
objectClass: QMName

assignmentProperty: QName

e vation AccountShadow Credentials
- : —< — ’]
| ﬁgl?éjllzergm_b%’;?s[% 1 - cre_dentlals. Cre_denuals
- validTo Date[0 1] - entitlement: Entitlement[*]

Figure 21: The part of the data model related to the provisioning.

73

74

Appendix C — Solution Design Diagrams

C.1 Preparing midPoint for Proposed Solution

Earlier, it was state, that the provisioning component seems as the suitable place where to
apply the mechanism for consistency issues. Before applying these changes, the refactoring
of the provisioning part is needed. Actually, there is one big class that is coupling with the
propagating resource objects or entitlements to the external resources and also to local
repository. This class is responsible also for transforming between shadow objects and
resource objects. For the thesis purposes it is needed to divide this class to logical units,
where each unit should be responsible for the certain action. The suggested refactoring is
shown in figure 22.

class Class diagram after refactoring /

deleteObject() - void
fetchCurrentToken() : void
fetchChanges() : void

+ getConnectorType() : void
+ discoverLocalConnectors() : void
+ discoverConnectors() : void

Provisioning Service ShadowCache
+ getObject() - void + addShadow() - void
- - voud + modifyShadEJ)w() - void
Q=T ok - void + deleteShadow() - void
: gg;?ﬁéésjgc.ts\ﬁlqvoid + fetchChanges{) : void
+ deleteObject() - void + fetchCurrentToken() : void
+ getPropertyAvailableValues() : void
+ listResourceQbjects() - void
+ searchObjectsiterative() : void
+ discoverConnectors() - void
+ testConnection() : void ShadowConverter
+ getShadowl() : void
+ completeResource() - void
+ deleteShadow() : void
+ modifyShadow() : void
+ fetchCurrentToken() : void
Resource TypeManager + fetchChanges() : void
+ createMewAccountFromChange() - void
+ completeResource() - void
+ testConnection() : void
+ getResourceSchema() : void
+ listShadows() : void
+ searchObjectsiterative() : void
+ assembleShadow() - void UCF
+ createConnectorinstance() - void
+ listConnectors() : void
+ generateConnectorSchema() : void
+ initialize() : void
+ getCapabilities() : void
+ getResourceSchemal) - void
+ fetchObject() : void
+ searchObjects() : void
ConnectorTypeManager : ;%?d?fgggjgﬁ(;{?l\?oid
+
+
+

Figure 22: Classes in the provisioning after refactoring.

75

The class ShadowCache after refactoring contains only those methods by which
inconsistencies should occur. It handles only shadow objects and it doesn't know about the
resource objects. The responsibility for transforming the shadow objects to the resource
objects and opposite has the class ShadowConverter. ShadowConverter also propagates the
transformed resource objects to the external resources and the result returns to the
ShadowCache.

ShadowChache takes full care for shadow objects, propagates them to the local
midPoint repository. It calls ShadowConverter and contains the result of the running
operation if it was successful or failed. Therefore, handling of the errors which should
result to the inconsistencies of the object will be composed to this class (ShadowCache).

After refactoring of ShadowCache also the class ResourceTypeManager was
formed. Its responsibility is to handle operations coupled with the resources. It takes care
for example for generating resource schema or tests connection to the resource. The classes
ConnectorTypeManager and ProvisioningService didn't change and they have original
responsibility.

C.2 Extension of Account Object

As it was stated earlier by the designing the reconciliation process (0 Reconciliation
Process), there is a need to extend the shadow objects. Account shadow should contain also
information that is needed for reconciliation process. Therefore the Schema is expanded
with operation results, the number of attempts made to repair the inconsistencies problems
and description of changes made to the account. These properties are optional and they are
only used by recording the error state of the operation with the concrete account. The
Schema extension is shown in the next example:

<xsd:complexType name="ResourceObjectShadowType">

<xsd:sequence>

<xsd:annotation>
<xsd:documentation>
Result describing if shadow was successfully processed, or not. If not, the errors should be
saved.
</xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:annotation>
<xsd:documentation>
Description of changes that happened to an resource object shadow.
</xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:element name="attemptNumber" type="xsd:int" minOccurs="0">

76

<xsd:annotation>
<xsd:documentation>
Description of number of attempts made for the resolving account consistency issues.
</xsd:documentation>

</xsd:annotation>

</xsd:element>
</xsd:sequence>

<.7xsd:complexType>

After extending the XML Schema the data model of the account shadow is as shown the
figure 23.

class ResourceObject5Shadow model /J

ResourceObjectShadow ResoureeObjeciShadow
- attributes: xsd:any AccountShadow
- objectClass: QName
- result: OperationResult - credentials: Credentials
- attemptNumber: int - entitlement: Entitiement[*]
- objectChange: ObjectChangeType

e N

OperationResult ObjectChangeType

- message’ String
- operation: String
- status: OperationResultStatus ?

[[|
ObjectChangeAdditionalType| |ObjectChangeModificationType||ObjectChangeDeletionType

- oid_: String _ - oid: String - 0id: String
- object: Obejct - change: PropertyChange[*]

wenumeration»
OperationResultStatus

SUCCESS
UNKNOWM
WARNING
FATAL_ERROR
PARTIAL_ERROR
MNOT_APPLICABLE

Figure 23: ResourceObjectShadow after expanding the Schema.

77

Appendix D - Tests results

In next sections the individual results of the automated tests are provided. The next section’s names describe the error which occurs and the error
handler which is called to compensate the error.

Table 7: Tests provided for the error ObjectNotFoundException and handler ObjectNotFoundHandler.

Action

Description

Expected result

Real result

Delete
account

The end user tries to delete some of the user’s (userl) account
(accountl), but accountl was not found on the resource.

Accountl is deleted from the midPint’s repository
and unlinked from the user1.

Vv

Modify
account

The end user tries to modify some of the user (userl) account’s
attributes (accountl), but accountl was not found on the resource.
Userl contains assignment that accountl should exist on the
external resource. The attributes’ modifications are defined in the
changesl.

Userl is synchronized and according to assignment,
the new account (account?) is created and linked to
the userl. Accountl is deleted from the midPoint’s
repository and unlinked from the userl. The
changes (changes1) are applied on the account2®.

Modify
account

The end user tries to modify some of the user (userl) account’s
attributes (accountl), but accountl was not found on the resource.
Userl does not contain assignment that accountl should exist on
the external resource. The attributes’ modifications are defined in
the changesl.

Userl is synchronized, accountl id deleted from the
midPoint’s repository and unlinked from the userl.
Changesl are not applied and the end user gets
message that changes cannot be applied, because
object not exist.

8 Account] and account2 should be the same (they should have the same attributes). They differ in the midPoint’s repository identificator, therefore there is stated that the
changes are applied on the account2.

78

Table 8: Tests provided for the error ObjectAlreadyExistException and handler ObjectAlreadyExistHandler

Action

Description

Expected result

Real result

Add
account

The end user tries to add account (accountl) to the user (userl) on
the resource, but there exist account (account2) with the same
identifier. Account2 does not have link with any user in the
midPoint’s repository and according to defined rules, account2
belong to the userl

Found account (account2) is linked to the user
(userl). The end user gets the error with the success
status. The userl has reference on the account2.

Vv

Add
account

The end user tries to add account (accountl) to the user (userl) on
the resource, but there exist account (account2) with the same
identifier. Account2 does not have link with any user in the
midPoint’s repository and according to defined rules, account2
does not belong to the userl

New user (user2) with link to the account2 is
created in the midPoint’s repository. Identifiers for
accountl are recomputed and accountl is re-tried to
add with the new identifiers. The result is that
accountl is added and linked to the userl.

Add
account

The end user tries to add account (accountl) to the user (userl) on
the resource, but there exist account (account2) with the same
identifier. Account? is actually linked to other user (user2).

Identifiers for the accountl are recomputed and
accountl is re-tried to add with the new identifiers.
The result is that accountl is added and linked to
the userl.

