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1. Introduction
Several  years  ago  a  limit  in  frequency  of  processors  was  reached  and  also  the 

instruction level parallelism could not be effectively widened anymore. That is why 

the focus has moved to multi-core CPUs and software developers had to adapt to this 

hardware.  Applications  started  to  use  multiple  threads  with  all  the  advantages 

(speedup) and disadvantages such as the need of complicated synchronization. In the 

latest years the high-performance computing research was focused on inter-thread 

communication, synchronization such as lock-free algorithms, transactional memory 

or load balancing, and efficient use of CPU caches.

Nevertheless, the amount of CPU cores still grows and the well-known patterns 

such as transparent caches and uniformly accessible memory are no longer scalable. 

A new pattern of many-core architecture with different programming model emerged 

from the area of  specialized single-purpose hardware used for an acceleration of 

graphical computations.

Modern graphics cards are no longer  limited to the execution of hardwired 

operations designed for 3D rendering, but also allow a parallel processing of non-

graphical data. This new architecture can yield higher performance than conventional 

CPUs, for certain applications even in orders of magnitude  [1]. In contrast with its 

name  'general-purpose'  GPUs  (GPGPUs)  this  kind  of  hardware  has  lower 

performance in some general tasks in comparison with CPU cores, due to differences 

in architecture. One may consider them rather as co-processors suitable for heavy-

computation than a substitute for CPUs.

Since database management systems often need to process a huge amounts of 

data, researchers find here an opportunity to offload some parts of the computation to 

the  GPGPUs  ([2],  [3]).  This  is  also  the  main  objective  of  this  thesis.  We study 

primitives used in database operations, particularly the sorting and set intersection, 

examine the performance of our implementation and compare it to the performance 

of sequential or parallel algorithms running on a few CPU cores.

We study two different problems – sorting and set intersection. That is why we 

use rather unusual structure of the thesis. At first we describe attributes common to 

both problems, the GPGPU architecture and OpenCL programming model in section 

2, and our benchmarking methodology in section  3. In following two chapters we 
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study each problem – sorting in section 4 and set intersection in section 5. In these 

sections, we describe implemented algorithms solving the problem, provide results of 

their  benchmarks  and  comparison  with  standard  CPU  approach,  and  make 

suggestions for future research. Conclusive remarks and comments are contained in 

section 6.
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2. GPGPU Programming
This chapter describes the architecture of GPGPUs and how it is mapped into the 

OpenCL framework. As there are currently two major manufacturers of GPUs, ATI 

Technologies,  Inc.  (owned  by  Advanced  Micro  Devices,  Inc.)  and  NVIDIA 

Corporation, the terminology and architecture overview will be provided for their 

products.

2.1 GPGPU Architecture Overview
High-performance GPGPU can hold up to several hundreds of stream processors. 

These  processors  are  much  simpler  than  ordinary  cores  in  CPUs  –  they  do  no 

instruction reordering, and the instruction execution speed is predictable and fixed to 

the GPU frequency. GPU runs no operating system, memory is addressed directly 

without any paging or segmentation mechanism, and there is no need for interrupt 

handling.  This  allows  narrower  instruction  set  and  therefore  less  complicated 

hardware.

These stream processors are not completely independent as on CPU, where 

each core can execute a thread with a different code on a different part of memory. 

The  stream  processors  are  grouped  into  multiprocessors  with  single  instruction 

decoding unit.  These groups are  called  warps on NVIDIA GPUs with 32 stream 

processors and wavefronts on ATI GPUs with 16, 32 or 64 processors (depending on 

the model).

Each  thread  in  the  group  has  private  registers  and  stack  but  the  program 

counter is shared. If the program flow control diverges within this group, all branches 

are executed serially, causing a great performance hit and sometimes even deadlock 

in  the  program.  Understanding  this  concept,  which  is  called  'single  instruction 

multiple threads' (SIMT), is one of the most important things in GPU programming.

Each stream processor executes only single thread at one moment but more 

threads can be scheduled for execution. The multiprocessor has limited number of 

registers  and these  are  used also by threads  that  are  scheduled  but  not  currently 

running – the thread state (register contents) is not transferred off the multiprocessor. 

This allows fast context-switch performed entirely in the hardware. If the execution 
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must wait for slow memory access then the hardware simply switches to another 

group of threads that can execute hiding the memory latency.

Similarly as on CPUs there is a hierarchical memory structure:

• The  global GPU  memory  has  several  hundreds  of  megabytes  or  few 

gigabytes, and it is separated from the common main memory1 (RAM). Data 

transfers between GPU global memory and RAM are issued from the host 

(CPU) program code.

• The  GPU  may  feature  a  transparent  L2  cache  shared  between  all 

multiprocessors.

• Several other memory types can be directly on the multiprocessor chip:

• Transparent L1 cache speeding up access to the global memory.

• Shared  memory  for  communication  between  the  stream  processors. 

Transfers  between  shared  memory  and  global  memory  are  controlled 

directly from the code executed on GPU.

• Constant cache for repeatedly read non-modifiable data.

• Texture cache for image data optimized for 2D spatial locality.

1 In technical documentation GPU is often referred to as the device and CPU as the host – therefore, 
the common memory is referred to as the host memory.
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2.2 OpenCL
OpenCL  [4] is  an  open  standard  for  “cross-platform,  parallel  programming 

of modern processors found in personal computers, servers and handheld/embedded 

devices” [5]. Therefore, it is not limited to GPGPUs but the same code should work2 

also on multi-core CPUs or on Cell Broadband Engine.

The programming model  in  OpenCL framework considers  two parts  of  the 

program: the host code written in any language with bindings to the particular CL 

library  (C++ in  case  of  this  thesis)  and  the  device  code  which  will  run  on  the 

massively  parallel  device.  This  device  code  should  be  written  in  the  OpenCL 

language, which is a subset of ISO C99 with some extensions. Its limitations are for 

example  prohibition  of  function  pointers  or  recursive  function  calls.  Examples 

of extensions to the ISO C99 are built-in vector data-types and functions or address 

space and data alignment attributes.

2.2.1 Execution Model

The CPU (called  host) communicates with the  device (GPU in our case) through a 

command queue. The OpenCL program executed on the device consists of functions 

(or rather procedures) called kernels. These kernels are not called directly from the 

host program but commands to execute them are sent to the command queue. As the 

device  program  cannot  access  the  host  memory  (RAM)  the  host  program  must 

provide it  through enqueuing a command to copy the data from host memory to 

device memory to the command queue and then collect the results  using another 

command to copy the data in the opposite direction. For these operations the memory 

is encapsulated in buffer objects.

The queues are in-order by default – the commands are executed in the same 

order as they are enqueued, and at each moment only one command can be executed. 

Out-of-order command queues can execute multiple commands in parallel if there is 

enough hardware resources. Events are used for synchronization. Each command can 

depend on multiple events, when a command is finished the event associated with it 

is  raised  and  the  device  starts  executing  another  command(s)  with  satisfied 

2 This means the code should be functional, but the performance may vary a lot. See Section 2.3 for 
details.
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dependencies. One device can run multiple command queues – events can be used 

also for a synchronization of commands in different queues.

Threads  are  called  work-items.  In  the host program, the number of threads 

required for the task is specified as a range in one-, two- or three-dimensional space. 

Each work-item queries its identification number3 and according to it selects the data 

that  it  should process.  For  example,  in  a matrix-multiply algorithm the identifier 

could be the position in output matrix, and each work-item should compute the scalar 

product of the two corresponding vectors from input matrices and store it on this 

position.

Work-items are grouped into  work-groups. Work-items within a work-group 

can  synchronize  using  barrier commands  –  no  work-item can  cross  the  barrier 

statement until all work-items in the same work-group reach it. The local memory is 

shared by work-items in a single work-group and is not accessible from any other 

work-group. Work-items from different work-groups can communicate only through 

atomic operations in the global memory. However, there is no guarantee that different 

work-groups will be executed in parallel4. Therefore there cannot be anything like 

work-group-wide barrier.

2.2.2 Memory Model

The largest and the slowest memory is  the  global memory.  This is shared by all 

work-items and available for both read and write access. It is also accessible by the 

host  through the command queue and persists  across  different  kernel  executions. 

However,  the  memory  model  is  relaxed,  and  therefore  the  programmer  must 

explicitly cast a memory fence when a consistent view is required.

Constant memory is a small part of memory with read-only access. The reads 

from this memory are cached in separate constant memory cache.

Another memory type,  usually located on the multiprocessor chip,  is  called 

local5 memory. It is accessible only by work-items within a single work-group and it 

3 This identifier is a position in multidimensional space as specified on the host.
4 The  work-group  runs  non-preemptively  on  single  multiprocessor.  Other  work-groups  cannot 

execute on this multiprocessor until this work-group finishes.
5 In  NVidia documentation OpenCL local memory is described as  shared memory. This is rather 

ambiguous because it also uses the term local memory for a memory with different characteristics  
which is used for register spilling or private arrays. However, this memory is not located on chip, 
and therefore, is slower than both the private and shared memory.
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is significantly faster than the global memory6 – it can be thought of as a cache with 

an explicit access. It is intended for shared variables and communication between 

work-items. The memory model is relaxed similarly to the global memory, requiring 

memory fences for synchronization.

Work-item local variables are stored in private memory – no other work-item 

can access  it.  This  memory usually resides  in  registers.  That  makes  this  type  of 

memory the fastest from all available memory types.

The table below shows the sizes and latencies [6] of various memory types on 

NVidia GTX580 used for experiments in this thesis:

Global memory ~1.5 GB, latency 400-800 cycles, 16 kB L1 cache on 
each multiprocessor, 768 kB shared L2 cache

Constant memory 64 kB

Local memory 48 kB, latency ~100× smaller than global memory

Private memory 32768  32-bit  registers  =  128  kB,  latency  22-24 
cycles for read-after-write

Both  local  memory  and  register  count  are  exclusive  for  each  of  the  16 

multiprocessors, the global memory is shared.

2.3 Performance Considerations
This  section  describes  some  design  decisions  that  are  not  part  of  the  OpenCL 

specification but highly affect the performance. As we have used NVidia card for the 

experiments, the behavior will be described for these GPUs.

2.3.1 Coalesced Access to Global Memory

Although the work-item can access any part of global memory, the performance may 

vary  according  to  the  access  pattern  of  the  whole  warp7 (threads  =  work-items 

running on single multiprocessor). Multiple parallel requests to load or write data are 

coalesced into several 32-, 64- or 128-byte transactions. Moreover, these transactions 

must be aligned to their size8.

6 On NVidia GPUs the same hardware is used for local=shared memory and for L1 cache of global 
memory. In CUDA it is possible to configure which of the two modules (16 kB/48 kB) will be 
used as the shared memory and which will host L1 cache.

7 In fact on some devices this is only half-warp. See NVidia OpenCL Programming Guide [7] and 
NVidia OpenCL Best Practices Guide [8] for details. The behaviour on ATI GPUs may also vary.

8 For example 64-byte transaction should start  at  address divisible by 64, otherwise the request 
would be split into multiple transactions.
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Therefore, the optimal pattern is to access the (kw + i)-th element from the i-th 

work-item within a warp of size w (let us call this the simple access pattern). Older 

GPUs were not able to coalesce memory accesses with any different pattern; newer 

ones  can  handle  any  access  pattern  with  the  minimum  number  of  transactions. 

Nevertheless, using only single memory transaction is always optimal.

This is why the data layout should be organized as a structure-of-arrays rather 

than array-of-structures more common in CPU programming9. For example, if we 

had  an  array  of  key-value  pairs,  accessing  keys  would  introduce  two  memory 

transactions transferring also the values, therefore, wasting the memory bandwidth. 

This access pattern is called strided. You can imagine that with completely random 

memory access patter, there would be a separate memory transaction for each access 

to the memory, causing heavy impact on the performance of the program.

Similar problem as the strided access is misaligned access. This would also 

require more than one memory transaction to satisfy the request.

All these misappropriates can be softened by global memory caches (L1 on 

multiprocessor and L2 shared) but should be avoided if possible.

9 Array-of-structures  data  organization  is  sometimes  popular  even  in  CPU  programming, 
particularly in column-oriented database management systems.
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2.3.2 Bank Conflicts in Local Memory

Local  (or  “shared”  in  NVidia  terminology)  memory  is  organized  into  memory 

modules called banks. If a half-warp accesses n memory addresses within n different 

memory banks the requests are processed simultaneously. However, if some  bank-

conflict (concurrent access to one bank from two work-items) occurs, all the requests 

to access this bank must be serialized, decreasing the throughput. The only exception 

is a  broadcast when all requests to the memory bank read from single address – in 

this case the data can be broadcasted and the request is processed in a single step.

In the local address space, successive 32-bit words belong to successive banks, 

therefore with 16 memory banks the i-th and (i+16)-th addresses belong to the same 

bank. The strided access from a half-warp as described in previous section would 

therefore cause two requests on each of the 8 banks and 8 banks would stay idle. On 

the other hand, unlike in global memory the misaligned access is not a problem.

2.3.3 Differences Across GPU Vendors

Although the architectures of ATI and NVIDIA GPUs are similar in the essence, 

there  are  many  small  differences.  The  GPU  program  source  code  in  OpenCL 

(described in next part) can run pretty well on GPU from either of the manufacturers, 

for obtaining the maximum performance the code must be “tuned” for the particular 

one. The common performance boost is said to be about 10 – 20%, but the result may 

vary  much  more  [9].  One  reason  for  all  are  ATI's  VLIW5  or  VLIW4  vector 

processors.  These run better  with vector  data-types  as  the processor has multiple 

ALU units.  Using vector  data-types  on  NVidia  is  unnecessary and may be even 

counterproductive.
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3. Benchmarking Methodology
Since  we  study two  different  problems  via  single  methodology,  our  approach  is 

summarized in this chapter in advance. In the section below we describe what and 

how we measure and, at last, problems we encountered. Described methodology is 

used in the following chapters where both problems are treated separately.

3.1 Comparing GPUs
Comparing  GPUs versus  CPUs is  generally problematic.  The speedup cannot  be 

evaluated  directly  as  with  an  improved  algorithm,  because  it  depends  on  the 

additional hardware with varying attributes.

Manufacturers  assess  their  cards  with  billions  of  FLOPS,  but  this  number 

denotes only computational power of the card; often more important readouts such as 

memory latencies are not presented. The benchmarks are usually targeted at graphics 

operations  for  which  the  GPUs are  designed,  but  our  task may have  completely 

different demands.

Having  a  more  complete  benchmark  suite  is  problematic.  Although  the 

architectures of GPUs are similar and OpenCL provides us with general framework, 

the internal parameters of each benchmark would have to be tuned for each GPU in 

the same way as the production code is tuned for peak performance.  One setting 

cannot fit all GPUs.

Articles concerning GPU algorithms use many graphics cards but except in 

a case we possess exactly the used GPU it is complicated to predict how would their 

algorithm behave on our GPU and which one is actually better.

Despite  all  of  these  problems  that  we  need  to  be  aware  of,  results  of 

benchmarks  allow  the  reader  to  estimate  the  possible  impact  of  using  GPU  in 

practical applications.  The GPU we used was the state-of-the-art  card at  the time 

when this thesis begun and it may be considered as a good representative of high-end 

GPGPUs.
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3.2 Execution Time
The exact definition of execution time is  very important.  The program execution 

consists of compiling the CL source code10,  sending the data from RAM to GPU 

global memory, execution of one or more kernels and then gathering the results back 

to RAM where a common application can use them. The wall time of the program 

execution is important if the usage of GPU is only casual or the executable file is 

used within some script. If the GPU is used intensively but only for the specific task 

alone,  both the data-transfer  times and execution time are of our interest  but the 

compilation which is performed only during the start-up is not important. When the 

data are processed primarily on the GPU and do not need to be transferred in large 

quantities to  main memory (or some other  I/O device),  we care solely about  the 

execution time of the kernel(s) itself.

In  our  benchmarks  of  the  sorting  and  set  intersection  algorithm 

implementations, we start the stopwatch when the data are about to be transferred to 

GPU and stop it when all output is gathered back in RAM. This approach was chosen 

because  we  consider  improving  existing  applications  with  GPU  usage.  As  the 

development of GPU programs is still rather complicated, having the majority of a 

complex application running on GPU is currently not realistic – that is why we try to 

find  achievable  speedup  of  computationally  intensive  and  well  parallelizable 

operations.

Despite  that,  knowing  the  memory  transfer  times  may  be  beneficial  for 

understanding the behavior of the non-homogenous CPU-GPU system. Therefore, 

we will mention them in the results of our experiments.

3.3 Data Selection
The data we use are synthesized using either standard POSIX rand() function or in 

case  we  need  unique  numbers  we  use  Galois  linear  feedback  shift  register  [10] 

initialized with a pseudo-random number obtained using the rand() function.

10 This can be ommited by storing the compiled code. In NVidia case it is assembler, therefore not  
the  final  machine  code  and  we  have  to  assume that  there  is  some hidden  compilation  phase 
between loading the assembler from persistent memory and actually executing it on the GPU.
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We generate this data only once for each combination of parameters. When the 

benchmark is  started it  loads  these data  from disc and runs all  executions of  all 

algorithms on these data. Therefore, the results are directly comparable.

For easy replication the most important test data are stored on the enclosed 

DVD. Test data for large sets and asymmetric sets used in intersection benchmarks 

are  not  included  due  to  enormous  space  requirements  and  insufficient  space  on 

the DVD.

3.4 Size of Work-group
Optimal size of work-group may vary for each algorithm. It has been observed that 

this size is between 128 and 512 work-items. Therefore, we run all benchmarks with 

work-group size 128, 256 and 512. After the mean value of the execution time is 

computed we use the best value from these three means. We assume that the optimal 

value depends on the implementation of algorithm and GPU rather than on the data 

itself.

There are more options for the work-group size but implementations of our 

algorithms require that the work-group has power of two work-items. This simplifies 

some computations in the program, allowing it to run slightly faster.
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4. Sorting
Sorting is a very important part of many computing tasks. In databases it is used for 

index creation, query processing, user-requested sorted output as well as removal of 

duplicities, verifying uniqueness and grouping. In computer graphics the construction 

of spatial data structures required for rendering and ray-tracing is also basically a 

sorting process. Structures such as octrees or k-d-trees require sorting, and these can 

be  used  in  many physical  simulations  –  molecular  dynamics,  collision  detection, 

particle-based fluid simulation.

There are basically two types of sorting algorithms. Comparison sorts are based 

on comparison of elements (keys), others split the input set into buckets based on 

their absolute values – these are called distribution sorts11. This thesis is focused on 

the first class of algorithms.

4.1 Related Work
Initially, the GPUs lacked general-purpose programming support although it was still 

possible  to  use  the  graphics  primitives  to  actually  do  computations.  One  of  the 

earliest  successful  implementations  of  a  sort  algorithm  was  bitonicsort  by 

Govindaraju et al. [11], later improved as AbiSort by Greß and Zachmann [12].

Quicksort is generally considered the fastest sorting algorithm on CPUs. GPU 

implementation with good results was reported by Cederman and Tsigas [13].

Mergesort was implemented by Satish, Harris, and Garland  [14], providing a 

comparison with their radix sort. Radix sort was also implemented by  Merrill and 

Grimshaw [15].

4.2 Implementation
All algorithms mentioned below are implemented for both key-value pairs and keys 

only, with 32-bit floats used as the keys and 32-bit values bound to the keys. Since 

the code is templated it is possible to use the algorithms with another data-types as 

well but some hard-coded constants12 are optimized for 32-bit values.

11 The most famous representative of distribution sort is the radixsort.
12 For example sizes of local memory buffers.
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The keys are randomly shuffled within the sequence – we do not consider any 

optimization based on the assumption that the sequences may be partially sorted. 

There may be duplicities among the keys but we do not require our algorithms to be 

stable.

Bitonicsort  and mergesort  implementations  assume that  the  length  of  input 

sequence is a power of two. This simplifies the implementation, but it has probably 

only marginal effect on the performance. Quicksort internally requires to be able to 

sort sequence of any length, therefore, there is no such external requirement for the 

input sequence length.

As the algorithms for sorting using an external memory are well inspected, we 

assume that the sorted sequence can fit into GPU memory.

4.2.1 Quicksort

The idea of quicksort  [16] is to select one element from the sorted sequence, and 

generate two output sequences – one with elements lesser than the selected pivot and 

one with greater ones. The pivot itself can be then positioned at a place computed 

from size of the sequence of lesser elements. In the next iteration, all not-yet-sorted 

sequences are processed until such sequence exists. With a logarithmic number of 

such iterations (in average case) it has time-complexity O(n⋅log(n)) . In the worst 

case the number of iterations can be linear with the resulting time-complexity of 

O(n2
) .

The common quicksort algorithm going from both ends of the sequence and 

swapping elements does not require any additional memory. However, with multiple 

work-items in a work-group, this approach is not applicable on GPU. Therefore, our 

algorithm uses an additional buffer of size n for the output sequences – in each level 

of  recursion  the  input  and  output  buffers  are  interchanged.  Another  buffer  (but 

smaller) is used for a queue of not-yet-sorted sequences.

There are two levels of parallelism in the algorithm. The first, more obvious, is 

to process the sequences in parallel as there is no synchronization needed between 

separate  sequences.  In  the  second  level  of  parallelism  single  sequence  can  be 

processed in  parallel  as  well.  However,  synchronization of  the output  is  required 

here.
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We  will  describe  the  sequence  parallelism  first.  A  list  of  not-yet-sorted 

sequences as pairs of start and end positions is provided to the kernel. A work-group 

is spawned for each of these sequences (called jobs in the source code, therefore, we 

call this list job list). It has an advantage of a simpler communication – if only one 

work-group  processes  the  sequence,  work-items  can  communicate  through  local 

memory  and  barriers.  If  the  sequence  is  shorter  or  equal  to  the  size  of  the 

work-group, it is sorted by selection-sort (variation QSSS) or bitonicsort (variation 

QSBS), otherwise quicksort split is executed.

