
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Bc. Radim Vansa

Parallel Data-processing on GPGPU

Department of Software Engineering

Supervisor of the master thesis: RNDr. Martin Kruliš

Study programme: Informatics

Specialization: I2 Software Systems

Prague 2012

I would like to give thanks to my supervisor RNDr. Martin Kruliš for his time and
support. He was always glad to offer a help with both theoretical part of this thesis
and faulty hardware or libraries required for completion of this thesis.
My thanks to my parents and family, whose support and guidance have helped me
sail through difficult chapters of my life.

I declare that I carried out this master thesis independently, and only with the cited
sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the
Act No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that the
Charles University in Prague has the right to conclude a license agreement on the use
of this work as a school work pursuant to Section 60 paragraph 1 of the
Copyright Act.

In …..

Anotace
Název práce: Paralelní zpracování dat na GPGPU
Autor: Bc. Radim Vansa
Katedra / Ústav: Katedra Softwarového Inženýrství
Vedoucí diplomové práce: RNDr. Martin Kruliš, Katedra Softwarového Inženýrství
Abstrakt: Dnešní grafické karty mohou sloužit nejen pro vykreslování 3D obrazu,

ale prostřednictvím frameworků jako např. OpenCL umožňují využít sílu
mnoha výpočetních jader k obecnějšímu zpracování velkého množství
informací. Tato práce se soustředí na základní operace používané v
databázových systémech, konkrétně na třídění a hledání průniku množin.
Nabízí několik postupů řešení každého z těchto problémů a hodnotí
výsledky implementací těchto algoritmů. Ukazuje se, že obě zmíněné
úlohy mohou být úspěšně řešeny s využitím grafických karet, a to se
značným urychlením oproti tradičnímu přístupu s výpočty pouze na
vícejádrovém CPU.

Klíčová slova: paralelní, GPU, OpenCL, třídění, průnik množin

Annotation
Title: Parallel data-processing on GPGPU
Author: Bc. Radim Vansa
Department / Institute: Department of Software Engineering
Supervisor of the master thesis: Martin Kruliš, M.Sc., Department of Software

Engineering
Abstract: Modern graphic cards are no longer limited to 3D image rendering.

Frameworks such as OpenCL enable developers to harness the power of
many-core architectures for general-purpose data-processing. This thesis
is focused on elementary primitives often used in database management
systems, particularly on sorting and set intersection. We present several
approaches to these problems and evalute results of benchmarked
implementations. Our conclusion is that both tasks can be successfully
solved using graphic cards with significant speedup compared to the
traditional applications computing solely on multicore CPU.

Keywords: parallel, GPU, OpenCL, sorting, set intersection

Table of Contents
1. Introduction...1
2. GPGPU Programming..3

2.1 GPGPU Architecture Overview...3
2.2 OpenCL..5

2.2.1 Execution Model..5
2.2.2 Memory Model...6

2.3 Performance Considerations..7
2.3.1 Coalesced Access to Global Memory...7
2.3.2 Bank Conflicts in Local Memory...9
2.3.3 Differences Across GPU Vendors...9

3. Benchmarking Methodology..10
3.1 Comparing GPUs...10
3.2 Execution Time..11
3.3 Data Selection...11
3.4 Size of Work-group..12

4. Sorting...13
4.1 Related Work..13
4.2 Implementation..13

4.2.1 Quicksort..14
4.2.2 Bitonicsort..17
4.2.3 Mergesort..18

4.3 Results..21
4.3.1 Quicksort..21
4.3.2 Bitonicsort..22
4.3.3 Mergesort..24
4.3.4 Comparison of CPU and GPU Based Sorts..25

4.4 Future Work..27
5. Intersection..29

5.1 Related Work..29
5.2 Intersection of Sorted Sets...30

5.2.1 Search Algorithms..30
 Binary Search (BSS)..31
 Interpolation Search (ISS)...32
 Generalized Quadratic Search (GQSS)...32
 Initial Lookup Optimization..33

5.2.2 Parallel Single-pass Algorithms...34
 Dividing The Sets..34
 Searching for Common Elements..36

5.2.3 Results..36
 GPU Strategies Comparison..36
 Asymmetric Sets..38
 Comparison With CPU..41

5.3 Hash-based Intersection...42
5.3.1 Linear Hashing...42
5.3.2 Cuckoo Hashing...43
5.3.3 Indexing into Large Bitmap..45
5.3.4 Bloom Pre-filtering...46
5.3.5 Results..48

 GPU Strategies Comparison..48
 Bloom Pre-filters...50
 Asymetric Sets...52
 Comparison with CPU...54

5.4 Sets Not Fitting into Memory of GPU...55
5.4.1 Splitting into Multiple Partitions..55
5.4.2 Indexing into Large Bitmap..57
5.4.3 Results..59

 Intersection of Sorted Sets...59
 Hash-based Intersection...60

5.5 Future Work..61
6. Conclusion..63
 Bibliography..64
 Appendix A: Results..67
 Appendix B: Enclosed DVD contents..80

1. Introduction
Several years ago a limit in frequency of processors was reached and also the

instruction level parallelism could not be effectively widened anymore. That is why

the focus has moved to multi-core CPUs and software developers had to adapt to this

hardware. Applications started to use multiple threads with all the advantages

(speedup) and disadvantages such as the need of complicated synchronization. In the

latest years the high-performance computing research was focused on inter-thread

communication, synchronization such as lock-free algorithms, transactional memory

or load balancing, and efficient use of CPU caches.

Nevertheless, the amount of CPU cores still grows and the well-known patterns

such as transparent caches and uniformly accessible memory are no longer scalable.

A new pattern of many-core architecture with different programming model emerged

from the area of specialized single-purpose hardware used for an acceleration of

graphical computations.

Modern graphics cards are no longer limited to the execution of hardwired

operations designed for 3D rendering, but also allow a parallel processing of non-

graphical data. This new architecture can yield higher performance than conventional

CPUs, for certain applications even in orders of magnitude [1]. In contrast with its

name 'general-purpose' GPUs (GPGPUs) this kind of hardware has lower

performance in some general tasks in comparison with CPU cores, due to differences

in architecture. One may consider them rather as co-processors suitable for heavy-

computation than a substitute for CPUs.

Since database management systems often need to process a huge amounts of

data, researchers find here an opportunity to offload some parts of the computation to

the GPGPUs ([2], [3]). This is also the main objective of this thesis. We study

primitives used in database operations, particularly the sorting and set intersection,

examine the performance of our implementation and compare it to the performance

of sequential or parallel algorithms running on a few CPU cores.

We study two different problems – sorting and set intersection. That is why we

use rather unusual structure of the thesis. At first we describe attributes common to

both problems, the GPGPU architecture and OpenCL programming model in section

2, and our benchmarking methodology in section 3. In following two chapters we

1

study each problem – sorting in section 4 and set intersection in section 5. In these

sections, we describe implemented algorithms solving the problem, provide results of

their benchmarks and comparison with standard CPU approach, and make

suggestions for future research. Conclusive remarks and comments are contained in

section 6.

2

2. GPGPU Programming
This chapter describes the architecture of GPGPUs and how it is mapped into the

OpenCL framework. As there are currently two major manufacturers of GPUs, ATI

Technologies, Inc. (owned by Advanced Micro Devices, Inc.) and NVIDIA

Corporation, the terminology and architecture overview will be provided for their

products.

2.1 GPGPU Architecture Overview
High-performance GPGPU can hold up to several hundreds of stream processors.

These processors are much simpler than ordinary cores in CPUs – they do no

instruction reordering, and the instruction execution speed is predictable and fixed to

the GPU frequency. GPU runs no operating system, memory is addressed directly

without any paging or segmentation mechanism, and there is no need for interrupt

handling. This allows narrower instruction set and therefore less complicated

hardware.

These stream processors are not completely independent as on CPU, where

each core can execute a thread with a different code on a different part of memory.

The stream processors are grouped into multiprocessors with single instruction

decoding unit. These groups are called warps on NVIDIA GPUs with 32 stream

processors and wavefronts on ATI GPUs with 16, 32 or 64 processors (depending on

the model).

Each thread in the group has private registers and stack but the program

counter is shared. If the program flow control diverges within this group, all branches

are executed serially, causing a great performance hit and sometimes even deadlock

in the program. Understanding this concept, which is called 'single instruction

multiple threads' (SIMT), is one of the most important things in GPU programming.

Each stream processor executes only single thread at one moment but more

threads can be scheduled for execution. The multiprocessor has limited number of

registers and these are used also by threads that are scheduled but not currently

running – the thread state (register contents) is not transferred off the multiprocessor.

This allows fast context-switch performed entirely in the hardware. If the execution

3

must wait for slow memory access then the hardware simply switches to another

group of threads that can execute hiding the memory latency.

Similarly as on CPUs there is a hierarchical memory structure:

• The global GPU memory has several hundreds of megabytes or few

gigabytes, and it is separated from the common main memory1 (RAM). Data

transfers between GPU global memory and RAM are issued from the host

(CPU) program code.

• The GPU may feature a transparent L2 cache shared between all

multiprocessors.

• Several other memory types can be directly on the multiprocessor chip:

• Transparent L1 cache speeding up access to the global memory.

• Shared memory for communication between the stream processors.

Transfers between shared memory and global memory are controlled

directly from the code executed on GPU.

• Constant cache for repeatedly read non-modifiable data.

• Texture cache for image data optimized for 2D spatial locality.

1 In technical documentation GPU is often referred to as the device and CPU as the host – therefore,
the common memory is referred to as the host memory.

4

Image 2.1: NVidia GeForce GTX 580 architecture

2.2 OpenCL
OpenCL [4] is an open standard for “cross-platform, parallel programming

of modern processors found in personal computers, servers and handheld/embedded

devices” [5]. Therefore, it is not limited to GPGPUs but the same code should work2

also on multi-core CPUs or on Cell Broadband Engine.

The programming model in OpenCL framework considers two parts of the

program: the host code written in any language with bindings to the particular CL

library (C++ in case of this thesis) and the device code which will run on the

massively parallel device. This device code should be written in the OpenCL

language, which is a subset of ISO C99 with some extensions. Its limitations are for

example prohibition of function pointers or recursive function calls. Examples

of extensions to the ISO C99 are built-in vector data-types and functions or address

space and data alignment attributes.

2.2.1 Execution Model

The CPU (called host) communicates with the device (GPU in our case) through a

command queue. The OpenCL program executed on the device consists of functions

(or rather procedures) called kernels. These kernels are not called directly from the

host program but commands to execute them are sent to the command queue. As the

device program cannot access the host memory (RAM) the host program must

provide it through enqueuing a command to copy the data from host memory to

device memory to the command queue and then collect the results using another

command to copy the data in the opposite direction. For these operations the memory

is encapsulated in buffer objects.

The queues are in-order by default – the commands are executed in the same

order as they are enqueued, and at each moment only one command can be executed.

Out-of-order command queues can execute multiple commands in parallel if there is

enough hardware resources. Events are used for synchronization. Each command can

depend on multiple events, when a command is finished the event associated with it

is raised and the device starts executing another command(s) with satisfied

2 This means the code should be functional, but the performance may vary a lot. See Section 2.3 for
details.

5

dependencies. One device can run multiple command queues – events can be used

also for a synchronization of commands in different queues.

Threads are called work-items. In the host program, the number of threads

required for the task is specified as a range in one-, two- or three-dimensional space.

Each work-item queries its identification number3 and according to it selects the data

that it should process. For example, in a matrix-multiply algorithm the identifier

could be the position in output matrix, and each work-item should compute the scalar

product of the two corresponding vectors from input matrices and store it on this

position.

Work-items are grouped into work-groups. Work-items within a work-group

can synchronize using barrier commands – no work-item can cross the barrier

statement until all work-items in the same work-group reach it. The local memory is

shared by work-items in a single work-group and is not accessible from any other

work-group. Work-items from different work-groups can communicate only through

atomic operations in the global memory. However, there is no guarantee that different

work-groups will be executed in parallel4. Therefore there cannot be anything like

work-group-wide barrier.

2.2.2 Memory Model

The largest and the slowest memory is the global memory. This is shared by all

work-items and available for both read and write access. It is also accessible by the

host through the command queue and persists across different kernel executions.

However, the memory model is relaxed, and therefore the programmer must

explicitly cast a memory fence when a consistent view is required.

Constant memory is a small part of memory with read-only access. The reads

from this memory are cached in separate constant memory cache.

Another memory type, usually located on the multiprocessor chip, is called

local5 memory. It is accessible only by work-items within a single work-group and it

3 This identifier is a position in multidimensional space as specified on the host.
4 The work-group runs non-preemptively on single multiprocessor. Other work-groups cannot

execute on this multiprocessor until this work-group finishes.
5 In NVidia documentation OpenCL local memory is described as shared memory. This is rather

ambiguous because it also uses the term local memory for a memory with different characteristics
which is used for register spilling or private arrays. However, this memory is not located on chip,
and therefore, is slower than both the private and shared memory.

6

is significantly faster than the global memory6 – it can be thought of as a cache with

an explicit access. It is intended for shared variables and communication between

work-items. The memory model is relaxed similarly to the global memory, requiring

memory fences for synchronization.

Work-item local variables are stored in private memory – no other work-item

can access it. This memory usually resides in registers. That makes this type of

memory the fastest from all available memory types.

The table below shows the sizes and latencies [6] of various memory types on

NVidia GTX580 used for experiments in this thesis:

Global memory ~1.5 GB, latency 400-800 cycles, 16 kB L1 cache on
each multiprocessor, 768 kB shared L2 cache

Constant memory 64 kB

Local memory 48 kB, latency ~100× smaller than global memory

Private memory 32768 32-bit registers = 128 kB, latency 22-24
cycles for read-after-write

Both local memory and register count are exclusive for each of the 16

multiprocessors, the global memory is shared.

2.3 Performance Considerations
This section describes some design decisions that are not part of the OpenCL

specification but highly affect the performance. As we have used NVidia card for the

experiments, the behavior will be described for these GPUs.

2.3.1 Coalesced Access to Global Memory

Although the work-item can access any part of global memory, the performance may

vary according to the access pattern of the whole warp7 (threads = work-items

running on single multiprocessor). Multiple parallel requests to load or write data are

coalesced into several 32-, 64- or 128-byte transactions. Moreover, these transactions

must be aligned to their size8.

6 On NVidia GPUs the same hardware is used for local=shared memory and for L1 cache of global
memory. In CUDA it is possible to configure which of the two modules (16 kB/48 kB) will be
used as the shared memory and which will host L1 cache.

7 In fact on some devices this is only half-warp. See NVidia OpenCL Programming Guide [7] and
NVidia OpenCL Best Practices Guide [8] for details. The behaviour on ATI GPUs may also vary.

8 For example 64-byte transaction should start at address divisible by 64, otherwise the request
would be split into multiple transactions.

7

Therefore, the optimal pattern is to access the (kw + i)-th element from the i-th

work-item within a warp of size w (let us call this the simple access pattern). Older

GPUs were not able to coalesce memory accesses with any different pattern; newer

ones can handle any access pattern with the minimum number of transactions.

Nevertheless, using only single memory transaction is always optimal.

This is why the data layout should be organized as a structure-of-arrays rather

than array-of-structures more common in CPU programming9. For example, if we

had an array of key-value pairs, accessing keys would introduce two memory

transactions transferring also the values, therefore, wasting the memory bandwidth.

This access pattern is called strided. You can imagine that with completely random

memory access patter, there would be a separate memory transaction for each access

to the memory, causing heavy impact on the performance of the program.

Similar problem as the strided access is misaligned access. This would also

require more than one memory transaction to satisfy the request.

All these misappropriates can be softened by global memory caches (L1 on

multiprocessor and L2 shared) but should be avoided if possible.

9 Array-of-structures data organization is sometimes popular even in CPU programming,
particularly in column-oriented database management systems.

8

Figure 2.2: Strided memory access pattern

Figure 2.3: Coalesced memory access

2.3.2 Bank Conflicts in Local Memory

Local (or “shared” in NVidia terminology) memory is organized into memory

modules called banks. If a half-warp accesses n memory addresses within n different

memory banks the requests are processed simultaneously. However, if some bank-

conflict (concurrent access to one bank from two work-items) occurs, all the requests

to access this bank must be serialized, decreasing the throughput. The only exception

is a broadcast when all requests to the memory bank read from single address – in

this case the data can be broadcasted and the request is processed in a single step.

In the local address space, successive 32-bit words belong to successive banks,

therefore with 16 memory banks the i-th and (i+16)-th addresses belong to the same

bank. The strided access from a half-warp as described in previous section would

therefore cause two requests on each of the 8 banks and 8 banks would stay idle. On

the other hand, unlike in global memory the misaligned access is not a problem.

2.3.3 Differences Across GPU Vendors

Although the architectures of ATI and NVIDIA GPUs are similar in the essence,

there are many small differences. The GPU program source code in OpenCL

(described in next part) can run pretty well on GPU from either of the manufacturers,

for obtaining the maximum performance the code must be “tuned” for the particular

one. The common performance boost is said to be about 10 – 20%, but the result may

vary much more [9]. One reason for all are ATI's VLIW5 or VLIW4 vector

processors. These run better with vector data-types as the processor has multiple

ALU units. Using vector data-types on NVidia is unnecessary and may be even

counterproductive.

9

3. Benchmarking Methodology
Since we study two different problems via single methodology, our approach is

summarized in this chapter in advance. In the section below we describe what and

how we measure and, at last, problems we encountered. Described methodology is

used in the following chapters where both problems are treated separately.

3.1 Comparing GPUs
Comparing GPUs versus CPUs is generally problematic. The speedup cannot be

evaluated directly as with an improved algorithm, because it depends on the

additional hardware with varying attributes.