Add
account

The end user tries to add account (accountl) to the user (userl) on
the resource, but there exist account (account2) with the same
identifier. According to defined rules, account2 should not exist on
the resource and it is claimed as illegal.

Account? is deleted from the resource and also
from the midPoint’s repository. Accountl is re-tried
to add with the initial identifiers (no re-computation
performed)

79

Table 9: Tests provided for the error CommunicationException and the handler CommunicationExceptionHandler.

Action | Description Expected results Real result
Add End user tried to add account (accountl) to the user | Accountl is stored to the midPoint’s repository with additional
(userl), but the resource where should be the | information (failed operation type, result, attempt number, etc.) v
account . - .
accountl added is not reachable. and it is also linked to the userl.
Modify End user tries to modify account (accountl) on the | Changesl are stored to the accountl in the midPoint’s repository.
account resource which is not reachable. Changes of the | Also other additional information (failed operation type, result, v
account are described in changesl. etc.) are stored to the accountl.
End user tries to modify account (accountl) on the | Changes2 are compared with changesl and if there is change of
resource which is not reachable. Accountl was | the same attribute, change2 value wins and is stored to the
Modify | modified during the resource outage twice. The first | repository. If changes2 contains other changes than changesl, v
account | changes (changesl) are stored with other additional | these changes are added into the midPoint’s repository. Also other
information in the repository. New changes of the | additional information (failed operation type, result, etc.) are
account are described in changes2. stored to the accountl.
End user tries to modify account (accountl) on the | Additional information stored with the accountl is updated (e.g.
Modify resource which is not reachable. Accountl was | failed operation type). The old information is preserved and the
account actually created also when the resource was down, | information about change is added. Changel is saved to the v
So it not created on the resource so far. Changes of | accountl in the midPoint’s repository.
the accountl are described in changesl.
Delete | End user tries to delete account (accountl) of the | Accountl is unlinked from the userl. Accountl is signed as a v
account | user (userl) on the resource which is not reachable. | “dead” account in the repository.

80

Table 10: Tests provided for reconciliation process.

Action | Description Expected result Real result

Add Account found by the reconciliation process should | Account is added on the external resource. After added, account is

account | be added. The provisioning is called to add account | cleaned and modified in the midPoint’s repository. It means that v
on the external resource. account no more contains additional information.

Modify | Account found by the reconciliation process should | Account is modified on the external resource. After modified,

account | be modified. The provisioning is called to modify | account is cleaned and modified in the midPoint’s repository. It v
account on the external resource. means that account no more contains additional information.

Delete | Account found by the reconciliation process should | Account is deleted on the external resource and also in the

account | be deleted. The provisioning is called to delete | midPoint’s repository. Vg

account on the external resource.

81

82

Appendix E - Glossary

2PC

ACID

BASE

BaseX
CAP
Theorem
ESB

ICF

IDM
JAXB

JUnit
LDAP

OpenDJ
RBAC

S3

Saga
SOA
Spring
SQS
SSO
UCF

two-phase commit protocol. It is used for transactions in the distributed
systems.

properties used to describe transactions. It stand for Atomicity, Consistency,
Isolation, Durability

The approach that allows temporary inconsistencies. It is opposite to the
ACID transactions

XML native database. There are saved XML files.

Theorem which shows that there is no possibility to guarantee consistency,
availability and partition tolerance at the same time in the distributed systems.
stands for Enterprise Service Bus and provides communication between
different systems using Web Services.

stands for Identity Connector framework. This framework is used to connect
with the IDM solution to the different end systems

stands for Identity Management.

stands for Java Api XML Binding. It is used for translation between Java
objects and XML.

is test framework used for automatically test operations of system.

stands for Lightweight Directory Access Protocol and is used for working
with directory services.

is a directory service.

stands for Role Base Access Control. It is used to define the access rights by
defining a role of the user.

stands for Simple Storage Service. It is a protocol introduced by Amazon that
allows temporary inconsistencies.

The name for long living transactions.

stands for Service Oriented Architecture.

application development framework.

stands for Simple Query Service.

stands for Single Sign On. It is a system that allows sharing of login.

stands for Unified Connector Framework and it is extension of ICF. It should
solve some of the ICF known bugs.

83

84

Appendix F - Administration Manual

In this section the installation guide and the user guide is provided.

F.1 Installation Guide

Installation of midPoint and the mechanism covering the thesis requires:
e Java SE Development Kit 6 — it is recommended at least update 28.
e Java Cryptography Extension Unlimited Strength Jurisdiction Policy Files 6.
e Apache Tomcat — it is developed and tested on the Apache Tomcat 6.
e Some SQL Database or XML Database BaseX.
e Some target system (e.g. OpenDJ which was used by testing the consistency
mechanism).
e Build system Maven.
e Subversion.
e Source codes present on the attached CD.

The detailed installation tutorial for midPoint can be found on the midPoint’s official wiki
page’. The step of getting midPoint from the repository should be skipped and instead of
that the attached source code should be used. Or if you want to install the current version
(under development, version 2.0) of the midPoint, you can get it from the subversion
repository’® and then follow the tutorial steps. The mechanism implemented for the thesis
purposes is the part of the currently developed version.

F.2 User Guide

User guide is available at midPoint official wiki page™. For running midPoint the
application server Apache Tomcat should be started and the midPoint should be deployed
on the server. Also there should exist some of the target system, e.g OpenDJ and it should
be also started. Performance of individual steps for creating user and account are intuitive.
If you would like add a new account, you must first create user and import the resource.
The samples of different resources should be found in midPoint\samples. After the
resource is imported and the user is created, it is good to test connection to the end
resource. This can be done through the midPoint web interface going to the Resource ->
select resource -> test connection. If the connection is open, the new account should be

® http://wiki.evolveum.com/display/midPoint/Installing+midPoint+from+Source+Code+Release+-+1.10
10 https://svn.evolveum.com/midpoint/trunk
1 hitp://wiki.evolveum.com/display/midPoint/First+Steps

85

http://wiki.evolveum.com/display/midPoint/Installing+midPoint+from+Source+Code+Release+-+1.10
https://svn.evolveum.com/midpoint/trunk
http://wiki.evolveum.com/display/midPoint/First+Steps

added. Operations coupled with the account are in midPoint web interface situated in the
user details page. Simply select the user and the page will be displayed. Then click the edit
button and the possibilities to add account, delete account or modify account will be
displayed. The midPoint web interface with some explanations is shown in the figure 24.

F.3 Testing Guide

This section describes the tutorial for automatic tests and also for the manual testing. The
figure 24 may be helpful also for the testing tutorial.

F.3.1 Automatic tests

The next steps describe how to run the automated tests.

1. Build midPoint’s source code (current version from the repository or attached on
the CD).

2. Start command line.

3. Go to the directory, where the source codes are present.
e.g. cd D:\midPoint\trunk

4. Run the following line from your command line to build source code:
mvn —P default clean install -Dmaven.test.skip=true
It is a command for the maven build system to build source code. The —P switch is
used to set the profile. If default is set, it means it will build without aspects. The
switch —Dmaven.test.skip determines if the tests will run. If set to true, it will be
skipped.

5. Go to the consistency-test directory.
cd testing\consistency-mechanism

6. Run the following line from your command line for launching tests:

mvn —P default clean test

7. After the tests finish, there is displayed the result of the tests.

86

* Users

o List Users
o New User

* User Details

© Details For User

" Configuratio

irity, logging. impe

Details For User 'Test Test Test cohneetion toithe

resource here.

| user |_scoougts (1) | “Roes)

Oid -e122-4767-a22a-8c27d31de72d

Given name test

Family name test .
Full name test test ee the users accounts. Modify
Name test them, add new or delete
Version 0 existing one.

E-mail

Locality

Enabled

Admin web access enabled

u Back a Edit user

Edit user and also
his accounts.

midPoint Administrator

“should be |
imported.

Figure 24: Screenshot of midpoint (user details page).

87

F.3.2 Manual testing

For manual testing the midPoint solution must be first installed. Follow the installation
guide introduced in the F.1 Installation Guide. If the midPoint is installed, the first steps
describing how the users, account and other object should be created are on the midPoint’s
official wiki page?. Individual situations are described below.