The selection-sort assigns an element from the sequence to one work-item and 

then  requires  all  work-items  to  iterate  through  the  sequence,  counting  elements 

lesser13 than their own. The sequence is located in the local memory and since the 

work-items are synchronized, the reading results in a broadcast instead of a bank 

conflict.  After the work-items iterate through the whole sequence each work-item 

knows  the  position  of  its  element.  Bitonicsort  is  more  thoroughly  described  in 

the next section.

The quicksort split  uses two circular buffers in the local memory, each one 

sized to the double size of the work-group – one for elements lesser than the pivot 

and the other for greater elements. Note that the pivot is chosen as the first element in 

the  sequence.  All  work-items  are  reading  elements  from  the  input  sequence  in 

parallel  (i-th  work-item  reads  element  k⋅W + i  where  W is  the  size  of  the 

work-group)  and  after  comparing  it  with  the  pivot  atomically  increment  buffer 

position in the appropriate buffer and copy the element there. When the buffer is at 

least half-full,  this half is flushed into the global memory. The memory layout is 

13 The original index of the element is used as the secondary key for comparison. Therefore, the  
resulting index of the element in the new sequence is not ambiguous.
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illustrated in the figure 4.1. As just single work-group splits the sequence, there is no 

synchronization required.

If there are not enough sequences for each work-group14, the sequence must be 

processed by multiple work-groups. These work-groups are called a team. Assigning 

input  elements  is  simple  –  i-th  work-item in  j-th  work-group  processes  element 

k⋅T + j⋅W + i  where T is the number of work-items in the team.

For synchronization of writing into the output sequence, there is a second list 

passed to the kernel along with the list of not-yet-sorted sequences. This is initially 

identical to the job list as it contains positions where the sequence should be written 

to. Similarly as the sequence specification (job) the pair of these positions is shared 

between work-groups in the team. Since the work-group needs a space to flush its 

buffers it atomically increments (or decrements in case of the greater elements) the 

output position and seizes the space in the output sequence.

There is a problem with the pivot itself – it is important to determine which 

work-group writes it to the output sequence. We have to split the input sequence into 

three parts: elements lesser than than the pivot, elements greater than the pivot and 

the pivot itself. If we include the pivot into one of the parts and the other part is 

empty the requirement to shorten the sequence at least by one element will not be 

fulfilled.  Therefore,  the  position  of  the  pivot  can  be  computed  only  after  all 

work-groups have finished. Then it is placed between the two new subsequences and 

it  is  not  moved  anymore.  To  write  the  pivot  is  a  task  for  the  last  work-group 

processing its part of the sequence.

The subsequences are constructed iteratively using the two pointers to current 

end of the subsequences. However, there is no protocol which could determine if 

these pointers will not be updated just from their monotonic nature as these are not 

strictly  monotonic.  This  is  why  yet  another  list  with  counters  with  amount  of 

work-groups in each team is used. After the work-group is finished (the pointers are 

not  going  to  be  updated)  this  counter  is  decremented.  If  it  drops  to  zero  this 

work-group will write the pivot on the last empty position.

14 NVidia GeForce GTX 580 has 16 SM and with the register count and local memory usage each 
SM is able to handle 3 work-groups of size 256 (or 6 work-groups of size 128) in parallel.
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4.2.2 Bitonicsort

Bitonicsort  [17] is parallel sorting algorithm by design. It requires  O(n⋅log2
(n))  

comparisons  for  sorting  that  can  be  processed  in  O(log 2(n))  parallel  steps. 

Therefore, with p processors having theoretical time-complexity

O(max(
n
p

,1)⋅log 2
(n))

Bitonicsort  can  compete  with  other  classical  n⋅log n  sorting  algorithms  if 

p≥log n .

The idea is that the sequence is split into two equal-size subsequences and each 

is sorted using recursive application of the same algorithm – the first in the ascending 

order and the second one in the descending order.  Then these two sequences are 

joined using bitonic-merge: each element from the first sequence is compared with 

the element on the same position in the second sequence and if these two are not 

properly ordered, they are swapped. After that each sequence is split into two parts 

and joined again using recursive application of the bitonic-merge. When these two 

sequences are concatenated they form a sorted sequence.

Order of comparisons is  depicted in the figure  4.2 - each white box is  one 

bitonic-merge  and  each  stripped  box  is  one  bitonicsort.  The  arrows  show  the 

direction of comparison.

Let us denote the basic version of the algorithm working directly on global 

memory by BSB (bitonicsort basic).

As  the  number  of  available  work-items  is  generally  much  lower  than  the 

number  of  elements  to  sort,  each  work-item can process  multiple  elements.  This 
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vectorization technique is  usually suggested for ATI cards.  This variation will  be 

denoted by BSV (bitonicsort vectorized).

Another  improvement  is  to  use  the  local  memory instead  of  accessing  the 

global memory with a high latency. You can see that multiple bitonic-merges may 

operate  on  the  same  small  part  of  the  memory.  Usually,  each  bitonic-merge  is 

processed in a separate kernel. Nevertheless, the bitonic-merge on short sequences 

can be completely processed within a single kernel, loading the data into the local 

memory  at  the  beginning  and  writing  them  at  the  end,  while  removing  many 

unnecessary loads and writes. In our case, these short sequences can be up to 4·W in 

length (W is the work-group size) because of the available size of the local memory. 

We call this variation 'bitonicsort using local memory' – BSL.

4.2.3 Mergesort

Mergesort  [18] was a popular sorting algorithm especially in the times when RAM 

memory was expensive – it can be implemented using cheaper external memory such 

as tape drives. However, compared to the quicksort the in-place implementation is 

more complicated and, in practice, it is often outperformed by quicksort.

In the basic serial implementation, the input sequence is split into two halves 

and both are  sorted using recursive application of  the mergesort  algorithm. Then 

these two sorted sequences are iterated through moving the smallest element from 

both sequences (which can be found only at the beginning of either sequence) into 

the output sequence. This implementation has both the average and the worst time-

complexity O(n⋅log(n)) .

There are multiple ways how to parallelize the mergesort algorithm. The first 

comes  from its  divide-and-conquer  nature:  sorting  of  both  subsequences  can  be 

executed in parallel. However, the linear merge phase is strictly sequential and can be 

found to be a bottleneck.

This merge can be parallelized as well. Let us define the greatest lower bound 

(GLB) of x in a sorted sequence S as the highest index of any element of S lesser or 

equal to x. The parallel merge then consists of the following steps where steps 2 and 

3 are processed in parallel:
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1. GLB l of the element at position m=n/2−1  in the first subsequence is 

searched in the second subsequence (e.g. using binary search).

2. The first half of the first subsequence is merged with the first part of (with 

regard to the GLB l) the second subsequence.

3. Similarly,  the second half  of  the first  subsequence is  merged with the 

second part of the second subsequence.

With enough processors this leads to a logarithmic work on each of the log(n)  

recursion levels giving the time-complexity of O(log 2(n)) . With a limited number 

of processors p the sorting takes O(n/ p⋅log(n/ p))  time to sort the subsequences in 

parallel and then O(log(n)⋅log( p)+ n/ p)  in the parallel merge phase. Therefore, it 

has a total time complexity of O(n/ p⋅( log(n / p)+ 1)+ log(n)⋅log( p)) .

This  parallelization  approach can be used on CPUs but  it  is  not  suited  for 

cooperative threads on GPU. The communication between the parallel threads would 

be complicated – the GLB search would have to share the results or all processors 

would have to search the GLB individually.

parallel_merge(S1, S2) {

    if (length(S1) == 0) {

        return S2;

    } else if (length(S2) == 0) {

        return S1;

    } else if (length(S1) < MIN && length(S2) < MIN) {

        return sequential_merge(S1, S2)

    } else if (length(S1) > length(S2)) {

        return parallel_merge(S2, S1)

    } else {

        m := length(S1)/2 - 1

        l := greatest lower bound of S1[m] in S2

        parallel {

            T1 := parallel_merge(S1[0 .. m], S2[0 .. l])

            T1 := parallel_merge(S1[m + 1 .. length(S1) - 1],

                                 S1[l + 1 .. length(S2)])

        }

        return concatenate(T1, T1)

    }

}

Code listing 4.1: Parallel merge appropriate for CPU
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A different approach was used for the GPU implementation. The algorithm is 

divided into logarithmic number of phases as the levels of recursion in the classical 

mergesort. After each phase, the length of sorted subsequences is doubled and the 

number of subsequences is halved. In each phase, one element is assigned to each 

work-item,  the  work-item  computes  the  position  of  this  element  in  the  new 

subsequence and writes the element on this position.

When two sequences  are  merged the  new position  of  an  element  from the 

second  sequence  is  equal  to  the  sum  of  its  current  position  within  the  second 

sequence and the GLB of this element in the first sequence. For an element x in the 

first sequence it is, likewise, the sum of its current position within the first sequence 

and the greatest index of an element lesser than x in the second sequence (let us call 

this GLT, 'greatest lesser than...'). Notice that the relation here is strict, unlike in the 

GLB case.

As both sequences are  sorted the GLB and GLT can be found using some 

sorted array search algorithm. In our implementation, either by binary search or by 

interpolation search. These are more thoroughly described in Section 5.2.1. There are 

only minor modifications – those algorithms are designed for exact match search. 

Since we need to search GLB or GLT, a different compare sign is used in the binary 

search or in the interpolation search implementation.

This algorithm scales even better than the aforementioned one (rather suitable 

for CPU than GPU). Each element in the sequence can be processed in parallel with 

possible 100% utilization of the processors (if n is a multiple of p). There is also no 

need to synchronize the work-items.

Time-complexity is  O(n/ p⋅log(n)⋅S (n))  where  S(n) is the time-complexity 

of the search function. In case of the binary search, it is O(n/ p⋅log2(n))  in both the 

average  and  the  worst-case.  In  case  of  the  interpolation  search  the  average 

time-complexity  is  O(n/ p⋅log (n)⋅log (log (n)))  but  the  worst-case  is 

O(n2
/ p⋅log (n)) .

The first of the sequences is read in a coalesced way but search algorithms 

have usually worse memory pattern.

For simplicity reasons the first implementation (mergesort basic – MSB) used 

selection sort for sorting the subsequences with length 4·W and each pair of merged 
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sequences  was processed in  a  separate  work-group.  This  simple approach causes 

unnecessary  restraint  of  parallelization.  Therefore,  the  second  implementation 

(mergesort  in  teams  –  MST)  allows  more  work-groups  to  merge  single  pair  of 

sequences. The code might look more complicated but the idea prevails.

In the next implementation, the selection sort was substituted by the bitonicsort 

in the local memory (called mergesort combined with bitonicsort – MSCBS). The 

fourth implementation executes bitonicsort only on sequences of length 32, after that 

mergesort with the binary search in local memory is used (MSCBS32).

The last two implementations are variations of MSCBS and MSCBS32 with 

the  binary  search  substituted  by  the  interpolation  search  –  we  denote  them  by 

MISCBS and MISCBS32.

4.3 Results
In this section the results of our benchmarks will be presented. At first, the variations 

of each strategy will be shown. Then we will examine the comparison of CPU sorts  

and the best representatives from each GPU sort strategy. The exact numeric results 

(execution times) are located in Appendix A.

4.3.1 Quicksort

Quicksort  shows  very  similar  results  for  both  variants  of  short-sequences  sort, 

moreover, the results do not differ even between the keys-only version and version 

with 32-bit values. This is why we present only the chart of the version including the 

32-bit values.

We can state that the sorting method for short sequences is not significant for 

the total results, the execution times are fully within the deviation intervals.

Both implementations have remarkably high deviations and the sorting time 

depends highly on the particular set  we are sorting.  It  is  probably caused by the 

amount  of  communication  between  work-groups  –  different  order  of  atomic 

operations may change the order of jobs in job lists. That is also why we can see 

notably different rates for sets with varying sizes – these are different sets, while for 

one size we always use the same set for all measurements.
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4.3.2 Bitonicsort

Two optimizations of the basic bitonicsort were implemented but the vectorization in 

BSV  cannot  be  interpreted  much  like  an  optimization  –  it  has  even  worse 

performance than the basic version (BSB). The optimization did not help us probably 

because there is only minimal amount of the computation between two loads, not 

allowing any kind of overlapping of computation and data loading.

On the other  hand, using the local  memory in the variation BSL is  a great 

improvement,  boosting  the  performance  by approximatly  28% for  the  keys-only 

version and 34% for the version with key-value pairs.
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4.3.3 Mergesort

The first implementation (MSB) with one work-group per sorted sequence does not 

perform very well as the parallelization options are limited for a long period of time. 

This can be also observed from the almost constant sorting rate from sequences of 

size 128k whereas the sorting rate of all other strategies still grows.

The versions with initial bitonic- (MSCB and MISCB) and combined bitonic- 

and mergesorts  (MSCB32 and MISCB32) have similar  performance although the 

bitonic-only  version  is  a  bit  faster.  From  about  512k  sequences,  the  difference 

between  smart  initial  sorting  and  the  selection  sort  is  almost  constant,  which 

corresponds to the fact that only constant number of sorting levels (phases) differ – 

the change is not proportional to the size of total input.

On the uniformly distributed set  of values,  the variations with interpolation 

search  (MISCB and  MISCB32)  gain  over  the  binary  search.  This  is  significant 

mostly for sequences consisting of more than 1M keys.
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4.3.4 Comparison of CPU and GPU Based Sorts

We have chosen two representatives of CPU sorts. The first is std::sort from the STL 

library; it is not optimized for top performance but it is a good standard for future 

the comparison with other highly optimized CPU sorts. This sort algorithm runs in 

a single-threaded apartment.

Second  is  tbb::parallel_sort  from  Threading  Building  Blocks  library  [19]. 

It uses multiple worker threads for sorting. Therefore, it can use all CPUs available.

Quicksort does not seem like the best choice for GPUs as it can hardly compete 

even  with  the  std::sort.  There  may  be  various  reasons:  the  algorithm  is  rather 

complicated and uses many registers. This causes a problem with GPU occupancy as 

there cannot be the maximum number of work-items scheduled at one time because 

they would require more registers than the hardware can provide. Another problem is 

using atomic instructions. Although the global memory atomics are mostly used once 

per work-group, there is the need to synchronize the work-groups. Local memory 

atomics are also widely used. Moreover, there is a non-trivial cooperation with CPU 

where the host program selects some parameters according to the results of the last 

phase. Therefore, CPU and GPU sometimes have to wait for each other.

25

Chart 4.5: Mergesort variants with 32-bit values



Mergesort and bitonicsort offer better results. Both can compete with std::sort 

on sequences of 8k keys and are significantly faster on longer ones. They are even 

faster than the tbb::parallel_sort on sequences longer than 32k keys.

As all presented sorting algorithms are super-linear15, the CPU algorithms have 

the best sorting rate on shortest sequences, then the performance slowly decreases. 

Due to GPU latencies, the peak performance of GPU strategies is between 2M – 4M 

sequences for mergesort and 1M – 2M for the bitonicsort. Then we can also see the 

decrease caused by the super-linear  nature of sorting algorithms. The decrease is 

even faster than in the case of CPU sorts. This is caused by worse theoretical time-

complexity of the parallel algorithms: O(n/ p⋅log(n)⋅log(log(n)))  for MISCB and 

O(max(n/ p ,1)⋅log2(n))  for  BSL,  compared  to  the  O(n⋅log(n))  used  in  CPU 

sorts. The number of processing units remains so the sorting rate decrease is faster.

15 Considering  that  the  amount  of  elements  in  sorted  sets  is  much  higher  than  the  number  of  
processing units.
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As a result, we can say that the mergesort on GPU can be up to 3.1 times faster 

than tbb::parallel_sort and 12.4 times faster than std::sort on data without values and 

2.4 times or 9 times faster respectively on the data with 32-bit values. As the memory 

moves on GPU are expensive we can assume that larger values would render smaller 

speedup on the GPU. For exact numeric results we refer to Appendix A.

We note  that  the  host-GPU-host  memory transfer  times  are  far  from being 

negligible. Our results show that these take about 50 – 60% of the total computation 

time in case of key-value pairs and 35 – 50 % in the keys-only case.

4.4 Future Work
In this section we present some ideas for future improvements. 

First, the set may be already partially sorted. If we were able to detect these 

sorted  subsequences  (or  get  them along the  data)  we could  adapt  our  mergesort 

implementation to skip several levels of sorting. This would require to pass a list of  

these  subsequences  in  the  same  way  as  we  used  jobs  in  our  quicksort 

implementation.  With  different  sizes  of  the  sorted  sequences  some  more 

load-balancing would be required. Unlikely to the quicksort, the work-groups would 
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not need to synchronize accesses to any parts of the memory because only the CPU 

would decide about new jobs, knowing which sequences are sorted in each phase of 

the algorithm.

More complicated algorithms usually require more registers and carry some 

overhead. The only option to determine the overall performance is an implementation 

and an experiment.

Another variation would be the insertion of a small amount of not-sorted data 

into larger sorted set. This is a common case when new rows are inserted into an 

indexed database table. It is not much complicated with sequential access, in fact, it 

is a merge operation. Transfer of the large sorted set to GPU would probably be too 

expensive  but  if  the  large  set  was  already  present  in  the  GPU  memory, 

the comparison of sequential merge and parallel one might be interesting.
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5. Intersection
We have defined the problem of intersection as a task to find a common subset of 

two  sets  of  32-bit  numbers.  The  numbers  in  each  set  are  unique  and  uniformly 

distributed16 across the 32-bit universum.

There are several basic ways how this problem is solved in serial algorithms. 

The simplest approach is the non-indexed nested-loop join (NINLJ) testing each pair 

from the cartesian product of the two sets. This imposes no requirement on the data 

but as the algorithm has quadratic time-complexity, it is not practical for large sets.

Indexed nested-loop join (INLJ) requires representation of one of the sets in 

a search structure such as sorted array or tree. The other set is iterated through and 

query into the structure is performed for each element.

Sorted merge-join (SMJ) sorts both sets and then selects the common elements 

in  a  single  pass  through  both  sets.  This  algorithm  is  basically  a  variation  of 

mergesort. INLJ and SMJ algorithms will be discussed in section 5.2.

Hash-join  (HJ)  is  very similar  to  INLJ  but  it  uses  hash-map  as  the  search 

structure. Naturally, the hash-map has to be constructed prior to the queries. Here we 

also  need a  good hash function distributing the input  data  uniformly accross  the 

hash-table. As we assume that the input sets itself are distributed uniformly accross 

the universum, simple modulo should be sufficient. Hash-joins are the main topic of 

section 5.3.

From the  implementation  perspective,  the  absolute  size  of  the  sets  are  an 

important property. Those algorithms presented in sections  5.2 and 5.3 assume that 

there is  enough memory to  load and process  both  sets  inside the  GPU memory; 

section 5.4 studies how to circumvent this requirement.

5.1 Related Work
Although  geometrical  intersection  is  a  problem  often  solved  on  GPU,  the  set 

intersection  on  GPU is  not  as  commonly  studied.  Resen  and  Pagh  [20] suggest 

compressed  bitmap  structure  called  BatMap  similar  to  Cuckoo  hash-table 

recommended by Alcantara et. al. [21]. Bingsheng et. al. [22] explores both parallel 

16 In fact we have used pseudo-randomly initialized Galois linear feedback shift register [10].
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merge-join exploiting the local memory and variation of hash-join splitting the sets 

using radix parititioning. Wu et. al.  [23] uses INLJ for intersecting a short and long 

sets. Ao et. al.  [24] also uses INLJ and suggests precomputing probable position of 

elements using linear regression.

5.2 Intersection of Sorted Sets
As sorting algorithms on GPU were described in section 4, here we focus only on the 

second phase, assuming that one or both sets are initially sorted.

Although the single-pass algorithm is apparently optimal with serial hardware, 

doing this on GPU would be a great wasting of resources.

Our options to parallelize the task are very similar to those with the merge 

operation in the mergesort  algorithm. We can either split  the two sets to pairs of 

subsets, which can then be sequentially processed (SMJ), or search for elements from 

first set in the second set individually (INLJ). In fact, the second approach requires 

only  one  set  to  be  sorted,  although  having  both  sets  sorted  may  yield  a  better 

performance (see below).

With both sets sorted, it would not be difficult to get the result sorted as well. It  

would require filling a  part  of the memory sized equally to  the original  set  with 

zeroes and then copying the found elements on their original positions. After that we 

would use  a  compact  non-zero elements  operation,  which  is  a  variation  of  well-

known  parallel  scan  [25].  Special  handling  of  zero  would  not  pose  a  problem. 

Nevertheless, as our problem description does not require outputting sorted sets this 

feature was not implemented.

5.2.1 Search Algorithms

In these search algorithms, each work-item is assigned one number in the first set, 

and then it  tries to find this number in the second set. It  does so by maintaining 

an interval  from  the  second  set  (initially  encompassing  the  whole  set)  where 

the searched element  can be found. In each iteration it  selects  a new index from 

the interval and probes the number found in the set on this index. The probed element 

(pivot)  is  compared17 against  the  searched  one,  and  according  to  the  result  the 

17 As there is neither a three-way compare operator in ISO C99 nor OpenCL intrinsic for the three-
way compare the actual compare is done twice, however as the pivot is loaded into registers there 
is only a minimal overhead.
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number is either found, or the left or right subinterval is selected as the interval for 

next iteration. If the interval becomes empty, the algorithm ends – the number is not 

found. The search is summarized in code listing 5.1.

The initial  loading of numbers from the global memory,  where the first set 

resides,  is  coalesced,  therefore,  we  can  expect  good  performance  for  this  part. 