Manufacturers assess their cards with billions of FLOPS, but this number

denotes only computational power of the card; often more important readouts such as

memory latencies are not presented. The benchmarks are usually targeted at graphics

operations for which the GPUs are designed, but our task may have completely

different demands.

Having a more complete benchmark suite is problematic. Although the

architectures of GPUs are similar and OpenCL provides us with general framework,

the internal parameters of each benchmark would have to be tuned for each GPU in

the same way as the production code is tuned for peak performance. One setting

cannot fit all GPUs.

Articles concerning GPU algorithms use many graphics cards but except in

a case we possess exactly the used GPU it is complicated to predict how would their

algorithm behave on our GPU and which one is actually better.

Despite all of these problems that we need to be aware of, results of

benchmarks allow the reader to estimate the possible impact of using GPU in

practical applications. The GPU we used was the state-of-the-art card at the time

when this thesis begun and it may be considered as a good representative of high-end

GPGPUs.

10

3.2 Execution Time
The exact definition of execution time is very important. The program execution

consists of compiling the CL source code10, sending the data from RAM to GPU

global memory, execution of one or more kernels and then gathering the results back

to RAM where a common application can use them. The wall time of the program

execution is important if the usage of GPU is only casual or the executable file is

used within some script. If the GPU is used intensively but only for the specific task

alone, both the data-transfer times and execution time are of our interest but the

compilation which is performed only during the start-up is not important. When the

data are processed primarily on the GPU and do not need to be transferred in large

quantities to main memory (or some other I/O device), we care solely about the

execution time of the kernel(s) itself.

In our benchmarks of the sorting and set intersection algorithm

implementations, we start the stopwatch when the data are about to be transferred to

GPU and stop it when all output is gathered back in RAM. This approach was chosen

because we consider improving existing applications with GPU usage. As the

development of GPU programs is still rather complicated, having the majority of a

complex application running on GPU is currently not realistic – that is why we try to

find achievable speedup of computationally intensive and well parallelizable

operations.

Despite that, knowing the memory transfer times may be beneficial for

understanding the behavior of the non-homogenous CPU-GPU system. Therefore,

we will mention them in the results of our experiments.

3.3 Data Selection
The data we use are synthesized using either standard POSIX rand() function or in

case we need unique numbers we use Galois linear feedback shift register [10]

initialized with a pseudo-random number obtained using the rand() function.

10 This can be ommited by storing the compiled code. In NVidia case it is assembler, therefore not
the final machine code and we have to assume that there is some hidden compilation phase
between loading the assembler from persistent memory and actually executing it on the GPU.

11

We generate this data only once for each combination of parameters. When the

benchmark is started it loads these data from disc and runs all executions of all

algorithms on these data. Therefore, the results are directly comparable.

For easy replication the most important test data are stored on the enclosed

DVD. Test data for large sets and asymmetric sets used in intersection benchmarks

are not included due to enormous space requirements and insufficient space on

the DVD.

3.4 Size of Work-group
Optimal size of work-group may vary for each algorithm. It has been observed that

this size is between 128 and 512 work-items. Therefore, we run all benchmarks with

work-group size 128, 256 and 512. After the mean value of the execution time is

computed we use the best value from these three means. We assume that the optimal

value depends on the implementation of algorithm and GPU rather than on the data

itself.

There are more options for the work-group size but implementations of our

algorithms require that the work-group has power of two work-items. This simplifies

some computations in the program, allowing it to run slightly faster.

12

4. Sorting
Sorting is a very important part of many computing tasks. In databases it is used for

index creation, query processing, user-requested sorted output as well as removal of

duplicities, verifying uniqueness and grouping. In computer graphics the construction

of spatial data structures required for rendering and ray-tracing is also basically a

sorting process. Structures such as octrees or k-d-trees require sorting, and these can

be used in many physical simulations – molecular dynamics, collision detection,

particle-based fluid simulation.

There are basically two types of sorting algorithms. Comparison sorts are based

on comparison of elements (keys), others split the input set into buckets based on

their absolute values – these are called distribution sorts11. This thesis is focused on

the first class of algorithms.

4.1 Related Work
Initially, the GPUs lacked general-purpose programming support although it was still

possible to use the graphics primitives to actually do computations. One of the

earliest successful implementations of a sort algorithm was bitonicsort by

Govindaraju et al. [11], later improved as AbiSort by Greß and Zachmann [12].

Quicksort is generally considered the fastest sorting algorithm on CPUs. GPU

implementation with good results was reported by Cederman and Tsigas [13].

Mergesort was implemented by Satish, Harris, and Garland [14], providing a

comparison with their radix sort. Radix sort was also implemented by Merrill and

Grimshaw [15].

4.2 Implementation
All algorithms mentioned below are implemented for both key-value pairs and keys

only, with 32-bit floats used as the keys and 32-bit values bound to the keys. Since

the code is templated it is possible to use the algorithms with another data-types as

well but some hard-coded constants12 are optimized for 32-bit values.

11 The most famous representative of distribution sort is the radixsort.
12 For example sizes of local memory buffers.

13

The keys are randomly shuffled within the sequence – we do not consider any

optimization based on the assumption that the sequences may be partially sorted.

There may be duplicities among the keys but we do not require our algorithms to be

stable.

Bitonicsort and mergesort implementations assume that the length of input

sequence is a power of two. This simplifies the implementation, but it has probably

only marginal effect on the performance. Quicksort internally requires to be able to

sort sequence of any length, therefore, there is no such external requirement for the

input sequence length.

As the algorithms for sorting using an external memory are well inspected, we

assume that the sorted sequence can fit into GPU memory.

4.2.1 Quicksort

The idea of quicksort [16] is to select one element from the sorted sequence, and

generate two output sequences – one with elements lesser than the selected pivot and

one with greater ones. The pivot itself can be then positioned at a place computed

from size of the sequence of lesser elements. In the next iteration, all not-yet-sorted

sequences are processed until such sequence exists. With a logarithmic number of

such iterations (in average case) it has time-complexity O(n⋅log(n)) . In the worst

case the number of iterations can be linear with the resulting time-complexity of

O(n2
) .

The common quicksort algorithm going from both ends of the sequence and

swapping elements does not require any additional memory. However, with multiple

work-items in a work-group, this approach is not applicable on GPU. Therefore, our

algorithm uses an additional buffer of size n for the output sequences – in each level

of recursion the input and output buffers are interchanged. Another buffer (but

smaller) is used for a queue of not-yet-sorted sequences.

There are two levels of parallelism in the algorithm. The first, more obvious, is

to process the sequences in parallel as there is no synchronization needed between

separate sequences. In the second level of parallelism single sequence can be

processed in parallel as well. However, synchronization of the output is required

here.

14

We will describe the sequence parallelism first. A list of not-yet-sorted

sequences as pairs of start and end positions is provided to the kernel. A work-group

is spawned for each of these sequences (called jobs in the source code, therefore, we

call this list job list). It has an advantage of a simpler communication – if only one

work-group processes the sequence, work-items can communicate through local

memory and barriers. If the sequence is shorter or equal to the size of the

work-group, it is sorted by selection-sort (variation QSSS) or bitonicsort (variation

QSBS), otherwise quicksort split is executed.

The selection-sort assigns an element from the sequence to one work-item and

then requires all work-items to iterate through the sequence, counting elements

lesser13 than their own. The sequence is located in the local memory and since the

work-items are synchronized, the reading results in a broadcast instead of a bank

conflict. After the work-items iterate through the whole sequence each work-item

knows the position of its element. Bitonicsort is more thoroughly described in

the next section.

The quicksort split uses two circular buffers in the local memory, each one

sized to the double size of the work-group – one for elements lesser than the pivot

and the other for greater elements. Note that the pivot is chosen as the first element in

the sequence. All work-items are reading elements from the input sequence in

parallel (i-th work-item reads element k⋅W + i where W is the size of the

work-group) and after comparing it with the pivot atomically increment buffer

position in the appropriate buffer and copy the element there. When the buffer is at

least half-full, this half is flushed into the global memory. The memory layout is

13 The original index of the element is used as the secondary key for comparison. Therefore, the
resulting index of the element in the new sequence is not ambiguous.

15

Figure 4.1: Local memory buffers in quicksort implementation

illustrated in the figure 4.1. As just single work-group splits the sequence, there is no

synchronization required.

If there are not enough sequences for each work-group14, the sequence must be

processed by multiple work-groups. These work-groups are called a team. Assigning

input elements is simple – i-th work-item in j-th work-group processes element

k⋅T + j⋅W + i where T is the number of work-items in the team.

For synchronization of writing into the output sequence, there is a second list

passed to the kernel along with the list of not-yet-sorted sequences. This is initially

identical to the job list as it contains positions where the sequence should be written

to. Similarly as the sequence specification (job) the pair of these positions is shared

between work-groups in the team. Since the work-group needs a space to flush its

buffers it atomically increments (or decrements in case of the greater elements) the

output position and seizes the space in the output sequence.

There is a problem with the pivot itself – it is important to determine which

work-group writes it to the output sequence. We have to split the input sequence into

three parts: elements lesser than than the pivot, elements greater than the pivot and

the pivot itself. If we include the pivot into one of the parts and the other part is

empty the requirement to shorten the sequence at least by one element will not be

fulfilled. Therefore, the position of the pivot can be computed only after all

work-groups have finished. Then it is placed between the two new subsequences and

it is not moved anymore. To write the pivot is a task for the last work-group

processing its part of the sequence.

The subsequences are constructed iteratively using the two pointers to current

end of the subsequences. However, there is no protocol which could determine if

these pointers will not be updated just from their monotonic nature as these are not

strictly monotonic. This is why yet another list with counters with amount of

work-groups in each team is used. After the work-group is finished (the pointers are

not going to be updated) this counter is decremented. If it drops to zero this

work-group will write the pivot on the last empty position.

14 NVidia GeForce GTX 580 has 16 SM and with the register count and local memory usage each
SM is able to handle 3 work-groups of size 256 (or 6 work-groups of size 128) in parallel.

16

4.2.2 Bitonicsort

Bitonicsort [17] is parallel sorting algorithm by design. It requires O(n⋅log2
(n))

comparisons for sorting that can be processed in O(log 2(n)) parallel steps.

Therefore, with p processors having theoretical time-complexity

O(max(
n
p

,1)⋅log 2
(n))

Bitonicsort can compete with other classical n⋅log n sorting algorithms if

p≥log n .

The idea is that the sequence is split into two equal-size subsequences and each

is sorted using recursive application of the same algorithm – the first in the ascending

order and the second one in the descending order. Then these two sequences are

joined using bitonic-merge: each element from the first sequence is compared with

the element on the same position in the second sequence and if these two are not

properly ordered, they are swapped. After that each sequence is split into two parts

and joined again using recursive application of the bitonic-merge. When these two

sequences are concatenated they form a sorted sequence.

Order of comparisons is depicted in the figure 4.2 - each white box is one

bitonic-merge and each stripped box is one bitonicsort. The arrows show the

direction of comparison.

Let us denote the basic version of the algorithm working directly on global

memory by BSB (bitonicsort basic).

As the number of available work-items is generally much lower than the

number of elements to sort, each work-item can process multiple elements. This

17

Figure 4.2: Bitonicsort

vectorization technique is usually suggested for ATI cards. This variation will be

denoted by BSV (bitonicsort vectorized).

Another improvement is to use the local memory instead of accessing the

global memory with a high latency. You can see that multiple bitonic-merges may

operate on the same small part of the memory. Usually, each bitonic-merge is

processed in a separate kernel. Nevertheless, the bitonic-merge on short sequences

can be completely processed within a single kernel, loading the data into the local

memory at the beginning and writing them at the end, while removing many

unnecessary loads and writes. In our case, these short sequences can be up to 4·W in

length (W is the work-group size) because of the available size of the local memory.

We call this variation 'bitonicsort using local memory' – BSL.

4.2.3 Mergesort

Mergesort [18] was a popular sorting algorithm especially in the times when RAM

memory was expensive – it can be implemented using cheaper external memory such

as tape drives. However, compared to the quicksort the in-place implementation is

more complicated and, in practice, it is often outperformed by quicksort.

In the basic serial implementation, the input sequence is split into two halves

and both are sorted using recursive application of the mergesort algorithm. Then

these two sorted sequences are iterated through moving the smallest element from

both sequences (which can be found only at the beginning of either sequence) into

the output sequence. This implementation has both the average and the worst time-

complexity O(n⋅log(n)) .

There are multiple ways how to parallelize the mergesort algorithm. The first

comes from its divide-and-conquer nature: sorting of both subsequences can be

executed in parallel. However, the linear merge phase is strictly sequential and can be

found to be a bottleneck.

This merge can be parallelized as well. Let us define the greatest lower bound

(GLB) of x in a sorted sequence S as the highest index of any element of S lesser or

equal to x. The parallel merge then consists of the following steps where steps 2 and

3 are processed in parallel:

18

1. GLB l of the element at position m=n/2−1 in the first subsequence is

searched in the second subsequence (e.g. using binary search).

2. The first half of the first subsequence is merged with the first part of (with

regard to the GLB l) the second subsequence.

3. Similarly, the second half of the first subsequence is merged with the

second part of the second subsequence.

With enough processors this leads to a logarithmic work on each of the log(n)

recursion levels giving the time-complexity of O(log 2(n)) . With a limited number

of processors p the sorting takes O(n/ p⋅log(n/ p)) time to sort the subsequences in

parallel and then O(log(n)⋅log(p)+ n/ p) in the parallel merge phase. Therefore, it

has a total time complexity of O(n/ p⋅(log(n / p)+ 1)+ log(n)⋅log(p)) .

This parallelization approach can be used on CPUs but it is not suited for

cooperative threads on GPU. The communication between the parallel threads would

be complicated – the GLB search would have to share the results or all processors

would have to search the GLB individually.

parallel_merge(S1, S2) {

 if (length(S1) == 0) {

 return S2;

 } else if (length(S2) == 0) {

 return S1;

 } else if (length(S1) < MIN && length(S2) < MIN) {

 return sequential_merge(S1, S2)

 } else if (length(S1) > length(S2)) {

 return parallel_merge(S2, S1)

 } else {

 m := length(S1)/2 - 1

 l := greatest lower bound of S1[m] in S2

 parallel {

 T1 := parallel_merge(S1[0 .. m], S2[0 .. l])

 T1 := parallel_merge(S1[m + 1 .. length(S1) - 1],

 S1[l + 1 .. length(S2)])

 }

 return concatenate(T1, T1)

 }

}

Code listing 4.1: Parallel merge appropriate for CPU

19

A different approach was used for the GPU implementation. The algorithm is

divided into logarithmic number of phases as the levels of recursion in the classical

mergesort. After each phase, the length of sorted subsequences is doubled and the

number of subsequences is halved. In each phase, one element is assigned to each

work-item, the work-item computes the position of this element in the new

subsequence and writes the element on this position.

When two sequences are merged the new position of an element from the

second sequence is equal to the sum of its current position within the second

sequence and the GLB of this element in the first sequence. For an element x in the

first sequence it is, likewise, the sum of its current position within the first sequence

and the greatest index of an element lesser than x in the second sequence (let us call

this GLT, 'greatest lesser than...'). Notice that the relation here is strict, unlike in the

GLB case.

As both sequences are sorted the GLB and GLT can be found using some

sorted array search algorithm. In our implementation, either by binary search or by

interpolation search. These are more thoroughly described in Section 5.2.1. There are

only minor modifications – those algorithms are designed for exact match search.

Since we need to search GLB or GLT, a different compare sign is used in the binary

search or in the interpolation search implementation.

This algorithm scales even better than the aforementioned one (rather suitable

for CPU than GPU). Each element in the sequence can be processed in parallel with

possible 100% utilization of the processors (if n is a multiple of p). There is also no

need to synchronize the work-items.

Time-complexity is O(n/ p⋅log(n)⋅S (n)) where S(n) is the time-complexity

of the search function. In case of the binary search, it is O(n/ p⋅log2(n)) in both the

average and the worst-case. In case of the interpolation search the average

time-complexity is O(n/ p⋅log (n)⋅log (log (n))) but the worst-case is

O(n2
/ p⋅log (n)) .

The first of the sequences is read in a coalesced way but search algorithms

have usually worse memory pattern.

For simplicity reasons the first implementation (mergesort basic – MSB) used

selection sort for sorting the subsequences with length 4·W and each pair of merged

20

sequences was processed in a separate work-group. This simple approach causes

unnecessary restraint of parallelization. Therefore, the second implementation

(mergesort in teams – MST) allows more work-groups to merge single pair of

sequences. The code might look more complicated but the idea prevails.

In the next implementation, the selection sort was substituted by the bitonicsort

in the local memory (called mergesort combined with bitonicsort – MSCBS). The

fourth implementation executes bitonicsort only on sequences of length 32, after that

mergesort with the binary search in local memory is used (MSCBS32).

The last two implementations are variations of MSCBS and MSCBS32 with

the binary search substituted by the interpolation search – we denote them by

MISCBS and MISCBS32.

4.3 Results
In this section the results of our benchmarks will be presented. At first, the variations

of each strategy will be shown. Then we will examine the comparison of CPU sorts

and the best representatives from each GPU sort strategy. The exact numeric results

(execution times) are located in Appendix A.

4.3.1 Quicksort

Quicksort shows very similar results for both variants of short-sequences sort,

moreover, the results do not differ even between the keys-only version and version

with 32-bit values. This is why we present only the chart of the version including the

32-bit values.

We can state that the sorting method for short sequences is not significant for

the total results, the execution times are fully within the deviation intervals.