Object not found — modify account that is not assigned

1.
2.
3.

Deploy midPoint on the Apache Tomcat.

Log in to the midPoint using username: administrator and password:secret.

Import XML file with the resource configuration (sampes/resource-opendj-
advanced-synchronization.xml from the attached CD, in midPoint: configuration ->
import -> select the file -> press the button import).

Start OpenDJ.

Test connection for the OpenDJ through the midPoint (resources -> openDj -> test
connection).

Create user through the midPoint (users -> create user)

Add account for the user through the midPoint (select user -> edit -> accounts ->
add account

-> submit). Attributes have not to be filled, they will be computed according to
outbound expressions.

Ensure the account was created on the resource and corresponding account shadow
in the midPoint’s repostiory (e.g. for OpenDJ — run control-panel.bat for windows.
Loggin with default name and password: secret, click on the manage entries,
expand dc=example, dc=com directory and check if the account is present).

Modify some of the account’s attributes (select user -> edit -> add, remove or
change some of the attribute value but do not press the submit button).

10. Delete account from the resource.
11. Press the submit button in the midPoint edit user page.
12. Check the message after the operation finished.

Object not found — modify account that is assigned

1.
2.
3.

Deploy midPoint on the Apache Tomcat.

Log in to the midPoint using username: administrator and password:secret.

Import XML file with the resource configuration (sampes/resource-opendj-
advanced-synchronization.xml from the attached CD).

Start OpenDJ.

Test connection for the OpenDJ through the midPoint (resources -> openDj -> test

12 http://wiki.evolveum.com/display/midPoint/Eirst+Steps

88

http://wiki.evolveum.com/display/midPoint/First+Steps

10.

11.

12.
13.

connection).

Import the role through the midPoint (roles -> created role -> paste the role
definition from the file samples/role-example.xml -> press the button create)

Create user through the midPoint (users -> create user)

Assign the role for the user (select user -> edit -> roles -> add role -> select role ->
press the button submit)

Ensure the account was created on the resource and corresponding account shadow
in the midPoint’s repostiory (e.g. for OpenDJ — run control-panel.bat for windows.
Loggin with default name and password: secret, click on the manage entries,
expand dc=example, dc=com directory and check if the account is present).

Modify some of the account’s attributes (select user -> edit -> add, remove or
change some of the attribute value but do not press the submit button).

Delete account from the resource (manage entries -> dc=example, dc=com -> select
account -> right click -> delete entry).

Press the submit button in the midPoint edit user page.

Check the message after the operation finished.

Object not found — delete account

1.
2.
3.

10.

Deploy midPoint on the Apache Tomcat.

Log in to the midPoint using username: administrator and password:secret.

Import XML file with the resource configuration (sampes/resource-opendj-
advanced-synchronization.xml from the attached CD, in midPoint: configuration ->
import -> select the file -> press the button import).

Start OpenDJ.

Test connection for the OpenDJ through the midPoint (resources -> openDj -> test
connection).

Create user through the midPoint (users -> create user)

Add account for the user through the midPoint (select user -> edit -> accounts ->
add account

-> submit). Attributes have not to be filled, they will be computed according to
outbound expressions.

Ensure the account was created on the resource and corresponding account shadow
in the midPoint’s repostiory (e.g. for OpenDJ — run control-panel.bat for windows.
Loggin with default name and password: secret, click on the manage entries,
expand dc=example, dc=com directory and check if the account is present).

Delete account from the resource (manage entries -> dc=example, dc=com -> select
account -> right click -> delete entry).

Delete account from the user through the midPoint (select user -> edit -> delete
account -> press the submit button).

89

11. Check the message after operation finished.

Object already exists — add account, found account should be linked

1.
2.
3.

Deploy midPoint on the Apache Tomcat.

Log in to the midPoint using username: administrator and password:secret.

Import XML file with the resource configuration (sampes/resource-opendj-
advanced-synchronization.xml from the attached CD, in midPoint: configuration ->
import -> select the file -> press the button import).

Start OpenDJ.

Test connection for the OpenDJ through the midPoint (resources -> openDj -> test
connection).

Add account on the resource directly (manage entries -> dc=example, dc=com ->
new entry -> fill the attributes -> create)

Create user through the midPoint (users -> create user). Use the same name for the
user as you used for the account on the resource.

Add new account to the user through the midPoint (select user -> edit -> accounts -
> add account -> press the submit button).

Check if the previously created account on the resource was linked to this user
(check resource if there are not additional accounts created, check the user added
accounts: select user -> accounts).

Object already exist — add account, found account is linked to the another user

1.
2.
3.

Deploy midPoint on the Apache Tomcat.

Log in to the midPoint using username: administrator and password:secret.

Import XML file with the resource configuration (sampes/resource-opendj-
advanced-synchronization.xml from the attached CD, in midPoint: configuration ->
import -> select the file -> press the button import).

Start OpenDJ.

Test connection for the OpenDJ through the midPoint (resources -> openDj -> test
connection).

Create userl through the midPoint (users -> create user (userl)).

Add account to the userl through the midPoint(select user -> edit -> accounts ->
add account -> press the submit button). Fill the account name attribute for
example with the value uid=test,ou=people,dc=example,dc=com.

Create user2 through the midPoint (users -> create user). As the name of the user
set “test”.

Add account to the user2 through the midPoint (select user -> edit -> accounts ->
add account -> press the submit button). Do not fill the account’s attributes.

10. Check if the user2 has account and check the account identifier.

90

Communication error — add account

1.
2.
3.

8.
9.

10.
11.

Deploy midPoint on the Apache Tomcat.

Log in to the midPoint using username: administrator and password:secret.

Import XML file with the resource configuration (sampes/resource-opendj-
advanced-synchronization.xml from the attached CD, in midPoint: configuration ->
import -> select the file -> press the button import).

Start OpenDJ.

Test connection for the OpenDJ through the midPoint (resources -> openDj -> test
connection).

Create user through the midPoint (users -> create user)

Add account for the user through the midPoint (select user -> edit -> accounts ->
add account -> do not press the submit button).

Stop the OpenDJ (in the control panel, press the stop button).

Submit the unfinished account.

Check if the user has a new link created.

Check the midPoint repository if there is an account which contains the failed
operation type, operation result and other additional information

Communication error — modify account

1.
2.
3.

10.
11.

Deploy midPoint on the Apache Tomcat.

Log in to the midPoint using username: administrator and password:secret.

Import XML file with the resource configuration (sampes/resource-opendj-
advanced-synchronization.xml from the attached CD, in midPoint: configuration ->
import -> select the file -> press the button import).

Start OpenDJ.

Test connection for the OpenDJ through the midPoint (resources -> openDj -> test
connection).

Create user through the midPoint (users -> create user)

Add account for the user through the midPoint (select user -> edit -> accounts ->
add account -> press the submit button).

Modify some of the account’s attributes (select user -> edit -> add, remove or
change some of the attribute value but do not press the submit button).

Stop the OpenDJ (in the control panel, press the stop button).

Submit the unfinished account changes.

Check the midPoint repository if there is an account which contains the failed
operation type, operation result, changes description and other additional
information.

Communication error — delete account

1.
2.

Deploy midPoint on the Apache Tomcat.
Log in to the midPoint using username: administrator and password:secret.

91

10.
11.
12.

Import XML file with the resource configuration (sampes/resource-opendj-
advanced-synchronization.xml from the attached CD, in midPoint: configuration ->
import -> select the file -> press the button import).

Start OpenDJ.

Test connection for the OpenDJ through the midPoint (resources -> openDj -> test
connection).

Create user through the midPoint (users -> create user)

Add account for the user through the midPoint (select user -> edit -> accounts ->
add account -> press the submit button).

Delete account through the midPoint (select user -> edit -> accounts -> delete
account but do not press the submit button).

Stop the OpenDJ (in the control panel, press the stop button).

Submit the unfinished account.