However, the lookups in the second set may be considered random, causing a lot of 

memory transactions. Having a separate memory transaction for each work-item in 

each  phase  is  the  worst-case  scenario.  Nevertheless,  with  both  sets  sorted  the 

situation may not be as harsh – if the elements in second set (or the closest ones, in 

case the second set does not contain them)  are near, what could be expected with a 

uniform distribution, there is a good chance that the memory access will break into 

only few transactions, unlike single transaction for each work-item in the worst-case 

scenario.

Moreover, the global memory cache may also help as we are probing only a 

decent area of memory in the several latest look-ups.

searchKey := element from first set
leftIndex := 0
rightIndex := size of second set - 1
while (rightIndex >= leftIndex) {

pivotIndex := select_pivot()
pivotKey = element from second set at position pivotIndex
if (pivotKey == searchedKey) {

add searchedKey to the set of common numbers
end

} else if (keyA > keyB) {
leftIndex := pivotIndex + 1

} else {
rightIndex := pivotIndex - 1

}
}

Code listing 5.1: General search algorithm

Binary Search (BSS)

This is the simplest method of individual search. The select_pivot function selects 

the middle point from the interval, letting the search algorithm to halve the interval in 

each iteration. From the theoretical perspective, the binary search has both estimated 

and worst-case execution time O(log n)  for each element in the first set, therefore, 

O(n/ p⋅log n)  for  the  whole  set  with  n elements,  using  p processing  units 

(work-items).
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Interpolation Search (ISS)

The idea of interpolation search is very similar to the binary search algorithm, but it 

exploits the fact that the numbers in a sorted array may form almost linear sequences. 

The pivot is selected according to this formula:

pivotIndex=
searchedKey−leftKey

rightKey−leftKey
˙(rightIndex−leftIndex )

where  rightIndex and  leftIndex define  the  current  range,  leftKey is  the  number 

positioned at leftIndex and rightKey is the number positioned at rightIndex.

This function causes the search algorithm to have estimated execution time 

O(log log n) [26] which is better than in the binary search algorithm. However, the 

worst-case execution time is O(n) .

This algorithm in its base form requires three lookups to the global memory in 

each iteration: one for the pivot itself and two for keys on the left and right side of 

the interval. One lookup can be spared by cacheing the keys on interval sides (in 

each iteration only single side of the interval changes) but as the changing side is set 

to the place next to the pivot, the element should be loaded. If this is not suitable, the 

key can be approximated – in our implementation it is set just to the value of pivot 

itself. The values of the first and the last element in the set are approximated as well, 

to be the minimum (0) and maximum (232 – 1) of the universum.

Generalized Quadratic Search (GQSS)

The idea of this algorithm is to combine the advantages of binary search (worst-case 

execution  time  O(log n) )  and  interpolation  search  (estimated  execution  time 

O(log log n) ).

We do so by partitioning the iterations into several phases. In the beginning 

of each phase, the pivot is selected using single interpolation query. The rest of this 

phase comprises of alternated binary and unary search queries.  The unary search 

steps have length equal to the square root of size of the interval at the beginning of 

the phase. The phase ends when the unary search has to change direction because it  

detects  that  the  searched  key  has  been  skipped.  This  is  summarized  in 

code listing 5.2.
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if (phaseStart) {
    pivotIndex := select_pivot_by_interpolation()
    pivotKey := element from second set at position pivotIndex
    phaseStart := false
    parity := true        // start with unary search
    length := rightIndex - leftIndex + 1
    up := pivotKey < searchedKey
} else if (parity) {
    if (up) {
        pivotIndex := leftIndex + square root of length
    } else {
        pivotIndex := rightIndex – square root of length
    }
    pivotKey := element from second set at position pivotIndex
    if ((pivotKey < searchedKey) xor up) {
        phaseStart := true
    } else {
        parity := false   // continue with binary search
    }
} else {
    pivotIndex = select_pivot_by_binary()
    pivotKey := element from second set at position pivotIndex
    parity := true        // continue with unary search
}

Code listing 5.2: Pivot selection in generalized quadratic search algorithm

As  the  interval  is  halved  during  at  most  three  iterations  the  worst-case 

execution time is O(log n) . It can be proven that each phase takes constant time in 

average  [27] and as the number of phases is smaller than the number of queries in 

interpolation  search  (each  phase  begins  with  interpolation  query),  the  estimated 

execution time is O(log log n) .

Although this method has the best theoretical background, the computation is 

more complicated than in the previous methods. We will see how this will exhibit in 

the benchmarks.

Initial Lookup Optimization

We have tried to spare the first few lookups using the faster local memory. Each 

work-item in the work-group loads a single element from the set with equal distances 

between these elements, and the search algorithm is executed on the array of the fast 

local memory at  first.  The second phase continues as usual  but with the interval 

initially set to the one obtained in the first phase.

This optimization was implemented for both binary and interpolation search.
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5.2.2 Parallel Single-pass Algorithms

Unlike the search algorithms, this algorithm requires both sets to be sorted on the 

input.  The  well  known  sequential  single-pass  algorithm  can  be  parallelized  by 

dividing the input sets into separate subsets. However, the subsets from the first set 

must pair to those from the second set – numbers from each subset of the first set 

should be present only in the pairing subset of second set respectively. This condition 

guarantees that no number common to both sets may be missed when processing the 

pairs of subsets in parallel.

There are more problems related to the task – we should balance the sizes of 

sets to be approximately equal because the execution time of the whole algorithm is 

dependent on the execution time of the longest subtask (we are assuming that the 

execution time of the single-pass is linear to the sum of sizes of subsets in the pair).

Another problem is the decomposition granularity. Should the sequential pass 

be performed by whole work-group, single work-item or rather by single warp?

Dividing The Sets

In order to fit the subsets into the local memory and simplify the algorithm, the size 

of subsets was limited to  N where  N is the size of the work-group. Using binary 

search18, greatest lower bound for each  N-th element from first set is found in the 

second set. Then the multiples of  N and GLBs in each set are iterated, pairing the 

intervals from each set. See figure 5.1 as an example – here are the two sets of size 

4N divided into 8 pairs of intervals, each interval having at most N elements. These 

pairs of intervals can be then processed in the local memory (except for the first pair 

which has one of the intervals empty).

18 Although interpolation-search proved faster in the global search algorithm, due to some anomalies 
in floating-point operations it was significantly slower in this case – therefore binary search was 
used.
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The algorithm is  summarized in  code listing  5.3.  As it  sequentially iterates 

through the data it is not parallel by nature. The algorithm was implemented both on 

CPU ('local  search  strategy with  jobs  created  on  CPU'  –  LSJCCPUS)  and GPU 

('local search strategy with jobs created on GPU' - LSJCGPUS). On CPU it needs to 

move the GLBs from GPU to CPU, wait until the set is processed and then move the 

interval ranges back to GPU. On GPU single work-item iterates through the data, 

other work-items in work-group only help with moving the data between the local 

and the global memory. 

iteratorA := 1; iteratorB := 1;

if (glbsA[0] != 0) {

    intervalEndA[0] := 0;

    intervalEndB[0] := glbsA[0];

} else if (glbsB[0] != 0) {

    intervalEndA[0] := glbsB[0];

    intervalEndB[0] := 0;

} else {

    intervalEndA[0] := 0;

    intervalEndB[0] := 0;

}

intervalIterator = 1;

while (iteratorA < glbsA or iteratorB < glbsB) {

    if (glbsB[iteratorB] < nextMultipleA) {

        intervalEndA[intervalsIterator] := glbsB[iteratorB];

        iteratorB := iteratorB + 1;

    } else {

        intervalEndA[intervalsIterator] := nextMultipleA;

        nextMultipleA := nextMultipleA + N;

    }

    if (glbsA[iteratorA] < nextMultipleB) {

        intervalEndB[intervalsIterator] := glbsA[iteratorA];

        iteratorA := iteratorA + 1;

    } else {

        intervalEndB[intervalsIterator] := nextMultipleB;

        nextMultipleB := nextMultipleB + N;

    }

    intervalIterator := intervalIterator + 1;

}

Code listing 5.3: Dividing pair of sorted sets into pairs of intervals
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In fact it is possible to parallelize the loop with a similar technique as those 

used in the parallel mergesort, however, that is not our case. This approach would be 

too complicated for the amount of data that is processed.

In our implementation two subsequent pairs  of intervals with both sums of 

interval sizes lesser than N can be joined together. This detail is not covered in the 

code listing 5.3 above.

Searching for Common Elements

Although having one work-item for each interval and sequentially iterating through 

the intervals might be the fastest solution from the theoretical perspective (with time 

complexity O(n/ p) ), this would lead to a non-coalesced memory reading pattern, 

which  is  obviously  very  slow –  there  would  be  large  stride  between  the  reads. 

Therefore,  one interval  is  processed by the  whole  work-group.  One work-item is 

assigned  to  each  element  from first  interval,  searching  for  equal  element  in  the 

second interval. This leads to time complexity19 O(n⋅log( N )/ p) .

5.2.3 Results

In  this  section  we will  compare  the  strategies  with  each other.  After  that,  as  no 

advanced CPU join algorithm for sorted sets was implemented in this thesis, we will 

use simple sequential merge-join as the counterpart for CPU – GPU comparison.

The  sets  were  sized  from  212 =  4k  to  224 =  16M  keys.  We  have  used 

configurations with varying number of common elements – no common elements, 

0.1%, 10%, 50%, 90% and identical sets (differently shuffled, of course). As having 

chart for every configuration would require too much space, we show only those 

results showing important properties of the strategies. Rest of the charts is provided 

on the enclosed CD.

GPU Strategies Comparison

Absolute values show similar performance for all search methods. This is caused by 

the long-lasting transfer of sorted sets from RAM to GPU and also the transfer of the 

resulting intersection back from GPU to RAM in all strategies. Therefore, we will 

analyze the strategies from the next chart where the intersection times are scaled to 

19 As the N is bound to constant size of the work-group rather than to size of the input, the log(N) can 
be also considered as constant.
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the  sum  of  memory  transfer  times.  Since  this  chart  shows  relative  time  of 

the intersection instead of sorting rate as the other charts, the lower ratio is better.
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Chart 5.1: GPU strategies on equally sized sorted sets with 10% common elements (absolute)



The  interpolation  search  (ISS)  is  fastest  through  all  set  sizes.  The  look-up 

optimization (BSLS and ISLS) has not proven useful – in fact, the performance of 

these variations is worse compared to the basic strategies. Binary search (BSS) can 

compete with other strategies on smaller sets but for larger ones, it is slower.

Although conceptually very different the generalized quadratic search (GQSS) 

performs  similarly  to  the  local  search  strategy  with  jobs  created  on  CPU 

(LSJCCPUS).  Both  these  offer  mediocre  performance  compared  to  interpolation 

search. Local search strategy computed on GPU solely (LSJCGPUS) is the slowest 

strategy because the serial part is not fitting well to the GPU architecture.

Asymmetric Sets

All results above come with symmetric set sizes – both sets have the same size.  The 

results below compare different distributions of sizes with the same sum of sizes of 

the sets. We have used ratios in the form 1:(2i – 1): 1:1, 1:3, 1:7 and so forth. The 

amount of common elements was set to 4k which is the size of the smallest set used 

for these benchmarks. This was motivated by the effort for keeping constant memory 

transfer times for all pairs of sets with equal sum of sizes.

In the charts below, execution times are normalized to the execution time of 

pair with equally sized sets, marked as empty circle. If the triangle points upwards 

the first set passed to the algorithm is greater, if it points down the second set is 

greater. The darker the triangle is the greater is the difference between the sizes of the 

two sets.

On all  strategies  extreme values  offer  the  shortest  execution  times  and the 

higher ratio renders shorter execution time.

The n⋅log(N−n)  curve expected for binary search has theoretical maximum 

(the longest execution time) for ratios between 1:1 and 1:3 with smaller first set; this 

is similar also for the interpolation search. Our results show longest execution time 

with ratios between 1:7 and 1:15 with smaller second set, for both variants of binary 

search, interpolation search and for generalized quadratic search as well. With these 

strategies,  the  ratio  with  smaller  first  set  is  almost  always  faster  than  the  other 

variant.
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Chart 5.3: Binary search Chart 5.4: Binary search with look-up

Chart 5.6: Interpolation search Chart 5.5: Interpolation search with look-up



40

Chart 5.7: Generalized quadratic search

Chart 5.8: Local search (jobs created on CPU) Graph 5.9: Local search (jobs created on GPU)



The local search strategies show symmetric results with regard to which set is 

smaller. This is expected as the algorithm is also symmetric, unlike the global search 

strategies. Here the maximum should be for ratio 1:1 – this does not exactly fit to our 

results but it can be caused by the properties of pair of sets used for our benchmarks.

Comparison With CPU

The CPU merge-join is on a par with our GPU implementation. The CPU algorithm 

has lower theoretical complexity: the merge-join runs in linear time while our search 

algorithm  has  average  time-complexity  O(n/ p⋅log log n) .  Moreover,  the  GPU 

algorithm has to copy data from RAM to GPU and  back. Still, for sets with  fewer 

common elements  the  GPU strategy can  be  more  than  2× faster.  There  are  two 

reasons  for  this:  there  are  fewer elements  to  copy  back  from  GPU,  and  the 

merge-join has to do approximately 2n comparisons. However, as the sets get more 

common elements, the amount of data copied back to RAM grows and the number of 

comparisons in merge-join decreases to n. This results in worse performance of the 

GPU strategy.
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5.3 Hash-based Intersection
This section describes the algorithms which do not require the input sets to be sorted 

but one of the sets must be transformed into hash table.

5.3.1 Linear Hashing

The linear hashing (LHB) algorithm comprises of three phases. In the first phase, the 

hash-table is initialized with zeroes, in second phase each work-item loads one key 

from the  first  set  and  inserts  it  into  the  hash-table  and  in  the  third  phase  each 

work-item loads  one  key from the  second set  and  queries  the  hash-table  for  its 

presence.  If the key is found in the hash-table it  is inserted into a local memory 

buffer. When all work-items in a work-group finish the query, this buffer is flushed 

into the output set in the global memory.

In the insert phase, a position is computed from the key using hash function 

h( x)=x mod H where H is the size of the table. When there is zero on the position 

in  the  hash-table,  the  element  is  simply  written  there.  If  a  collision  occurs,  the 

position is increased by a number incommensurable with the size of the hash-table 

(113 in our case). This process is repeated until an empty position is found. As many 

work-items may try to insert an element on some position in a single moment, atomic 

functions must be used for accessing the hash-table.

When  the  hash-table  is  queried  the  key  is  hashed  using  the  function 

h( x)=x mod H  and this position is probed. If there is zero, the algorithm ends. If it 

contains the key we are searching for, the key is added to the output set. If there is a 

key different from the queried key, the position is increased by  113 and the probe 

process is repeated.

As zero in the hash-table has the meaning of an empty position, the element 0 

must be handled in a special way.

One way to optimize this algorithm is to keep the chains of keys in hash-table 

sorted – we denote this variation LHS. This can be done initializing the table with 

maximal numbers (232 – 1) instead of zero. The atomic compare-and-swap operation 

is then replaced by atomic minimum operation20 – the lower number is written into 

20 atom_min function is a part of  extended atomics OpenCL 1.0 extension while  atom_cmpxchg is 
found in  base atomics extension. Although NVidia GeForce GTX580 supports both extensions 
some  devices  may  not.  OpenCL 1.1  specification  contains  all  these  atomic  function  in  the 
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the hash-table. If the original element is not  232 – 1 the insert operation continues on 

the next position (current position + 113) with the greater one from the inserted and 

original elements.

With zero replaced by 232 – 1 this number needs special handling instead of 0.

The query is also similar to the one used in the basic version of this algorithm. 

The difference is that the probe process does not end when zero is encountered but 

with any number greater than the queried key.

Initial  loading keys  from both sets  is  done with  coalesced memory access. 

Copying found elements set from the local memory, where these are buffered, into 

the output  set  is  also performed in the coalesced way with a minimal  number of 

memory transactions. We have to synchronize work-groups by atomic incrementation 

of the output set counter – here may happen some collisions between work-groups. 

Nevertheless, the major bottleneck is the random global memory access using the 

atomic functions. 

Our implementation uses the hash-table with size H =4⋅n  as we are focused 

on performance rather than on the smallest memory footprint. With this load factor 

α=0.25 , the number of accesses for the basic variant (without sorted keys) should 

be  (1−α)−1=1.33  when the key is  not  in  the table  and  α−1⋅log (1−α)−1=1.15  

when the key is present [27]. In the sorted keys variation the number of accesses is 

equal for both successful and unsuccessful search and identical to successful search 

in the basic variant. Experimental results show that it is 1.16 – 1.38 for basic variant 

(the exact value depends on  the  number of common elements in the two sets) and 

1.16 with sorted keys (without any dependency on the number of common elements).

5.3.2 Cuckoo Hashing

Cuckoo  hashing  was  described  for  the  first  time  by Pagh  and  Rodler  [28] and 

recommended as GPU hashing algorithm by Alcantara et al. [21].

The  hash-table consists of several columns (we have used 3), each equipped 

with its own hash function. When the key is inserted into the hash-table we choose 

one column and compute position of key in this column. The key x is inserted into 

this position regardless whether this position already contains another key or not. If 

mandatory set of supported functions for 32bit memory access.
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there was an empty space, the insert operation is finished. If there was another key y, 

it  is replaced by  x an the  y is hashed into  the next column.  There it may replace 

another key z; the process is repeated in this case. That is why this is called cuckoo 

hashing: the new element always pushes the original element out of its nest.

With an unfortunate choice of hash functions, there is a chance that we find 

ourselves  looping  forever.  This  scenario  is  evaded  by  canceling  the  process  of 

inserting into the hash-table after some maximal number of iterations. Then a new set 

of hash functions must be chosen and the table is completely rehashed. 

The insert operation is shown in code listing 5.4.

for (i := 0; ; ++i) {
    column := i mod TABLE_WIDTH
    position := hash(key, column)
    key := swap21(hashtable[column, position], key)
    if (key == 0) {
        break
    } else if (i >= MAX_LOOPS) {
        signalize failure
        break
    }
}

Code listing 5.4: Insert into cuckoo hashtable

The advantage of cuckoo hashing over linear hashing is in the query operation. 

The  number  of  look-up  operations  is  limited  to  the  number  of  columns  in  the 

hash-table. No long chains known from linear hashing with higher table load factor 

may occur here.

This  hashing  algorithm  has  been  implemented  in  two  variations:  In  first 

(cuckoo hashing in the local memory – CHL), suggested by Alcantara et al.  [21], 

both sets were divided into buckets small enough to fit into the local memory. Then 

each work-group processed single pair of buckets: it creates a cuckoo hash-table in 

the local memory from the first bucket and then queried it with keys from the second 

bucket.  The  second  implementation  ran  cuckoo  hashing  directly  in  the  global 

memory (CHG) in a way very similar to the linear hashing.

There is a question how to divide the set into buckets in the local memory 

implementation. We estimate the number of buckets necessary – in order to fit the 

21 OpenCL basic atomics extension defines  atom_xchg function for both local and global memory. 
Regrettably the version for local memory appears to not work with compiler/drivers version used, 
therefore it had to be replaced with a repeated atom_cmpxchg function. 
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bucket into the local memory the maximum number of keys in each bucket was set to 

M =1024 ,  therefore, we choose each bucket to contain  λ=800  keys in average. 

With  uniform  distribution  of  input  keys  and  feasible  hashing  function22 we  can 

approximate the probability of one bucket overflow using Poisson distribution:

P (one bucket failure)=1−∑
k=0

M
λ

k
⋅e−λ

k !
=1.38×10−14

With the largest tested sets having  S=224
∼16×106  elements, separated into 

20 972 buckets, the probability  of overflow encountered when hashing any of the 

buckets is:

P (any bucket failure)=1−e
−P (onebucket failure)⋅2⋅S

λ =5.78×10−10
∼

1
1 731119 676

The  probability  of  failure  depends  on  size  of  the  whole  set  –  we  could 

programmatically adapt the average load factor to keep this probability constant, but 

such complication is not necessary for purposes of this thesis.

If  any bucket  overflows  the  maximum size  M,  we have  to  choose  another 

hashing function and rehash both sets.

As the local-hashing implementation both loads and stores keys in a coalesced 

fashion, and the hashing itself  is performed in the local memory, this part is fast  

enough. The bottleneck here is the bucketing, where we have to atomically increment 

a  bucket  size counter for each key itself  and then write the key into the bucket, 

causing random accesses to the global memory.

5.3.3 Indexing into Large Bitmap

This method differs radically from the previous two algorithms. The hash-table size 

does not depend on the size of the set but on the size of the universum. As most 

present-day GPUs do not have enough memory23 to keep the 512MB bitmap for the 

whole 32-bit universum, we have to split the sets into buckets according to first few 

bits. This strategy is called 'indexing into large bitmap with split' – ILBS. We have 

chosen 16 buckets for each set – one for each combination of the first 4 bits of the 

22 Note that  this hashing function is different from the one used for the cuckoo hashing in local 
memory.

23 The adaptation for GPUs with enough memory is straightforward.

45



key.  This  results  in  reducing the  universum to  28-bit  one  for  which  only 32MB 

bitmap is needed.

In  the  first  phase,  we  compute  the  required  sizes  for  buckets  and  reserve 

memory for them. Then in phase II the sets are split into the buckets – work-groups 

keep a buffer in the local memory for each bucket and when some buffer is full, it is 

flushed into the bucket in the global memory. As the work-items cooperate on the 

flush  there  is  only  one  increment  of  bucket  counter  for  all  keys  in  the  buffer. 

The memory transfer is also coalesced.