Both implementations have remarkably high deviations and the sorting time

depends highly on the particular set we are sorting. It is probably caused by the

amount of communication between work-groups – different order of atomic

operations may change the order of jobs in job lists. That is also why we can see

notably different rates for sets with varying sizes – these are different sets, while for

one size we always use the same set for all measurements.

21

4.3.2 Bitonicsort

Two optimizations of the basic bitonicsort were implemented but the vectorization in

BSV cannot be interpreted much like an optimization – it has even worse

performance than the basic version (BSB). The optimization did not help us probably

because there is only minimal amount of the computation between two loads, not

allowing any kind of overlapping of computation and data loading.

On the other hand, using the local memory in the variation BSL is a great

improvement, boosting the performance by approximatly 28% for the keys-only

version and 34% for the version with key-value pairs.

22

Chart 4.1: Quicksort variants with 32-bit values

23

Chart 4.2: Bitonicsort variants without values

Chart 4.3: Bitonicsort variants with 32-bit values

4.3.3 Mergesort

The first implementation (MSB) with one work-group per sorted sequence does not

perform very well as the parallelization options are limited for a long period of time.

This can be also observed from the almost constant sorting rate from sequences of

size 128k whereas the sorting rate of all other strategies still grows.

The versions with initial bitonic- (MSCB and MISCB) and combined bitonic-

and mergesorts (MSCB32 and MISCB32) have similar performance although the

bitonic-only version is a bit faster. From about 512k sequences, the difference

between smart initial sorting and the selection sort is almost constant, which

corresponds to the fact that only constant number of sorting levels (phases) differ –

the change is not proportional to the size of total input.

On the uniformly distributed set of values, the variations with interpolation

search (MISCB and MISCB32) gain over the binary search. This is significant

mostly for sequences consisting of more than 1M keys.

24

Chart 4.4: Mergesort variants without values

4.3.4 Comparison of CPU and GPU Based Sorts

We have chosen two representatives of CPU sorts. The first is std::sort from the STL

library; it is not optimized for top performance but it is a good standard for future

the comparison with other highly optimized CPU sorts. This sort algorithm runs in

a single-threaded apartment.

Second is tbb::parallel_sort from Threading Building Blocks library [19].

It uses multiple worker threads for sorting. Therefore, it can use all CPUs available.

Quicksort does not seem like the best choice for GPUs as it can hardly compete

even with the std::sort. There may be various reasons: the algorithm is rather

complicated and uses many registers. This causes a problem with GPU occupancy as

there cannot be the maximum number of work-items scheduled at one time because

they would require more registers than the hardware can provide. Another problem is

using atomic instructions. Although the global memory atomics are mostly used once

per work-group, there is the need to synchronize the work-groups. Local memory

atomics are also widely used. Moreover, there is a non-trivial cooperation with CPU

where the host program selects some parameters according to the results of the last

phase. Therefore, CPU and GPU sometimes have to wait for each other.

25

Chart 4.5: Mergesort variants with 32-bit values

Mergesort and bitonicsort offer better results. Both can compete with std::sort

on sequences of 8k keys and are significantly faster on longer ones. They are even

faster than the tbb::parallel_sort on sequences longer than 32k keys.

As all presented sorting algorithms are super-linear15, the CPU algorithms have

the best sorting rate on shortest sequences, then the performance slowly decreases.

Due to GPU latencies, the peak performance of GPU strategies is between 2M – 4M

sequences for mergesort and 1M – 2M for the bitonicsort. Then we can also see the

decrease caused by the super-linear nature of sorting algorithms. The decrease is

even faster than in the case of CPU sorts. This is caused by worse theoretical time-

complexity of the parallel algorithms: O(n/ p⋅log(n)⋅log(log(n))) for MISCB and

O(max(n/ p ,1)⋅log2(n)) for BSL, compared to the O(n⋅log(n)) used in CPU

sorts. The number of processing units remains so the sorting rate decrease is faster.

15 Considering that the amount of elements in sorted sets is much higher than the number of
processing units.

26

Chart 4.6: CPU vs. GPU strategies - without values

As a result, we can say that the mergesort on GPU can be up to 3.1 times faster

than tbb::parallel_sort and 12.4 times faster than std::sort on data without values and

2.4 times or 9 times faster respectively on the data with 32-bit values. As the memory

moves on GPU are expensive we can assume that larger values would render smaller

speedup on the GPU. For exact numeric results we refer to Appendix A.

We note that the host-GPU-host memory transfer times are far from being

negligible. Our results show that these take about 50 – 60% of the total computation

time in case of key-value pairs and 35 – 50 % in the keys-only case.

4.4 Future Work
In this section we present some ideas for future improvements.

First, the set may be already partially sorted. If we were able to detect these

sorted subsequences (or get them along the data) we could adapt our mergesort

implementation to skip several levels of sorting. This would require to pass a list of

these subsequences in the same way as we used jobs in our quicksort

implementation. With different sizes of the sorted sequences some more

load-balancing would be required. Unlikely to the quicksort, the work-groups would

27

Chart 4.7: CPU vs. GPU strategies - 32-bit values

not need to synchronize accesses to any parts of the memory because only the CPU

would decide about new jobs, knowing which sequences are sorted in each phase of

the algorithm.

More complicated algorithms usually require more registers and carry some

overhead. The only option to determine the overall performance is an implementation

and an experiment.

Another variation would be the insertion of a small amount of not-sorted data

into larger sorted set. This is a common case when new rows are inserted into an

indexed database table. It is not much complicated with sequential access, in fact, it

is a merge operation. Transfer of the large sorted set to GPU would probably be too

expensive but if the large set was already present in the GPU memory,

the comparison of sequential merge and parallel one might be interesting.

28

5. Intersection
We have defined the problem of intersection as a task to find a common subset of

two sets of 32-bit numbers. The numbers in each set are unique and uniformly

distributed16 across the 32-bit universum.

There are several basic ways how this problem is solved in serial algorithms.

The simplest approach is the non-indexed nested-loop join (NINLJ) testing each pair

from the cartesian product of the two sets. This imposes no requirement on the data

but as the algorithm has quadratic time-complexity, it is not practical for large sets.

Indexed nested-loop join (INLJ) requires representation of one of the sets in

a search structure such as sorted array or tree. The other set is iterated through and

query into the structure is performed for each element.

Sorted merge-join (SMJ) sorts both sets and then selects the common elements

in a single pass through both sets. This algorithm is basically a variation of

mergesort. INLJ and SMJ algorithms will be discussed in section 5.2.

Hash-join (HJ) is very similar to INLJ but it uses hash-map as the search

structure. Naturally, the hash-map has to be constructed prior to the queries. Here we

also need a good hash function distributing the input data uniformly accross the

hash-table. As we assume that the input sets itself are distributed uniformly accross

the universum, simple modulo should be sufficient. Hash-joins are the main topic of

section 5.3.

From the implementation perspective, the absolute size of the sets are an

important property. Those algorithms presented in sections 5.2 and 5.3 assume that

there is enough memory to load and process both sets inside the GPU memory;

section 5.4 studies how to circumvent this requirement.

5.1 Related Work
Although geometrical intersection is a problem often solved on GPU, the set

intersection on GPU is not as commonly studied. Resen and Pagh [20] suggest

compressed bitmap structure called BatMap similar to Cuckoo hash-table

recommended by Alcantara et. al. [21]. Bingsheng et. al. [22] explores both parallel

16 In fact we have used pseudo-randomly initialized Galois linear feedback shift register [10].

29

merge-join exploiting the local memory and variation of hash-join splitting the sets

using radix parititioning. Wu et. al. [23] uses INLJ for intersecting a short and long

sets. Ao et. al. [24] also uses INLJ and suggests precomputing probable position of

elements using linear regression.

5.2 Intersection of Sorted Sets
As sorting algorithms on GPU were described in section 4, here we focus only on the

second phase, assuming that one or both sets are initially sorted.

Although the single-pass algorithm is apparently optimal with serial hardware,

doing this on GPU would be a great wasting of resources.

Our options to parallelize the task are very similar to those with the merge

operation in the mergesort algorithm. We can either split the two sets to pairs of

subsets, which can then be sequentially processed (SMJ), or search for elements from

first set in the second set individually (INLJ). In fact, the second approach requires

only one set to be sorted, although having both sets sorted may yield a better

performance (see below).

With both sets sorted, it would not be difficult to get the result sorted as well. It

would require filling a part of the memory sized equally to the original set with

zeroes and then copying the found elements on their original positions. After that we

would use a compact non-zero elements operation, which is a variation of well-

known parallel scan [25]. Special handling of zero would not pose a problem.

Nevertheless, as our problem description does not require outputting sorted sets this

feature was not implemented.

5.2.1 Search Algorithms

In these search algorithms, each work-item is assigned one number in the first set,

and then it tries to find this number in the second set. It does so by maintaining

an interval from the second set (initially encompassing the whole set) where

the searched element can be found. In each iteration it selects a new index from

the interval and probes the number found in the set on this index. The probed element

(pivot) is compared17 against the searched one, and according to the result the

17 As there is neither a three-way compare operator in ISO C99 nor OpenCL intrinsic for the three-
way compare the actual compare is done twice, however as the pivot is loaded into registers there
is only a minimal overhead.

30

number is either found, or the left or right subinterval is selected as the interval for

next iteration. If the interval becomes empty, the algorithm ends – the number is not

found. The search is summarized in code listing 5.1.

The initial loading of numbers from the global memory, where the first set

resides, is coalesced, therefore, we can expect good performance for this part.

However, the lookups in the second set may be considered random, causing a lot of

memory transactions. Having a separate memory transaction for each work-item in

each phase is the worst-case scenario. Nevertheless, with both sets sorted the

situation may not be as harsh – if the elements in second set (or the closest ones, in

case the second set does not contain them) are near, what could be expected with a

uniform distribution, there is a good chance that the memory access will break into

only few transactions, unlike single transaction for each work-item in the worst-case

scenario.

Moreover, the global memory cache may also help as we are probing only a

decent area of memory in the several latest look-ups.

searchKey := element from first set
leftIndex := 0
rightIndex := size of second set - 1
while (rightIndex >= leftIndex) {

pivotIndex := select_pivot()
pivotKey = element from second set at position pivotIndex
if (pivotKey == searchedKey) {

add searchedKey to the set of common numbers
end

} else if (keyA > keyB) {
leftIndex := pivotIndex + 1

} else {
rightIndex := pivotIndex - 1

}
}

Code listing 5.1: General search algorithm

Binary Search (BSS)

This is the simplest method of individual search. The select_pivot function selects

the middle point from the interval, letting the search algorithm to halve the interval in

each iteration. From the theoretical perspective, the binary search has both estimated

and worst-case execution time O(log n) for each element in the first set, therefore,

O(n/ p⋅log n) for the whole set with n elements, using p processing units

(work-items).

31

Interpolation Search (ISS)

The idea of interpolation search is very similar to the binary search algorithm, but it

exploits the fact that the numbers in a sorted array may form almost linear sequences.

The pivot is selected according to this formula:

pivotIndex=
searchedKey−leftKey

rightKey−leftKey
˙(rightIndex−leftIndex)

where rightIndex and leftIndex define the current range, leftKey is the number

positioned at leftIndex and rightKey is the number positioned at rightIndex.

This function causes the search algorithm to have estimated execution time

O(log log n) [26] which is better than in the binary search algorithm. However, the

worst-case execution time is O(n) .

This algorithm in its base form requires three lookups to the global memory in

each iteration: one for the pivot itself and two for keys on the left and right side of

the interval. One lookup can be spared by cacheing the keys on interval sides (in

each iteration only single side of the interval changes) but as the changing side is set

to the place next to the pivot, the element should be loaded. If this is not suitable, the

key can be approximated – in our implementation it is set just to the value of pivot

itself. The values of the first and the last element in the set are approximated as well,

to be the minimum (0) and maximum (232 – 1) of the universum.

Generalized Quadratic Search (GQSS)

The idea of this algorithm is to combine the advantages of binary search (worst-case

execution time O(log n)) and interpolation search (estimated execution time

O(log log n)).

We do so by partitioning the iterations into several phases. In the beginning

of each phase, the pivot is selected using single interpolation query. The rest of this

phase comprises of alternated binary and unary search queries. The unary search

steps have length equal to the square root of size of the interval at the beginning of

the phase. The phase ends when the unary search has to change direction because it

detects that the searched key has been skipped. This is summarized in

code listing 5.2.

32

if (phaseStart) {
 pivotIndex := select_pivot_by_interpolation()
 pivotKey := element from second set at position pivotIndex
 phaseStart := false
 parity := true // start with unary search
 length := rightIndex - leftIndex + 1
 up := pivotKey < searchedKey
} else if (parity) {
 if (up) {
 pivotIndex := leftIndex + square root of length
 } else {
 pivotIndex := rightIndex – square root of length
 }
 pivotKey := element from second set at position pivotIndex
 if ((pivotKey < searchedKey) xor up) {
 phaseStart := true
 } else {
 parity := false // continue with binary search
 }
} else {
 pivotIndex = select_pivot_by_binary()
 pivotKey := element from second set at position pivotIndex
 parity := true // continue with unary search
}

Code listing 5.2: Pivot selection in generalized quadratic search algorithm

As the interval is halved during at most three iterations the worst-case

execution time is O(log n) . It can be proven that each phase takes constant time in

average [27] and as the number of phases is smaller than the number of queries in

interpolation search (each phase begins with interpolation query), the estimated

execution time is O(log log n) .

Although this method has the best theoretical background, the computation is

more complicated than in the previous methods. We will see how this will exhibit in

the benchmarks.

Initial Lookup Optimization

We have tried to spare the first few lookups using the faster local memory. Each

work-item in the work-group loads a single element from the set with equal distances

between these elements, and the search algorithm is executed on the array of the fast

local memory at first. The second phase continues as usual but with the interval

initially set to the one obtained in the first phase.

This optimization was implemented for both binary and interpolation search.

33

5.2.2 Parallel Single-pass Algorithms

Unlike the search algorithms, this algorithm requires both sets to be sorted on the

input. The well known sequential single-pass algorithm can be parallelized by

dividing the input sets into separate subsets. However, the subsets from the first set

must pair to those from the second set – numbers from each subset of the first set

should be present only in the pairing subset of second set respectively. This condition

guarantees that no number common to both sets may be missed when processing the

pairs of subsets in parallel.

There are more problems related to the task – we should balance the sizes of

sets to be approximately equal because the execution time of the whole algorithm is

dependent on the execution time of the longest subtask (we are assuming that the

execution time of the single-pass is linear to the sum of sizes of subsets in the pair).

Another problem is the decomposition granularity. Should the sequential pass

be performed by whole work-group, single work-item or rather by single warp?

Dividing The Sets

In order to fit the subsets into the local memory and simplify the algorithm, the size

of subsets was limited to N where N is the size of the work-group. Using binary

search18, greatest lower bound for each N-th element from first set is found in the

second set. Then the multiples of N and GLBs in each set are iterated, pairing the

intervals from each set. See figure 5.1 as an example – here are the two sets of size

4N divided into 8 pairs of intervals, each interval having at most N elements. These

pairs of intervals can be then processed in the local memory (except for the first pair

which has one of the intervals empty).

18 Although interpolation-search proved faster in the global search algorithm, due to some anomalies
in floating-point operations it was significantly slower in this case – therefore binary search was
used.

34

Figure 5.1: Dividing the sets

The algorithm is summarized in code listing 5.3. As it sequentially iterates

through the data it is not parallel by nature. The algorithm was implemented both on

CPU ('local search strategy with jobs created on CPU' – LSJCCPUS) and GPU

('local search strategy with jobs created on GPU' - LSJCGPUS). On CPU it needs to

move the GLBs from GPU to CPU, wait until the set is processed and then move the

interval ranges back to GPU. On GPU single work-item iterates through the data,

other work-items in work-group only help with moving the data between the local

and the global memory.

iteratorA := 1; iteratorB := 1;

if (glbsA[0] != 0) {

 intervalEndA[0] := 0;

 intervalEndB[0] := glbsA[0];

} else if (glbsB[0] != 0) {

 intervalEndA[0] := glbsB[0];

 intervalEndB[0] := 0;

} else {

 intervalEndA[0] := 0;

 intervalEndB[0] := 0;

}

intervalIterator = 1;

while (iteratorA < glbsA or iteratorB < glbsB) {

 if (glbsB[iteratorB] < nextMultipleA) {

 intervalEndA[intervalsIterator] := glbsB[iteratorB];

 iteratorB := iteratorB + 1;

 } else {

 intervalEndA[intervalsIterator] := nextMultipleA;

 nextMultipleA := nextMultipleA + N;

 }

 if (glbsA[iteratorA] < nextMultipleB) {

 intervalEndB[intervalsIterator] := glbsA[iteratorA];

 iteratorA := iteratorA + 1;

 } else {

 intervalEndB[intervalsIterator] := nextMultipleB;

 nextMultipleB := nextMultipleB + N;

 }

 intervalIterator := intervalIterator + 1;

}

Code listing 5.3: Dividing pair of sorted sets into pairs of intervals

35

In fact it is possible to parallelize the loop with a similar technique as those

used in the parallel mergesort, however, that is not our case. This approach would be

too complicated for the amount of data that is processed.

In our implementation two subsequent pairs of intervals with both sums of

interval sizes lesser than N can be joined together. This detail is not covered in the

code listing 5.3 above.

Searching for Common Elements

Although having one work-item for each interval and sequentially iterating through

the intervals might be the fastest solution from the theoretical perspective (with time

complexity O(n/ p)), this would lead to a non-coalesced memory reading pattern,

which is obviously very slow – there would be large stride between the reads.