Check if the user no more has a link to the account.

Check the midPoint repository if there is an account which contains the failed
operation type, operation result and other additional information.

Reconciliation

1.
2.
3.

Deploy midPoint on the Apache Tomcat.

Log in to the midPoint using username: administrator and password:secret.

Import XML file with the resource configuration (sampes/resource-opendj-
advanced-synchronization.xml from the attached CD, in midPoint: configuration ->
import -> select the file -> press the button import).

Start OpenDJ.

Test connection for the OpenDJ through the midPoint (resources -> openDj -> test
connection).

Import the reconciliation task (configuration -> import -> sampes/recon-task-
opendj.xml -> press the import button).

Wait a minute.

Check the midPoint’s repository for previously failed accounts. They should be
cleaned.

92

93

Appendix G - Paper accepted for lIT.SRC

Consistency in the Identity Management

Katarina VALALIKOVA*

Slovak University of Technology in Bratislava
Faculty of Informatics and Information Technologies
Ilkovicova 3, 842 16 Bratislava, Slovakia

k.valalikova@gmail.com

Abstract. ldentity management solutions are integrative solutions that automate processes
associated with the users and theirs life-cycle. The results of the identity management
solutions can be thought of as (loosely coupled) distributed systems. Many of the end
resources managed by the identity management systems do not support transactions or
other traditional consistency mechanisms therefore there is a considerable risk of
inconsistencies. In this paper we introduce the mechanism which will be able to minimize
the formation of inconsistencies and if they ever happen, this mechanism will be trying to
resolve them and bring the system back to the consistent state.

1 Introduction

Identity management can be defined as a convergence of technologies and business processes [8]. It is
integrative solution that usually consists of different systems and techniques. The main goal of identity
management is to handle a lot of identities and their life-cycle including creation, usage, updating and
revocation of the identity [1]. Identities have different roles and different permissions to access specified
resources. There is a need to have different identities to work with the same system, or to have the same
identity to work with different systems [8].

It is important to solve the inconsistency problems for many reasons. For example, the identity
management solution interacts with various systems and information about user’s identity is stored in more
than one database. Without any reliable consistency mechanism the databases may diverge and it may not be
clear which data record should be used. Another reason why it is needed to solve the problem with
inconsistencies may be security. The identity management solutions are security-sensitive systems because
they manage accesses to other systems. Consistency of security policy is important for maintaining good
security level and also for being able to monitor overall security of the organization. For instance, potential
attacker can intentionally cause inconsistency and escape the “security police”.

The paper is organized as follows. The section 2 gives the brief view on the related work in the area of
the transaction mechanisms. Next section, section 3, deals with the problems which must be solved for
ensuring consistency in the identity management and also in this section the consistency mechanism is
introduced. The section 4 evaluates the proposed mechanism and in the section 5 is the conclusion
summarizing the proposed mechanism and the future work.

* Master degree study programme in field: Software Engineering
Supervisor: Dr. Radovan Seman¢ik, Institute of Informatics and Software Engineering, Faculty of
Informatics and Information Technologies STU in Bratislava

94

2 Related work

Consistency in the database systems is guaranteed by transactions described using ACID properties
(Atomicity, Consistency, Isolation, Durability) [9]. Transactions in the distributed systems are often realized
using two-phase commit protocol that is responsible for coordination of all participants in the transaction and
for decision if the transaction will be committed or rolled back. Before all transaction are either committed or
aborted, the data in the database are locked to enforce concurrency control [10]. The paper [4] describes an
approach where a long running transaction called saga is divided into shorter sub-transactions where each
sub-transaction has its own compensation mechanism. If transaction fails, compensation mechanism is called
to undo this transaction. Success of the all sub-transactions implies success of the whole transaction.

According to CAP theorem [3, 5] it is impossible to guarantee consistency, availability and partition
tolerance at the same time in distributed systems. The paper [5] provides a proof of the theorem using
asynchronous network model. With respect to the CAP theorem author in the [7] introduces approach called
BASE (Basically available, Soft state and Eventual consistent system) where he suggests to establish
persistence message queue and to divide the database tables across functional groups (table for users,
transactions, messages, etc.). Each message is peeked from the queue and processed. If operation is
successful, the message is removed from the queue, otherwise it is re-tried [7]. The eventual consistency is
also provided by the Simple Storage Service (S3) introduced by Amazon [2].

However, many of the end resources managed by the identity management do not support
transactions. Therefore the standard transactions, two-phase commit protocol or other traditional consistency
mechanism are not suitable for ensuring consistency in the identity management and the other mechanism
must be found. In addition, many of the operations in the identity management can take a long time so there
cannot be used the standard lock and log mechanism. There is also problem with the Sagas. The author in [6]
explains that Sagas fail to cover all cases where compensation is needed. Following these facts, the best
approach to ensure the consistency in the identity management seems to be the concept of eventual
consistency. Therefore we decide to use this model to design the mechanism.

3 Consistency mechanism for non-transactional systems

The goal of this paper is to find an appropriate way to solve the consistency issues in identity management
systems. The identity management system must be able to recover from unexpected errors and to continue to
work without limiting the users. It is unacceptable to allow identity management to be in the inconsistent
state for a long time because this could result to the malfunction of the system.

Identity management systems provide automation of the processes related to the users and their life-
cycle in the enterprise, from hiring new employee through changing his position to firing employees. Each
employee usually has multiple accounts in the various systems to be able to perform his work properly.
Therefore, there are a lot of external resources which need to communicate with the identity management
systems. External resources contain information about the employees and their access rights, one employee
should have accounts in the different resources and may also have more than one account in the same
resource.

Accounts are created in different ways, e.g. using central identity management system, by
synchronization of changes on external resources, or by adding the user to the role which defines that an
account should be created, etc. Unexpected situations and errors may happen during the user management
processes, e.g. the account may not be created, exceptions may be thrown, etc. Ultimately, this may lead to
the inconsistency of the record. According to the way the inconsistencies originate we can divide them into
the following categories:

e Resource failures — this group describes failures that happened on the external resource by

propagating changes that were made by end user using identity manager. For example, adding

95

account through the identity management to the external resource which is not reachable.

e Synchronization failures — this group describes failures that happened by synchronization. Changes
on the external resource was detected and propagated to other external resources and also to the
identity manager but some crash occurred.

e Dependencies — this group describes inconsistencies that should happened by creating account that
may have dependencies to other accounts. For example, creation of the account in the application
depending on the account in the operation system.

e Groups — this group describes failures that happened when some operation with the group was
made. For example, creation of account and adding it to the group are in the LDAP two different
operations.

e Role Assignment — this group describes inconsistencies that occurred while working with roles. For
example, the role is defined to have four different accounts, but only two of them are successfully
created and the question is what to do with such a role.

3.1 Proposed mechanism

Proposed solution follows the model of the eventual consistency which means that the system does not
guarantee that data will be consistent all the time. Instead, the temporary inconsistencies are allowed and the
attention is made for the mechanism which solves the inconsistencies and eventually brings the data to the
consistent state.

The main reason why we decided to use the weak consistency model results from the CAP theorem,
because for such systems like identity management solutions are, it is required to guarantee high availability
and so you can read and write to the system all the time. Every request to the system must have appropriate
response even if failures occurs (e.g. one of the node is down). It does not matter if the operation was
successful, but it must be terminated and the result returned to the user. Even, if a message sent from one
node to another is lost, the system must continue to operate. Mechanism proposed in this paper is based on
the three base concepts:

o CAP theorem, where the availability and partition-tolerance is chosen and the consistency is
weakened.

o Relative change model - this means that in the case when the object was changed, we do not assume
absolute state of the object (all its attributes) before the change and after the change, but we only use
the attributes that have been really changed.

e Compensations for the unsuccessful operations. Each operation can end successfully or
unsuccessfully. If the operation ends with an error, we first decide if this error is processable. If yes,
then the compensation mechanism is called to resolve the problem, otherwise we can do nothing.