Third phase contains a loop over all pairs of buckets. In each of 16 iterations 

this process is repeated:

1. The 32MB bitmap is filled with zeroes.

2. Keys are loaded from the first bucket of the i-th pair of buckets.

3. A bit is written using atomic OR into the bitmap on the position specified 

by lower 28bits of each key.

4. Keys are loaded from the second bucket of the i-th pair of buckets

5. The  bitmap  is  probed  for  a  bit  on  position  specified  by lower  28bits 

of each key.

6. If the bit was 1 the key is added to the output set.

We have also implemented other version of the algorithm, called 'indexing into 

large bitmap – no split' - ILBN. The keys are not split into buckets; when the bitmap 

is constructed the keys whose higher 4bits do not match the current mask are simply 

ignored. Therefore, each key is loaded 16× instead of 2× as in the variation described 

above, but there is no bucketting phase with additional required memory. We will see 

how this affects the perfomance in the results below.

5.3.4 Bloom Pre-filtering

Bloom filter  [29] is a space-efficient probabilistic data structure that is used to test 

whether an element is a member of a set. As false positives are possible but false 

negatives are not, it allows to eliminate some elements from the sets which cannot be 

in the intersection.
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The idea of Bloom filter is to hash element to a position of a bit in a bitmap. 

The hashing function is usually trivial such as ignoring some bits in the element. 

Collisions may occur:

– if there is 1 in the bitmap, the element may be hashed into the filter

– if there is 0 in the bitmap, the element was not hashed into the filter

The algorithm using is data structure has been used as a template – at first the 

sets are reduced and then other non-probabilistic algorithm is executed. The reduce 

algorithm comprises of a loop with these steps:

1. Create the Bloom filter from first set.

2. Filter the second set through the Bloom filter into third set.

3. If the third set is larger than 70% of the first set, quit.

4. Rename the first set to second set, third set to first set and continue with 

next cycle of the loop.

The Bloom filter  may be either located in the global  memory,  (almost)  not 

limiting its size but with slow random access, or in the fast local memory, although 

very  limited  to  its  size.  In  our  implementation  the  global  filter  uses  N/4 bytes 

of memory with  N  elements in the set; the local filter has fixed size 14336 bytes, 

which is the maximum amount of the local memory assignable to one work-group 

with optimal occupancy.

The global filter is created using atomic OR operations in the global memory, 

construction of local filter is a bit more complicated:

1. Global  filter  filled with  0s  is  constructed in  the global  memory,  sized 

equally to local filters.

2. Each work-group creates its own filter in the local memory, hashing its 

part of the set into the local filter.

3. Local filters are ORed (word-by-word) to the global filter.

4. Each work-group fetches the finished global filter into the local memory 

and then reads only from this local copy.

47



5.3.5 Results

In this section we will compare the GPU strategies with each other, then analyze the 

effect of Bloom prefilter on each of them, and present the results for non-equally 

sized sets. In the end we will see the final comparison with CPU intersection.

GPU Strategies Comparison

Similarly to the benchmark of sorted sets intersection, we have used sets sized from 

212 =  4k to 224 = 16M keys and configurations with no common elements, 0.1%, 

10%, 50%, 90% and identical sets (differently shuffled, of course).  We also omit 

most of the graphs and present only those with some interesting characteristics. For 

the rest of the charts please refer to the enclosed CD.

One of the simplest algorithms – the linear hashing with sorted keys – is the 

fastest  one for  all  sizes  of sets.  The performance of  basic  linear  hashing is  very 

similar to the sorted-keys version, especially with more common elements.
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Although the cuckoo hashing into a global hash-table has very good results for 

many common elements, when there are only few common elements it requires more 

memory  accesses  than  the  linear  hashing,  and  therefore,  it  has  only  mediocre 

performance.

The performance of cuckoo hashing to local table significantly deteriorates for 

sets larger than 1M elements. There is no obvious outer reason for this – probably 

some hardware resources stop scaling at this moment. This deterioration is found in 

all results across the configurations with little deviation. Exact origin of this behavior 

was not located, although L2 cache could be relevant because of its size 768kB.

Filling a large area of memory with 0s, whose size is not dependent on the size 

of input, renders unsurprisingly both strategies with indexing into this bitmap rather 

slow on small input sets. With larger sets the constant work requires smaller relative 

part of the computation, and finally, the overall performance is moderate but still far 

from the optimal case.
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Bloom Pre-filters

The result of applying Bloom prefilters to other strategies can be seen in charts 5.13 

and  5.14.  With none or  only few common elements,  the prefiltering was able  to 

reduce the sets so that running the inner strategy was almost unnecessary – the few 

lasting  elements  could  be  processed  on CPU.  In  some cases  the  reduction itself 

outperformed the actual strategy. Nonetheless, this did not happen for all strategies – 

in our results linear hashing is always faster without the Bloom pre-filter.

The local memory is sufficient for sets with at most 128k elements. Larger sets 

make the local bitmap too dense with 1s and the fast accesses cannot compensate this 

anymore. Larger bitmap in the global memory is much more suitable for these sets.
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Chart 5.13: Bloom pre-filters for 16M unsorted sets and 0.1% common elements
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Chart 5.14: Bloom pre-filters for 16M unsorted sets and 90% common elements

Chart 5.15: Bloom pre-filters for 128k unsorted sets and 0.1% common elements



Asymetric Sets

We have used  the  same methodology for  identifying  the  behavior  of  hash-based 

intersection algorithms on asymmetric sets as previously with algorithms running on 

sorted sets. The sets in pairs had ratios in the form 1:(2i – 1) and there were 4k 

elements common to both sets.

Again,  execution times in the charts below are normalized to the execution 

time of pair with equally sized sets, marked as empty circle. If the triangle points 

upwards the first set passed to the algorithm is greater, if it points down the second 

set is greater. The darker the triangle is the greater is the difference between the sizes 

of the two sets.

As the pairs with larger first set have longer execution times we can deduce 

that in linear hashing strategies (LHB and LHS), building the hash-table is the most 

expensive operation. The look-up into this hash-table is much cheaper.

Cuckoo hashing to the global memory (CHG) show similar results as the linear 

hashing – the pairs with a large second set are executed faster than those with larger
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Chart 5.16: Basic linear hashing (LHB) Chart 5.17: Linear hashing with sorted keys 
(LHS)
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Chart 5.18: Cuckoo hashing to global memory 
(CHG)

Chart 5.19: Cuckoo hashing to local memory 
(CHL)

Chart 5.20: Indexing into large bitmap with 
buffered split (ILBS)

Chart 5.21: Indexing into large bitmap - no split 
(ILBN)



first set. However, the difference between larger first set and both set equal is not as 

prominent.  The  exact  nature  of  the  first  set  has  higher  impact  on  the  overall 

execution time.

On the other hand, cuckoo hashing to the local memory (CHL) shows little 

difference between symmetric  and asymmetric  sets.  Here the bucketing takes  the 

majority and the same actions are performed on elements from both sets. Still, we 

can observe somewhat shorter execution times with larger second set and vice versa. 

We should note that the missing comparison on 2M total size is caused by extremely 

low execution time of the equally sized sets variant – all the other sets have ratio 

around 1.8.

Building the bitmap in IBBS strategy is a bit more expensive than the look-up 

as we use atomic instructions for this purpose, but the difference is not as significant 

as in linear hashing – here it is at most 10% on each side. In the version without split  

(IBBN) the difference is yet smaller, about 2%.

Comparison with CPU

There  are  multiple  algorithms  for  intersection  on  CPU  as  well.  We  use  serial 

merge-join with sets sorted by tbb::sort24 (having good performance on smaller sets) 

and two-pass bucketing developed by Kruliš [30] (excelling for greater sets). As the 

decision can be based solely on the input size, the appropriate CPU strategy for the 

particular set can be always selected in advance. This is why the number of buckets 

used in our results of two-pass bucketing is varying between 32 and 1024 – we have 

collected results for all settings and selected the optimal values.

GPU outperforms both CPU strategies for sets larger than 16k. The tbb::sort 

with sequential merge-join is better for pairs of sets with up to 2M – 4M keys each,  

after that the two-pass bucketing algorithm, finally, starts scaling. However, even at 

its peak25 performance for ~128M sets with rate around 70M keys/seconds this CPU 

algorithm cannot compete with GPU linear hashing.

24 Already referenced in section 4.3.4.
25 These data are not a part of the graph as the GPU linear hashing strategy is not suitable for such  

large data sets.
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5.4 Sets Not Fitting into Memory of GPU
The GPU memory is usually smaller than the RAM memory. Moreover, there are 

also limitations for the size of a single continuous block of memory. That it is why 

we have to develop different techniques for larger sets that cannot be present in the 

GPU memory at one moment.

Using secondary storage is not a new technique. It has been used for years in 

many external  memory algorithms,  for  instance  in  mergesort  as  the  best  known 

example. In the common CPU case the RAM memory is used as the primary storage 

and magnetic hard drives or solid state drives second, we use the GPU memory as 

the primary and RAM as the secondary storage.

The techniques below usually try to overlap GPU computation with memory 

transfer because these operations are independent.

5.4.1 Splitting into Multiple Partitions

The  naive approach to calculating the intersection of a pair of too large sets is to 

partition both sets to subsets of suitable size and intersect each subset from first set  

55

Chart 5.22: CPU vs. GPU on unsorted sets with 10% common elements



with each subset from second set (this is basically the NINLJ idea). The output set is 

plain  concatenation  of  the  partial  results.  However,  as  this  has  quadratic  time-

complexity with respect to the number of the partitions, we mention this strategy 

rather for a completeness – it has no practical purpose for us.

If the sets are not sorted in any way we have to stick to bucketing. Similarly to 

the assumption described in section 5.3.2, we set the expected fill to 80% of the max 

size we can process on GPU. This  means that  we use  N /(M⋅0.8)  buckets.  Yet 

worse than in section 5.4.2, both sets must be processed before the execution on GPU 

begins. Then some inner hashing strategy26 is executed on each pair of buckets. We 

call  this  outer  strategy  'multirun  bucketing  template'  (MBT)  because  it  is  not 

dependent on the inner strategy.

Inserting  values  into  the  buckets  one-by-one  would  cause  effect  known as 

cache-line ping-pong; prior to inserting element into the bucket the cache-line that 

should contain this element would have to be transferred to the processor which tries 

to  write  into  the  bucket.  Therefore,  we  use  a  common  technique  to  avoid  this 

behavior – we store the elements in thread-local buffers and do the insertion only 

after any buffer gets full.

When  the  sets  are  sorted  the  situation  is  better.  We  can  partition  the  sets 

without any bucketing – we do not use hashing but find sequences with the same 

range. The routine is executed serially, as we need usually only several partitions, 

trying  to  do  this  in  parallel  would  be  excessive  –  the  overhead  related  to 

parallelization  would  be  too  high.  The  splitting  algorithm  is  outlined  in  code 

listing 5.5. This strategy is denoted by MST ('multirun sorted template').

After the partitioning is finished, each pair of subsets is intersected by some 

sorted set intersection strategy described above.

In order to parallelize copying of the data to GPU and back and execution of 

kernels,  multiple  command queues  are  used,  each  managed by a separate  thread. 

However, according to results in profiler, the OpenCL implementation was not able 

to exploit this command pattern.

26 We use the linear hashing with sorted keys (LHS) as this has proven as the fastest strategy in 
previous results.
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beginA := begin of setA;
beginB := begin of setB;
while (beginA != end of setA && beginB != end of setB) {
    glbA := beginA + maxDataSize;
    if (glbA < end of setA) {
        glbB := GLB of setA[glbA]
                                        from beginB to end of setB
    } else {
        glbA := end of setA
        glbB := end of setB
    }
    if (glbB - beginB > maxDataSize) {
        glbB := beginB + maxDataSize;
        glbA := GLB of setB[glbB]
                                        from beginA to end of setA
    }
    intersect setA[beginA .. lowerBoundA]
                                     with setB[beginB .. glbB]
    beginA = glbA;
    beginB = glbB;
}

Code listing 5.5: Partitioning of sorted sets

5.4.2 Indexing into Large Bitmap

The  idea  of  this  algorithm  is  thoroughly  described  in  section  5.3.3,  but  the 

implementation on CPU slightly differs. The sets are not transferred to GPU as large 

blocks which would not fit to the GPU memory but these are partitioned into several 

smaller subsets. The strategies below differ in the way how these smaller subsets are 

created.

The commands to copy the subsets from host (RAM) to GPU, and execute 

kernels hashing them into the bitmap, are sent to out-of-order command queue with 

event-based synchronization – we have to wait before the subset may be hashed until 

it it is present in the GPU memory. The same applies for subsets from the second set 

and kernels querying the bitmap and building output set.

In this scheme, the GPU can theoretically both copy data and execute kernels. 

However, according to the profiler, this opportunity was wasted.

We have implemented this algorithm in two variations, each partitions the data 

in  a  different  way.  The  simpler  version  'multirun  large  bitmap  simple  strategy' 

(MLBS) similarly to IBBN does not perform any preprocessing on CPU. We always 

insert  only  elements  from  one  of  the  16  ranges  into  the  bitmap,  therefore,  the 

algorithm comprises  of  16 loops.  In  each loop we send blocks  of  memory from 
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the first set (represented as continuous memory area) to the GPU. All elements which 

fit into the currently processed range are inserted into the bitmap. Then the second 

subset is also sent to the GPU in the same way, performing a query into the bitmap 

only for those elements which fit into the processed range.

In this version all the data are sent to GPU 16×, which requires a considerable 

amount of time. The transfer is ineffective because each element is actually utilized 

only once but it is ignored 15×. However, there is almost no CPU computing power 

required.

The alternate variation 'multirun large bitmap bucketing strategy' (MLBB) uses 

multiple CPU threads to split each set into 16 buckets. Then each bucket is sent to 

the GPU only once. Using more computing power on CPU is a trade-off for reduced 

memory throughput. Note that this is exactly the same as we did in ILBS strategy, 

only the first phase is processed on the CPU instead of the GPU.

As  we  want  to  evade  excessive  synchronization  each  thread  has  16  small 

thread-local  buffers.  The  thread  processes  one  part  of  the  set  and  buckets  the 

elements into its local buffers. When any of the buffers becomes full enough it is 

handed over to one of 16 shared lists27 of ready buffers which collect the processed 

elements – these lists represent the buckets. There is another special thread which 

sends these buffers to the GPU and manages the execution of kernels  that  insert 

elements into the bitmap or query it.

We  can  always  keep  only  single  bitmap  in  the  memory.  That  is  why  the 

elements from all lists cannot be sent in parallel. The management thread can start  

sending data from the first list of first set anytime but it has to send all data logically 

belonging the  this  list  before continuing – this  is  not  until  the  whole first  set  is 

processed. Then it can start sending data from first list of second set and execute 

kernels querying the bitmap. After both first lists are processed we can start with 

second list of first set and so on – now the bucketing threads are already finished.

In fact there are only two moments where manipulation with GPU is parallel to 

the CPU processing. The first is in partitioning the first set – it is not required to have 

the whole first bucket processed before starting to send the data from this bucket to 

27 The list is implemented by TBB concurrent queue.
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GPU. The second one is in bucketing the second set on CPU while the GPU inserts 

the elements from first set into the bitmap.

5.4.3 Results

We have tested the strategies on pairs of sets, each having up to 512M elements 

whereof 10% common to both sets. The maximum size of one subset generated from 

the large set was set to 4M as we are usually manipulating with multiple subsets in 

parallel, allowing some parallelism in the memory transfer and processing.

Intersection of Sorted Sets

We have developed only single strategy for intersection of sorted sets but as this 

strategy  is  applied  on  other  strategies,  we  provide  results  with  the  specific 

implementations of the inner strategy.

We do not show results with the interpolation search strategy (ISS) as the inner 

strategy because it has proven not fully operational. Despite the strategy provided 

correct  output,  the execution times were absolutely beyond expectations  – in  the 

slower way. The reason was not found but we have committed several experiments, 

varying the parameters of this strategy.

One explanation would be that the initial approximation of left and right key to 

0 and 232 – 1 is not fitting anymore with the different range. However, the error in 

initial range should be corrected after first two iterations. That would cause constant 

slowdown for each processed element, not dependent on the number of partitions. 

We have varied the size of subsets, changing the number of partitions. According to 

our observation the execution time is roughly proportional to the number of subsets 

created from one set. Therefore, the initial range error cannot explain such behavior.

We have also tried slower variants with correct initial range – the elements on 

both borders of the subset were actually loaded instead to the initial approximation of 

0 and 232 – 1. Then the execution times were substantially different for each setting 

of the subset size but we have not observed any pattern in this behavior.

Any error in implementation is eliminated – the inner strategy code is used also 

in the benchmark of smaller sets, and the templating strategy is used for other search 

strategies without any modifications. After all we omit the results of this strategy as 

untrustworthy.
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The look-up version of binary search strategy is also omitted as this had not 

improved the performance in the previous benchmarks.

The results  above correspond to  our  expectations.  Our  solution  scales  well 

regardless of the size of sets. For reasons mentioned above, the local search strategy 

with jobs created on CPU does not compete with interpolation search strategy and 

therefore  is  the  fastest  one,  followed  by  binary  search  strategy.  The  other  two 

strategies  provide  slightly  worse  results.  This  is  similar  to  the  results  we  have 

obtained in previous sections.

Hash-based Intersection

Here we present the bucketing strategy applied on linear hashing with sorted keys (as 

the fastest strategy on small sets) and both types of indexing into large bitmap.

The only useful strategy is the indexing into large bitmap with sets bucketed on 

the CPU prior to sending the data to GPU (MLBB). The intersection rate is lower 

than those achieved with smaller sets (there we had rate about 120 – 155 million keys 

per second) but still  significantly higher than the rate we measured for CPU-only 

algorithms.
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Chart 5.23: Multirun sorted template strategy



Both  indexing  into  large  bitmap  without  the  initial  bucketing  (MLBS)  and 

applying multirun bucketing template on linear hashing with sorted keys (MBT + 

LHS) showed unsatisfying performance, comparable with tbb::parallel_sort followed 

by merge-join.

5.5 Future Work
We have studied the simple form of intersected data and assumed that we process 

each  set  only  once.  Therefore,  we  could  not  use  more  time  and  memory  to 

pre-process it to any form that would help us perform the intersection faster. If there 

would be more requests to intersect one static set with multiple another ones, it could 

be useful to sort it or build a search tree to accelerate the further queries. In this case, 

we could also amortize the cost of building a hash-table.

In  real-world  databases  the  indices  are  sometimes  compressed  with  keys 

represented  using  delta-encoding28.  Such  data  representation  might  require  non-

28 The keys  are  stored not  by their  value  but  by difference to  previous key.  This  representation 
usually requires less bits but requires special handling when the difference is out of the expected 
range.
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Chart 5.24: Hash-based strategies on unsorted sets



trivial modification of the algorithms, having a significant effect on the performance, 

but allowing larger sets to be stored directly in the GPU memory. 

Another  variation of the problem is  the intersection of  multiple  sets.  Aside 

from not transferring the output sets back to RAM and forth to GPU, efficiency of 

various set  pair  selection strategies, or techniques comparing multiple sets at  one 

moment, could be analyzed.

We  could  also  test  scalability  of  our  algorithms  on  systems  with  multiple 

GPUs. The versions suited for large sets could be easily modified for such system 

configurations.
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6. Conclusion
In the presented work, we have provided implementations of several algorithms for 

sorting  and  set  intersection.  The  main  objective  was  to  decide  whether  these 

algorithms can be efficiently implemented on GPGPUs and which of them are the 

most suitable for this purpose. This work brings an extensive comparison of those 

algorithms with worthy results.

Although not all algorithms were efficiently portable to GPU and some of our 

attempts for optimization did not succeed, we have always found a way how to solve 

the problems of sorting and set intersection faster on GPU than on CPU. We have 

also presented solution how to overcome present-day hardware limitations of GPUs, 

although the OpenCL library did not enable us to fully exhibit some techniques.