Therefore, one interval is processed by the whole work-group. One work-item is

assigned to each element from first interval, searching for equal element in the

second interval. This leads to time complexity19 O(n⋅log(N)/ p) .

5.2.3 Results

In this section we will compare the strategies with each other. After that, as no

advanced CPU join algorithm for sorted sets was implemented in this thesis, we will

use simple sequential merge-join as the counterpart for CPU – GPU comparison.

The sets were sized from 212 = 4k to 224 = 16M keys. We have used

configurations with varying number of common elements – no common elements,

0.1%, 10%, 50%, 90% and identical sets (differently shuffled, of course). As having

chart for every configuration would require too much space, we show only those

results showing important properties of the strategies. Rest of the charts is provided

on the enclosed CD.

GPU Strategies Comparison

Absolute values show similar performance for all search methods. This is caused by

the long-lasting transfer of sorted sets from RAM to GPU and also the transfer of the

resulting intersection back from GPU to RAM in all strategies. Therefore, we will

analyze the strategies from the next chart where the intersection times are scaled to

19 As the N is bound to constant size of the work-group rather than to size of the input, the log(N) can
be also considered as constant.

36

the sum of memory transfer times. Since this chart shows relative time of

the intersection instead of sorting rate as the other charts, the lower ratio is better.

37

Chart 5.2: GPU strategies on equally sized sorted sets with 10% common elements (relative)

Chart 5.1: GPU strategies on equally sized sorted sets with 10% common elements (absolute)

The interpolation search (ISS) is fastest through all set sizes. The look-up

optimization (BSLS and ISLS) has not proven useful – in fact, the performance of

these variations is worse compared to the basic strategies. Binary search (BSS) can

compete with other strategies on smaller sets but for larger ones, it is slower.

Although conceptually very different the generalized quadratic search (GQSS)

performs similarly to the local search strategy with jobs created on CPU

(LSJCCPUS). Both these offer mediocre performance compared to interpolation

search. Local search strategy computed on GPU solely (LSJCGPUS) is the slowest

strategy because the serial part is not fitting well to the GPU architecture.

Asymmetric Sets

All results above come with symmetric set sizes – both sets have the same size. The

results below compare different distributions of sizes with the same sum of sizes of

the sets. We have used ratios in the form 1:(2i – 1): 1:1, 1:3, 1:7 and so forth. The

amount of common elements was set to 4k which is the size of the smallest set used

for these benchmarks. This was motivated by the effort for keeping constant memory

transfer times for all pairs of sets with equal sum of sizes.

In the charts below, execution times are normalized to the execution time of

pair with equally sized sets, marked as empty circle. If the triangle points upwards

the first set passed to the algorithm is greater, if it points down the second set is

greater. The darker the triangle is the greater is the difference between the sizes of the

two sets.

On all strategies extreme values offer the shortest execution times and the

higher ratio renders shorter execution time.

The n⋅log(N−n) curve expected for binary search has theoretical maximum

(the longest execution time) for ratios between 1:1 and 1:3 with smaller first set; this

is similar also for the interpolation search. Our results show longest execution time

with ratios between 1:7 and 1:15 with smaller second set, for both variants of binary

search, interpolation search and for generalized quadratic search as well. With these

strategies, the ratio with smaller first set is almost always faster than the other

variant.

38

39

Chart 5.3: Binary search Chart 5.4: Binary search with look-up

Chart 5.6: Interpolation search Chart 5.5: Interpolation search with look-up

40

Chart 5.7: Generalized quadratic search

Chart 5.8: Local search (jobs created on CPU) Graph 5.9: Local search (jobs created on GPU)

The local search strategies show symmetric results with regard to which set is

smaller. This is expected as the algorithm is also symmetric, unlike the global search

strategies. Here the maximum should be for ratio 1:1 – this does not exactly fit to our

results but it can be caused by the properties of pair of sets used for our benchmarks.

Comparison With CPU

The CPU merge-join is on a par with our GPU implementation. The CPU algorithm

has lower theoretical complexity: the merge-join runs in linear time while our search

algorithm has average time-complexity O(n/ p⋅log log n) . Moreover, the GPU

algorithm has to copy data from RAM to GPU and back. Still, for sets with fewer

common elements the GPU strategy can be more than 2× faster. There are two

reasons for this: there are fewer elements to copy back from GPU, and the

merge-join has to do approximately 2n comparisons. However, as the sets get more

common elements, the amount of data copied back to RAM grows and the number of

comparisons in merge-join decreases to n. This results in worse performance of the

GPU strategy.

41

Chart 5.10: CPU vs. GPU on equally sized sorted sets

5.3 Hash-based Intersection
This section describes the algorithms which do not require the input sets to be sorted

but one of the sets must be transformed into hash table.

5.3.1 Linear Hashing

The linear hashing (LHB) algorithm comprises of three phases. In the first phase, the

hash-table is initialized with zeroes, in second phase each work-item loads one key

from the first set and inserts it into the hash-table and in the third phase each

work-item loads one key from the second set and queries the hash-table for its

presence. If the key is found in the hash-table it is inserted into a local memory

buffer. When all work-items in a work-group finish the query, this buffer is flushed

into the output set in the global memory.

In the insert phase, a position is computed from the key using hash function

h(x)=x mod H where H is the size of the table. When there is zero on the position

in the hash-table, the element is simply written there. If a collision occurs, the

position is increased by a number incommensurable with the size of the hash-table

(113 in our case). This process is repeated until an empty position is found. As many

work-items may try to insert an element on some position in a single moment, atomic

functions must be used for accessing the hash-table.

When the hash-table is queried the key is hashed using the function

h(x)=x mod H and this position is probed. If there is zero, the algorithm ends. If it

contains the key we are searching for, the key is added to the output set. If there is a

key different from the queried key, the position is increased by 113 and the probe

process is repeated.

As zero in the hash-table has the meaning of an empty position, the element 0

must be handled in a special way.

One way to optimize this algorithm is to keep the chains of keys in hash-table

sorted – we denote this variation LHS. This can be done initializing the table with

maximal numbers (232 – 1) instead of zero. The atomic compare-and-swap operation

is then replaced by atomic minimum operation20 – the lower number is written into

20 atom_min function is a part of extended atomics OpenCL 1.0 extension while atom_cmpxchg is
found in base atomics extension. Although NVidia GeForce GTX580 supports both extensions
some devices may not. OpenCL 1.1 specification contains all these atomic function in the

42

the hash-table. If the original element is not 232 – 1 the insert operation continues on

the next position (current position + 113) with the greater one from the inserted and

original elements.

With zero replaced by 232 – 1 this number needs special handling instead of 0.

The query is also similar to the one used in the basic version of this algorithm.

The difference is that the probe process does not end when zero is encountered but

with any number greater than the queried key.

Initial loading keys from both sets is done with coalesced memory access.

Copying found elements set from the local memory, where these are buffered, into

the output set is also performed in the coalesced way with a minimal number of

memory transactions. We have to synchronize work-groups by atomic incrementation

of the output set counter – here may happen some collisions between work-groups.

Nevertheless, the major bottleneck is the random global memory access using the

atomic functions.

Our implementation uses the hash-table with size H =4⋅n as we are focused

on performance rather than on the smallest memory footprint. With this load factor

α=0.25 , the number of accesses for the basic variant (without sorted keys) should

be (1−α)−1=1.33 when the key is not in the table and α−1⋅log (1−α)−1=1.15

when the key is present [27]. In the sorted keys variation the number of accesses is

equal for both successful and unsuccessful search and identical to successful search

in the basic variant. Experimental results show that it is 1.16 – 1.38 for basic variant

(the exact value depends on the number of common elements in the two sets) and

1.16 with sorted keys (without any dependency on the number of common elements).

5.3.2 Cuckoo Hashing

Cuckoo hashing was described for the first time by Pagh and Rodler [28] and

recommended as GPU hashing algorithm by Alcantara et al. [21].

The hash-table consists of several columns (we have used 3), each equipped

with its own hash function. When the key is inserted into the hash-table we choose

one column and compute position of key in this column. The key x is inserted into

this position regardless whether this position already contains another key or not. If

mandatory set of supported functions for 32bit memory access.

43

there was an empty space, the insert operation is finished. If there was another key y,

it is replaced by x an the y is hashed into the next column. There it may replace

another key z; the process is repeated in this case. That is why this is called cuckoo

hashing: the new element always pushes the original element out of its nest.

With an unfortunate choice of hash functions, there is a chance that we find

ourselves looping forever. This scenario is evaded by canceling the process of

inserting into the hash-table after some maximal number of iterations. Then a new set

of hash functions must be chosen and the table is completely rehashed.

The insert operation is shown in code listing 5.4.

for (i := 0; ; ++i) {
 column := i mod TABLE_WIDTH
 position := hash(key, column)
 key := swap21(hashtable[column, position], key)
 if (key == 0) {
 break
 } else if (i >= MAX_LOOPS) {
 signalize failure
 break
 }
}

Code listing 5.4: Insert into cuckoo hashtable

The advantage of cuckoo hashing over linear hashing is in the query operation.

The number of look-up operations is limited to the number of columns in the

hash-table. No long chains known from linear hashing with higher table load factor

may occur here.

This hashing algorithm has been implemented in two variations: In first

(cuckoo hashing in the local memory – CHL), suggested by Alcantara et al. [21],

both sets were divided into buckets small enough to fit into the local memory. Then

each work-group processed single pair of buckets: it creates a cuckoo hash-table in

the local memory from the first bucket and then queried it with keys from the second

bucket. The second implementation ran cuckoo hashing directly in the global

memory (CHG) in a way very similar to the linear hashing.

There is a question how to divide the set into buckets in the local memory

implementation. We estimate the number of buckets necessary – in order to fit the

21 OpenCL basic atomics extension defines atom_xchg function for both local and global memory.
Regrettably the version for local memory appears to not work with compiler/drivers version used,
therefore it had to be replaced with a repeated atom_cmpxchg function.

44

bucket into the local memory the maximum number of keys in each bucket was set to

M =1024 , therefore, we choose each bucket to contain λ=800 keys in average.

With uniform distribution of input keys and feasible hashing function22 we can

approximate the probability of one bucket overflow using Poisson distribution:

P (one bucket failure)=1−∑
k=0

M
λ

k
⋅e−λ

k !
=1.38×10−14

With the largest tested sets having S=224
∼16×106 elements, separated into

20 972 buckets, the probability of overflow encountered when hashing any of the

buckets is:

P (any bucket failure)=1−e
−P (onebucket failure)⋅2⋅S

λ =5.78×10−10
∼

1
1 731119 676

The probability of failure depends on size of the whole set – we could

programmatically adapt the average load factor to keep this probability constant, but

such complication is not necessary for purposes of this thesis.

If any bucket overflows the maximum size M, we have to choose another

hashing function and rehash both sets.

As the local-hashing implementation both loads and stores keys in a coalesced

fashion, and the hashing itself is performed in the local memory, this part is fast

enough. The bottleneck here is the bucketing, where we have to atomically increment

a bucket size counter for each key itself and then write the key into the bucket,

causing random accesses to the global memory.

5.3.3 Indexing into Large Bitmap

This method differs radically from the previous two algorithms. The hash-table size

does not depend on the size of the set but on the size of the universum. As most

present-day GPUs do not have enough memory23 to keep the 512MB bitmap for the

whole 32-bit universum, we have to split the sets into buckets according to first few

bits. This strategy is called 'indexing into large bitmap with split' – ILBS. We have

chosen 16 buckets for each set – one for each combination of the first 4 bits of the

22 Note that this hashing function is different from the one used for the cuckoo hashing in local
memory.

23 The adaptation for GPUs with enough memory is straightforward.

45

key. This results in reducing the universum to 28-bit one for which only 32MB

bitmap is needed.

In the first phase, we compute the required sizes for buckets and reserve

memory for them. Then in phase II the sets are split into the buckets – work-groups

keep a buffer in the local memory for each bucket and when some buffer is full, it is

flushed into the bucket in the global memory. As the work-items cooperate on the

flush there is only one increment of bucket counter for all keys in the buffer.

The memory transfer is also coalesced.

Third phase contains a loop over all pairs of buckets. In each of 16 iterations

this process is repeated:

1. The 32MB bitmap is filled with zeroes.

2. Keys are loaded from the first bucket of the i-th pair of buckets.

3. A bit is written using atomic OR into the bitmap on the position specified

by lower 28bits of each key.

4. Keys are loaded from the second bucket of the i-th pair of buckets

5. The bitmap is probed for a bit on position specified by lower 28bits

of each key.

6. If the bit was 1 the key is added to the output set.

We have also implemented other version of the algorithm, called 'indexing into

large bitmap – no split' - ILBN. The keys are not split into buckets; when the bitmap

is constructed the keys whose higher 4bits do not match the current mask are simply

ignored. Therefore, each key is loaded 16× instead of 2× as in the variation described

above, but there is no bucketting phase with additional required memory. We will see

how this affects the perfomance in the results below.

5.3.4 Bloom Pre-filtering

Bloom filter [29] is a space-efficient probabilistic data structure that is used to test

whether an element is a member of a set. As false positives are possible but false

negatives are not, it allows to eliminate some elements from the sets which cannot be

in the intersection.

46

The idea of Bloom filter is to hash element to a position of a bit in a bitmap.

The hashing function is usually trivial such as ignoring some bits in the element.

Collisions may occur:

– if there is 1 in the bitmap, the element may be hashed into the filter

– if there is 0 in the bitmap, the element was not hashed into the filter

The algorithm using is data structure has been used as a template – at first the

sets are reduced and then other non-probabilistic algorithm is executed. The reduce

algorithm comprises of a loop with these steps:

1. Create the Bloom filter from first set.

2. Filter the second set through the Bloom filter into third set.

3. If the third set is larger than 70% of the first set, quit.

4. Rename the first set to second set, third set to first set and continue with

next cycle of the loop.

The Bloom filter may be either located in the global memory, (almost) not

limiting its size but with slow random access, or in the fast local memory, although

very limited to its size. In our implementation the global filter uses N/4 bytes

of memory with N elements in the set; the local filter has fixed size 14336 bytes,

which is the maximum amount of the local memory assignable to one work-group

with optimal occupancy.

The global filter is created using atomic OR operations in the global memory,

construction of local filter is a bit more complicated:

1. Global filter filled with 0s is constructed in the global memory, sized

equally to local filters.

2. Each work-group creates its own filter in the local memory, hashing its

part of the set into the local filter.

3. Local filters are ORed (word-by-word) to the global filter.

4. Each work-group fetches the finished global filter into the local memory

and then reads only from this local copy.

47

5.3.5 Results

In this section we will compare the GPU strategies with each other, then analyze the

effect of Bloom prefilter on each of them, and present the results for non-equally

sized sets. In the end we will see the final comparison with CPU intersection.

GPU Strategies Comparison

Similarly to the benchmark of sorted sets intersection, we have used sets sized from

212 = 4k to 224 = 16M keys and configurations with no common elements, 0.1%,

10%, 50%, 90% and identical sets (differently shuffled, of course). We also omit

most of the graphs and present only those with some interesting characteristics. For

the rest of the charts please refer to the enclosed CD.

One of the simplest algorithms – the linear hashing with sorted keys – is the

fastest one for all sizes of sets. The performance of basic linear hashing is very

similar to the sorted-keys version, especially with more common elements.

48

Chart 5.11: GPU strategies on equally sized unsorted sets with 10% common elements

Although the cuckoo hashing into a global hash-table has very good results for

many common elements, when there are only few common elements it requires more

memory accesses than the linear hashing, and therefore, it has only mediocre

performance.

The performance of cuckoo hashing to local table significantly deteriorates for

sets larger than 1M elements. There is no obvious outer reason for this – probably

some hardware resources stop scaling at this moment. This deterioration is found in

all results across the configurations with little deviation. Exact origin of this behavior

was not located, although L2 cache could be relevant because of its size 768kB.

Filling a large area of memory with 0s, whose size is not dependent on the size

of input, renders unsurprisingly both strategies with indexing into this bitmap rather

slow on small input sets. With larger sets the constant work requires smaller relative

part of the computation, and finally, the overall performance is moderate but still far

from the optimal case.

49

Chart 5.12: GPU strategies on equally sized unsorted sets with 90% common elements

Bloom Pre-filters

The result of applying Bloom prefilters to other strategies can be seen in charts 5.13

and 5.14. With none or only few common elements, the prefiltering was able to

reduce the sets so that running the inner strategy was almost unnecessary – the few

lasting elements could be processed on CPU. In some cases the reduction itself

outperformed the actual strategy. Nonetheless, this did not happen for all strategies –

in our results linear hashing is always faster without the Bloom pre-filter.

The local memory is sufficient for sets with at most 128k elements. Larger sets

make the local bitmap too dense with 1s and the fast accesses cannot compensate this

anymore. Larger bitmap in the global memory is much more suitable for these sets.

50

Chart 5.13: Bloom pre-filters for 16M unsorted sets and 0.1% common elements

51

Chart 5.14: Bloom pre-filters for 16M unsorted sets and 90% common elements

Chart 5.15: Bloom pre-filters for 128k unsorted sets and 0.1% common elements

Asymetric Sets

We have used the same methodology for identifying the behavior of hash-based

intersection algorithms on asymmetric sets as previously with algorithms running on

sorted sets. The sets in pairs had ratios in the form 1:(2i – 1) and there were 4k

elements common to both sets.

Again, execution times in the charts below are normalized to the execution

time of pair with equally sized sets, marked as empty circle. If the triangle points

upwards the first set passed to the algorithm is greater, if it points down the second

set is greater. The darker the triangle is the greater is the difference between the sizes

of the two sets.