The mechanism is proposed to minimize the formation of the inconsistencies and if they ever happened, it
should reasonably react and bring the system to the consistent state. The mechanism was designed with
respect to the one of the identified groups of problems — resource failures. It consists of two parts. The first
part tries to handle the unexpected error that occurred and the second part, called reconciliation, is used to
compare the state of the object stored in the repository and in the end resource.

It has to be known if the error that occurred is processable or not in the first part. If the error is
processable, there are specified compensation mechanisms as the reaction to the error. Each error has its own
compensation mechanism. The simple example of the compensation mechanism is, when we try to add the
account to the end resource which is actually unreachable. In this case, we want to add this account later, but
without the need of the user’s assistance. Therefore the whole account object including all of its attributes is
stored to the IDM system database and it is also marked as unsuccessfully added object to be able to process
it later by reconciliation.

The more complex example can be a scenario, when we need to process the error immediately. This
is a group of errors that we know either process immediately and eliminate the error state or we cannot do

96

anything and the error must be repaired by the user, e.g. adding account that actually exist on the resource
shown in Figure 1.

If the error is not processable it means, that we do not know how to implement the compensation to
the error. Such an error can be also considered as fatal, and then the user help is needed for its reparation. As
the example we can mention the issue where no definition for the required attribute was specified. The
attribute was not specified, and the objects cannot be added to the end resource.

Identity Manager (IDM) | add(Account) >

exception:
Account add(Account) Account already exist External

resource
I add(newAccount) > e.g. OpenDJ
2. Run compensation:

< success |
a. try if the account is legal -> true

b. try if the account is the right one -> false
c. recompute account idetifiers -> newAccount

Cosistency mechanism

1. Try error is processable or not -> true

Figure 1 The first part of the mechanism (compensation for the situation where the account already exist on the
resource).

Now, when the first step is done, it is needed to specify the policies for reconciliation process according to
which the unsuccessful created accounts will be picked from the repository. This brings the idea that storing
only account attributes is not enough. If there is no additional information to such account, it is quite
impossible to declare it as unsuccessfully handled and it can be considerably dificult to find it by the
reconciliation process and process it to resolve the inconsistency. Therefore, it is needed to expand the
account object with some additional information which provides the detailed view about what and why went
wrong. These are:

o all the account attributes when operation fails (e.g. creation of the account failed because of the end
resource is unreachable and we want to try to add this account again later without he user’s
assistance),

e description of properties changed (e.g. the account was modified, but there was some error which
avoided for applying the changes),

e some information about the operation and the type of error which occurred (e.g. the name of the
operation, the status, is the operation was successful or not, the error which occurred),

e the number of the attempts made for re-try of operation.

Now, the account in the repository contains also information about operations and theirs results. The
reconciliation process is used to scan the repository for the failed accounts and to try to run the failed
operation again. The scanning is done with filter on the failed accounts and the number of attempts made for
re-trying of operation. Found accounts are processed using additional attributes that describe the operation
and its inputs to run again. We use the number of attempts because it makes no sense to retry the operation
endlessly.

The reconciliation process ends either successfully or it can also fail. It will be implemented in the
way to not limit the end user for his activity. After defined number of attempts it will not be interesting in the
solving the inconsistencies. Figure 2 illustrates the reconciliation process.

97

IDM

[add(account FAILED) :>
Externa
~

Consistency mechanism I resource
reconciliation success

search failed
accounts

I
Account FAILED
o0id="dbb0c37d-9ee6-44a4-8d39-016dbce1cccc”
name = jbond
externalResourceld= ef2bc95b-76e0-59e2-86d6-
3d4f02d3ffff
attributes:
name = uid=jbond,ou=People,dc=example,dc=com
fullname = James Bond
firstName = James
failedOperation = add
attempts = 0
error = timeout s

Figure 2 Reconciliation process.

4 Evaluations and Achievements

The theoretical proposal of the consistency mechanism was practically proven. The proof of concept was
made on the existing identity management solution called midPoint'*. MidPoint is open-source identity
management solution and the main reason to choose it was the fact, that we are members of the development
team so we have the practical experiences with the system.

The mechanism implementation consists of all parts proposed in the paper. There were identified
concrete situations which can lead to the inconsistencies. To each situation we first decided if it is possible to
solve the resulting problem and then we divided the situation into the processable and unprocessable errors.
Each processable error has its compensation mechanism written according to its nature. If the compensation
mechanism is not enough to resolve the issue, there is also implementation for the reconciliation process.

The implementation was tested manually by simulating the identified situations. We observed that this
mechanism was able to properly recognize the situation and reasonably react to it. Where the compensation
mechanism was not enough, the reconciliation process was used to additionally eliminate the inconsistencies
in the system. The tests made on the prototype implementation are shown in the Table 1.

Table 1 Tests provided on the prototype implementation of the consistency mechanism.

Situation Error Reaction
Add, Modify, | Connection Account was saved to the repository. Reconciliation process finds
Delete account problem this account and tries again to add it.
Already exist | If the found account belongs to the specified user, the account was
Add account on the external linked to the user, otherwise new account identifiers were
resource generated. If the found account was illegal, it was deleted.
. Not found on the | If the account should exist, it was created and the modifications
Modify account
resource were applied, otherwise the modifications were discarded.
Not found on the | The result of this reaction is that the account was deleted from the
Delete account . . .
resource repository and it was also unlinked from the user.

5 Conclusions
In this paper we introduced the mechanism for ensuring the consistency in the systems where the transactions

13 http://evolveum.com/midpoint.php

98

http://evolveum.com/midpoint.php

are not supported. We proposed the mechanism with respect to the known mechanisms that was also analysed
in the introduction of this paper. The mechanism is based on the relative change model, model of
compensations and the CAP theorem according to which distributed systems cannot satisfy the consistency;,
availability and partition tolerance at the same time. Therefore we decided to weak the consistency and
guarantee only the eventual consistency.

It means, we do not guarantee that after every operation the data are consistent. Instead, we allow

temporary inconsistencies and we try to solve them and eventually bring the system to the consistent state.
The implementation was made on the existing identity management system called midPoint. The future work
can be concentrated on the other identified group of problems stated in the paper.

References

[1] Bertino, E., Takahashi, K.: Identity Management: Concepts, Techniques and Systems. Artech House
Publisher, Norwook MA, (2010).

[2] Brantner, B., et al.: Building a database on S3. In Proceedings of the 2008 ACM SIGMOD,
international conference on Management of data (SIGMOD ‘08). ACM, New York, NY, USA,
(2008), pp. 251-264.

[3] Brewer, E.: A certain freedom: thoughts on the CAP theorem. In Proceeding of the 29" ACM
SIGACT-SIGOPS symposium on Principles of distributed computing (PODC *10). ACM, New York,
NY, USA, (2010), pp. 335-335.

[4] Garcia-Molina, H., Salem, K.: Sagas. In Proceedings of the 1987 ACM SIGMOD international
conference on Management of data (SIGMOD ‘87), (1987), pp. 249-259.

[5] Gilbert, D., Lynch, N.: Brewers conjecture and the feasibility of consistent, available, partition-
tolerant web services. SIGACT News 33, 2 (June 2002), pp. 51-59.

[6] Greenfield, P. et al.. Compensation is Not Enough. In Proceedings of the 7" International
Conference on Enterprise Distributed Object Computing (EDOC ’03). IEEE Computer Society,
Washington, DC, USA, (2003), pp. 232-240.

[7] Pritchett, D.: BASE: An Acid Alternative. Queue 6, 3 (May 2008), pp. 48-55.

[8] Slone, S. and the open group identity management work area: ldentity Management. (2004), pp. 1-
109.

[91 Wang, T. et al.: A survey on the history of transaction management: from flat to grid transactions.
Distributed Parallel Databases 23, 3 (June 2008), pp. 235-270.

[10] Wolfson, O.: The overhead of locking (and commit) protocols in distributed databases. ACM Trans.

Database Systems 12, 3 (September 1987), pp. 453-471.