We have not used data from real database systems and implementing a business 

ready  system  would  require  a  lot  of  effort.  Nevertheless,  we  provide  our 

implementation  of  various  algorithms  on  the  enclosed  DVD,  and  through  our 

comprehensive results offer a valuable advice for any developer considering usage 

of GPU in data-processing systems.
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Appendix A: Results

Size std::sort
tbb:: 

parallel_sort
QSSS QSBS BSB BSV BSL

4k 241.2 ± 2.3 µs 93 ± 36 µs 2120 ± 430 µs 2140 ± 300 µs 820 ± 410 µs 795 ± 41 µs 378 ± 11 µs

8k 529.4 ± 6.4 µs 175.3 ± 8.4 µs 2440 ± 290 µs 2400 ± 330 µs 885 ± 20 µs 889 ± 21 µs 431 ± 15 µs

16k 1157 ± 18 µs 349 ± 11 µs 3600 ± 600 µs 3590 ± 730 µs 950 ± 59 µs 955 ± 45 µs 490 ± 17 µs

32k 2456 ± 27 µs 798 ± 42 µs 5.2 ± 1.1 ms 5140 ± 980 µs 1126 ± 48 µs 1123.3 ± 9.4 µs 590 ± 11 µs

64k 5189 ± 28 µs 1528 ± 30 µs 9.5 ± 2.6 ms 9.7 ± 2.6 ms 1343 ± 19 µs 1334 ± 17 µs 852 ± 11 µs

128k 10909 ± 48 µs 2857 ± 74 µs 14.3 ± 3.7 ms 13,8 ± 2.9 ms 1883.2 ± 8.8 µs 1875 ± 10 µs 1380 ± 20 µs

256k 23078 ± 79 µs 6540 ± 490 µs 24 ± 6.1 ms 23.5 ± 5.5 ms 3711 ± 12 µs 3673 ± 11 µs 2492 ± 24 µs

512k 48410 ± 170 µs 13.3 ± 1.5 ms 52 ± 17 ms 51 ± 17 ms 6702 ± 24 µs 6810 ± 28 µs 4718 ± 43 µs

1M 101420 ± 260 µs 26 ± 2.5 ms 95 ± 35 ms 92 ± 28 ms 13421 ± 55 µs 13612 ± 45 µs 9329 ± 37 µs

2M 212880 ± 540 µs 55.7 ± 1.4 ms 172 ± 37 ms 168 ± 31 ms 27710 ± 89 µs 28078 ± 92 µs 19880 ± 160 µs

4M 445.2 ± 1.4 ms 104.3 ± 3.6 ms 530 ± 160 ms 500 ± 130 ms 57030 ± 240 µs 57820 ± 210 µs 40820 ± 140 µs

8M 920.6 ± 3.5 ms 239 ± 16 ms 700 ± 170 ms 690 ± 190 ms 119450 ± 260 µs 121040 ± 180 µs 86010 ± 230 µs

16M 1916.5 ± 7.5 ms 470 ± 23 ms 1780 ± 620 ms 1950 ± 620 ms 252200 ± 610 µs 255720 ± 360 µs 182030 ± 540 µs

Size MSB MST MSCBS MSCBS32 MISCB MISCBS32

4k 369 ± 17 µs 348 ± 16 µs 364 ± 16 µs 334 ± 21 µs 357 ± 12 µs 340 ± 33 µs

8k 472 ± 16 µs 368 ± 14 µs 386 ± 16 µs 356 ± 20 µs 378 ± 15 µs 353.3 ± 9.1 µs

16k 598 ± 47 µs 435 ± 24 µs 419.7 ± 8.6 µs 418 ± 15 µs 427 ± 11 µs 428 ± 59 µs

32k 838.3 ± 9.7 µs 610 ± 14 µs 552 ± 10 µs 546 ± 10 µs 572 ± 11 µs 570 ± 150 µs

64k 1468 ± 47 µs 853.7 ± 9.2 µs 797 ± 15 µs 823 ± 18 µs 797.8 ± 9.1 µs 831 ± 13 µs

128k 2694 ± 20 µs 1344.2 ± 10 µs 1267 ± 13 µs 1281 ± 10 µs 1264.8 ± 9.5 µs 1286.8 ± 9 µs

256k 5051 ± 28 µs 2497.2 ± 9.7 µs 2354 ± 12 µs 2379 ± 11 µs 2322 ± 11 µs 2362 ± 10 µs

512k 9824 ± 32 µs 4682 ± 26 µs 4385 ± 35 µs 4443 ± 40 µs 4276 ± 29 µs 4359 ± 23 µs

1M 19780 ± 150 µs 9272 ± 44 µs 8675 ± 43 µs 8772 ± 37 µs 8368 ± 34 µs 8540 ± 37 µs

2M 40650 ± 100 µs 19250 ± 120 µs 18190 ± 110 µs 18388 ± 99 µs 17262 ± 100 µs 17598 ± 95 µs

4M 84030 ± 170 µs 40150 ± 170 µs 37930 ± 160 µs 38190 ± 270 µs 35490 ± 160 µs 35850 ± 400 µs

8M 174950 ± 210 µs 82330 ± 480 µs 78160 ± 210 µs 78940 ± 340 µs 72920 ± 250 µs 74110 ± 170 µs

16M 365350 ± 720 µs 172970 ± 430 µs 164220 ± 410 µs 165680 ± 480 µs 150090 ± 400 µs 152440 ± 380 µs

Table 1: Sorting time: keys-only sequences
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Size std::sort
tbb:: 

parallel_sort
QSSS QSBS BSB BSV BSL

4k 254 ± 13 µs 105 ± 36 µs 2220 ± 390 µs 2130 ± 260 µs 891 ± 35 µs 903 ± 22 µs 516 ± 23 µs

8k 558.5 ± 6 µs 205 ± 10 µs 2540 ± 400 µs 2500 ± 500 µs 1020 ± 130 µs 1005 ± 30 µs 577 ± 18 µs

16k 1209 ± 17 µs 391 ± 13 µs 3730 ± 680 µs 3690 ± 550 µs 1122 ± 25 µs 1121 ± 22 µs 664 ± 13 µs

32k 2552 ± 20 µs 885 ± 43 µs 5.3 ± 1.2 ms 5.3 ± 1.1 ms 1401 ± 19 µs 1357 ± 15 µs 923 ± 13 µs

64k 5411 ± 21 µs 1688 ± 28 µs 10.6 ± 2.6 ms 10.5 ± 2.2 ms 1882 ± 15 µs 1928 ± 28 µs 1377 ± 36 µs

128k 11298 ± 32 µs 3178 ± 86 µs 15.5 ± 4.2 ms 16 ± 3.7 ms 3532 ± 64 µs 3566 ± 39 µs 2412 ± 24 µs

256k 23926 ± 65 µs 7130 ± 470 µs 26.3 ± 6.3 ms 25.1 ± 4.8 ms 6556 ± 67 µs 6696 ± 41 µs 4385 ± 30 µs

512k 50400 ± 110 µs 14.6 ± 1.5 ms 55 ± 18 ms 54 ± 14 ms 12477 ± 21 µs 12700 ± 15 µs 8271 ± 41 µs

1M 105610 ± 240 µs 29 ± 2.4 ms 111 ± 34 ms 107 ± 34 ms 25009 ± 27 µs 25396 ± 39 µs 16400 ± 110 µs

2M 221670 ± 530 µs 62.5 ± 1.3 ms 182 ± 50 ms 179 ± 40 ms 51811 ± 90 µs 52690 ± 86 µs 33810 ± 140 µs

4M 461090 ± 960 µs 113.4 ± 3.7 ms 510 ± 150 ms 520 ± 160 ms 108670 ± 270 µs 110520 ± 190 µs 70620 ± 170 µs

8M 954.4 ± 2.3 ms 260 ± 16 ms 780 ± 20 ms 760 ± 220 ms 227430 ± 630 µs 231760 ± 280 µs 150170 ± 290 µs

16M 1994.8 ± 4.7 ms 519 ± 23 ms 2160 ± 780 ms 2140 ± 750 ms 478990 ± 310 µs 485680 ± 720 µs 315000 ± 990 µs

Size MSB MST MSCBS MSCBS32 MISCB MISCBS32

4k 484 ± 28 µs 417 ± 16 µs 487 ± 12 µs 427 ± 13 µs 481.9 ± 9.8 µs 429 ± 13 µs

8k 552 ± 15 µs 454 ± 14 µs 515 ± 12 µs 453 ± 18 µs 515 ± 12 µs 454 ± 17 µs

16k 708 ± 12 µs 591 ± 73 µs 599 ± 16 µs 569 ± 13 µs 600 ± 11 µs 572 ± 11 µs

32k 1186 ± 11 µs 865 ± 11 µs 858 ± 11 µs 849.7 ± 9.4 µs 857.6 ± 9.6 µs 848 ± 13 µs

64k 2040 ± 68 µs 1293 ± 32 µs 1192 ± 67 µs 1216 ± 16 µs 1173 ± 20 µs 1290 ± 92 µs

128k 3642 ± 60 µs 2207 ± 25 µs 2147 ± 24 µs 2153 ± 21 µs 2134 ± 23 µs 2149 ± 17 µs

256k 6698 ± 43 µs 3921 ± 31 µs 3849 ± 24 µs 3852 ± 24 µs 3829 ± 23 µs 3840 ± 25 µs

512k 12722 ± 58 µs 7175 ± 40 µs 7082 ± 49 µs 7050 ± 220 µs 6961 ± 49 µs 6966 ± 40 µs

1M 25108 ± 88 µs 13996 ± 72 µs 13691 ± 91 µs 13669 ± 82 µs 13458 ± 75 µs 13465 ± 73 µs

2M 50580 ± 200 µs 28270 ± 180 µs 27438 ± 76 µs 27130 ± 220 µs 26700 ± 210 µs 26760 ± 200 µs

4M 103730 ± 360 µs 57500 ± 160 µs 56390 ± 480 µs 56020 ± 190 µs 53980 ± 190 µs 54100 ± 170 µs

8M 213530 ± 240 µs 116730 ± 310 µs 114950 ± 330 µs 114590 ± 240 µs 109540 ± 330 µs 109750 ± 250 µs

16M 441720 ± 440 µs 240110 ± 440 µs 236560 ± 490 µs 235910 ± 410 µs 223040 ± 450 µs 223370 ± 470 µs

Table 2: Sorting time: key-value pair sequences
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Ratio of elements common to both sets

Size 0% 0.01% 10% 50% 90% 100%

4k 37.5 ± 9.7 µs 36.15 ± 0.89 µs 37.2 ± 1.1 µs 39.7 ± 1.2 µs 24.2 ± 1 µs 18.2 ± 1.2 µs

8k 73.5 ± 1.7 µs 73.4 ± 1.5 µs 75.5 ± 1.9 µs 81.5 ± 1.9 µs 49.3 ± 1.2 µs 36.2 ± 1.2 µs

16k 148.8 ± 2.1 µs 147.9 ± 2.2 µs 152 ± 2.4 µs 164.2 ± 2.7 µs 100.9 ± 3 µs 73.8 ± 2.4 µs

32k 297.8 ± 2.9 µs 293 ± 3 µs 306.3 ± 3.3 µs 329.9 ± 3.8 µs 201.6 ± 3.2 µs 152.1 ± 4.1 µs

64k 597.4 ± 3.5 µs 595.9 ± 3.2 µs 612.7 ± 3.7 µs 660.2 ± 5.7 µs 404.2 ± 6.7 µs 295.6 ± 6.4 µs

128k 1192 ± 1.6 µs 1192.9 ± 1.7 µs 1227 ± 3.1 µs 1317 ± 7 µs 811 ± 14 µs 593 ± 12 µs

256k 2354.8 ± 1.9 µs 2384.3 ± 3.2 µs 2435.8 ± 4.6 µs 2639 ± 15 µs 1610 ± 26 µs 1188 ± 28 µs

512k 4705 ± 15 µs 4775 ± 4.7 µs 4915.5 ± 9.9 µs 5279 ± 34 µs 3227 ± 56 µs 2378 ± 61 µs

1M 9583.6 ± 8 µs 9586.1 ± 7.8 µs 9908 ± 20 µs 10665 ± 37 µs 6596 ± 68 µs 4836 ± 76 µs

2M 19050 ± 11 µs 19031.8 ± 9.2 µs 19864 ± 16 µs 21312 ± 68 µs 13100 ± 100 µs 9650 ± 120 µs

4M 38520 ± 24 µs 38562 ± 21 µs 39751 ± 43 µs 42700 ± 120 µs 26200 ± 200 µs 19320 ± 210 µs

8M 77071 ± 14 µs 77131 ± 24 µs 79900 ± 340 µs 87250 ± 160 µs 55830 ± 130 µs 42962 ± 37 µs

16M 154080 ± 29 µs 153740 ± 750 µs 159590 ± 580 µs 174020 ± 310 µs 111470 ± 240 µs 85348 ± 49 µs

Table 3: Intersection time: CPU merge-join

Ratio of elements common to both sets

Size 0% 0.01% 10% 50% 90% 100%

4k 181 ± 28 µs 186 ± 18 µs 318 ± 15 µs 321 ± 25 µs 320 ± 16 µs 324 ± 23 µs

8k 322 ± 21 µs 326 ± 23 µs 322 ± 20 µs 325 ± 17 µs 349 ± 25 µs 348 ± 22 µs

16k 364 ± 16 µs 363 ± 12 µs 364 ± 24 µs 388 ± 20 µs 397 ± 21 µs 399 ± 20 µs

32k 468 ± 16 µs 467 ± 14 µs 472 ± 16 µs 504 ± 21 µs 547 ± 18 µs 540 ± 22 µs

64k 595 ± 11 µs 593 ± 27 µs 613.5 ± 9.4 µs 610 ± 36 µs 675 ± 54 µs 768 ± 35 µs

128k 1062 ± 22 µs 939 ± 97 µs 1102 ± 17 µs 1241 ± 22 µs 1123 ± 85 µs 1120 ± 92 µs

256k 1570 ± 160 µs 1789 ± 22 µs 1867 ± 25 µs 1844 ± 93 µs 2270 ± 130 µs 2060 ± 51 µs

512k 2330 ± 100 µs 2707 ± 27 µs 2700 ± 110 µs 2937 ± 72 µs 3395 ± 61 µs 3397 ± 57 µs

1M 4247 ± 67 µs 4263 ± 98 µs 4533 ± 89 µs 5342 ± 41 µs 6295 ± 31 µs 6561 ± 23 µs

2M 7903 ± 82 µs 7901 ± 73 µs 8460 ± 110 µs 10121 ± 44 µs 11700 ± 150 µs 12090 ± 87 µs

4M 14866 ± 66 µs 14860 ± 110 µs 15711 ± 48 µs 19180 ± 120 µs 22650 ± 140 µs 23130 ± 180 µs

8M 28840 ± 120 µs 28894 ± 99 µs 30724 ± 52 µs 36820 ± 190 µs 42960 ± 250 µs 44330 ± 120 µs

16M 56820 ± 140 µs 56816 ± 94 µs 60460 ± 200 µs 72640 ± 210 µs 84710 ± 240 µs 87670 ± 250 µs

Table 4: Host-GPU memory transfer only

Ratio of elements common to both sets

Size 0% 0.01% 10% 50% 90% 100%

4k 201.7 ± 8.7 µs 217 ± 16 µs 414 ± 30 µs 423 ± 36 µs 449 ± 39 µs 469 ± 20 µs

8k 381 ± 21 µs 386 ± 23 µs 424 ± 31 µs 455 ± 33 µs 460 ± 22 µs 467 ± 20 µs

16k 433 ± 24 µs 457 ± 15 µs 464 ± 31 µs 473 ± 35 µs 510 ± 44 µs 511 ± 20 µs

32k 525 ± 16 µs 579 ± 30 µs 585 ± 26 µs 658 ± 13 µs 713 ± 13 µs 724 ± 14 µs

64k 699 ± 15 µs 729 ± 30 µs 765 ± 11 µs 873 ± 33 µs 1012 ± 14 µs 967 ± 25 µs

128k 1213 ± 34 µs 1249 ± 19 µs 1308 ± 23 µs 1507 ± 17 µs 1703 ± 18 µs 1760.2 ± 8.9 µs

256k 2205 ± 13 µs 2255 ± 17 µs 2364 ± 11 µs 2760 ± 16 µs 3145 ± 17 µs 3200 ± 110 µs

512k 3180 ± 120 µs 3345 ± 16 µs 3542 ± 26 µs 4312 ± 12 µs 4846 ± 98 µs 5046 ± 99 µs

1M 5219 ± 22 µs 5220 ± 26 µs 5519 ± 21 µs 7280 ± 210 µs 8660 ± 240 µs 9070 ± 250 µs

2M 9480 ± 140 µs 9530 ± 45 µs 9910 ± 300 µs 13090 ± 410 µs 15810 ± 620 µs 16640 ± 340 µs

4M 17908 ± 77 µs 17850 ± 160 µs 19070 ± 120 µs 24920 ± 190 µs 30700 ± 260 µs 32000 ± 360 µs

8M 34790 ± 160 µs 35020 ± 160 µs 38320 ± 550 µs 50650 ± 460 µs 62550 ± 160 µs 64240 ± 930 µs

16M 69040 ± 130 µs 69160 ± 130 µs 76190 ± 300 µs 98.7 ± 1.8 ms 121 ± 2.2 ms 126670 ± 540 µs

Table 5: Intersection time: Binary search (BSS)
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Ratio of elements common to both sets

Size 0% 0.01% 10% 50% 90% 100%

4k 200.7 ± 6.9 µs 217 ± 16 µs 391 ± 24 µs 432 ± 50 µs 443 ± 43 µs 454 ± 38 µs

8k 383 ± 23 µs 385 ± 21 µs 427 ± 35 µs 461 ± 49 µs 474 ± 12 µs 469 ± 18 µs

16k 425 ± 14 µs 471 ± 24 µs 470 ± 44 µs 472 ± 28 µs 508 ± 50 µs 513 ± 22 µs

32k 521 ± 17 µs 570 ± 27 µs 589 ± 25 µs 661 ± 13 µs 715 ± 14 µs 724.9 ± 9.6 µs

64k 701 ± 15 µs 736 ± 12 µs 769.3 ± 9.7 µs 863 ± 30 µs 1018 ± 12 µs 978 ± 26 µs

128k 1235 ± 31 µs 1254 ± 18 µs 1314 ± 17 µs 1522 ± 19 µs 1715 ± 17 µs 1761 ± 12 µs

256k 2215 ± 18 µs 2265 ± 14 µs 2375 ± 14 µs 2758.3 ± 5.1 µs 3161 ± 13 µs 3244 ± 12 µs

512k 3321 ± 27 µs 3368 ± 17 µs 3565 ± 29 µs 4346 ± 14 µs 4901 ± 26 µs 5063 ± 16 µs

1M 5321 ± 36 µs 5450 ± 52 µs 6097 ± 76 µs 7425 ± 21 µs 8806 ± 40 µs 9159 ± 18 µs

2M 9830 ± 33 µs 9530 ± 130 µs 10096 ± 22 µs 13150 ± 370 µs 16720 ± 110 µs 16740 ± 340 µs

4M 18548 ± 38 µs 18390 ± 150 µs 20175 ± 79 µs 25600 ± 260 µs 31180 ± 300 µs 32720 ± 150 µs

8M 36350 ± 160 µs 36780 ± 130 µs 40390 ± 130 µs 54490 ± 160 µs 63530 ± 380 µs 68.1 ± 1.7 ms

16M 74380 ± 340 µs 75680 ± 150 µs 84230 ± 340 µs 105.8 ± 1.2 ms 127130 ± 770 µs 132.4 ± 1.5 ms

Table 6: Intersection time: Binary search with look-up (BSLS)

Ratio of elements common to both sets

Size 0% 0.01% 10% 50% 90% 100%

4k 218 ± 19 µs 217 ± 15 µs 394 ± 26 µs 416 ± 29 µs 429 ± 26 µs 451 ± 37 µs

8k 380 ± 18 µs 372 ± 19 µs 431 ± 49 µs 458 ± 12 µs 471 ± 32 µs 470 ± 18 µs

16k 422 ± 15 µs 467 ± 55 µs 445 ± 25 µs 470 ± 17 µs 507 ± 44 µs 516 ± 24 µs

32k 514 ± 17 µs 557 ± 28 µs 590 ± 31 µs 652 ± 11 µs 706 ± 16 µs 715.8 ± 9.3 µs

64k 670 ± 24 µs 725 ± 14 µs 738 ± 21 µs 875 ± 33 µs 993 ± 43 µs 997 ± 41 µs

128k 1192 ± 18 µs 1223 ± 17 µs 1281 ± 18 µs 1481 ± 25 µs 1674 ± 21 µs 1719 ± 15 µs

256k 2153 ± 19 µs 2202 ± 20 µs 2310 ± 13 µs 2676 ± 15 µs 3072 ± 12 µs 3163 ± 17 µs

512k 3169 ± 16 µs 3218 ± 17 µs 3418 ± 21 µs 4165 ± 16 µs 4703 ± 29 µs 4901 ± 23 µs

1M 4930 ± 150 µs 5011 ± 90 µs 5680 ± 210 µs 7061 ± 31 µs 8352 ± 26 µs 8720 ± 120 µs

2M 8830 ± 130 µs 8770 ± 84 µs 9298 ± 58 µs 12680 ± 390 µs 15400 ± 300 µs 16300 ± 200 µs

4M 16730 ± 170 µs 16550 ± 160 µs 17830 ± 280 µs 23420 ± 230 µs 28850 ± 130 µs 30120 ± 200 µs

8M 32080 ± 140 µs 32080 ± 180 µs 35490 ± 530 µs 47390 ± 500 µs 58.9 ± 1.7 ms 62300 ± 780 µs

16M 63345 ± 83 µs 63640 ± 130 µs 70470 ± 250 µs 93110 ± 600 µs 113.5 ± 1.9 ms 117900 ± 690 µs

Table 7: Intersection time: Interpolation search (ISS)

Ratio of elements common to both sets

Size 0% 0.01% 10% 50% 90% 100%

4k 218 ± 16 µs 248 ± 42 µs 408 ± 33 µs 450 ± 38 µs 464 ± 19 µs 458 ± 42 µs

8k 392 ± 20 µs 386 ± 22 µs 425 ± 34 µs 460 ± 14 µs 459 ± 25 µs 470.6 ± 7.3 µs

16k 420 ± 24 µs 455 ± 35 µs 466 ± 37 µs 472 ± 30 µs 517 ± 43 µs 502 ± 25 µs

32k 530 ± 15 µs 570 ± 28 µs 604 ± 17 µs 658 ± 11 µs 711 ± 11 µs 722.3 ± 9.6 µs

64k 700 ± 15 µs 736 ± 14 µs 773 ± 18 µs 872 ± 36 µs 975 ± 29 µs 998 ± 50 µs

128k 1209 ± 23 µs 1244 ± 16 µs 1306 ± 25 µs 1502 ± 20 µs 1695 ± 17 µs 1744 ± 28 µs

256k 2193 ± 22 µs 2236 ± 29 µs 2346 ± 14 µs 2718 ± 14 µs 3111 ± 13 µs 3190 ± 14 µs

512k 3271 ± 13 µs 3311 ± 14 µs 3506 ± 21 µs 4253 ± 18 µs 4789 ± 28 µs 4991 ± 36 µs