As the pairs with larger first set have longer execution times we can deduce

that in linear hashing strategies (LHB and LHS), building the hash-table is the most

expensive operation. The look-up into this hash-table is much cheaper.

Cuckoo hashing to the global memory (CHG) show similar results as the linear

hashing – the pairs with a large second set are executed faster than those with larger

52

Chart 5.16: Basic linear hashing (LHB) Chart 5.17: Linear hashing with sorted keys
(LHS)

53

Chart 5.18: Cuckoo hashing to global memory
(CHG)

Chart 5.19: Cuckoo hashing to local memory
(CHL)

Chart 5.20: Indexing into large bitmap with
buffered split (ILBS)

Chart 5.21: Indexing into large bitmap - no split
(ILBN)

first set. However, the difference between larger first set and both set equal is not as

prominent. The exact nature of the first set has higher impact on the overall

execution time.

On the other hand, cuckoo hashing to the local memory (CHL) shows little

difference between symmetric and asymmetric sets. Here the bucketing takes the

majority and the same actions are performed on elements from both sets. Still, we

can observe somewhat shorter execution times with larger second set and vice versa.

We should note that the missing comparison on 2M total size is caused by extremely

low execution time of the equally sized sets variant – all the other sets have ratio

around 1.8.

Building the bitmap in IBBS strategy is a bit more expensive than the look-up

as we use atomic instructions for this purpose, but the difference is not as significant

as in linear hashing – here it is at most 10% on each side. In the version without split

(IBBN) the difference is yet smaller, about 2%.

Comparison with CPU

There are multiple algorithms for intersection on CPU as well. We use serial

merge-join with sets sorted by tbb::sort24 (having good performance on smaller sets)

and two-pass bucketing developed by Kruliš [30] (excelling for greater sets). As the

decision can be based solely on the input size, the appropriate CPU strategy for the

particular set can be always selected in advance. This is why the number of buckets

used in our results of two-pass bucketing is varying between 32 and 1024 – we have

collected results for all settings and selected the optimal values.

GPU outperforms both CPU strategies for sets larger than 16k. The tbb::sort

with sequential merge-join is better for pairs of sets with up to 2M – 4M keys each,

after that the two-pass bucketing algorithm, finally, starts scaling. However, even at

its peak25 performance for ~128M sets with rate around 70M keys/seconds this CPU

algorithm cannot compete with GPU linear hashing.

24 Already referenced in section 4.3.4.
25 These data are not a part of the graph as the GPU linear hashing strategy is not suitable for such

large data sets.

54

5.4 Sets Not Fitting into Memory of GPU
The GPU memory is usually smaller than the RAM memory. Moreover, there are

also limitations for the size of a single continuous block of memory. That it is why

we have to develop different techniques for larger sets that cannot be present in the

GPU memory at one moment.

Using secondary storage is not a new technique. It has been used for years in

many external memory algorithms, for instance in mergesort as the best known

example. In the common CPU case the RAM memory is used as the primary storage

and magnetic hard drives or solid state drives second, we use the GPU memory as

the primary and RAM as the secondary storage.

The techniques below usually try to overlap GPU computation with memory

transfer because these operations are independent.

5.4.1 Splitting into Multiple Partitions

The naive approach to calculating the intersection of a pair of too large sets is to

partition both sets to subsets of suitable size and intersect each subset from first set

55

Chart 5.22: CPU vs. GPU on unsorted sets with 10% common elements

with each subset from second set (this is basically the NINLJ idea). The output set is

plain concatenation of the partial results. However, as this has quadratic time-

complexity with respect to the number of the partitions, we mention this strategy

rather for a completeness – it has no practical purpose for us.

If the sets are not sorted in any way we have to stick to bucketing. Similarly to

the assumption described in section 5.3.2, we set the expected fill to 80% of the max

size we can process on GPU. This means that we use N /(M⋅0.8) buckets. Yet

worse than in section 5.4.2, both sets must be processed before the execution on GPU

begins. Then some inner hashing strategy26 is executed on each pair of buckets. We

call this outer strategy 'multirun bucketing template' (MBT) because it is not

dependent on the inner strategy.

Inserting values into the buckets one-by-one would cause effect known as

cache-line ping-pong; prior to inserting element into the bucket the cache-line that

should contain this element would have to be transferred to the processor which tries

to write into the bucket. Therefore, we use a common technique to avoid this

behavior – we store the elements in thread-local buffers and do the insertion only

after any buffer gets full.

When the sets are sorted the situation is better. We can partition the sets

without any bucketing – we do not use hashing but find sequences with the same

range. The routine is executed serially, as we need usually only several partitions,

trying to do this in parallel would be excessive – the overhead related to

parallelization would be too high. The splitting algorithm is outlined in code

listing 5.5. This strategy is denoted by MST ('multirun sorted template').

After the partitioning is finished, each pair of subsets is intersected by some

sorted set intersection strategy described above.

In order to parallelize copying of the data to GPU and back and execution of

kernels, multiple command queues are used, each managed by a separate thread.

However, according to results in profiler, the OpenCL implementation was not able

to exploit this command pattern.

26 We use the linear hashing with sorted keys (LHS) as this has proven as the fastest strategy in
previous results.

56

beginA := begin of setA;
beginB := begin of setB;
while (beginA != end of setA && beginB != end of setB) {
 glbA := beginA + maxDataSize;
 if (glbA < end of setA) {
 glbB := GLB of setA[glbA]
 from beginB to end of setB
 } else {
 glbA := end of setA
 glbB := end of setB
 }
 if (glbB - beginB > maxDataSize) {
 glbB := beginB + maxDataSize;
 glbA := GLB of setB[glbB]
 from beginA to end of setA
 }
 intersect setA[beginA .. lowerBoundA]
 with setB[beginB .. glbB]
 beginA = glbA;
 beginB = glbB;
}

Code listing 5.5: Partitioning of sorted sets

5.4.2 Indexing into Large Bitmap

The idea of this algorithm is thoroughly described in section 5.3.3, but the

implementation on CPU slightly differs. The sets are not transferred to GPU as large

blocks which would not fit to the GPU memory but these are partitioned into several

smaller subsets. The strategies below differ in the way how these smaller subsets are

created.

The commands to copy the subsets from host (RAM) to GPU, and execute

kernels hashing them into the bitmap, are sent to out-of-order command queue with

event-based synchronization – we have to wait before the subset may be hashed until

it it is present in the GPU memory. The same applies for subsets from the second set

and kernels querying the bitmap and building output set.

In this scheme, the GPU can theoretically both copy data and execute kernels.

However, according to the profiler, this opportunity was wasted.

We have implemented this algorithm in two variations, each partitions the data

in a different way. The simpler version 'multirun large bitmap simple strategy'

(MLBS) similarly to IBBN does not perform any preprocessing on CPU. We always

insert only elements from one of the 16 ranges into the bitmap, therefore, the

algorithm comprises of 16 loops. In each loop we send blocks of memory from

57

the first set (represented as continuous memory area) to the GPU. All elements which

fit into the currently processed range are inserted into the bitmap. Then the second

subset is also sent to the GPU in the same way, performing a query into the bitmap

only for those elements which fit into the processed range.

In this version all the data are sent to GPU 16×, which requires a considerable

amount of time. The transfer is ineffective because each element is actually utilized

only once but it is ignored 15×. However, there is almost no CPU computing power

required.

The alternate variation 'multirun large bitmap bucketing strategy' (MLBB) uses

multiple CPU threads to split each set into 16 buckets. Then each bucket is sent to

the GPU only once. Using more computing power on CPU is a trade-off for reduced

memory throughput. Note that this is exactly the same as we did in ILBS strategy,

only the first phase is processed on the CPU instead of the GPU.

As we want to evade excessive synchronization each thread has 16 small

thread-local buffers. The thread processes one part of the set and buckets the

elements into its local buffers. When any of the buffers becomes full enough it is

handed over to one of 16 shared lists27 of ready buffers which collect the processed

elements – these lists represent the buckets. There is another special thread which

sends these buffers to the GPU and manages the execution of kernels that insert

elements into the bitmap or query it.

We can always keep only single bitmap in the memory. That is why the

elements from all lists cannot be sent in parallel. The management thread can start

sending data from the first list of first set anytime but it has to send all data logically

belonging the this list before continuing – this is not until the whole first set is

processed. Then it can start sending data from first list of second set and execute

kernels querying the bitmap. After both first lists are processed we can start with

second list of first set and so on – now the bucketing threads are already finished.

In fact there are only two moments where manipulation with GPU is parallel to

the CPU processing. The first is in partitioning the first set – it is not required to have

the whole first bucket processed before starting to send the data from this bucket to

27 The list is implemented by TBB concurrent queue.

58

GPU. The second one is in bucketing the second set on CPU while the GPU inserts

the elements from first set into the bitmap.

5.4.3 Results

We have tested the strategies on pairs of sets, each having up to 512M elements

whereof 10% common to both sets. The maximum size of one subset generated from

the large set was set to 4M as we are usually manipulating with multiple subsets in

parallel, allowing some parallelism in the memory transfer and processing.

Intersection of Sorted Sets

We have developed only single strategy for intersection of sorted sets but as this

strategy is applied on other strategies, we provide results with the specific

implementations of the inner strategy.

We do not show results with the interpolation search strategy (ISS) as the inner

strategy because it has proven not fully operational. Despite the strategy provided

correct output, the execution times were absolutely beyond expectations – in the

slower way. The reason was not found but we have committed several experiments,

varying the parameters of this strategy.

One explanation would be that the initial approximation of left and right key to

0 and 232 – 1 is not fitting anymore with the different range. However, the error in

initial range should be corrected after first two iterations. That would cause constant

slowdown for each processed element, not dependent on the number of partitions.

We have varied the size of subsets, changing the number of partitions. According to

our observation the execution time is roughly proportional to the number of subsets

created from one set. Therefore, the initial range error cannot explain such behavior.

We have also tried slower variants with correct initial range – the elements on

both borders of the subset were actually loaded instead to the initial approximation of

0 and 232 – 1. Then the execution times were substantially different for each setting

of the subset size but we have not observed any pattern in this behavior.

Any error in implementation is eliminated – the inner strategy code is used also

in the benchmark of smaller sets, and the templating strategy is used for other search

strategies without any modifications. After all we omit the results of this strategy as

untrustworthy.

59

The look-up version of binary search strategy is also omitted as this had not

improved the performance in the previous benchmarks.

The results above correspond to our expectations. Our solution scales well

regardless of the size of sets. For reasons mentioned above, the local search strategy

with jobs created on CPU does not compete with interpolation search strategy and

therefore is the fastest one, followed by binary search strategy. The other two

strategies provide slightly worse results. This is similar to the results we have

obtained in previous sections.

Hash-based Intersection

Here we present the bucketing strategy applied on linear hashing with sorted keys (as

the fastest strategy on small sets) and both types of indexing into large bitmap.

The only useful strategy is the indexing into large bitmap with sets bucketed on

the CPU prior to sending the data to GPU (MLBB). The intersection rate is lower

than those achieved with smaller sets (there we had rate about 120 – 155 million keys

per second) but still significantly higher than the rate we measured for CPU-only

algorithms.

60

Chart 5.23: Multirun sorted template strategy

Both indexing into large bitmap without the initial bucketing (MLBS) and

applying multirun bucketing template on linear hashing with sorted keys (MBT +

LHS) showed unsatisfying performance, comparable with tbb::parallel_sort followed

by merge-join.

5.5 Future Work
We have studied the simple form of intersected data and assumed that we process

each set only once. Therefore, we could not use more time and memory to

pre-process it to any form that would help us perform the intersection faster. If there

would be more requests to intersect one static set with multiple another ones, it could

be useful to sort it or build a search tree to accelerate the further queries. In this case,

we could also amortize the cost of building a hash-table.

In real-world databases the indices are sometimes compressed with keys

represented using delta-encoding28. Such data representation might require non-

28 The keys are stored not by their value but by difference to previous key. This representation
usually requires less bits but requires special handling when the difference is out of the expected
range.

61

Chart 5.24: Hash-based strategies on unsorted sets

trivial modification of the algorithms, having a significant effect on the performance,

but allowing larger sets to be stored directly in the GPU memory.

Another variation of the problem is the intersection of multiple sets. Aside

from not transferring the output sets back to RAM and forth to GPU, efficiency of

various set pair selection strategies, or techniques comparing multiple sets at one

moment, could be analyzed.

We could also test scalability of our algorithms on systems with multiple

GPUs. The versions suited for large sets could be easily modified for such system

configurations.

62

6. Conclusion
In the presented work, we have provided implementations of several algorithms for

sorting and set intersection. The main objective was to decide whether these

algorithms can be efficiently implemented on GPGPUs and which of them are the

most suitable for this purpose. This work brings an extensive comparison of those

algorithms with worthy results.

Although not all algorithms were efficiently portable to GPU and some of our

attempts for optimization did not succeed, we have always found a way how to solve

the problems of sorting and set intersection faster on GPU than on CPU. We have

also presented solution how to overcome present-day hardware limitations of GPUs,

although the OpenCL library did not enable us to fully exhibit some techniques.

We have not used data from real database systems and implementing a business

ready system would require a lot of effort. Nevertheless, we provide our

implementation of various algorithms on the enclosed DVD, and through our

comprehensive results offer a valuable advice for any developer considering usage

of GPU in data-processing systems.

63

Bibliography
[1] KEANE, Andy, “GPUs Are Only Up To 14 Times Faster than CPUs” says

Intel [webpage], http://blogs.nvidia.com/2010/06/gpus-are-only-up-to-14-
times-faster-than-cpus-says-intel/, 2010

[2] HRISTOV, Vassil, Performance Evaluation of Query Processing Algorithms on
GPGPUs, School of Informatics, University of Edinburgh, 2010

[3] BAKKUM, Peter - SKADRON, Kevin, Accelerating SQL database operations
on a GPU with CUDA, Proceedings of the 3rd Workshop on General-Purpose
Computation on Graphics Processing Units , Pittsburgh, PA, USA, 2010

[4] Khronos OpenCL Working Group, The OpenCL specification 1.1 rev. 44,
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf, 2011

[5] KHRONOS group, KHRONOS OpenCL website [webpage],
http://www.khronos.org/opencl/, 2012

[6] NVidia, NVidia CUDA C Programming Guide, version 4.1,
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CU
DA_C_Programming_Guide.pdf, 2011

[7] NVidia, OpenCL Programming Guide, version 4.1,
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/Op
enCL_Programming_Guide.pdf, 2012

[8] NVidia, OpenCL Best Practices Guide,
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/Op
enCL_Best_Practices_Guide.pdf, 2011

[9] LARABEL, Michael, Looking At The OpenCL Performance Of ATI & NVIDIA
On Linux [webpage], http://www.phoronix.com/scan.php?
page=article&item=opencl_nvidia_ati, 2010

[10] GORESKY, Mark - KLAPPER, Andrew, Fibonacci and Galois
Representations of Feedback with Carry Shift Registers, IEEE Transactions on
Information Theory, 2002

[11] GOVINDARAJU, Naga K. - RAGHUVANSHI, Nikunj - HENSON, Michael -
TUFT, David - MANOCHA, Dinesh, A Cache-Efficient Sorting Algorithm for
Database and Data Mining Computations using Graphics Processors,
http://gamma.cs.unc.edu/GPUSORT, 2005

[12] GREß, Alexander - ZACHMANN, Gabriel, GPU-ABiSort: Optimal Parallel
Sorting on Stream Architectures, 20th IEEE International Parallel and
Distributed Processing Sym-posium (IPDPS), Rhodes Island, Greece, 2006

[13] CEDERMAN, Daniel - TSIGAS, Philippas, GPU-Quicksort: A practical
Quicksort algorithm for graphics processors, 2009

[14] SATISH, Nadathur - HARRIS, Mark - GARLAND, Michael, Designing

64

efficient sorting algorithms for manycore GPUs, Proceedings of the 2009 IEEE
International Symposium on Parallel & Distributed Processing, Rome, Italy,
2009

[15] MERILL, Duane - GRIMSHAW, Andrew, High Performance and Scalable
Radix Sorting: A case study of implementing dynamic parallelism for GPU
computing, Parallel Processing Letters, 2011

[16] HOARE, Charles Antony Richard, Quicksort, The Computer Journal, 1962

[17] BATCHER, Kenneth E., Sorting Networks and their Applications, Spring Joint
Computer Conference, AFIPS Proc, 1968

[18] KNUTH, D.E., Sorting by Merging, The Art of Computer Programming, Vol.
3: Sorting and Searching, 2nd ed. , p.158-168, 1998

[19] Intel Corporation, Threading building blocks [webpage],
http://threadingbuildingblocks.org/, 2012

[20] RESEN, Rasmus - PAGH, Rasmus, A New Data Layout For Set Intersection
on GPUs, IPDPS '11 Proceedings of the 2011 IEEE International Parallel &
Distributed Processing Symposium, Anchorage, Alaska, 2011

[21] ALCANTARA, Dan A. - SHARF, Andrei - ABBASINEJAD, Fatemeh -
SENGUPTA, Shubhabrata - MITZENMACHER, Michael - OWENS, John D. -
AMENTA, Nina, Real-Time Parallel Hashing on the GPU, SIGGRAPH Asia
'09 ACM SIGGRAPH Asia 2009, Seoul, South Korea, 2009

[22] BINGSHENG, He - YANG, Ke - FANG, Rui - MIAN, Lu - GOVINDARAJU,
Naga - QIONG, Luo - SANDER, Pedro, Relational Joins on Graphics
Processors, 2008 ACM SIGMOD international conference on Management of
data , Vancouver, BC, Canada, 2008