99

100

Appendix H - Source Code (medium)

Attached CD contains:
- xvalalikova_diploma_thesis.pdf — the diploma thesis
- midPoint — the directory with the source code and samples. It is structured as
follows:
o build-system
gui
icf-connectors
ide
infra — the extension of schema is situated here. It can be found in the
subdirectory schema ->
infra\schema\src\main\resources\xml\ns\public\common\common-1.xsd.
legal
model — reconciliation and the part of the object already exists
compensation can be found here in the subdirectory model-impl. For
reconciliation see the file
src\main\java\com\evolveum\midpoint\imodel\sync\ReconciliationTaskHand
ler.java
For the part of the object already exists compensation see the file
src\main\java\com\evolveum\midpoint\imodel\controller\ModelController.ja
va
o provisioning
= provisioning-api
= provisioning-impl -> in the provisioning-impl component is placed
the consistency mechanism. It can be found in the packages:
com.evolveum.midpoint.provisioning.consistency.api and
com.evolveum.midpoint.provisioning.consistency.api. Some of the
code needed for the mechanism is also placed in the ShadowCache
class situated in the package
com.evolveum.midpoint.provisioning.impl.

o O O O

repo
samples — samples of the XML objects. They should be used for testing
midPoint and the consistency mechanism.
o Testing — in the subdirectory consistency-mechanism are placed automatic
tests for consistency mechanism.
o Tools
o INSALL, pom.xml, README, RELEASE-NOTES
- README.TXT — which contains description of attached medium.

101

102

Appendix | - Resume

Systémy na spravu podnikovych identit umoznuji automatizaciu procesov suvisiacich s
pouzivateImi a celym ich zivotnym cyklom, od vytvorenia, cez aktualizaciu az po
vymazanie pouzivatela. Su to integra¢né rieSenia, pri ktorych centralny systém na spravu
podnikovych identit (Identity Manager) komunikuje z rdznymi externymi systémami.
Zaznamy o identitdich su riadené z centrdlneho systému (ldentity manager) a su
propagované¢ do riadenych systémov. Kedze sa takto vytvara (volne viazany)
distribuovany systém a vécsina cielovych systémov nepodporuje distribuované transakcie,
moZu nastavat’ nekonzistencie.

Nekonzistenciu udajov je potrebné rieSit z viacerych dovodov. Prikladom méze byt
situacie, ked” sa zmeny vykonané na identite ulozia v jednej databaze a v druhej nie. Vtedy
mame k dispozicii dve verzie tidajov a nevieme s urCitostou povedat’, ktord verzia je
platna, udaje vo verziach sa liSia a moze to sposobit’ viaceré problémy.

Systémy na spravu podnikovych identit st bezpecnostne citlivé lebo sa pracuje s pristupmi
do systémov. Konzistencia bezpecnostnej politiky je dolezita pre udrzanie dobrej Grovne
bezpeCnosti a najmid pre moznost bezpeCnost organizicie monitorovat. Napr.
potenciondlny uUto¢nik modze cielene vyvolat' nekonzistenciu a tak uniknit' pozornosti
bezpecnostnej ,,policie™.

V stcasnosti existuje mnozstvo existujucich systémov na spravu podnikovych identit. V
préaci boli identifikované niektoré z nich ako napriklad OpenIDM [15], OpenlAM [12],
OpenPTK [16] alebo midPoint [10]. Pri analyzovani tychto rieSeni vSak neboli zistené
Ziadne zmienky o rieSeni konzistencie. Dovodom je hlavne fakt, Ze mnoZstvo koncovych
systémov, s ktorymi centralny systém (ldentity Mnager) komunikuje, nepodporujd
transakcie. NavySe, systémy na spravu podnikovych identit vyuZivaji na komunikaciu s
externymi systémami konektory, ktoré takisto nepodporuju transakcie.

|.1 Suvisiace prace

V praci boli analyzované viaceré existujuce techniky na podporu konzistencie udajov.
Medzi najznamejSie patria transakcie. Transakcie si bezne pouzivate v databdzovych
systémoch. Mo6zu byt definované ako transformécia z jedného stavu na iny s tym, ze je
zachovand atomicita, konzistencia a trvacnost’. Inak povedané, na opis transakcii sa casto
pouzivaju vlastnosti ACID: A — atomicita, C — konzistencia, | — izol&cia, D — trvacnost’ [8].
V distribuovanych systémoch s transakcie realizované vyuZitim dvojfazového
odovzdavacieho protokolu (z angl. two-phase commit protocol). Tento protokol pozostava
z dvoch faz, hlasovacej a rozhodovacej. Hlasovacia faza ma za tlohu zozbierat’ hlasy od
jednotlivych zucastnenych stran a v rozhodovacej fdze sa potom rozhodne, ¢i bude
transakcia schvalena alebo vratena spat [25].

103

Dal§im pristupom, ktory bol v praci analyzovany je mechanizmus pre dlho trvajice
transakcie. Autor tieto dlho trvajdce procesy nazyva Saga. Autor v [6] navrhuje rozdelit
Saga na kratSie podtransakcie s tym, ze kazdd podtransakcia ma definovany vlastny
kompenzacny mechanizmus. V pripade, Zze nastane chyba pocas transakcie, zavola sa
kompenzacny mechanizmus, ktorého ulohou je vratit' data do stavu pred transakciou.
Neznamen4 to vsak, Ze data budu v stave ako boli pred transakciou, pretoze su¢asne moézu
prebichat’ i iné transakcie, ktoré data zmenili. Ulohou kompenzaného mechanizmu je
vratit’ zmeny len tykajice sa danej transakcie.

V ramci analyzy bola uvedena aj CAP teoréma a niektoré mechanizmy vychadzajlce z nej.
CAP teoréma hovori, ze v distribuovanych systémoch nie je mozné zarucit' zaroven
konzistenciu, dostupnost’ a odolnost’ voéi vypadkom uzlov. Autor v [7] uvddza ddkaz
vyuzivajuc asynchronny sietovy model, ze je mozné vybrat’ len dvojicu z tychto zaruk, a
teda dostupnost’ a odolnost’ vo¢i vypadkom alebo konzistenciu dat a odolnost’ voci
vypadkom. Dvojica dostupnost’ a konzistencia opisuje tradicné systémy na riadenie bazy
dat. Uprednostnenie konzistencie ¢i dostupnosti na ukor toho druhého zavisi na
charakteristikach systému.

Dostupnost’ pred konzistenciou uprednostiiuje pristup nazyvany BASE (z angl. Basically
Available, Soft State and Eventually consistent). Tento pristup dovolujuci docasné
nekonzistencie dat je protikladom tradi¢énych (ACID) transakcii, kde po kazdej operacii
musi byt konzistencia dat zachovana. Autor v [19] navrhuje pouZit' perzistentni frontu
sprav a rozdelit databazové tabulky do skupin podla ich funkcie (tabulky pre
pouzivatel'ov, transakcie, spravy, atd’.). Spravy su z fronty postupne vyberané a operacie
opisané spravou su vykonavané. Ak je operacia uspesSnd, sprava sa z fronty vymaze, inak
sa opakuje znova. Docasné nekonzistencie dat umoziuje aj protokol navrhnuty
spolo¢nost'ou Amazon, ktory sa nazyva S3 (z angl. Simle Storage Service) [3].

AvSak, mnozstvo koncovych systémov spravovanych syst¢émom na spravu podnikovych
identit nepodporuje transakcie. Standardné transakcie, dvojfazovy odovzdavaci protokol
alebo iné tradi¢né mechanizmy na podporu konzistencie preto nestacia. Navyse, niektoré
operécie su (v systétmoch na riadenie podnikovych identit) vykonavané dlho, niekedy
hodiny ba az dni, z ¢oho vyplyva, ze nie je mozné vyuzit' blokujuce mechanizmy. Pristup
Saga nie je vhodné pouZit, pretoZze nevieme napisat’ kompenzaciu ku kazdej operécii.
Tento problém rozobera aj autor v [9]. Ako mozné rieSenie prichadza do tvahy vyuzit
model eventuélnej konzistencie so zarukou, ze data budu v kone¢nom stave konzistentné.