1M 5488 ± 37 µs 5541 ± 29 µs 5943 ± 19 µs 7213 ± 32 µs 8544 ± 27 µs 8893 ± 41 µs

2M 9707 ± 54 µs 9370 ± 240 µs 10050 ± 170 µs 13150 ± 340 µs 15830 ± 360 µs 16400 ± 200 µs

4M 18146 ± 72 µs 17990 ± 170 µs 19140 ± 210 µs 24540 ± 210 µs 29890 ± 190 µs 31080 ± 190 µs

8M 35550 ± 120 µs 35920 ± 62 µs 38600 ± 490 µs 51840 ± 550 µs 63010 ± 230 µs 65490 ± 630 µs

16M 73620 ± 340 µs 74160 ± 160 µs 81540 ± 370 µs 103090 ± 590 µs 122 ± 2.2 ms 127210 ± 550 µs

Table 8: Intersection time: Interpolation search with look-up (ISLS)
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Ratio of elements common to both sets

Size 0% 0.01% 10% 50% 90% 100%

4k 226 ± 23 µs 272 ± 34 µs 404 ± 34 µs 448 ± 19 µs 432 ± 29 µs 446 ± 38 µs

8k 388 ± 18 µs 389 ± 17 µs 413 ± 21 µs 457 ± 13 µs 463 ± 32 µs 473 ± 11 µs

16k 426 ± 13 µs 445 ± 30 µs 464 ± 35 µs 476 ± 25 µs 503 ± 25 µs 486 ± 20 µs

32k 529 ± 15 µs 570 ± 26 µs 604 ± 16 µs 661 ± 19 µs 716 ± 10 µs 725 ± 15 µs

64k 696 ± 21 µs 740 ± 11 µs 765 ± 22 µs 879 ± 23 µs 975 ± 28 µs 985 ± 29 µs

128k 1213 ± 17 µs 1263 ± 28 µs 1292 ± 22 µs 1516 ± 17 µs 1705 ± 27 µs 1747 ± 27 µs

256k 2235 ± 17 µs 2284.8 ± 8.4 µs 2386 ± 11 µs 2761 ± 17 µs 3146 ± 16 µs 3224 ± 12 µs

512k 3337 ± 30 µs 3374 ± 18 µs 3583 ± 22 µs 4318 ± 13 µs 4845 ± 68 µs 5033 ± 30 µs

1M 5585 ± 30 µs 5647 ± 34 µs 6061 ± 19 µs 7318 ± 27 µs 8635 ± 29 µs 8985 ± 90 µs

2M 9590 ± 200 µs 9265 ± 86 µs 10120 ± 240 µs 13160 ± 310 µs 15770 ± 340 µs 16350 ± 130 µs

4M 17950 ± 160 µs 17880 ± 170 µs 19170 ± 200 µs 24500 ± 220 µs 29940 ± 220 µs 31076 ± 81 µs

8M 34610 ± 160 µs 34560 ± 150 µs 37820 ± 490 µs 49.2 ± 1.1 ms 62100 ± 300 µs 63200 ± 440 µs

16M 68462 ± 83 µs 69130 ± 180 µs 75370 ± 220 µs 96.1 ± 1.4 ms 116600 ± 610 µs 121.1 ± 1.3 ms

Table 9: Intersection time: Generalized quadratic search (GQSS)

Ratio of elements common to both sets

Size 0% 0.01% 10% 50% 90% 100%

4k 307 ± 28 µs 519 ± 24 µs 581 ± 61 µs 575 ± 40 µs 624 ± 48 µs 625 ± 61 µs

8k 541 ± 28 µs 556 ± 35 µs 568 ± 43 µs 630 ± 220 µs 617 ± 30 µs 655 ± 16 µs

16k 584 ± 25 µs 618 ± 51 µs 640 ± 44 µs 637 ± 28 µs 696 ± 76 µs 698 ± 34 µs

32k 717 ± 22 µs 729 ± 25 µs 784 ± 61 µs 857 ± 14 µs 912 ± 37 µs 921.9 ± 9 µs

64k 891 ± 56 µs 942 ± 31 µs 942 ± 39 µs 1040 ± 36 µs 1137 ± 46 µs 1182 ± 65 µs

128k 1340 ± 23 µs 1458 ± 31 µs 1461 ± 18 µs 1745 ± 16 µs 1920 ± 18 µs 1955 ± 17 µs

256k 2450 ± 21 µs 2493 ± 15 µs 2608 ± 18 µs 3029 ± 27 µs 3415 ± 21 µs 3471 ± 19 µs

512k 3470 ± 120 µs 3581 ± 26 µs 3790 ± 22 µs 4624 ± 20 µs 5172 ± 21 µs 5318 ± 22 µs

1M 5733 ± 45 µs 5764 ± 30 µs 6259 ± 26 µs 7720 ± 31 µs 9141 ± 26 µs 9494 ± 77 µs

2M 9330 ± 120 µs 9300 ± 190 µs 9940 ± 110 µs 13270 ± 600 µs 16740 ± 180 µs 16950 ± 570 µs

4M 17540 ± 260 µs 17250 ± 250 µs 19090 ± 340 µs 26360 ± 100 µs 31680 ± 350 µs 32050 ± 450 µs

8M 34260 ± 250 µs 34050 ± 390 µs 37730 ± 700 µs 51530 ± 700 µs 62940 ± 450 µs 64560 ± 950 µs

16M 67460 ± 590 µs 67830 ± 480 µs 75540 ± 280 µs 98.8 ± 1.7 ms 121.6 ± 2.2 ms 123420 ± 220 µs

Table 10: Intersection time: Local search with jobs created on CPU (LSJCCPUS)

Ratio of elements common to both sets

Size 0% 0.01% 10% 50% 90% 100%

4k 315 ± 34 µs 534 ± 27 µs 588 ± 39 µs 581 ± 30 µs 637 ± 73 µs 617 ± 37 µs

8k 555 ± 26 µs 562 ± 26 µs 614 ± 65 µs 624 ± 49 µs 641 ± 27 µs 671 ± 52 µs

16k 629 ± 31 µs 655 ± 22 µs 672 ± 59 µs 676 ± 52 µs 712 ± 27 µs 730 ± 36 µs

32k 757 ± 36 µs 781 ± 53 µs 833 ± 39 µs 902 ± 40 µs 954 ± 41 µs 992 ± 16 µs

64k 938 ± 18 µs 985 ± 46 µs 1017 ± 13 µs 1155 ± 13 µs 1233 ± 32 µs 1285 ± 30 µs

128k 1495 ± 57 µs 1585 ± 28 µs 1670 ± 70 µs 1877 ± 24 µs 2084 ± 41 µs 2206 ± 17 µs

256k 2658 ± 23 µs 2733 ± 31 µs 2846 ± 18 µs 3323 ± 14 µs 3810 ± 24 µs 3950 ± 14 µs

512k 3733 ± 29 µs 4013 ± 25 µs 4249 ± 16 µs 5149 ± 17 µs 5943 ± 33 µs 6238 ± 26 µs

1M 6634 ± 37 µs 6671 ± 42 µs 7144 ± 30 µs 8786 ± 42 µs 10477 ± 77 µs 11159 ± 95 µs

2M 11010 ± 150 µs 10930 ± 100 µs 11750 ± 180 µs 15310 ± 150 µs 18760 ± 220 µs 19990 ± 430 µs

4M 21233 ± 73 µs 21170 ± 160 µs 22410 ± 230 µs 29840 ± 240 µs 35960 ± 200 µs 39030 ± 240 µs

8M 41340 ± 200 µs 41380 ± 170 µs 45000 ± 490 µs 59790 ± 660 µs 73150 ± 320 µs 78.7 ± 1.4 ms

16M 82380 ± 170 µs 82070 ± 390 µs 89040 ± 560 µs 116420 ± 970 µs 142.8 ± 1.7 ms 152.6 ± 1 ms

Table 11: Intersection time: Local search with jobs created on GPU (LSJCGPUS)
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Ratio of elements common to both sets

Size 0% 0.01% 10% 50% 90% 100%

4k 211 ± 90 µs 192 ± 11 µs 199 ± 13 µs 216 ± 13 µs 200 ± 12 µs 189.1 ± 9.5 µs

8k 355 ± 18 µs 358 ± 19 µs 367 ± 19 µs 399 ± 14 µs 373 ± 15 µs 351 ± 19 µs

16k 691 ± 16 µs 726 ± 16 µs 718 ± 13 µs 795 ± 14 µs 722 ± 22 µs 676 ± 18 µs

32k 1441 ± 20 µs 1374 ± 29 µs 1664 ± 28 µs 1493 ± 44 µs 1341 ± 23 µs 1274 ± 14 µs

64k 3029 ± 86 µs 2678 ± 35 µs 2878 ± 41 µs 2953 ± 29 µs 2762 ± 48 µs 2634 ± 53 µs

128k 5660 ± 160 µs 6100 ± 170 µs 5690 ± 190 µs 6082 ± 73 µs 5646 ± 96 µs 5260 ± 130 µs

256k 11570 ± 600 µs 13360 ± 470 µs 12560 ± 250 µs 13240 ± 510 µs 11090 ± 210 µs 10960 ± 570 µs

512k 23570 ± 820 µs 22380 ± 950 µs 23190 ± 500 µs 26610 ± 420 µs 23240 ± 460 µs 23140 ± 350 µs

1M 46.3 ± 1.0 ms 49.2 ± 2.7 ms 49.4 ± 1.7 ms 50400 ± 830 µs 47210 ± 890 µs 45.6 ± 1.3 ms

2M 99.9 ± 4.8 ms 94.7 ± 3.0 ms 103.6 ± 5.9 ms 105.5 ± 4.2 ms 98.1 ± 3.1 ms 93.1 ± 2.2 ms

4M 223 ± 4.6 ms 212.5 ± 7.1 ms 206.6 ± 4.4 ms 239.2 ± 4.8 ms 196.9 ± 3.5 ms 209.4 ± 6.2 ms

8M 419 ± 14 ms 393 ± 11 ms 460 ± 10 ms 486 ± 13 ms 417 ± 25 ms 387.2 ± 6.2 ms

16M 894 ± 30 ms 893 ± 25 ms 872 ± 20 ms 986 ± 17 ms 876 ± 35 ms 831 ± 31 ms

Table 12: Intersection times: CPU tbb::sort + merge-join

Ratio of elements common to both sets

Size 0% 0.01% 10% 50% 90% 100%

4k 72.8 ± 2.8 ms 74.2 ± 2.7 ms 73.7 ± 3.1 ms 73.7 ± 3.1 ms 73.1 ± 3.0 ms 72.9 ± 2.9 ms

8k 73,8 ± 3.0 ms 73.4 ± 3.1 ms 73.8 ± 3.5 ms 73.9 ± 3.3 ms 73.8 ± 3.2 ms 73.7 ± 3.6 ms

16k 74.1 ± 3.4 ms 74.7 ± 2.9 ms 74.2 ± 2.9 ms 73.8 ± 3.6 ms 74.3 ± 3.4 ms 74.5 ± 3.4 ms

32k 74.4 ± 3.4 ms 75.3 ± 3.0 ms 74.5 ± 3.4 ms 74.1 ± 2.8 ms 73.4 ± 2.7 ms 73.3 ± 2.9 ms

64k 76.0 ± 2.7 ms 76.0 ± 2.5 ms 75.9 ± 2.6 ms 75.6 ± 3.0 ms 75.2 ± 2.5 ms 75.2 ± 2.8 ms

128k 78.1 ± 2.5 ms 78.1 ± 2.7 ms 78.3 ± 3.0 ms 78.1 ± 2.6 ms 77.5 ± 3.0 ms 77.3 ± 2.5 ms

256k 83.6 ± 2.3 ms 83.2 ± 3.1 ms 83.0 ± 2.3 ms 84.1 ± 2.7 ms 84.4 ± 2.3 ms 83.8 ± 2.5 ms

512k 92.9 ± 3.1 ms 93.2 ± 2.8 ms 92.6 ± 2.5 ms 94.1 ± 3.3 ms 94.2 ± 2.7 ms 95.1 ± 2.4 ms

1M 113.1 ± 3.0 ms 112.9 ± 2.6 ms 113.1 ± 2.7 ms 114110 ± 750 µs 114410 ± 700 µs 114460 ± 870 µs

2M 134270 ± 570 µs 134380 ± 530 µs 134970 ± 550 µs 136860 ± 570 µs 137180 ± 440 µs 137460 ± 520 µs

4M 167270 ± 410 µs 167450 ± 410 µs 168230 ± 460 µs 171890 ± 430 µs 172670 ± 700 µs 172670 ± 470 µs

8M 221810 ± 760 µs 221970 ± 800 µs 224000 ± 780 µs 231580 ± 970 µs 233900 ± 930 µs 234480 ± 860 µs

16M 325.8 ± 1.7 ms 325.5 ± 1.4 ms 328.5 ± 1.2 ms 345.4 ± 1.7 ms 348.5 ± 1.4 ms 351.2 ± 1.9 ms

Table 13: Intersection time: CPU two-pass bucketing

Ratio of elements common to both sets

Size 0% 0.01% 10% 50% 90% 100%

4k 178 ± 23 µs 321 ± 23 µs 317 ± 23 µs 321 ± 26 µs 326 ± 21 µs 325 ± 25 µs

8k 340 ± 14 µs 330 ± 28 µs 325 ± 24 µs 342 ± 29 µs 363 ± 23 µs 361 ± 23 µs

16k 368 ± 11 µs 363 ± 19 µs 369 ± 11 µs 387 ± 13 µs 406 ± 11 µs 399 ± 28 µs

32k 466 ± 11 µs 466 ± 10 µs 468 ± 19 µs 495 ± 18 µs 537 ± 20 µs 548 ± 29 µs

64k 601 ± 14 µs 592 ± 34 µs 619 ± 10 µs 540 ± 56 µs 756 ± 27 µs 616 ± 72 µs

128k 1060 ± 18 µs 1080 ± 36 µs 1108 ± 22 µs 1247 ± 16 µs 1382 ± 31 µs 1230 ± 120 µs

256k 1797 ± 25 µs 1790 ± 25 µs 1874 ± 32 µs 1860 ± 140 µs 2022 ± 62 µs 2079 ± 95 µs

512k 2706 ± 23 µs 2523 ± 100 µs 2853 ± 18 µs 3100 ± 100 µs 3423 ± 60 µs 3554 ± 66 µs

1M 4243 ± 70 µs 4334 ± 90 µs 4566 ± 95 µs 5419 ± 44 µs 6323 ± 65 µs 6604 ± 33 µs

2M 7960 ± 150 µs 8009 ± 64 µs 8539 ± 99 µs 10140 ± 100 µs 11972 ± 91 µs 12240 ± 120 µs

4M 14982 ± 84 µs 15112 ± 94 µs 15982 ± 42 µs 19468 ± 53 µs 22490 ± 170 µs 23540 ± 110 µs

8M 28941 ± 79 µs 28945 ± 77 µs 30747 ± 88 µs 36840 ± 170 µs 43180 ± 230 µs 44670 ± 190 µs

16M 56685 ± 72 µs 56700 ± 120 µs 60210 ± 130 µs 72570 ± 160 µs 85080 ± 330 µs 88200 ± 270 µs

Table 14: Memory transfers only
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Ratio of elements common to both sets

Size 0% 0.01% 10% 50% 90% 100%

4k 250 ± 26 µs 458 ± 31 µs 482 ± 34 µs 480 ± 17 µs 478 ± 29 µs 510 ± 39 µs

8k 473 ± 24 µs 468 ± 19 µs 485 ± 34 µs 520 ± 41 µs 550 ± 12 µs 524 ± 26 µs

16k 486 ± 13 µs 530 ± 29 µs 543 ± 38 µs 556 ± 24 µs 623 ± 27 µs 623 ± 33 µs

32k 649 ± 13 µs 700 ± 20 µs 681 ± 46 µs 750 ± 29 µs 815 ± 36 µs 811 ± 27 µs

64k 1065 ± 27 µs 1057 ± 31 µs 1124 ± 63 µs 1110 ± 130 µs 1343 ± 54 µs 1280 ± 150 µs

128k 1715 ± 31 µs 1747 ± 18 µs 1774 ± 20 µs 1976 ± 57 µs 2134 ± 16 µs 2226 ± 47 µs

256k 2810 ± 29 µs 2840 ± 26 µs 2932 ± 15 µs 3237 ± 18 µs 3605 ± 18 µs 3752 ± 79 µs

512k 4520 ± 32 µs 4522 ± 54 µs 4724 ± 30 µs 5416 ± 31 µs 5730 ± 120 µs 5960 ± 77 µs

1M 7532 ± 53 µs 7950 ± 150 µs 8360 ± 120 µs 9340 ± 240 µs 10390 ± 410 µs 10810 ± 280 µs

2M 14180 ± 210 µs 14230 ± 180 µs 14780 ± 190 µs 17160 ± 430 µs 19670 ± 230 µs 20360 ± 170 µs

4M 27540 ± 140 µs 27800 ± 130 µs 28730 ± 180 µs 33650 ± 250 µs 37810 ± 270 µs 38640 ± 210 µs

8M 54120 ± 110 µs 54170 ± 160 µs 57150 ± 230 µs 66680 ± 400 µs 74280 ± 390 µs 77.0 ± 1.3 ms

16M 107080 ± 300 µs 107140 ± 300 µs 112540 ± 180 µs 129.9 ± 1.6 ms 148100 ± 190 µs 151340 ± 910 µs

Table 15: Intersection time: Linear hashing with buffered output (LHB)

Ratio of elements common to both sets

Size 0% 0.01% 10% 50% 90% 100%

4k 247 ± 11 µs 439 ± 19 µs 479 ± 29 µs 480 ± 21 µs 483 ± 21 µs 481 ± 25 µs

8k 460 ± 18 µs 450 ± 12 µs 483 ± 14 µs 515 ± 27 µs 555 ± 20 µs 525 ± 21 µs

16k 483 ± 13 µs 494 ± 13 µs 527 ± 23 µs 573 ± 35 µs 608 ± 28 µs 560 ± 16 µs

32k 651 ± 27 µs 668 ± 26 µs 677 ± 26 µs 734 ± 46 µs 812 ± 46 µs 821 ± 24 µs

64k 1023 ± 23 µs 1090 ± 19 µs 1114 ± 23 µs 1220 ± 28 µs 1346 ± 22 µs 1346 ± 36 µs

128k 1651 ± 12 µs 1708 ± 37 µs 1753 ± 37 µs 1948 ± 20 µs 2127 ± 15 µs 2234 ± 38 µs

256k 2802 ± 29 µs 2799 ± 17 µs 2906 ± 19 µs 3281 ± 42 µs 3637 ± 82 µs 3701 ± 34 µs

512k 4436 ± 40 µs 4453 ± 19 µs 4648 ± 22 µs 5312 ± 24 µs 5747 ± 25 µs 5975 ± 21 µs

1M 7159 ± 98 µs 7340 ± 120 µs 7900 ± 340 µs 9328 ± 72 µs 10510 ± 100 µs 10820 ± 200 µs

2M 13920 ± 130 µs 14010 ± 160 µs 14460 ± 140 µs 17020 ± 300 µs 19540 ± 170 µs 20310 ± 170 µs

4M 26899 ± 53 µs 27020 ± 300 µs 28110 ± 200 µs 33050 ± 190 µs 37660 ± 240 µs 38640 ± 190 µs

8M 52730 ± 120 µs 52790 ± 170 µs 55910 ± 310 µs 66070 ± 220 µs 74270 ± 290 µs 76.7 ± 1.2 ms

16M 104260 ± 280 µs 104390 ± 260 µs 109730 ± 320 µs 128.5 ± 1.6 ms 147750 ± 160 µs 151350 ± 950 µs

Table 16: Intersection time: Linear hashing with sorted keys (LHS)

Ratio of elements common to both sets

Size 0% 0.01% 10% 50% 90% 100%

4k 279 ± 22 µs 492 ± 24 µs 540 ± 32 µs 560 ± 41 µs 552 ± 29 µs 570 ± 39 µs

8k 516 ± 27 µs 525 ± 22 µs 548 ± 29 µs 584 ± 27 µs 637 ± 18 µs 615 ± 44 µs

16k 562 ± 32 µs 599 ± 29 µs 608 ± 31 µs 637 ± 33 µs 658 ± 30 µs 629 ± 25 µs

32k 986 ± 23 µs 981 ± 21 µs 980 ± 43 µs 1034 ± 46 µs 1129 ± 25 µs 1114 ± 46 µs

64k 1179 ± 40 µs 1210 ± 36 µs 1249 ± 58 µs 1321 ± 44 µs 1466 ± 20 µs 1470 ± 27 µs

128k 1898 ± 38 µs 1970 ± 14 µs 1998 ± 83 µs 2114 ± 58 µs 2231 ± 38 µs 2307 ± 60 µs

256k 3366 ± 25 µs 3435 ± 28 µs 3512 ± 22 µs 3814 ± 33 µs 4056 ± 18 µs 4144 ± 30 µs

512k 5390 ± 24 µs 5473 ± 20 µs 5608 ± 20 µs 6145 ± 30 µs 6414 ± 25 µs 6560 ± 29 µs

1M 8860 ± 230 µs 9010 ± 220 µs 9230 ± 250 µs 10680 ± 280 µs 11500 ± 180 µs 11510 ± 410 µs

2M 17090 ± 210 µs 17110 ± 230 µs 17530 ± 250 µs 19320 ± 230 µs 21290 ± 280 µs 21840 ± 240 µs

4M 33223 ± 68 µs 33390 ± 280 µs 33850 ± 330 µs 37700 ± 240 µs 40880 ± 220 µs 41960 ± 340 µs

8M 65300 ± 160 µs 65530 ± 360 µs 68010 ± 260 µs 75660 ± 600 µs 82290 ± 90 µs 83120 ± 250 µs