[23] WU, Di - ZHANG, Fan - AO, Naiyong - WANG, Fang - LIU, Xiaoguang -
WANG, Gang, A Batched GPU Algorithm for Set Intersection, Proceedings of
the 2009 10th International Symposium on Pervasive Systems, Algorithms, and
Networks , Kaohsiung, Taiwan, R.O.C., 2009

[24] AO, Naiyong - ZHANG, Fan - WU, Di - STONES, Douglas S. - WANG, Gang
- LIU, Xiaoguang - LIU, Jing - LIN, Sheng, Efficient parallel lists intersection
and index compression algorithms using graphics processing units,
Proceedings of the VLDB Endowment, 2011

[25] SENGUPTA, S. - HARRIS, M. - GARLAND, M., Efficient parallel scan
algorithms for GPUs, http://mgarland.org/files/papers/nvr-2008-004.pdf,
December 2008

[26] PERL, Yehoshua - ITAI, Alon - AVNI, Haim, Interpolation search - a log log
N search, Communications of the ACM, 1978

[27] KOUBEK, Václav, Datové struktury, MFF UK, 2004

[28] PAGH, Rasmus - RODLER, Flemming Friche, Cuckoo Hashing, 2001

65

[29] BLOOM, Burton Howard, Space/time trade-offs in hash coding with allowable
errors, Communications of the ACM, 1970

[30] KRULIŠ, Martin, YAGHOB, Jakub, Revision of Relational Joins for Multi-
Core And Many-Core Architectures, Proceedings of the Dateso 2011 Workshop
on DAtabases, TExts, Specifications and Objects, Písek, Czech Republic, 2011

66

Appendix A: Results

Size std::sort
tbb::

parallel_sort
QSSS QSBS BSB BSV BSL

4k 241.2 ± 2.3 µs 93 ± 36 µs 2120 ± 430 µs 2140 ± 300 µs 820 ± 410 µs 795 ± 41 µs 378 ± 11 µs

8k 529.4 ± 6.4 µs 175.3 ± 8.4 µs 2440 ± 290 µs 2400 ± 330 µs 885 ± 20 µs 889 ± 21 µs 431 ± 15 µs

16k 1157 ± 18 µs 349 ± 11 µs 3600 ± 600 µs 3590 ± 730 µs 950 ± 59 µs 955 ± 45 µs 490 ± 17 µs

32k 2456 ± 27 µs 798 ± 42 µs 5.2 ± 1.1 ms 5140 ± 980 µs 1126 ± 48 µs 1123.3 ± 9.4 µs 590 ± 11 µs

64k 5189 ± 28 µs 1528 ± 30 µs 9.5 ± 2.6 ms 9.7 ± 2.6 ms 1343 ± 19 µs 1334 ± 17 µs 852 ± 11 µs

128k 10909 ± 48 µs 2857 ± 74 µs 14.3 ± 3.7 ms 13,8 ± 2.9 ms 1883.2 ± 8.8 µs 1875 ± 10 µs 1380 ± 20 µs

256k 23078 ± 79 µs 6540 ± 490 µs 24 ± 6.1 ms 23.5 ± 5.5 ms 3711 ± 12 µs 3673 ± 11 µs 2492 ± 24 µs

512k 48410 ± 170 µs 13.3 ± 1.5 ms 52 ± 17 ms 51 ± 17 ms 6702 ± 24 µs 6810 ± 28 µs 4718 ± 43 µs

1M 101420 ± 260 µs 26 ± 2.5 ms 95 ± 35 ms 92 ± 28 ms 13421 ± 55 µs 13612 ± 45 µs 9329 ± 37 µs

2M 212880 ± 540 µs 55.7 ± 1.4 ms 172 ± 37 ms 168 ± 31 ms 27710 ± 89 µs 28078 ± 92 µs 19880 ± 160 µs

4M 445.2 ± 1.4 ms 104.3 ± 3.6 ms 530 ± 160 ms 500 ± 130 ms 57030 ± 240 µs 57820 ± 210 µs 40820 ± 140 µs

8M 920.6 ± 3.5 ms 239 ± 16 ms 700 ± 170 ms 690 ± 190 ms 119450 ± 260 µs 121040 ± 180 µs 86010 ± 230 µs

16M 1916.5 ± 7.5 ms 470 ± 23 ms 1780 ± 620 ms 1950 ± 620 ms 252200 ± 610 µs 255720 ± 360 µs 182030 ± 540 µs

Size MSB MST MSCBS MSCBS32 MISCB MISCBS32

4k 369 ± 17 µs 348 ± 16 µs 364 ± 16 µs 334 ± 21 µs 357 ± 12 µs 340 ± 33 µs

8k 472 ± 16 µs 368 ± 14 µs 386 ± 16 µs 356 ± 20 µs 378 ± 15 µs 353.3 ± 9.1 µs

16k 598 ± 47 µs 435 ± 24 µs 419.7 ± 8.6 µs 418 ± 15 µs 427 ± 11 µs 428 ± 59 µs

32k 838.3 ± 9.7 µs 610 ± 14 µs 552 ± 10 µs 546 ± 10 µs 572 ± 11 µs 570 ± 150 µs

64k 1468 ± 47 µs 853.7 ± 9.2 µs 797 ± 15 µs 823 ± 18 µs 797.8 ± 9.1 µs 831 ± 13 µs

128k 2694 ± 20 µs 1344.2 ± 10 µs 1267 ± 13 µs 1281 ± 10 µs 1264.8 ± 9.5 µs 1286.8 ± 9 µs

256k 5051 ± 28 µs 2497.2 ± 9.7 µs 2354 ± 12 µs 2379 ± 11 µs 2322 ± 11 µs 2362 ± 10 µs

512k 9824 ± 32 µs 4682 ± 26 µs 4385 ± 35 µs 4443 ± 40 µs 4276 ± 29 µs 4359 ± 23 µs

1M 19780 ± 150 µs 9272 ± 44 µs 8675 ± 43 µs 8772 ± 37 µs 8368 ± 34 µs 8540 ± 37 µs

2M 40650 ± 100 µs 19250 ± 120 µs 18190 ± 110 µs 18388 ± 99 µs 17262 ± 100 µs 17598 ± 95 µs

4M 84030 ± 170 µs 40150 ± 170 µs 37930 ± 160 µs 38190 ± 270 µs 35490 ± 160 µs 35850 ± 400 µs

8M 174950 ± 210 µs 82330 ± 480 µs 78160 ± 210 µs 78940 ± 340 µs 72920 ± 250 µs 74110 ± 170 µs

16M 365350 ± 720 µs 172970 ± 430 µs 164220 ± 410 µs 165680 ± 480 µs 150090 ± 400 µs 152440 ± 380 µs

Table 1: Sorting time: keys-only sequences

67

Size std::sort
tbb::

parallel_sort
QSSS QSBS BSB BSV BSL

4k 254 ± 13 µs 105 ± 36 µs 2220 ± 390 µs 2130 ± 260 µs 891 ± 35 µs 903 ± 22 µs 516 ± 23 µs

8k 558.5 ± 6 µs 205 ± 10 µs 2540 ± 400 µs 2500 ± 500 µs 1020 ± 130 µs 1005 ± 30 µs 577 ± 18 µs

16k 1209 ± 17 µs 391 ± 13 µs 3730 ± 680 µs 3690 ± 550 µs 1122 ± 25 µs 1121 ± 22 µs 664 ± 13 µs

32k 2552 ± 20 µs 885 ± 43 µs 5.3 ± 1.2 ms 5.3 ± 1.1 ms 1401 ± 19 µs 1357 ± 15 µs 923 ± 13 µs

64k 5411 ± 21 µs 1688 ± 28 µs 10.6 ± 2.6 ms 10.5 ± 2.2 ms 1882 ± 15 µs 1928 ± 28 µs 1377 ± 36 µs

128k 11298 ± 32 µs 3178 ± 86 µs 15.5 ± 4.2 ms 16 ± 3.7 ms 3532 ± 64 µs 3566 ± 39 µs 2412 ± 24 µs

256k 23926 ± 65 µs 7130 ± 470 µs 26.3 ± 6.3 ms 25.1 ± 4.8 ms 6556 ± 67 µs 6696 ± 41 µs 4385 ± 30 µs

512k 50400 ± 110 µs 14.6 ± 1.5 ms 55 ± 18 ms 54 ± 14 ms 12477 ± 21 µs 12700 ± 15 µs 8271 ± 41 µs

1M 105610 ± 240 µs 29 ± 2.4 ms 111 ± 34 ms 107 ± 34 ms 25009 ± 27 µs 25396 ± 39 µs 16400 ± 110 µs

2M 221670 ± 530 µs 62.5 ± 1.3 ms 182 ± 50 ms 179 ± 40 ms 51811 ± 90 µs 52690 ± 86 µs 33810 ± 140 µs

4M 461090 ± 960 µs 113.4 ± 3.7 ms 510 ± 150 ms 520 ± 160 ms 108670 ± 270 µs 110520 ± 190 µs 70620 ± 170 µs

8M 954.4 ± 2.3 ms 260 ± 16 ms 780 ± 20 ms 760 ± 220 ms 227430 ± 630 µs 231760 ± 280 µs 150170 ± 290 µs

16M 1994.8 ± 4.7 ms 519 ± 23 ms 2160 ± 780 ms 2140 ± 750 ms 478990 ± 310 µs 485680 ± 720 µs 315000 ± 990 µs

Size MSB MST MSCBS MSCBS32 MISCB MISCBS32

4k 484 ± 28 µs 417 ± 16 µs 487 ± 12 µs 427 ± 13 µs 481.9 ± 9.8 µs 429 ± 13 µs

8k 552 ± 15 µs 454 ± 14 µs 515 ± 12 µs 453 ± 18 µs 515 ± 12 µs 454 ± 17 µs

16k 708 ± 12 µs 591 ± 73 µs 599 ± 16 µs 569 ± 13 µs 600 ± 11 µs 572 ± 11 µs

32k 1186 ± 11 µs 865 ± 11 µs 858 ± 11 µs 849.7 ± 9.4 µs 857.6 ± 9.6 µs 848 ± 13 µs

64k 2040 ± 68 µs 1293 ± 32 µs 1192 ± 67 µs 1216 ± 16 µs 1173 ± 20 µs 1290 ± 92 µs

128k 3642 ± 60 µs 2207 ± 25 µs 2147 ± 24 µs 2153 ± 21 µs 2134 ± 23 µs 2149 ± 17 µs

256k 6698 ± 43 µs 3921 ± 31 µs 3849 ± 24 µs 3852 ± 24 µs 3829 ± 23 µs 3840 ± 25 µs

512k 12722 ± 58 µs 7175 ± 40 µs 7082 ± 49 µs 7050 ± 220 µs 6961 ± 49 µs 6966 ± 40 µs

1M 25108 ± 88 µs 13996 ± 72 µs 13691 ± 91 µs 13669 ± 82 µs 13458 ± 75 µs 13465 ± 73 µs

2M 50580 ± 200 µs 28270 ± 180 µs 27438 ± 76 µs 27130 ± 220 µs 26700 ± 210 µs 26760 ± 200 µs

4M 103730 ± 360 µs 57500 ± 160 µs 56390 ± 480 µs 56020 ± 190 µs 53980 ± 190 µs 54100 ± 170 µs

8M 213530 ± 240 µs 116730 ± 310 µs 114950 ± 330 µs 114590 ± 240 µs 109540 ± 330 µs 109750 ± 250 µs

16M 441720 ± 440 µs 240110 ± 440 µs 236560 ± 490 µs 235910 ± 410 µs 223040 ± 450 µs 223370 ± 470 µs

Table 2: Sorting time: key-value pair sequences

68

Ratio of elements common to both sets

Size 0% 0.01% 10% 50% 90% 100%

4k 37.5 ± 9.7 µs 36.15 ± 0.89 µs 37.2 ± 1.1 µs 39.7 ± 1.2 µs 24.2 ± 1 µs 18.2 ± 1.2 µs

8k 73.5 ± 1.7 µs 73.4 ± 1.5 µs 75.5 ± 1.9 µs 81.5 ± 1.9 µs 49.3 ± 1.2 µs 36.2 ± 1.2 µs

16k 148.8 ± 2.1 µs 147.9 ± 2.2 µs 152 ± 2.4 µs 164.2 ± 2.7 µs 100.9 ± 3 µs 73.8 ± 2.4 µs

32k 297.8 ± 2.9 µs 293 ± 3 µs 306.3 ± 3.3 µs 329.9 ± 3.8 µs 201.6 ± 3.2 µs 152.1 ± 4.1 µs

64k 597.4 ± 3.5 µs 595.9 ± 3.2 µs 612.7 ± 3.7 µs 660.2 ± 5.7 µs 404.2 ± 6.7 µs 295.6 ± 6.4 µs

128k 1192 ± 1.6 µs 1192.9 ± 1.7 µs 1227 ± 3.1 µs 1317 ± 7 µs 811 ± 14 µs 593 ± 12 µs

256k 2354.8 ± 1.9 µs 2384.3 ± 3.2 µs 2435.8 ± 4.6 µs 2639 ± 15 µs 1610 ± 26 µs 1188 ± 28 µs

512k 4705 ± 15 µs 4775 ± 4.7 µs 4915.5 ± 9.9 µs 5279 ± 34 µs 3227 ± 56 µs 2378 ± 61 µs

1M 9583.6 ± 8 µs 9586.1 ± 7.8 µs 9908 ± 20 µs 10665 ± 37 µs 6596 ± 68 µs 4836 ± 76 µs

2M 19050 ± 11 µs 19031.8 ± 9.2 µs 19864 ± 16 µs 21312 ± 68 µs 13100 ± 100 µs 9650 ± 120 µs

4M 38520 ± 24 µs 38562 ± 21 µs 39751 ± 43 µs 42700 ± 120 µs 26200 ± 200 µs 19320 ± 210 µs

8M 77071 ± 14 µs 77131 ± 24 µs 79900 ± 340 µs 87250 ± 160 µs 55830 ± 130 µs 42962 ± 37 µs

16M 154080 ± 29 µs 153740 ± 750 µs 159590 ± 580 µs 174020 ± 310 µs 111470 ± 240 µs 85348 ± 49 µs

Table 3: Intersection time: CPU merge-join

Ratio of elements common to both sets

Size 0% 0.01% 10% 50% 90% 100%

4k 181 ± 28 µs 186 ± 18 µs 318 ± 15 µs 321 ± 25 µs 320 ± 16 µs 324 ± 23 µs

8k 322 ± 21 µs 326 ± 23 µs 322 ± 20 µs 325 ± 17 µs 349 ± 25 µs 348 ± 22 µs

16k 364 ± 16 µs 363 ± 12 µs 364 ± 24 µs 388 ± 20 µs 397 ± 21 µs 399 ± 20 µs

32k 468 ± 16 µs 467 ± 14 µs 472 ± 16 µs 504 ± 21 µs 547 ± 18 µs 540 ± 22 µs

64k 595 ± 11 µs 593 ± 27 µs 613.5 ± 9.4 µs 610 ± 36 µs 675 ± 54 µs 768 ± 35 µs

128k 1062 ± 22 µs 939 ± 97 µs 1102 ± 17 µs 1241 ± 22 µs 1123 ± 85 µs 1120 ± 92 µs

256k 1570 ± 160 µs 1789 ± 22 µs 1867 ± 25 µs 1844 ± 93 µs 2270 ± 130 µs 2060 ± 51 µs

512k 2330 ± 100 µs 2707 ± 27 µs 2700 ± 110 µs 2937 ± 72 µs 3395 ± 61 µs 3397 ± 57 µs

1M 4247 ± 67 µs 4263 ± 98 µs 4533 ± 89 µs 5342 ± 41 µs 6295 ± 31 µs 6561 ± 23 µs

2M 7903 ± 82 µs 7901 ± 73 µs 8460 ± 110 µs 10121 ± 44 µs 11700 ± 150 µs 12090 ± 87 µs

4M 14866 ± 66 µs 14860 ± 110 µs 15711 ± 48 µs 19180 ± 120 µs 22650 ± 140 µs 23130 ± 180 µs

8M 28840 ± 120 µs 28894 ± 99 µs 30724 ± 52 µs 36820 ± 190 µs 42960 ± 250 µs 44330 ± 120 µs

16M 56820 ± 140 µs 56816 ± 94 µs 60460 ± 200 µs 72640 ± 210 µs 84710 ± 240 µs 87670 ± 250 µs

Table 4: Host-GPU memory transfer only

Ratio of elements common to both sets

Size 0% 0.01% 10% 50% 90% 100%

4k 201.7 ± 8.7 µs 217 ± 16 µs 414 ± 30 µs 423 ± 36 µs 449 ± 39 µs 469 ± 20 µs

8k 381 ± 21 µs 386 ± 23 µs 424 ± 31 µs 455 ± 33 µs 460 ± 22 µs 467 ± 20 µs

16k 433 ± 24 µs 457 ± 15 µs 464 ± 31 µs 473 ± 35 µs 510 ± 44 µs 511 ± 20 µs

32k 525 ± 16 µs 579 ± 30 µs 585 ± 26 µs 658 ± 13 µs 713 ± 13 µs 724 ± 14 µs

64k 699 ± 15 µs 729 ± 30 µs 765 ± 11 µs 873 ± 33 µs 1012 ± 14 µs 967 ± 25 µs

128k 1213 ± 34 µs 1249 ± 19 µs 1308 ± 23 µs 1507 ± 17 µs 1703 ± 18 µs 1760.2 ± 8.9 µs

256k 2205 ± 13 µs 2255 ± 17 µs 2364 ± 11 µs 2760 ± 16 µs 3145 ± 17 µs 3200 ± 110 µs