Tento model je vyuzity pri navrhovani mechanizmu na podporu konzistencie.

I.2 Mechanizmus na podporu transakcii v netransak¢nych
systémoch

Cielom prace bolo navrhnit vhodny sposob na vyrieSenie nekonzistencie udajov Vv

systémoch na spravu podnikovych identit. Systémy na spravu podnikovych identit sa
104

musia vediet' zotavit' z neoCakdvanych chyb a nelimitovat’ pri tom pouzivatelov. Nie je
vhodné, aby systémy na spravu podnikovych identit boli v nekonzistentnom stave dlhu
dobu, pretoze by to mohlo sposobit’ nespravne fungovanie systému, ale takisto aj naruSenie
bezpecnostnej politiky.

Systémy sa spravu podnikovych identit automatizujii procesy stvisiace s pouzivatel'om a
jeho zivotnym cyklom v spolo¢nostiach, od prijatia nového zamestnanca, cez zmenu
pozicie az po prepustenie zamestnanca. Spravidla, kazdy zamestnanec musi mat’ mnozstvo
uctov v roznych systémoch, ktor¢ mu umoznuju vykondvat pracu suvisiacu s jeho
postavenim. Preto aj systémy na spravu podnikovych identit potrebuji komunikovat’ s
roznymi koncovymi systémami. Tieto koncové systémy potom obsahuju informécie o
zamestnancoch a ich pristupovych pravach. Jeden zamestnanec méze mat’ Gcty v ro6znych
koncovych systémoch alebo viacero G¢tov na jednom systéme.

Uéty mozu byt vytvarané viacerymi spdsobmi, napriklad pouzitim centralneho systému na
spravu podnikovych identit, synchronizaciou zmien z externého systému alebo priradenim
roly pouZzivatel'ovi, ktord definuje, ktoré ucty maju byt vytvorené. PocCas prace s uctami
mozu nastavat neocakdvané situacie, ktoré vyustuju do vzniku nekonzistencii. Podla
spdsobu vzniku nekonzistencii boli identifikované nasledujuce skupiny problémov:

Chyby na koncovych systémoch — tato skupina opisuje problémy nastavajuce na
koncovych systémoch pocas prenasania zmien od koncového pouzivatela, ktoré zadal cez
pouzivatel'ské rozhranie systému. Moéze to byt napriklad priddvanie G¢tu na koncovy
systém, ktory je momentalne nedostupny.

Chyby pri synchronizéacii — tato skupina opisuje chyby, ktoré nastavaja pri synchronizacii
zmien z koncového systému do systému na spravu podnikovych identit. Napriklad, zmena
na koncovom systéme nebola zachytena a tak nebola ani spracovana.

Zavislosti — tato skupina opisuje nekonzistencie, ktoré vznikaju pri praci z navzajom
zavislymi uétami, napriklad ucet v aplikacii je zavisly na Géte v operaénom systéme.
Skupiny — tato skupina opisuje chyby, ktoré nastavaju pri praci so skupinami. Napriklad v
LDAP-e je vytvorenie uctu a priradenie ho do skupiny implementované pomocou dvoch
operacii.

Praca s rolami — tato skupina opisuje nekonzistencie, ktoré mozu nastat’ pri praci s rolami.
Napriklad médme definovant rolu, podl'a ktorej maju byt’ vytvorené Styri rozne Ucty. Avsak,

len dva z nich sa vytvoria a d’alSie dva nie.

[.2.1 Navrhovany mechanizmus

Nasou snahou bolo navrhnat mechanizmus umozZiujici vykonavat operdcie na
netransakénych systémoch s vyuzitim niektorych vyhod tradi¢nych transakcii. Napriklad
zavedenie urcitého stupnia garancie konzistencii dat (s ohladom na CAP teorému).
Rozhodli sme sa pouzit' podobny mechanizmus ako pri transakénych systémoch, ktoré su
schopné zotavovat’ sa z chyb. Navrhovany mechanizmus sa snazi vzniknuté chyby vyriesit’

105

kompenzaciami. Ak sa nepodari chybu pomocou kompenzacie odstranit’, data st vratené
do pévodného stavu, teda do stavu pred danou operéaciou.
Navrhovany mechanizmus vychéddza z modelu eventudlnej konzistencie. To znamena, ze
systém dovoli do¢asné nekonzistencie v datach so zarukou, ze v kone¢nom dosledku budu
data konzistentné. Mechanizmus by vsak mal byt schopny odhalit’ tieto nekonzistencie a
pokusit’ sa ich vyrieSit. Mechanizmus navrhnuty v préci je zalozeny na troch zékladnych
konceptoch:

o CAP teoréma,

e model relativnych zmien,

e kompenzicie pre netspesné operacie.

CAP teoréma hovori, Ze nie je zarovenl mozné garantovat konzistenciu, dostupnost’ a
odolnost’ vo¢i vypadkom uzlov, ale moZu byt vybrané len dve garancie. V naSom pripade
sme sa rozhodli pre dostupnost’ na tkor oslabenia konzistencie. Dévod nasho vyberu stvisi
s povahou systémov na spravu podnikovych identit.

Od systémov na spravu podnikovych identit je vyZzadovang, aby boli vysoko dostupné. To
zaruci, ze je mozné stale Citat’ a zapisovat’ z/do systému. Navyse je potrebné, aby kazda
poziadavka mala vhodnu odpoved’ aj napriek vypadku niektorého uzla. Nezalezi na tom, ¢i
bola operacia spesnd, ale v kazdom pripade musi byt’ ukoncena a vysledok z nej vrateny
pouzivatel'ovi. Systém musi byt’ schopny pokracovat’ v €innosti aj v pripade, ak sa niektora
z odosielanych sprav nedostane ku koncovému uzlu.

Dalsim dolezitym konceptom, z ktorého vychadza navrhovany mechanizmus, je model
relativnych zmien. Model relativnych zmien sa pouZiva na opis zmenenych hodndt
objektu. Namiesto posielania celého objektu pri zmene len jedeného z jeho atribltov,
posielame len skuto¢né zmeny. Tieto zmeny su vypocitavané na zaklade hodnot povodného
objektu a mozu opisovat’ tri rézne typy zmien, ktoré su zobrazené na obrazku 27.

Changes:
NAHRAD: attributes/fullname = Jameson Bond
PRIDAJ: attributes/surname = Bond
VYMAZ: attributes/additionalName = jameson

Figure 25 Struktiira relativnych zmien.

Na obrazku XX moézeme vidiet zmenu troch atriblitov. Prvy parameter zmien opisuje typ
zmeny, a teda, ¢i ma byt atribat pridany, vymazany alebo nahradeny novou hodnotou.
Druhy parameter opisuje, ktory atriblit ma byt zmeneny a posledny parameter je hodnota
atribatu, ktora je bud’ pridana, nahradena alebo vymazana. Tieto zmeny sU potom
aplikované na pévodny objekt.

Vyhoda pouzitia modelu relativnych zmien spo¢iva v tom, ze nepotrebujeme uzamykat’
data pouzivané beZiacim procesom. Pri posielani celého objektu by mohla nastat’ situicia,

106

kedy je objekt modifikovany dvoma réznymi procesmi skoro v rovnakom ¢ase. Zmeneny
objekt a jeho nové hodnoty atributov vychadzajice z prvého procesu nemusia byt zname
druhému procesu. Po aplikovani zmien druhého procesu by sme tak mohli stratit’ zmeny
vykonané prvym procesom. Pri modeli relativnych zmien st posielané iba skuto¢né zmeny,
to znamena, ze ostatné hodnoty zostdvaju nezmenené. Ak by sme teda mali dva procesy
vykonévajuce sa skoro v rovnakom Case, nestratili by sme tak zmeny ani jedného z nich.
Poslednym dolezitym konceptom st kompenzacie. Kompenzéacie su reakcie na chyby,
ktoré mohli nastat’. Ich tlohou je snaha eliminovat’ vzniknuti chybu alebo reagovat’ na fiu
a ngjst’ vhodny sposob, ktory by nenarusil konzistenciu dat. Kazda operacia méze skoncit’
uspesne alebo netspesne. Ak pocas vykonavania operécie nastane chyba, musi sa najprv
rozhodnut’ ¢i je tato chyba spracovatelnd alebo nie. Iba k spracovatelnych chybam vieme
definovat’ kompenzaciu, ktora je v pripade vyskytu chyby spustena. Pri nespracovatelnych
chybach oznamime pouzivatel'ovi problém, ktory nastal.