16M 127610 ± 450 µs 127680 ± 430 µs 131480 ± 580 µs 144.9 ± 1.0 ms 157290 ± 110 µs 160.1 ± 1.2 ms

Table 17: Intersection time: Cuckoo hashing to global table (CHG)
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Ratio of elements common to both sets

Size 0% 0.01% 10% 50% 90% 100%

4k 436 ± 25 µs 723 ± 47 µs 761 ± 98 µs 791 ± 69 µs 825 ± 57 µs 833 ± 94 µs

8k 729 ± 88 µs 692 ± 24 µs 779 ± 61 µs 813 ± 55 µs 901 ± 48 µs 872 ± 55 µs

16k 776 ± 74 µs 796 ± 49 µs 860 ± 60 µs 885 ± 50 µs 943 ± 52 µs 978 ± 80 µs

32k 950 ± 35 µs 999 ± 87 µs 1003 ± 56 µs 1111 ± 50 µs 1264 ± 25 µs 1231 ± 55 µs

64k 1442 ± 49 µs 1444 ± 54 µs 1472 ± 28 µs 1715 ± 27 µs 1820 ± 57 µs 1900 ± 100 µs

128k 2266 ± 59 µs 2350 ± 23 µs 2375 ± 72 µs 2760 ± 25 µs 3102 ± 92 µs 3231 ± 75 µs

256k 3397 ± 13 µs 3484 ± 22 µs 3625 ± 49 µs 4218 ± 79 µs 4863 ± 43 µs 4975 ± 82 µs

512k 4845 ± 37 µs 4881 ± 98 µs 5180 ± 210 µs 6480 ± 130 µs 7387 ± 28 µs 7691 ± 27 µs

1M 7540 ± 420 µs 7710 ± 420 µs 8140 ± 460 µs 10670 ± 120 µs 12280 ± 520 µs 13110 ± 330 µs

2M 24160 ± 160 µs 24250 ± 130 µs 25080 ± 200 µs 29130 ± 350 µs 34630 ± 690 µs 35490 ± 830 µs

4M 43690 ± 350 µs 43530 ± 210 µs 45380 ± 350 µs 55210 ± 770 µs 63950 ± 150 µs 66090 ± 200 µs

8M 75110 ± 430 µs 74650 ± 300 µs 78650 ± 540 µs 97680 ± 980 µs 114180 ± 270 µs 119.0 ± 1.0 ms

16M 130750 ± 540 µs 131180 ± 450 µs 138570 ± 440 µs 173560 ± 610 µs 207500 ± 540 µs 214.2 ± 1.1 ms

Table 18: Intersection time: Cuckoo hashing to local table (CHL)

Ratio of elements common to both sets

Size 0% 0.01% 10% 50% 90% 100%

4k 4800 ± 260 µs 4791 ± 74 µs 4867 ± 36 µs 4845 ± 72 µs 4954 ± 37 µs 4959 ± 39 µs

8k 4803 ± 78 µs 4796 ± 45 µs 4901 ± 61 µs 4986 ± 69 µs 4974 ± 46 µs 4971 ± 48 µs

16k 4818 ± 41 µs 4887 ± 56 µs 4963 ± 36 µs 4952 ± 27 µs 5000 ± 120 µs 5069 ± 45 µs

32k 4978 ± 31 µs 5044 ± 54 µs 4950 ± 170 µs 5265 ± 44 µs 5357 ± 59 µs 5398 ± 84 µs

64k 5513 ± 69 µs 5528 ± 42 µs 5601 ± 80 µs 5740 ± 98 µs 5854 ± 43 µs 5952 ± 21 µs

128k 6294 ± 31 µs 6233 ± 93 µs 6378 ± 64 µs 6634 ± 27 µs 6810 ± 250 µs 6870 ± 160 µs

256k 7965 ± 38 µs 8028 ± 32 µs 8090 ± 80 µs 8410 ± 200 µs 8993 ± 55 µs 9099 ± 41 µs

512k 9710 ± 490 µs 9450 ± 490 µs 9410 ± 340 µs 10320 ± 510 µs 11040 ± 570 µs 11430 ± 490 µs

1M 12797 ± 43 µs 12660 ± 210 µs 13120 ± 270 µs 14510 ± 330 µs 15790 ± 370 µs 16300 ± 470 µs

2M 20480 ± 220 µs 20482 ± 73 µs 21140 ± 230 µs 23890 ± 440 µs 26500 ± 610 µs 26900 ± 480 µs

4M 36140 ± 350 µs 35920 ± 210 µs 37230 ± 480 µs 42560 ± 720 µs 48550 ± 290 µs 50200 ± 180 µs

8M 66600 ± 270 µs 67000 ± 420 µs 69040 ± 500 µs 80.5 ± 1.0 ms 91.8 ± 1.3 ms 94.0 ± 1.0 ms

16M 128820 ± 390 µs 128230 ± 460 µs 134140 ± 930 µs 152.5 ± 1.4 ms 174.0 ± 1.5 ms 180190 ± 840 µs

Table 19: Intersection time: Indexing into large bitmap with buffered split (ILBS)

Ratio of elements common to both sets

0% 0.01% 10% 50% 90% 100%

4k 4456 ± 30 µs 4470 ± 24 µs 4491 ± 62 µs 4565 ± 67 µs 4610 ± 200 µs 4537 ± 39 µs

8k 4477 ± 22 µs 4467 ± 16 µs 4537 ± 23 µs 4554 ± 31 µs 4608 ± 66 µs 4613 ± 42 µs

16k 4494 ± 24 µs 4580 ± 34 µs 4592 ± 26 µs 4612 ± 65 µs 4674 ± 28 µs 4647 ± 17 µs

32k 4683 ± 29 µs 4757 ± 16 µs 4763 ± 22 µs 4825 ± 27 µs 4928 ± 48 µs 4921 ± 38 µs

64k 4961 ± 23 µs 5070 ± 20 µs 5084 ± 48 µs 5142 ± 28 µs 5274 ± 17 µs 5347 ± 19 µs

128k 5685 ± 29 µs 5719 ± 26 µs 5833 ± 27 µs 6025 ± 18 µs 6248 ± 45 µs 6243 ± 41 µs

256k 7061 ± 38 µs 7140 ± 30 µs 7243 ± 60 µs 7630 ± 18 µs 8042 ± 20 µs 8113 ± 70 µs

512k 8390 ± 340 µs 8470 ± 340 µs 8580 ± 310 µs 9470 ± 220 µs 10420 ± 190 µs 10570 ± 200 µs

1M 11470 ± 45 µs 11377 ± 59 µs 11930 ± 190 µs 13350 ± 420 µs 14510 ± 370 µs 15330 ± 370 µs

2M 18400 ± 120 µs 18520 ± 140 µs 19300 ± 180 µs 22330 ± 310 µs 25460 ± 190 µs 26050 ± 470 µs

4M 32120 ± 110 µs 32242 ± 88 µs 33720 ± 310 µs 39580 ± 500 µs 45461 ± 41 µs 47060 ± 270 µs

8M 59750 ± 230 µs 59780 ± 260 µs 62910 ± 550 µs 76140 ± 310 µs 86.7 ± 1.6 ms 91890 ± 130 µs

16M 114480 ± 100 µs 114230 ± 250 µs 121960 ± 290 µs 143680 ± 160 µs 166360 ± 570 µs 171.9 ± 1.2 ms

Table 20: Intersection time: Indexing into large bitmap – no split (ILBN)
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Sizes of sets
Binary search 

(BSS)

Binary search 
with look-up 

(BSLS)

Interpolation 
search (ISS)

Interpolation 
search with 

look-up (ISLS)

Generalised 
quadratic 

search (GQSS)

Local search 
(jobs created 

on CPU) 
(LSJCCPUS)

Local search 
(jobs created 

on GPU) 
(LSJCGPUS)

126976 4096 678 ± 13 µs 671 ± 28 µs 654 ± 13 µs 677 ± 12 µs 688 ± 13 µs 873 ± 17 µs 929 ± 45 µs

4096 126976 683 ± 22 µs 705 ± 46 µs 661 ± 19 µs 678 ± 35 µs 649 ± 27 µs 890 ± 22 µs 939 ± 25 µs

122880 8192 674 ± 33 µs 669 ± 23 µs 655 ± 18 µs 730 ± 200 µs 699 ± 57 µs 886 ± 52 µs 920 ± 300 µs

8192 122880 672 ± 34 µs 671 ± 26 µs 662 ± 18 µs 663 ± 23 µs 666 ± 27 µs 913 ± 25 µs 946 ± 34 µs

114688 16384 688 ± 15 µs 670 ± 18 µs 673 ± 14 µs 682 ± 9.9 µs 694 ± 14 µs 898 ± 28 µs 898 ± 24 µs

16384 114688 691 ± 32 µs 656 ± 12 µs 657 ± 12 µs 651 ± 11 µs 658 ± 26 µs 945 ± 30 µs 961 ± 22 µs

98304 32768 764 ± 19 µs 779 ± 13 µs 756 ± 23 µs 785.2 ± 8.5 µs 772 ± 21 µs 971 ± 34 µs 994 ± 20 µs

32768 98304 694 ± 21 µs 704 ± 33 µs 679 ± 20 µs 690 ± 22 µs 690 ± 21 µs 973 ± 17 µs 987 ± 18 µs

65536 65536 745 ± 12 µs 746 ± 12 µs 735 ± 11 µs 747 ± 11 µs 749.8 ± 8.3 µs 984 ± 40 µs 993 ± 31 µs

520192 4096 1580 ± 110 µs 1564.2 ± 8.8 µs 1525.3 ± 9.6 µs 1579 ± 8.7 µs 1621 ± 15 µs 1809 ± 10 µs 1968 ± 25 µs

4096 520192 1484 ± 12 µs 1482 ± 12 µs 1476 ± 16 µs 1477 ± 16 µs 1481 ± 13 µs 1895 ± 11 µs 2111 ± 31 µs

516096 8192 1581 ± 12 µs 1596 ± 16 µs 1534.6 ± 8.6 µs 1595.7 ± 9.6 µs 1641 ± 11 µs 1791 ± 37 µs 1983 ± 22 µs

8192 516096 1489 ± 13 µs 1487 ± 10 µs 1480 ± 11 µs 1481 ± 12 µs 1489 ± 18 µs 1913 ± 13 µs 2102 ± 28 µs

507904 16384 1590.4 ± 9.6 µs 1601 ± 11 µs 1535 ± 16 µs 1597 ± 14 µs 1640 ± 15 µs 1822 ± 29 µs 1981 ± 30 µs

16384 507904 1501 ± 15 µs 1495.7 ± 8.8 µs 1489 ± 11 µs 1486.4 ± 9.8 µs 1504.4 ± 9.9 µs 1913 ± 12 µs 2112 ± 32 µs

491520 32768 1672 ± 33 µs 1694 ± 12 µs 1613 ± 39 µs 1678 ± 12 µs 1733 ± 14 µs 1922 ± 47 µs 2041 ± 48 µs

32768 491520 1528 ± 18 µs 1526 ± 18 µs 1510 ± 12 µs 1515 ± 11 µs 1528 ± 11 µs 1926 ± 29 µs 2091 ± 41 µs

458752 65536 1699 ± 13 µs 1706 ± 14 µs 1631 ± 17 µs 1693 ± 21 µs 1744 ± 16 µs 1973 ± 42 µs 2096 ± 16 µs

65536 458752 1502 ± 12 µs 1505 ± 17 µs 1482 ± 18 µs 1488.5 ± 9 µs 1500 ± 10 µs 1915 ± 49 µs 2051 ± 15 µs

393216 131072 1675 ± 38 µs 1706 ± 31 µs 1615 ± 36 µs 1673 ± 29 µs 1715 ± 34 µs 1940 ± 34 µs 2122 ± 57 µs

131072 393216 1670 ± 77 µs 1655 ± 34 µs 1577 ± 15 µs 1619 ± 13 µs 1684 ± 43 µs 1989 ± 45 µs 2117 ± 16 µs

262144 262144 1781 ± 19 µs 1805 ± 34 µs 1733 ± 19 µs 1753 ± 45 µs 1767 ± 37 µs 2056 ± 38 µs 2249 ± 53 µs

2093056 4096 4934 ± 31 µs 4962 ± 37 µs 4728 ± 31 µs 4955 ± 29 µs 5107 ± 37 µs 4978 ± 48 µs 5549 ± 46 µs

4096 2093056 4289 ± 34 µs 4288 ± 35 µs 4276 ± 44 µs 4263 ± 37 µs 4271 ± 35 µs 5101 ± 56 µs 5821 ± 57 µs

2088960 8192 4987 ± 31 µs 5047 ± 30 µs 4750 ± 18 µs 5015 ± 33 µs 5186 ± 38 µs 5025 ± 44 µs 5646 ± 30 µs

8192 2088960 4300 ± 37 µs 4314 ± 38 µs 4269 ± 38 µs 4272 ± 41 µs 4296 ± 40 µs 5183 ± 53 µs 5860 ± 41 µs

2080768 16384 5047 ± 35 µs 5070 ± 34 µs 4778 ± 31 µs 4998 ± 23 µs 5210 ± 38 µs 5111 ± 72 µs 5704 ± 40 µs

16384 2080768 4329 ± 38 µs 4328 ± 42 µs 4289 ± 34 µs 4301 ± 48 µs 4325 ± 33 µs 5216 ± 47 µs 5894 ± 47 µs

2064384 32768 5194 ± 33 µs 5248 ± 34 µs 4880 ± 29 µs 5145 ± 37 µs 5336 ± 41 µs 5150 ± 100 µs 5862 ± 63 µs

32768 2064384 4589 ± 39 µs 4572 ± 21 µs 4563 ± 34 µs 4579 ± 35 µs 4588 ± 43 µs 5299 ± 52 µs 5965 ± 41 µs

2031616 65536 5238 ± 42 µs 5338 ± 40 µs 4943 ± 37 µs 5190 ± 34 µs 5411 ± 34 µs 5230 ± 120 µs 5916 ± 65 µs

65536 2031616 4607 ± 44 µs 4594 ± 96 µs 4527 ± 85 µs 4548 ± 79 µs 4621 ± 44 µs 5277 ± 58 µs 5923 ± 38 µs

1966080 131072 5316 ± 42 µs 5397 ± 49 µs 4972 ± 43 µs 5270 ± 40 µs 5445 ± 38 µs 5330 ± 120 µs 6009 ± 69 µs

131072 1966080 4795 ± 29 µs 4840 ± 200 µs 4790 ± 120 µs 4830 ± 53 µs 4862 ± 53 µs 5515 ± 58 µs 6143 ± 56 µs

1835008 262144 5453 ± 73 µs 5487 ± 34 µs 5050 ± 61 µs 5377 ± 35 µs 5515 ± 38 µs 5492 ± 91 µs 6186 ± 65 µs

262144 1835008 4822 ± 55 µs 4813 ± 38 µs 4715 ± 34 µs 4775 ± 40 µs 4802 ± 56 µs 5447 ± 61 µs 6130 ± 38 µs

1572864 524288 5054 ± 40 µs 5049 ± 25 µs 4668 ± 23 µs 4934 ± 46 µs 5154 ± 39 µs 5170 ± 110 µs 5966 ± 49 µs

524288 1572864 4697 ± 40 µs 4752 ± 37 µs 4566 ± 36 µs 4697 ± 37 µs 4710 ± 39 µs 5175 ± 52 µs 5880 ± 43 µs

1048576 1048576 4778 ± 36 µs 4835 ± 38 µs 4532 ± 36 µs 4760 ± 37 µs 4816 ± 34 µs 5090 ± 110 µs 5900 ± 65 µs

Table 21: Intersection time: Asymmetric sorted sets (part I)
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Sizes of sets
Binary search 

(BSS)

Binary search 
with look-up 

(BSLS)

Interpolation 
search (ISS)

Interpolation 
search with 

look-up (ISLS)

Generalised 
quadratic 

search (GQSS)

Local search 
(jobs created 

on CPU) 
(LSJCCPUS)

Local search 
(jobs created 

on GPU) 
(LSJCGPUS)

8384512 4096 19140 ± 60 µs 19258 ± 76 µs 18311 ± 53 µs 19276 ± 71 µs 19784 ± 62 µs 17406 ± 87 µs 19660 ± 140 µs

4096 8384512 16286 ± 66 µs 16256 ± 58 µs 16260 ± 59 µs 16258 ± 61 µs 16220 ± 360 µs 17448 ± 85 µs 19960 ± 110 µs

8380416 8192 19230 ± 180 µs 19689 ± 54 µs 18467 ± 58 µs 19500 ± 190 µs 20128 ± 78 µs 17500 ± 110 µs 19805 ± 93 µs

8192 8380416 16248 ± 48 µs 16284 ± 58 µs 16353 ± 52 µs 16570 ± 120 µs 16612 ± 70 µs 17710 ± 170 µs 20480 ± 120 µs

8372224 16384 19529 ± 66 µs 20013 ± 58 µs 18507 ± 64 µs 19790 ± 120 µs 20155 ± 60 µs 17780 ± 110 µs 20120 ± 110 µs

16384 8372224 16350 ± 58 µs 16323 ± 64 µs 16246 ± 68 µs 16260 ± 55 µs 16323 ± 65 µs 17920 ± 110 µs 20580 ± 110 µs

8355840 32768 19924 ± 73 µs 20580 ± 190 µs 18882 ± 99 µs 20060 ± 260 µs 20692 ± 64 µs 18185 ± 66 µs 20564 ± 67 µs

32768 8355840 16720 ± 110 µs 16690 ± 120 µs 16600 ± 100 µs 16590 ± 110 µs 16680 ± 180 µs 18596 ± 79 µs 21180 ± 210 µs

8323072 65536 20080 ± 390 µs 20800 ± 180 µs 18895 ± 72 µs 20190 ± 100 µs 20696 ± 66 µs 18425 ± 68 µs 20811 ± 72 µs

65536 8323072 16752 ± 87 µs 16790 ± 110 µs 16660 ± 160 µs 16670 ± 170 µs 16780 ± 180 µs 18788 ± 89 µs 21350 ± 170 µs

8257536 131072 20440 ± 74 µs 20747 ± 95 µs 18920 ± 200 µs 20390 ± 190 µs 20727 ± 71 µs 18711 ± 70 µs 21040 ± 220 µs

131072 8257536 16985 ± 98 µs 17000 ± 130 µs 16870 ± 100 µs 16810 ± 95 µs 17072 ± 86 µs 18893 ± 79 µs 21344 ± 74 µs

8126464 262144 20629 ± 57 µs 21052 ± 64 µs 19124 ± 62 µs 20120 ± 69 µs 21006 ± 68 µs 19025 ± 56 µs 21453 ± 76 µs

262144 8126464 17630 ± 450 µs 17440 ± 340 µs 17440 ± 240 µs 17600 ± 170 µs 17981 ± 68 µs 19521 ± 91 µs 22100 ± 140 µs

7864320 524288 20416 ± 51 µs 20900 ± 65 µs 18757 ± 60 µs 20040 ± 200 µs 20721 ± 70 µs 18985 ± 59 µs 21570 ± 180 µs

524288 7864320 17228 ± 63 µs 17300 ± 290 µs 16964 ± 62 µs 17170 ± 43 µs 17310 ± 200 µs 18993 ± 88 µs 21570 ± 100 µs

7340032 1048576 20290 ± 150 µs 20932 ± 67 µs 18709 ± 58 µs 20143 ± 86 µs 20530 ± 63 µs 19004 ± 63 µs 21499 ± 81 µs

1048576 7340032 17118 ± 59 µs 17071 ± 54 µs 16701 ± 55 µs 16920 ± 55 µs 16962 ± 48 µs 18725 ± 79 µs 21650 ± 230 µs

6291456 2097152 19901 ± 57 µs 20282 ± 58 µs 18418 ± 57 µs 19872 ± 48 µs 20033 ± 60 µs 18926 ± 65 µs 21783 ± 94 µs

2097152 6291456 17498 ± 56 µs 17707 ± 57 µs 16920 ± 53 µs 17580 ± 59 µs 17457 ± 53 µs 18325 ± 68 µs 21124 ± 67 µs

4194304 4194304 18663 ± 52 µs 19387 ± 57 µs 17604 ± 58 µs 18944 ± 55 µs 18670 ± 50 µs 18610 ± 190 µs 21480 ± 230 µs

33550336 4096 75210 ± 170 µs 75660 ± 230 µs 72500 ± 190 µs 76290 ± 190 µs 78810 ± 230 µs 66610 ± 200 µs 75520 ± 470 µs

4096 33550336 63160 ± 240 µs 63240 ± 190 µs 63280 ± 230 µs 63190 ± 220 µs 63230 ± 160 µs 67270 ± 950 µs 77670 ± 490 µs

33546240 8192 75830 ± 220 µs 78260 ± 230 µs 72350 ± 170 µs 77400 ± 190 µs 78810 ± 160 µs 66070 ± 240 µs 75680 ± 480 µs

8192 33546240 63320 ± 140 µs 63250 ± 170 µs 63250 ± 160 µs 63230 ± 180 µs 63260 ± 180 µs 66320 ± 150 µs 76730 ± 480 µs

33538048 16384 76640 ± 150 µs 78630 ± 180 µs 72220 ± 180 µs 77690 ± 200 µs 78700 ± 190 µs 66270 ± 410 µs 76400 ± 740 µs

16384 33538048 63330 ± 190 µs 63400 ± 170 µs 63300 ± 170 µs 63310 ± 200 µs 63260 ± 180 µs 67080 ± 170 µs 78.6 ± 1 ms

33521664 32768 78400 ± 750 µs 80300 ± 880 µs 73390 ± 560 µs 77920 ± 960 µs 80500 ± 720 µs 68080 ± 760 µs 76580 ± 240 µs