512k 3180 ± 120 µs 3345 ± 16 µs 3542 ± 26 µs 4312 ± 12 µs 4846 ± 98 µs 5046 ± 99 µs

1M 5219 ± 22 µs 5220 ± 26 µs 5519 ± 21 µs 7280 ± 210 µs 8660 ± 240 µs 9070 ± 250 µs

2M 9480 ± 140 µs 9530 ± 45 µs 9910 ± 300 µs 13090 ± 410 µs 15810 ± 620 µs 16640 ± 340 µs

4M 17908 ± 77 µs 17850 ± 160 µs 19070 ± 120 µs 24920 ± 190 µs 30700 ± 260 µs 32000 ± 360 µs

8M 34790 ± 160 µs 35020 ± 160 µs 38320 ± 550 µs 50650 ± 460 µs 62550 ± 160 µs 64240 ± 930 µs

16M 69040 ± 130 µs 69160 ± 130 µs 76190 ± 300 µs 98.7 ± 1.8 ms 121 ± 2.2 ms 126670 ± 540 µs

Table 5: Intersection time: Binary search (BSS)

69

Ratio of elements common to both sets

Size 0% 0.01% 10% 50% 90% 100%

4k 200.7 ± 6.9 µs 217 ± 16 µs 391 ± 24 µs 432 ± 50 µs 443 ± 43 µs 454 ± 38 µs

8k 383 ± 23 µs 385 ± 21 µs 427 ± 35 µs 461 ± 49 µs 474 ± 12 µs 469 ± 18 µs

16k 425 ± 14 µs 471 ± 24 µs 470 ± 44 µs 472 ± 28 µs 508 ± 50 µs 513 ± 22 µs

32k 521 ± 17 µs 570 ± 27 µs 589 ± 25 µs 661 ± 13 µs 715 ± 14 µs 724.9 ± 9.6 µs

64k 701 ± 15 µs 736 ± 12 µs 769.3 ± 9.7 µs 863 ± 30 µs 1018 ± 12 µs 978 ± 26 µs

128k 1235 ± 31 µs 1254 ± 18 µs 1314 ± 17 µs 1522 ± 19 µs 1715 ± 17 µs 1761 ± 12 µs

256k 2215 ± 18 µs 2265 ± 14 µs 2375 ± 14 µs 2758.3 ± 5.1 µs 3161 ± 13 µs 3244 ± 12 µs

512k 3321 ± 27 µs 3368 ± 17 µs 3565 ± 29 µs 4346 ± 14 µs 4901 ± 26 µs 5063 ± 16 µs

1M 5321 ± 36 µs 5450 ± 52 µs 6097 ± 76 µs 7425 ± 21 µs 8806 ± 40 µs 9159 ± 18 µs

2M 9830 ± 33 µs 9530 ± 130 µs 10096 ± 22 µs 13150 ± 370 µs 16720 ± 110 µs 16740 ± 340 µs

4M 18548 ± 38 µs 18390 ± 150 µs 20175 ± 79 µs 25600 ± 260 µs 31180 ± 300 µs 32720 ± 150 µs

8M 36350 ± 160 µs 36780 ± 130 µs 40390 ± 130 µs 54490 ± 160 µs 63530 ± 380 µs 68.1 ± 1.7 ms

16M 74380 ± 340 µs 75680 ± 150 µs 84230 ± 340 µs 105.8 ± 1.2 ms 127130 ± 770 µs 132.4 ± 1.5 ms

Table 6: Intersection time: Binary search with look-up (BSLS)

Ratio of elements common to both sets

Size 0% 0.01% 10% 50% 90% 100%

4k 218 ± 19 µs 217 ± 15 µs 394 ± 26 µs 416 ± 29 µs 429 ± 26 µs 451 ± 37 µs

8k 380 ± 18 µs 372 ± 19 µs 431 ± 49 µs 458 ± 12 µs 471 ± 32 µs 470 ± 18 µs

16k 422 ± 15 µs 467 ± 55 µs 445 ± 25 µs 470 ± 17 µs 507 ± 44 µs 516 ± 24 µs

32k 514 ± 17 µs 557 ± 28 µs 590 ± 31 µs 652 ± 11 µs 706 ± 16 µs 715.8 ± 9.3 µs

64k 670 ± 24 µs 725 ± 14 µs 738 ± 21 µs 875 ± 33 µs 993 ± 43 µs 997 ± 41 µs

128k 1192 ± 18 µs 1223 ± 17 µs 1281 ± 18 µs 1481 ± 25 µs 1674 ± 21 µs 1719 ± 15 µs

256k 2153 ± 19 µs 2202 ± 20 µs 2310 ± 13 µs 2676 ± 15 µs 3072 ± 12 µs 3163 ± 17 µs

512k 3169 ± 16 µs 3218 ± 17 µs 3418 ± 21 µs 4165 ± 16 µs 4703 ± 29 µs 4901 ± 23 µs

1M 4930 ± 150 µs 5011 ± 90 µs 5680 ± 210 µs 7061 ± 31 µs 8352 ± 26 µs 8720 ± 120 µs

2M 8830 ± 130 µs 8770 ± 84 µs 9298 ± 58 µs 12680 ± 390 µs 15400 ± 300 µs 16300 ± 200 µs

4M 16730 ± 170 µs 16550 ± 160 µs 17830 ± 280 µs 23420 ± 230 µs 28850 ± 130 µs 30120 ± 200 µs

8M 32080 ± 140 µs 32080 ± 180 µs 35490 ± 530 µs 47390 ± 500 µs 58.9 ± 1.7 ms 62300 ± 780 µs

16M 63345 ± 83 µs 63640 ± 130 µs 70470 ± 250 µs 93110 ± 600 µs 113.5 ± 1.9 ms 117900 ± 690 µs

Table 7: Intersection time: Interpolation search (ISS)

Ratio of elements common to both sets

Size 0% 0.01% 10% 50% 90% 100%

4k 218 ± 16 µs 248 ± 42 µs 408 ± 33 µs 450 ± 38 µs 464 ± 19 µs 458 ± 42 µs

8k 392 ± 20 µs 386 ± 22 µs 425 ± 34 µs 460 ± 14 µs 459 ± 25 µs 470.6 ± 7.3 µs

16k 420 ± 24 µs 455 ± 35 µs 466 ± 37 µs 472 ± 30 µs 517 ± 43 µs 502 ± 25 µs

32k 530 ± 15 µs 570 ± 28 µs 604 ± 17 µs 658 ± 11 µs 711 ± 11 µs 722.3 ± 9.6 µs

64k 700 ± 15 µs 736 ± 14 µs 773 ± 18 µs 872 ± 36 µs 975 ± 29 µs 998 ± 50 µs

128k 1209 ± 23 µs 1244 ± 16 µs 1306 ± 25 µs 1502 ± 20 µs 1695 ± 17 µs 1744 ± 28 µs

256k 2193 ± 22 µs 2236 ± 29 µs 2346 ± 14 µs 2718 ± 14 µs 3111 ± 13 µs 3190 ± 14 µs

512k 3271 ± 13 µs 3311 ± 14 µs 3506 ± 21 µs 4253 ± 18 µs 4789 ± 28 µs 4991 ± 36 µs

1M 5488 ± 37 µs 5541 ± 29 µs 5943 ± 19 µs 7213 ± 32 µs 8544 ± 27 µs 8893 ± 41 µs

2M 9707 ± 54 µs 9370 ± 240 µs 10050 ± 170 µs 13150 ± 340 µs 15830 ± 360 µs 16400 ± 200 µs

4M 18146 ± 72 µs 17990 ± 170 µs 19140 ± 210 µs 24540 ± 210 µs 29890 ± 190 µs 31080 ± 190 µs

8M 35550 ± 120 µs 35920 ± 62 µs 38600 ± 490 µs 51840 ± 550 µs 63010 ± 230 µs 65490 ± 630 µs

16M 73620 ± 340 µs 74160 ± 160 µs 81540 ± 370 µs 103090 ± 590 µs 122 ± 2.2 ms 127210 ± 550 µs

Table 8: Intersection time: Interpolation search with look-up (ISLS)

70

Ratio of elements common to both sets

Size 0% 0.01% 10% 50% 90% 100%

4k 226 ± 23 µs 272 ± 34 µs 404 ± 34 µs 448 ± 19 µs 432 ± 29 µs 446 ± 38 µs

8k 388 ± 18 µs 389 ± 17 µs 413 ± 21 µs 457 ± 13 µs 463 ± 32 µs 473 ± 11 µs

16k 426 ± 13 µs 445 ± 30 µs 464 ± 35 µs 476 ± 25 µs 503 ± 25 µs 486 ± 20 µs

32k 529 ± 15 µs 570 ± 26 µs 604 ± 16 µs 661 ± 19 µs 716 ± 10 µs 725 ± 15 µs

64k 696 ± 21 µs 740 ± 11 µs 765 ± 22 µs 879 ± 23 µs 975 ± 28 µs 985 ± 29 µs

128k 1213 ± 17 µs 1263 ± 28 µs 1292 ± 22 µs 1516 ± 17 µs 1705 ± 27 µs 1747 ± 27 µs

256k 2235 ± 17 µs 2284.8 ± 8.4 µs 2386 ± 11 µs 2761 ± 17 µs 3146 ± 16 µs 3224 ± 12 µs

512k 3337 ± 30 µs 3374 ± 18 µs 3583 ± 22 µs 4318 ± 13 µs 4845 ± 68 µs 5033 ± 30 µs

1M 5585 ± 30 µs 5647 ± 34 µs 6061 ± 19 µs 7318 ± 27 µs 8635 ± 29 µs 8985 ± 90 µs

2M 9590 ± 200 µs 9265 ± 86 µs 10120 ± 240 µs 13160 ± 310 µs 15770 ± 340 µs 16350 ± 130 µs

4M 17950 ± 160 µs 17880 ± 170 µs 19170 ± 200 µs 24500 ± 220 µs 29940 ± 220 µs 31076 ± 81 µs

8M 34610 ± 160 µs 34560 ± 150 µs 37820 ± 490 µs 49.2 ± 1.1 ms 62100 ± 300 µs 63200 ± 440 µs

16M 68462 ± 83 µs 69130 ± 180 µs 75370 ± 220 µs 96.1 ± 1.4 ms 116600 ± 610 µs 121.1 ± 1.3 ms

Table 9: Intersection time: Generalized quadratic search (GQSS)

Ratio of elements common to both sets

Size 0% 0.01% 10% 50% 90% 100%

4k 307 ± 28 µs 519 ± 24 µs 581 ± 61 µs 575 ± 40 µs 624 ± 48 µs 625 ± 61 µs

8k 541 ± 28 µs 556 ± 35 µs 568 ± 43 µs 630 ± 220 µs 617 ± 30 µs 655 ± 16 µs

16k 584 ± 25 µs 618 ± 51 µs 640 ± 44 µs 637 ± 28 µs 696 ± 76 µs 698 ± 34 µs

32k 717 ± 22 µs 729 ± 25 µs 784 ± 61 µs 857 ± 14 µs 912 ± 37 µs 921.9 ± 9 µs

64k 891 ± 56 µs 942 ± 31 µs 942 ± 39 µs 1040 ± 36 µs 1137 ± 46 µs 1182 ± 65 µs

128k 1340 ± 23 µs 1458 ± 31 µs 1461 ± 18 µs 1745 ± 16 µs 1920 ± 18 µs 1955 ± 17 µs

256k 2450 ± 21 µs 2493 ± 15 µs 2608 ± 18 µs 3029 ± 27 µs 3415 ± 21 µs 3471 ± 19 µs

512k 3470 ± 120 µs 3581 ± 26 µs 3790 ± 22 µs 4624 ± 20 µs 5172 ± 21 µs 5318 ± 22 µs

1M 5733 ± 45 µs 5764 ± 30 µs 6259 ± 26 µs 7720 ± 31 µs 9141 ± 26 µs 9494 ± 77 µs

2M 9330 ± 120 µs 9300 ± 190 µs 9940 ± 110 µs 13270 ± 600 µs 16740 ± 180 µs 16950 ± 570 µs

4M 17540 ± 260 µs 17250 ± 250 µs 19090 ± 340 µs 26360 ± 100 µs 31680 ± 350 µs 32050 ± 450 µs

8M 34260 ± 250 µs 34050 ± 390 µs 37730 ± 700 µs 51530 ± 700 µs 62940 ± 450 µs 64560 ± 950 µs

16M 67460 ± 590 µs 67830 ± 480 µs 75540 ± 280 µs 98.8 ± 1.7 ms 121.6 ± 2.2 ms 123420 ± 220 µs

Table 10: Intersection time: Local search with jobs created on CPU (LSJCCPUS)

Ratio of elements common to both sets

Size 0% 0.01% 10% 50% 90% 100%

4k 315 ± 34 µs 534 ± 27 µs 588 ± 39 µs 581 ± 30 µs 637 ± 73 µs 617 ± 37 µs

8k 555 ± 26 µs 562 ± 26 µs 614 ± 65 µs 624 ± 49 µs 641 ± 27 µs 671 ± 52 µs

16k 629 ± 31 µs 655 ± 22 µs 672 ± 59 µs 676 ± 52 µs 712 ± 27 µs 730 ± 36 µs

32k 757 ± 36 µs 781 ± 53 µs 833 ± 39 µs 902 ± 40 µs 954 ± 41 µs 992 ± 16 µs

64k 938 ± 18 µs 985 ± 46 µs 1017 ± 13 µs 1155 ± 13 µs 1233 ± 32 µs 1285 ± 30 µs

128k 1495 ± 57 µs 1585 ± 28 µs 1670 ± 70 µs 1877 ± 24 µs 2084 ± 41 µs 2206 ± 17 µs

256k 2658 ± 23 µs 2733 ± 31 µs 2846 ± 18 µs 3323 ± 14 µs 3810 ± 24 µs 3950 ± 14 µs

512k 3733 ± 29 µs 4013 ± 25 µs 4249 ± 16 µs 5149 ± 17 µs 5943 ± 33 µs 6238 ± 26 µs

1M 6634 ± 37 µs 6671 ± 42 µs 7144 ± 30 µs 8786 ± 42 µs 10477 ± 77 µs 11159 ± 95 µs

2M 11010 ± 150 µs 10930 ± 100 µs 11750 ± 180 µs 15310 ± 150 µs 18760 ± 220 µs 19990 ± 430 µs

4M 21233 ± 73 µs 21170 ± 160 µs 22410 ± 230 µs 29840 ± 240 µs 35960 ± 200 µs 39030 ± 240 µs

8M 41340 ± 200 µs 41380 ± 170 µs 45000 ± 490 µs 59790 ± 660 µs 73150 ± 320 µs 78.7 ± 1.4 ms

16M 82380 ± 170 µs 82070 ± 390 µs 89040 ± 560 µs 116420 ± 970 µs 142.8 ± 1.7 ms 152.6 ± 1 ms

Table 11: Intersection time: Local search with jobs created on GPU (LSJCGPUS)

71

Ratio of elements common to both sets

Size 0% 0.01% 10% 50% 90% 100%

4k 211 ± 90 µs 192 ± 11 µs 199 ± 13 µs 216 ± 13 µs 200 ± 12 µs 189.1 ± 9.5 µs

8k 355 ± 18 µs 358 ± 19 µs 367 ± 19 µs 399 ± 14 µs 373 ± 15 µs 351 ± 19 µs

16k 691 ± 16 µs 726 ± 16 µs 718 ± 13 µs 795 ± 14 µs 722 ± 22 µs 676 ± 18 µs

32k 1441 ± 20 µs 1374 ± 29 µs 1664 ± 28 µs 1493 ± 44 µs 1341 ± 23 µs 1274 ± 14 µs

64k 3029 ± 86 µs 2678 ± 35 µs 2878 ± 41 µs 2953 ± 29 µs 2762 ± 48 µs 2634 ± 53 µs

128k 5660 ± 160 µs 6100 ± 170 µs 5690 ± 190 µs 6082 ± 73 µs 5646 ± 96 µs 5260 ± 130 µs

256k 11570 ± 600 µs 13360 ± 470 µs 12560 ± 250 µs 13240 ± 510 µs 11090 ± 210 µs 10960 ± 570 µs

512k 23570 ± 820 µs 22380 ± 950 µs 23190 ± 500 µs 26610 ± 420 µs 23240 ± 460 µs 23140 ± 350 µs

1M 46.3 ± 1.0 ms 49.2 ± 2.7 ms 49.4 ± 1.7 ms 50400 ± 830 µs 47210 ± 890 µs 45.6 ± 1.3 ms

2M 99.9 ± 4.8 ms 94.7 ± 3.0 ms 103.6 ± 5.9 ms 105.5 ± 4.2 ms 98.1 ± 3.1 ms 93.1 ± 2.2 ms

4M 223 ± 4.6 ms 212.5 ± 7.1 ms 206.6 ± 4.4 ms 239.2 ± 4.8 ms 196.9 ± 3.5 ms 209.4 ± 6.2 ms

8M 419 ± 14 ms 393 ± 11 ms 460 ± 10 ms 486 ± 13 ms 417 ± 25 ms 387.2 ± 6.2 ms

16M 894 ± 30 ms 893 ± 25 ms 872 ± 20 ms 986 ± 17 ms 876 ± 35 ms 831 ± 31 ms

Table 12: Intersection times: CPU tbb::sort + merge-join

Ratio of elements common to both sets

Size 0% 0.01% 10% 50% 90% 100%

4k 72.8 ± 2.8 ms 74.2 ± 2.7 ms 73.7 ± 3.1 ms 73.7 ± 3.1 ms 73.1 ± 3.0 ms 72.9 ± 2.9 ms