Mechanizmus je navrhnuty tak, aby minimalizoval vznik nekonzistencii v datach a ak
napriek tomu nastanu, mal by na nich vediet’ reagovat’ tak, aby v kone¢nom ddsledku boli
data v systéme konzistentné. Mechanizmus bol navrhnuty s ohladom na jednu z
identifikovanych skupin problémov, a to problémy na koncovych systémoch.
Mechanizmus pozostava z dvoch Casti. V prvej Casti sa snazi oSetrovat’ neo¢akavané chyby
a v druhej cCasti, nazyvanej rekoncilidcia, porovnava objekty ulozené v lokalnej databaze s
objektami na koncovych systémoch. Pri zistenych rozdieloch sa ich snazi eliminovat’.

V prvej faze je potrebné vediet, ¢i je chyba spracovatelnd alebo nie. Ak je chyba
spracovatelnd, ma definovany kompenzacny mechanizmus, ktory sa v pripade chyby
spusti aby vykonal prislusné kroky. Jednotlivé kompenzacie k chybam boli v praci
identifikované v sekcii 3 . Ak chyba nie je spracovatel'na, znamena to, ze nevieme napisat’
kompenzéciu, ktora by bola schopné chybu eliminovat’. Tieto chyby méZeme povazovat’ za
fatalne, a teda ozndmime pouzivatel'ovi chybou, ktord nastala a d’alSie rozhodnutie je
ponechané na fiom. Priklad spustenia kompenzacie je naznaeny na obrazku 28.

Identity Manager (IDM) | oy m
a ccoun
Account add(Account) External
resource
Consistency mechanism < e?ﬁggﬂ?' | e.g. OpenDJ
A ~
d hes

~ | Account FAILED
oid="dbb0c37d-9ee6-44a4-8d39-016dbce1ccec”

| reme=jond

externalResourceld= ef2bc95b-76e0-59e2-86d6-
IDM DB 3d4f02d 3ffff
attributes:

name = uid=jbond,ou=People,dc=example,dc=com
fullname = James Bond
firstName = James

failedOperation = add

attempts =0

error = timeout

Figure 26 Priklad spustenia kompenzacia (kompenzacie, kedy je chyba ponechana na neskér).

107

Kompenzéacia moze eliminovat’ chybu bud’ hned’ ako vznikne, alebo ju mdze odlozit’ na
neskor. Ak je chyba eliminovand hned’, mal by byt zachovany konzistentny stav dat v
systéme. V pripade chyb, ktoré nemozu byt eliminované hned’ moze dojst’ k naruseniu
konzistencie. Tieto chyby musia byt’ ulozené, aby sme sa k nim vedeli neskor vratit. Na
automatické vyhladanie predtym ulozenych chyb sme sa rozhodli pouzit’ rekonciliaciu.
Rekonciliaciu mdézeme opisat’ ako proces, pri ktorom zistime nekonzistencie medzi
jednotlivymi uloziskami dat. Rekoncilidcia slizia aj na odhalenie predtym ulozenych chyb
a na opatovné vyvolanie nedokoncenych operacii. Je vykonavana v pravidelnom intervale
(podl'a nastavenia) obmedzeny pocet krat. Ak sa dovfsi maximalny pocet behov a operacie
sa nepodari vykonat' uspesne, data su vratené do stavu, v akom boli pred netspesnou
operaciou. Proces rekonciliacie je zobrazeny na obrazku 29.

i IDM | add(account FAILED) :>

Consistency mechanism < I External

reconciliation success resource

search failed
accounts

Account FAILED
0id="dbb0c37d-9eeb-44a4-8d39-016dbce1ccec”
name = jbond
externalResourceld= ef2bc95b-76e0-59e2-86d6-3d4f02d 3ffff
attributes:
name = uid=jbond,ou=People,dc=example,dc=com
fullname = James Bond
firstName = James
failedOperation = add
attempts =0
error = timeout JJ

Figure 27 Proces rekonciliacie.

Netvrdime, ze navrhnuty mechanizmus je dokonaly. Tento mechanizmus bol navrhnuty s
ohl'adom len na jednu z identifikovanych skupin problémov. Je mozné, Ze pri uvazovani
d’alsich skupin problémov bude potrebné mechanizmus rozsirit’ o d’alSie kroky. Napriklad,
ak by sme uvaZovali problémy stvisiace so synchronizaciou, notifikaény mechanizmus by
mohol byt’ uZito¢ny.

Notifikaény mechanizmus by bol vhodny aj pre iné skupiny problémov. Predstavme si
napriklad kompenzéciu pre chybu, ktort chceme nechat’ na neskor. Ak sa nepodari chybu
eliminovat’ po ur¢enom pocte krat, data ovplyvnené touto chybou st vratené do pdvodného
stavu. Chyba mohla nastat’ pri priddvani Gc¢tu a teda vysledkom je, Ze je ucet odstraneny z
lokalnej databazy. Pouzivatel’ ale nema odkial’ vediet, Ze sa tento ucet nakoniec nepodarilo
pridat’. Pomocou notifikacie by sa to dozvedel, a tak by sa mohol pokusit’ pridat’ ucet
Znova.

108

.3 Overenie navrhnutého mechanizmu

Navrhnuty mechanizmus bol implementovany a testovany. Mechanizmus sme
implementovali do existujuceho systétmu s ndzvom midPoint. Dévod vyberu prave
midPointu bol v praci podrobne opisany. Implementécia zahiiia vSetky navrhované Casti
uvedené v praci. Je sucastou sucasnej vyvijanej verzie a bude zahrnuta aj do nasledujuceho
vydania produktu (midPoint v2.0).

Mechanizmus bol testovany dvojakym spésobom, a to manuélne a automaticky. Pri
manualnom testovani bol midPoint nasadeny na aplikacny server Apache Tomcat a
testovanie prebiehalo s externym systemom OpenDJ a XML databazou BaseX. Testovanie
bolo vykonavané v prehliada¢i Chrome simulovanim jednotlivych situécii. Konkrétny
spbsob testovania jednotlivych situacii bol v praci opisany v kapitole 4.3.1 . Automatické
testovanie predstavuji testy implementované vyuzitim testovacieho prostredia TestNG,
vlozenej (z angl. embedded) inStancie servera OpenDJ a vlozenej inStancie BaseX. Testy
su pisané sposobom ,,end-to-end* a simuluju jednotlivé situdcie. Pri testoch neboli pouzité
pomocné (z angl. mock) objekty, ale pracovalo sa s realnym systémom pri¢om jednotlivé

situdcie boli vykondvané cez vSetky vrstvy systému.

.4 Zhrnutie

Praca sa zaoberala navrhnutim mechanizmu na podporu konzistencie Gdajov pri sprave
podnikovych identit. Prva Cast’ prace sa zaobera uvedenim Ccitatela do problematiky
systémov na spravu podnikovych identit. Su v nej opisané zakladné principy a technologie
pouzivané v systémoch na spravu podnikovych identit. Dalej sa v nej nachadza analyza
existujucich rieSeni a takisto analyza existujucich mechanizmov na podporu konzistencie
dat.

V dalSej Casti sa praca zaoberala vyberom vhodnej mnoziny problémov, na zéklade ktorej
by bolo mozné navrhnit mechanizmus na podporu konzistencie dat. Vybrana skupina
problémov bola podrobne analyzovand a opisand. Na zéklade nej bol navrhnuty
mechanizmus. Ten bol neskér implementovany a testovany. Praca na mechanizme mdze

pokracovat’ roz§irenim o d’alSiu skupinu problémov.

109