32768 33521664 64.5 ± 1.6 ms 64210 ± 550 µs 64060 ± 550 µs 64050 ± 570 µs 64150 ± 570 µs 68370 ± 600 µs 78.2 ± 1.4 ms

33488896 65536 78990 ± 580 µs 81390 ± 570 µs 73490 ± 590 µs 77640 ± 850 µs 80570 ± 570 µs 69150 ± 710 µs 77850 ± 220 µs

65536 33488896 64360 ± 570 µs 64240 ± 540 µs 64090 ± 560 µs 64060 ± 560 µs 64.8 ± 1 ms 70060 ± 900 µs 79480 ± 150 µs

33423360 131072 79860 ± 830 µs 81540 ± 850 µs 73840 ± 560 µs 78780 ± 850 µs 81060 ± 580 µs 70690 ± 740 µs 79300 ± 190 µs

131072 33423360 64500 ± 630 µs 64490 ± 570 µs 64180 ± 560 µs 64020 ± 990 µs 64420 ± 560 µs 70440 ± 580 µs 83530 ± 480 µs

33292288 262144 80570 ± 280 µs 82450 ± 200 µs 73510 ± 200 µs 80010 ± 780 µs 81200 ± 510 µs 72.6 ± 1.1 ms 82 ± 1.1 ms

262144 33292288 64710 ± 160 µs 64730 ± 130 µs 64590 ± 630 µs 65 ± 1.1 ms 65940 ± 120 µs 72930 ± 660 µs 82440 ± 900 µs

33030144 524288 81020 ± 240 µs 83020 ± 200 µs 73620 ± 190 µs 79660 ± 200 µs 81370 ± 210 µs 71620 ± 230 µs 81620 ± 730 µs

524288 33030144 65370 ± 160 µs 65440 ± 180 µs 64900 ± 180 µs 64840 ± 180 µs 65780 ± 170 µs 72080 ± 210 µs 82890 ± 780 µs

32505856 1048576 81780 ± 210 µs 83540 ± 250 µs 73930 ± 200 µs 80160 ± 240 µs 81810 ± 190 µs 72330 ± 200 µs 82440 ± 760 µs

1048576 32505856 65980 ± 130 µs 65990 ± 140 µs 65540 ± 160 µs 65370 ± 210 µs 66880 ± 240 µs 72210 ± 210 µs 83.5 ± 1.2 ms

31457280 2097152 82030 ± 240 µs 83700 ± 200 µs 74130 ± 190 µs 81080 ± 200 µs 82180 ± 200 µs 72980 ± 320 µs 83130 ± 700 µs

2097152 31457280 66290 ± 140 µs 66640 ± 150 µs 65740 ± 170 µs 66350 ± 150 µs 67160 ± 270 µs 72410 ± 200 µs 83480 ± 850 µs

29360128 4194304 81620 ± 180 µs 86260 ± 380 µs 73780 ± 250 µs 83920 ± 460 µs 81210 ± 190 µs 73580 ± 760 µs 83980 ± 980 µs

4194304 29360128 66910 ± 160 µs 67140 ± 210 µs 65230 ± 210 µs 66840 ± 210 µs 66320 ± 160 µs 71340 ± 340 µs 82830 ± 910 µs

25165824 8388608 79570 ± 210 µs 84230 ± 220 µs 72240 ± 150 µs 81960 ± 190 µs 78760 ± 180 µs 72820 ± 310 µs 83870 ± 620 µs

8388608 25165824 68920 ± 160 µs 72800 ± 150 µs 66230 ± 220 µs 72200 ± 140 µs 68360 ± 140 µs 70750 ± 520 µs 82580 ± 850 µs

16777216 16777216 74170 ± 160 µs 80500 ± 210 µs 69050 ± 170 µs 78520 ± 210 µs 73270 ± 180 µs 71120 ± 240 µs 83030 ± 680 µs

Table 22: Intersection time: Asymmetric sorted sets (part II)
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Sizes of sets
Linear hashing 
with buffered 
output (LHB)

Linear hashing 
with sorted keys 

(LHS)

Cuckoo hashing 
to global table 

(CHG)

Cuckoo hashing 
to local table 

(CHL)

Indexing into big 
bitmap with 

buffered split 
(ILBS)

Indexing into big 
bitmap - no split 

(ILBN)

126976 4096 979 ± 45 µs 981 ± 44 µs 1301 ± 11 µs 1750 ± 360 µs 5588 ± 43 µs 4678 ± 16 µs

4096 126976 872 ± 12 µs 856 ± 19 µs 1200 ± 12 µs 1659 ± 26 µs 5203 ± 19 µs 4673 ± 13 µs

122880 8192 938 ± 21 µs 937 ± 16 µs 1360 ± 190 µs 1662 ± 13 µs 5532 ± 24 µs 4648 ± 14 µs

8192 122880 835 ± 14 µs 831 ± 30 µs 1323 ± 16 µs 1819 ± 30 µs 5224 ± 17 µs 4698 ± 13 µs

114688 16384 956 ± 11 µs 956.1 ± 8.3 µs 1297 ± 18 µs 1709 ± 39 µs 5430 ± 14 µs 4632 ± 18 µs

16384 114688 892 ± 12 µs 880 ± 12 µs 1257 ± 19 µs 1660 ± 19 µs 5201 ± 12 µs 4696 ± 11 µs

98304 32768 987 ± 16 µs 988.3 ± 9.1 µs 1313 ± 12 µs 1693 ± 15 µs 5414 ± 15 µs 4704 ± 12 µs

32768 98304 956 ± 17 µs 953 ± 22 µs 1268 ± 12 µs 1673 ± 15 µs 5263 ± 15 µs 4681.6 ± 9.8 µs

65536 65536 946.5 ± 8.1 µs 941 ± 11 µs 1299.4 ± 8 µs 1722 ± 15 µs 5316 ± 12 µs 4696 ± 10 µs

520192 4096 2370 ± 110 µs 2338 ± 12 µs 2840 ± 120 µs 3040 ± 21 µs 7087 ± 17 µs 5874 ± 19 µs

4096 520192 1799 ± 21 µs 1773 ± 18 µs 2253 ± 26 µs 2996 ± 37 µs 6466 ± 27 µs 6093 ± 26 µs

516096 8192 2405 ± 82 µs 2365 ± 24 µs 2783 ± 6.1 µs 2964 ± 10 µs 7068 ± 21 µs 5867 ± 14 µs

8192 516096 1806 ± 11 µs 1763.2 ± 8.5 µs 2372 ± 11 µs 2909 ± 15 µs 6475 ± 19 µs 6099 ± 14 µs

507904 16384 2307 ± 14 µs 2309 ± 11 µs 2781.5 ± 7.4 µs 2962 ± 13 µs 6928 ± 15 µs 5849.6 ± 7.4 µs

16384 507904 1827.3 ± 9.5 µs 1782.6 ± 7.5 µs 2443 ± 11 µs 2897 ± 14 µs 6455 ± 21 µs 6089 ± 13 µs

491520 32768 2458 ± 14 µs 2456 ± 15 µs 2889 ± 12 µs 3066 ± 19 µs 6962 ± 10 µs 6051 ± 11 µs

32768 491520 1861.9 ± 9.4 µs 1815.9 ± 7 µs 2516 ± 10 µs 2919 ± 13 µs 6495 ± 22 µs 6105 ± 14 µs

458752 65536 2438 ± 18 µs 2428 ± 16 µs 2912 ± 11 µs 3060 ± 23 µs 6872 ± 12 µs 6075 ± 15 µs

65536 458752 1962 ± 17 µs 1920 ± 13 µs 2634 ± 12 µs 2910 ± 18 µs 6463 ± 22 µs 6095 ± 49 µs

393216 131072 2477 ± 45 µs 2437 ± 26 µs 2867 ± 19 µs 3103 ± 43 µs 7019 ± 31 µs 6155 ± 31 µs

131072 393216 2110 ± 14 µs 2065.2 ± 8.4 µs 2860 ± 140 µs 3047 ± 55 µs 6695 ± 20 µs 6162 ± 54 µs

262144 262144 2287 ± 33 µs 2256 ± 37 µs 3014 ± 14 µs 3082 ± 14 µs 6908 ± 15 µs 6268 ± 32 µs

2093056 4096 8270 ± 140 µs 8141 ± 44 µs 8853 ± 48 µs 13721 ± 87 µs 13950 ± 60 µs 11460 ± 57 µs

4096 2093056 5395 ± 91 µs 5190 ± 43 µs 6547 ± 56 µs 13315 ± 86 µs 12454 ± 61 µs 11795 ± 53 µs

2088960 8192 8200 ± 130 µs 8126 ± 44 µs 8862 ± 55 µs 13773 ± 74 µs 13904 ± 58 µs 11461 ± 52 µs

8192 2088960 5527 ± 40 µs 5347 ± 33 µs 7018 ± 43 µs 13340 ± 81 µs 12487 ± 42 µs 11799 ± 50 µs

2080768 16384 8102 ± 34 µs 8097 ± 37 µs 8872 ± 52 µs 13838 ± 68 µs 13752 ± 59 µs 11434 ± 61 µs

16384 2080768 5720 ± 110 µs 5413 ± 35 µs 7299 ± 47 µs 13366 ± 84 µs 12475 ± 59 µs 11778 ± 47 µs

2064384 32768 8316 ± 44 µs 8314 ± 42 µs 8970 ± 120 µs 13977 ± 93 µs 13722 ± 97 µs 11519 ± 94 µs

32768 2064384 5850 ± 35 µs 5593 ± 20 µs 7475 ± 35 µs 13630 ± 100 µs 12540 ± 160 µs 11790 ± 140 µs

2031616 65536 8350 ± 95 µs 8301 ± 41 µs 8951 ± 91 µs 13980 ± 89 µs 13636 ± 96 µs 11520 ± 100 µs

65536 2031616 5863 ± 59 µs 5870 ± 110 µs 7820 ± 110 µs 13490 ± 94 µs 12380 ± 83 µs 11649 ± 19 µs

1966080 131072 8293 ± 59 µs 8263 ± 48 µs 8990 ± 76 µs 14190 ± 110 µs 13716 ± 90 µs 11590 ± 93 µs

131072 1966080 6440 ± 230 µs 5996 ± 27 µs 8340 ± 150 µs 13840 ± 150 µs 12770 ± 110 µs 11860 ± 130 µs

1835008 262144 8235 ± 46 µs 8189 ± 47 µs 9248 ± 94 µs 13770 ± 110 µs 13681 ± 88 µs 11820 ± 100 µs

262144 1835008 6746 ± 53 µs 6512 ± 55 µs 9098 ± 91 µs 14104 ± 80 µs 12840 ± 130 µs 12090 ± 180 µs

1572864 524288 7752 ± 98 µs 7602 ± 42 µs 8798 ± 90 µs 13740 ± 100 µs 13194 ± 99 µs 11550 ± 110 µs

524288 1572864 6904 ± 50 µs 6651 ± 32 µs 9014 ± 56 µs 13462 ± 82 µs 12716 ± 53 µs 11722 ± 49 µs

1048576 1048576 7238 ± 46 µs 7073 ± 44 µs 9010 ± 100 µs 7514 ± 90 µs 12830 ± 99 µs 11540 ± 110 µs

Table 23: Intersection time: Asymmetric unsorted sets (part I)
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Sizes of sets
Linear hashing 
with buffered 
output (LHB)

Linear hashing 
with sorted keys 

(LHS)

Cuckoo hashing 
to global table 

(CHG)

Cuckoo hashing 
to local table 

(CHL)

Indexing into big 
bitmap with 

buffered split 
(ILBS)

Indexing into big 
bitmap - no split 

(ILBN)

8384512 4096 32040 ± 110 µs 32030 ± 110 µs 32960 ± 170 µs 41920 ± 160 µs 41010 ± 160 µs 33490 ± 140 µs

4096 8384512 20714 ± 78 µs 19868 ± 67 µs 23660 ± 260 µs 39860 ± 280 µs 36220 ± 250 µs 34440 ± 280 µs

8380416 8192 32500 ± 200 µs 31980 ± 120 µs 33030 ± 240 µs 42080 ± 240 µs 41070 ± 230 µs 33820 ± 340 µs

8192 8380416 21399 ± 83 µs 20400 ± 72 µs 25650 ± 240 µs 39670 ± 260 µs 36250 ± 250 µs 34420 ± 250 µs

8372224 16384 32060 ± 210 µs 31980 ± 100 µs 33170 ± 340 µs 42540 ± 250 µs 40950 ± 290 µs 33490 ± 240 µs

16384 8372224 21378 ± 50 µs 20664 ± 60 µs 26810 ± 260 µs 40170 ± 250 µs 36200 ± 220 µs 34420 ± 260 µs

8355840 32768 32270 ± 280 µs 32570 ± 360 µs 33130 ± 290 µs 42200 ± 120 µs 40760 ± 130 µs 33590 ± 160 µs

32768 8355840 21980 ± 220 µs 21270 ± 210 µs 27421 ± 96 µs 40120 ± 110 µs 36240 ± 100 µs 34480 ± 110 µs

8323072 65536 32670 ± 330 µs 32300 ± 260 µs 33000 ± 170 µs 42590 ± 140 µs 41010 ± 110 µs 33550 ± 110 µs

65536 8323072 22150 ± 210 µs 21390 ± 190 µs 28570 ± 110 µs 40190 ± 120 µs 36210 ± 120 µs 34370 ± 100 µs

8257536 131072 32300 ± 260 µs 32250 ± 240 µs 33470 ± 110 µs 42350 ± 130 µs 41190 ± 160 µs 33640 ± 190 µs

131072 8257536 23060 ± 250 µs 22220 ± 220 µs 30300 ± 150 µs 40640 ± 140 µs 36880 ± 150 µs 34360 ± 170 µs

8126464 262144 32500 ± 110 µs 32460 ± 110 µs 33490 ± 200 µs 42470 ± 210 µs 40910 ± 250 µs 33940 ± 250 µs

262144 8126464 24830 ± 110 µs 24190 ± 130 µs 33000 ± 270 µs 41050 ± 310 µs 37280 ± 370 µs 35120 ± 590 µs

7864320 524288 32480 ± 230 µs 31880 ± 110 µs 33430 ± 350 µs 42340 ± 240 µs 40420 ± 230 µs 33620 ± 210 µs

524288 7864320 25530 ± 130 µs 23904 ± 81 µs 34240 ± 270 µs 40620 ± 230 µs 36720 ± 230 µs 34560 ± 230 µs

7340032 1048576 31490 ± 110 µs 30981 ± 95 µs 33710 ± 210 µs 42460 ± 210 µs 40050 ± 200 µs 33640 ± 210 µs

1048576 7340032 25320 ± 100 µs 24536 ± 75 µs 34850 ± 250 µs 40590 ± 220 µs 36990 ± 250 µs 34200 ± 220 µs

6291456 2097152 30400 ± 330 µs 30190 ± 120 µs 33190 ± 200 µs 42910 ± 210 µs 39450 ± 190 µs 33710 ± 230 µs

2097152 6291456 27060 ± 230 µs 25677 ± 74 µs 34950 ± 210 µs 41480 ± 180 µs 37250 ± 190 µs 34000 ± 170 µs

4194304 4194304 28400 ± 100 µs 27706 ± 92 µs 34330 ± 250 µs 44870 ± 270 µs 38160 ± 240 µs 33830 ± 240 µs

33550336 4096 126440 ± 320 µs 126350 ± 310 µs 126600 ± 510 µs 133520 ± 650 µs 148770 ± 470 µs 121030 ± 440 µs

4096 33550336 79630 ± 210 µs 77590 ± 190 µs 91050 ± 500 µs 122650 ± 450 µs 129870 ± 420 µs 123890 ± 440 µs

33546240 8192 126840 ± 200 µs 126820 ± 290 µs 127.1 ± 2.6 ms 133500 ± 480 µs 148690 ± 330 µs 120840 ± 290 µs

8192 33546240 82900 ± 180 µs 80180 ± 180 µs 99040 ± 400 µs 122450 ± 330 µs 129800 ± 300 µs 123780 ± 330 µs

33538048 16384 126670 ± 350 µs 126610 ± 240 µs 126460 ± 340 µs 133480 ± 460 µs 148430 ± 250 µs 120780 ± 230 µs

16384 33538048 84190 ± 270 µs 81270 ± 220 µs 103400 ± 250 µs 122640 ± 490 µs 129660 ± 340 µs 123740 ± 250 µs

33521664 32768 126860 ± 420 µs 126750 ± 270 µs 126520 ± 300 µs 133700 ± 540 µs 148370 ± 200 µs 120910 ± 220 µs

32768 33521664 85700 ± 730 µs 81970 ± 240 µs 105700 ± 200 µs 129.3 ± 1.1 ms 130490 ± 770 µs 124250 ± 650 µs

33488896 65536 126830 ± 230 µs 126760 ± 250 µs 127.7 ± 1.5 ms 134060 ± 270 µs 148600 ± 400 µs 121170 ± 200 µs

65536 33488896 87560 ± 310 µs 83090 ± 510 µs 111580 ± 570 µs 123.7 ± 1 ms 131110 ± 650 µs 123550 ± 170 µs

33423360 131072 126850 ± 320 µs 126760 ± 260 µs 126890 ± 490 µs 134290 ± 480 µs 148580 ± 230 µs 121040 ± 410 µs

131072 33423360 88620 ± 540 µs 85000 ± 260 µs 115340 ± 300 µs 126830 ± 510 µs 129880 ± 240 µs 123750 ± 240 µs

33292288 262144 128800 ± 340 µs 127950 ± 840 µs 127.2 ± 1.5 ms 134330 ± 920 µs 148420 ± 250 µs 121980 ± 730 µs

262144 33292288 93710 ± 190 µs 90520 ± 150 µs 124980 ± 350 µs 127690 ± 640 µs 130270 ± 520 µs 124610 ± 750 µs

33030144 524288 126430 ± 260 µs 126320 ± 260 µs 127 ± 2.4 ms 132120 ± 290 µs 147880 ± 250 µs 120850 ± 240 µs

524288 33030144 97160 ± 270 µs 92140 ± 180 µs 132530 ± 280 µs 125260 ± 260 µs 130070 ± 210 µs 123680 ± 230 µs

32505856 1048576 126140 ± 240 µs 125890 ± 250 µs 127020 ± 620 µs 132310 ± 580 µs 147690 ± 230 µs 120930 ± 250 µs

1048576 32505856 98980 ± 220 µs 93870 ± 240 µs 137100 ± 300 µs 123190 ± 220 µs 130030 ± 290 µs 123560 ± 200 µs

31457280 2097152 125180 ± 250 µs 124750 ± 230 µs 127580 ± 710 µs 132020 ± 360 µs 147030 ± 230 µs 120960 ± 230 µs

2097152 31457280 100760 ± 200 µs 95350 ± 230 µs 138590 ± 250 µs 123720 ± 370 µs 130740 ± 230 µs 123380 ± 230 µs

29360128 4194304 123950 ± 180 µs 123090 ± 220 µs 128610 ± 340 µs 132350 ± 240 µs 145740 ± 250 µs 121120 ± 170 µs

4194304 29360128 102270 ± 230 µs 97570 ± 210 µs 138330 ± 190 µs 127600 ± 230 µs 131510 ± 210 µs 122860 ± 190 µs

25165824 8388608 120530 ± 240 µs 118920 ± 190 µs 130140 ± 340 µs 132280 ± 220 µs 143380 ± 220 µs 121270 ± 280 µs

8388608 25165824 105940 ± 250 µs 101780 ± 380 µs 137380 ± 270 µs 126600 ± 210 µs 133950 ± 310 µs 122550 ± 240 µs

16777216 16777216 112360 ± 320 µs 109610 ± 300 µs 132840 ± 230 µs 135490 ± 310 µs 138160 ± 200 µs 121470 ± 210 µs

Table 24: Intersection time: Asymmetric unsorted sets (part II)
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Size Binary search
Generalized 

quadratic search
Local search (jobs 
created on CPU)

Local search (jobs 
created on GPU)

32M 147.8 ± 4.1 ms 166.5 ± 7.2 ms 148 ± 2.2 ms 169.3 ± 3.2 ms

64M 293.7 ± 6.2 ms 331 ± 11 ms 289.7 ± 3.2 ms 333.8 ± 4.6 ms

128M 587.3 ± 7.9 ms 671 ± 13 ms 576.5 ± 7.1 ms 661.1 ± 8.8 ms

256M 1180 ± 15 ms 1358 ± 19 ms 1143 ± 15 ms 1327 ± 12 ms

512M 2368 ± 22 ms 2724 ± 21 ms 2293 ± 21 ms 2665 ± 33 ms

Table 25: Intersection time: Multirun sorted template (MST) with various inner strategies

Size MBT + LHS MLBS MLBB

32M 1561 ± 12 ms 2026.5 ± 3 ms 324.6 ± 7.3 ms

64M 3129 ± 24 ms 4017.9 ± 5.8 ms 606.7 ± 9.4 ms

128M 6281 ± 37 ms 8026.9 ± 8.2 ms 1128 ± 13 ms

256M 12708 ± 84 ms 16001 ± 18 ms 2301 ± 38 ms

512M 25670 ± 220 ms 32420 ± 230 ms 4400 ± 40 ms

Table 26: Intersection time: Multirun hash-based strategies

79



Appendix B: Enclosed DVD contents
• /bin Executable binaries of the test programs

• /results

• raw/ Raw output of the testing

• charts/ All charts both included and not included in this text

• r/ Source code in R language for generating the charts

• /src/ All source code (both C++ and OpenCL)

• Intersection/ Algorithms for intersection

• Sorting/ Algorithms for sorting

• Shared/ Code shared by all algorithms (testing framework)

• /test_data/ Data used for tests

• /thesis.pdf This document in electronic version
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