8k 73,8 ± 3.0 ms 73.4 ± 3.1 ms 73.8 ± 3.5 ms 73.9 ± 3.3 ms 73.8 ± 3.2 ms 73.7 ± 3.6 ms

16k 74.1 ± 3.4 ms 74.7 ± 2.9 ms 74.2 ± 2.9 ms 73.8 ± 3.6 ms 74.3 ± 3.4 ms 74.5 ± 3.4 ms

32k 74.4 ± 3.4 ms 75.3 ± 3.0 ms 74.5 ± 3.4 ms 74.1 ± 2.8 ms 73.4 ± 2.7 ms 73.3 ± 2.9 ms

64k 76.0 ± 2.7 ms 76.0 ± 2.5 ms 75.9 ± 2.6 ms 75.6 ± 3.0 ms 75.2 ± 2.5 ms 75.2 ± 2.8 ms

128k 78.1 ± 2.5 ms 78.1 ± 2.7 ms 78.3 ± 3.0 ms 78.1 ± 2.6 ms 77.5 ± 3.0 ms 77.3 ± 2.5 ms

256k 83.6 ± 2.3 ms 83.2 ± 3.1 ms 83.0 ± 2.3 ms 84.1 ± 2.7 ms 84.4 ± 2.3 ms 83.8 ± 2.5 ms

512k 92.9 ± 3.1 ms 93.2 ± 2.8 ms 92.6 ± 2.5 ms 94.1 ± 3.3 ms 94.2 ± 2.7 ms 95.1 ± 2.4 ms

1M 113.1 ± 3.0 ms 112.9 ± 2.6 ms 113.1 ± 2.7 ms 114110 ± 750 µs 114410 ± 700 µs 114460 ± 870 µs

2M 134270 ± 570 µs 134380 ± 530 µs 134970 ± 550 µs 136860 ± 570 µs 137180 ± 440 µs 137460 ± 520 µs

4M 167270 ± 410 µs 167450 ± 410 µs 168230 ± 460 µs 171890 ± 430 µs 172670 ± 700 µs 172670 ± 470 µs

8M 221810 ± 760 µs 221970 ± 800 µs 224000 ± 780 µs 231580 ± 970 µs 233900 ± 930 µs 234480 ± 860 µs

16M 325.8 ± 1.7 ms 325.5 ± 1.4 ms 328.5 ± 1.2 ms 345.4 ± 1.7 ms 348.5 ± 1.4 ms 351.2 ± 1.9 ms

Table 13: Intersection time: CPU two-pass bucketing

Ratio of elements common to both sets

Size 0% 0.01% 10% 50% 90% 100%

4k 178 ± 23 µs 321 ± 23 µs 317 ± 23 µs 321 ± 26 µs 326 ± 21 µs 325 ± 25 µs

8k 340 ± 14 µs 330 ± 28 µs 325 ± 24 µs 342 ± 29 µs 363 ± 23 µs 361 ± 23 µs

16k 368 ± 11 µs 363 ± 19 µs 369 ± 11 µs 387 ± 13 µs 406 ± 11 µs 399 ± 28 µs

32k 466 ± 11 µs 466 ± 10 µs 468 ± 19 µs 495 ± 18 µs 537 ± 20 µs 548 ± 29 µs

64k 601 ± 14 µs 592 ± 34 µs 619 ± 10 µs 540 ± 56 µs 756 ± 27 µs 616 ± 72 µs

128k 1060 ± 18 µs 1080 ± 36 µs 1108 ± 22 µs 1247 ± 16 µs 1382 ± 31 µs 1230 ± 120 µs

256k 1797 ± 25 µs 1790 ± 25 µs 1874 ± 32 µs 1860 ± 140 µs 2022 ± 62 µs 2079 ± 95 µs

512k 2706 ± 23 µs 2523 ± 100 µs 2853 ± 18 µs 3100 ± 100 µs 3423 ± 60 µs 3554 ± 66 µs

1M 4243 ± 70 µs 4334 ± 90 µs 4566 ± 95 µs 5419 ± 44 µs 6323 ± 65 µs 6604 ± 33 µs

2M 7960 ± 150 µs 8009 ± 64 µs 8539 ± 99 µs 10140 ± 100 µs 11972 ± 91 µs 12240 ± 120 µs

4M 14982 ± 84 µs 15112 ± 94 µs 15982 ± 42 µs 19468 ± 53 µs 22490 ± 170 µs 23540 ± 110 µs

8M 28941 ± 79 µs 28945 ± 77 µs 30747 ± 88 µs 36840 ± 170 µs 43180 ± 230 µs 44670 ± 190 µs

16M 56685 ± 72 µs 56700 ± 120 µs 60210 ± 130 µs 72570 ± 160 µs 85080 ± 330 µs 88200 ± 270 µs

Table 14: Memory transfers only

72

Ratio of elements common to both sets

Size 0% 0.01% 10% 50% 90% 100%

4k 250 ± 26 µs 458 ± 31 µs 482 ± 34 µs 480 ± 17 µs 478 ± 29 µs 510 ± 39 µs

8k 473 ± 24 µs 468 ± 19 µs 485 ± 34 µs 520 ± 41 µs 550 ± 12 µs 524 ± 26 µs

16k 486 ± 13 µs 530 ± 29 µs 543 ± 38 µs 556 ± 24 µs 623 ± 27 µs 623 ± 33 µs

32k 649 ± 13 µs 700 ± 20 µs 681 ± 46 µs 750 ± 29 µs 815 ± 36 µs 811 ± 27 µs

64k 1065 ± 27 µs 1057 ± 31 µs 1124 ± 63 µs 1110 ± 130 µs 1343 ± 54 µs 1280 ± 150 µs

128k 1715 ± 31 µs 1747 ± 18 µs 1774 ± 20 µs 1976 ± 57 µs 2134 ± 16 µs 2226 ± 47 µs

256k 2810 ± 29 µs 2840 ± 26 µs 2932 ± 15 µs 3237 ± 18 µs 3605 ± 18 µs 3752 ± 79 µs

512k 4520 ± 32 µs 4522 ± 54 µs 4724 ± 30 µs 5416 ± 31 µs 5730 ± 120 µs 5960 ± 77 µs

1M 7532 ± 53 µs 7950 ± 150 µs 8360 ± 120 µs 9340 ± 240 µs 10390 ± 410 µs 10810 ± 280 µs

2M 14180 ± 210 µs 14230 ± 180 µs 14780 ± 190 µs 17160 ± 430 µs 19670 ± 230 µs 20360 ± 170 µs

4M 27540 ± 140 µs 27800 ± 130 µs 28730 ± 180 µs 33650 ± 250 µs 37810 ± 270 µs 38640 ± 210 µs

8M 54120 ± 110 µs 54170 ± 160 µs 57150 ± 230 µs 66680 ± 400 µs 74280 ± 390 µs 77.0 ± 1.3 ms

16M 107080 ± 300 µs 107140 ± 300 µs 112540 ± 180 µs 129.9 ± 1.6 ms 148100 ± 190 µs 151340 ± 910 µs

Table 15: Intersection time: Linear hashing with buffered output (LHB)

Ratio of elements common to both sets

Size 0% 0.01% 10% 50% 90% 100%

4k 247 ± 11 µs 439 ± 19 µs 479 ± 29 µs 480 ± 21 µs 483 ± 21 µs 481 ± 25 µs

8k 460 ± 18 µs 450 ± 12 µs 483 ± 14 µs 515 ± 27 µs 555 ± 20 µs 525 ± 21 µs

16k 483 ± 13 µs 494 ± 13 µs 527 ± 23 µs 573 ± 35 µs 608 ± 28 µs 560 ± 16 µs

32k 651 ± 27 µs 668 ± 26 µs 677 ± 26 µs 734 ± 46 µs 812 ± 46 µs 821 ± 24 µs

64k 1023 ± 23 µs 1090 ± 19 µs 1114 ± 23 µs 1220 ± 28 µs 1346 ± 22 µs 1346 ± 36 µs

128k 1651 ± 12 µs 1708 ± 37 µs 1753 ± 37 µs 1948 ± 20 µs 2127 ± 15 µs 2234 ± 38 µs

256k 2802 ± 29 µs 2799 ± 17 µs 2906 ± 19 µs 3281 ± 42 µs 3637 ± 82 µs 3701 ± 34 µs

512k 4436 ± 40 µs 4453 ± 19 µs 4648 ± 22 µs 5312 ± 24 µs 5747 ± 25 µs 5975 ± 21 µs

1M 7159 ± 98 µs 7340 ± 120 µs 7900 ± 340 µs 9328 ± 72 µs 10510 ± 100 µs 10820 ± 200 µs

2M 13920 ± 130 µs 14010 ± 160 µs 14460 ± 140 µs 17020 ± 300 µs 19540 ± 170 µs 20310 ± 170 µs

4M 26899 ± 53 µs 27020 ± 300 µs 28110 ± 200 µs 33050 ± 190 µs 37660 ± 240 µs 38640 ± 190 µs

8M 52730 ± 120 µs 52790 ± 170 µs 55910 ± 310 µs 66070 ± 220 µs 74270 ± 290 µs 76.7 ± 1.2 ms

16M 104260 ± 280 µs 104390 ± 260 µs 109730 ± 320 µs 128.5 ± 1.6 ms 147750 ± 160 µs 151350 ± 950 µs

Table 16: Intersection time: Linear hashing with sorted keys (LHS)

Ratio of elements common to both sets

Size 0% 0.01% 10% 50% 90% 100%

4k 279 ± 22 µs 492 ± 24 µs 540 ± 32 µs 560 ± 41 µs 552 ± 29 µs 570 ± 39 µs

8k 516 ± 27 µs 525 ± 22 µs 548 ± 29 µs 584 ± 27 µs 637 ± 18 µs 615 ± 44 µs

16k 562 ± 32 µs 599 ± 29 µs 608 ± 31 µs 637 ± 33 µs 658 ± 30 µs 629 ± 25 µs

32k 986 ± 23 µs 981 ± 21 µs 980 ± 43 µs 1034 ± 46 µs 1129 ± 25 µs 1114 ± 46 µs

64k 1179 ± 40 µs 1210 ± 36 µs 1249 ± 58 µs 1321 ± 44 µs 1466 ± 20 µs 1470 ± 27 µs

128k 1898 ± 38 µs 1970 ± 14 µs 1998 ± 83 µs 2114 ± 58 µs 2231 ± 38 µs 2307 ± 60 µs

256k 3366 ± 25 µs 3435 ± 28 µs 3512 ± 22 µs 3814 ± 33 µs 4056 ± 18 µs 4144 ± 30 µs

512k 5390 ± 24 µs 5473 ± 20 µs 5608 ± 20 µs 6145 ± 30 µs 6414 ± 25 µs 6560 ± 29 µs

1M 8860 ± 230 µs 9010 ± 220 µs 9230 ± 250 µs 10680 ± 280 µs 11500 ± 180 µs 11510 ± 410 µs

2M 17090 ± 210 µs 17110 ± 230 µs 17530 ± 250 µs 19320 ± 230 µs 21290 ± 280 µs 21840 ± 240 µs

4M 33223 ± 68 µs 33390 ± 280 µs 33850 ± 330 µs 37700 ± 240 µs 40880 ± 220 µs 41960 ± 340 µs

8M 65300 ± 160 µs 65530 ± 360 µs 68010 ± 260 µs 75660 ± 600 µs 82290 ± 90 µs 83120 ± 250 µs

16M 127610 ± 450 µs 127680 ± 430 µs 131480 ± 580 µs 144.9 ± 1.0 ms 157290 ± 110 µs 160.1 ± 1.2 ms

Table 17: Intersection time: Cuckoo hashing to global table (CHG)

73

Ratio of elements common to both sets

Size 0% 0.01% 10% 50% 90% 100%

4k 436 ± 25 µs 723 ± 47 µs 761 ± 98 µs 791 ± 69 µs 825 ± 57 µs 833 ± 94 µs

8k 729 ± 88 µs 692 ± 24 µs 779 ± 61 µs 813 ± 55 µs 901 ± 48 µs 872 ± 55 µs

16k 776 ± 74 µs 796 ± 49 µs 860 ± 60 µs 885 ± 50 µs 943 ± 52 µs 978 ± 80 µs

32k 950 ± 35 µs 999 ± 87 µs 1003 ± 56 µs 1111 ± 50 µs 1264 ± 25 µs 1231 ± 55 µs

64k 1442 ± 49 µs 1444 ± 54 µs 1472 ± 28 µs 1715 ± 27 µs 1820 ± 57 µs 1900 ± 100 µs

128k 2266 ± 59 µs 2350 ± 23 µs 2375 ± 72 µs 2760 ± 25 µs 3102 ± 92 µs 3231 ± 75 µs

256k 3397 ± 13 µs 3484 ± 22 µs 3625 ± 49 µs 4218 ± 79 µs 4863 ± 43 µs 4975 ± 82 µs

512k 4845 ± 37 µs 4881 ± 98 µs 5180 ± 210 µs 6480 ± 130 µs 7387 ± 28 µs 7691 ± 27 µs

1M 7540 ± 420 µs 7710 ± 420 µs 8140 ± 460 µs 10670 ± 120 µs 12280 ± 520 µs 13110 ± 330 µs

2M 24160 ± 160 µs 24250 ± 130 µs 25080 ± 200 µs 29130 ± 350 µs 34630 ± 690 µs 35490 ± 830 µs

4M 43690 ± 350 µs 43530 ± 210 µs 45380 ± 350 µs 55210 ± 770 µs 63950 ± 150 µs 66090 ± 200 µs

8M 75110 ± 430 µs 74650 ± 300 µs 78650 ± 540 µs 97680 ± 980 µs 114180 ± 270 µs 119.0 ± 1.0 ms

16M 130750 ± 540 µs 131180 ± 450 µs 138570 ± 440 µs 173560 ± 610 µs 207500 ± 540 µs 214.2 ± 1.1 ms

Table 18: Intersection time: Cuckoo hashing to local table (CHL)

Ratio of elements common to both sets

Size 0% 0.01% 10% 50% 90% 100%

4k 4800 ± 260 µs 4791 ± 74 µs 4867 ± 36 µs 4845 ± 72 µs 4954 ± 37 µs 4959 ± 39 µs

8k 4803 ± 78 µs 4796 ± 45 µs 4901 ± 61 µs 4986 ± 69 µs 4974 ± 46 µs 4971 ± 48 µs

16k 4818 ± 41 µs 4887 ± 56 µs 4963 ± 36 µs 4952 ± 27 µs 5000 ± 120 µs 5069 ± 45 µs

32k 4978 ± 31 µs 5044 ± 54 µs 4950 ± 170 µs 5265 ± 44 µs 5357 ± 59 µs 5398 ± 84 µs

64k 5513 ± 69 µs 5528 ± 42 µs 5601 ± 80 µs 5740 ± 98 µs 5854 ± 43 µs 5952 ± 21 µs

128k 6294 ± 31 µs 6233 ± 93 µs 6378 ± 64 µs 6634 ± 27 µs 6810 ± 250 µs 6870 ± 160 µs

256k 7965 ± 38 µs 8028 ± 32 µs 8090 ± 80 µs 8410 ± 200 µs 8993 ± 55 µs 9099 ± 41 µs

512k 9710 ± 490 µs 9450 ± 490 µs 9410 ± 340 µs 10320 ± 510 µs 11040 ± 570 µs 11430 ± 490 µs

1M 12797 ± 43 µs 12660 ± 210 µs 13120 ± 270 µs 14510 ± 330 µs 15790 ± 370 µs 16300 ± 470 µs

2M 20480 ± 220 µs 20482 ± 73 µs 21140 ± 230 µs 23890 ± 440 µs 26500 ± 610 µs 26900 ± 480 µs

4M 36140 ± 350 µs 35920 ± 210 µs 37230 ± 480 µs 42560 ± 720 µs 48550 ± 290 µs 50200 ± 180 µs

8M 66600 ± 270 µs 67000 ± 420 µs 69040 ± 500 µs 80.5 ± 1.0 ms 91.8 ± 1.3 ms 94.0 ± 1.0 ms

16M 128820 ± 390 µs 128230 ± 460 µs 134140 ± 930 µs 152.5 ± 1.4 ms 174.0 ± 1.5 ms 180190 ± 840 µs

Table 19: Intersection time: Indexing into large bitmap with buffered split (ILBS)

Ratio of elements common to both sets

0% 0.01% 10% 50% 90% 100%

4k 4456 ± 30 µs 4470 ± 24 µs 4491 ± 62 µs 4565 ± 67 µs 4610 ± 200 µs 4537 ± 39 µs

8k 4477 ± 22 µs 4467 ± 16 µs 4537 ± 23 µs 4554 ± 31 µs 4608 ± 66 µs 4613 ± 42 µs

16k 4494 ± 24 µs 4580 ± 34 µs 4592 ± 26 µs 4612 ± 65 µs 4674 ± 28 µs 4647 ± 17 µs

32k 4683 ± 29 µs 4757 ± 16 µs 4763 ± 22 µs 4825 ± 27 µs 4928 ± 48 µs 4921 ± 38 µs

64k 4961 ± 23 µs 5070 ± 20 µs 5084 ± 48 µs 5142 ± 28 µs 5274 ± 17 µs 5347 ± 19 µs

128k 5685 ± 29 µs 5719 ± 26 µs 5833 ± 27 µs 6025 ± 18 µs 6248 ± 45 µs 6243 ± 41 µs

256k 7061 ± 38 µs 7140 ± 30 µs 7243 ± 60 µs 7630 ± 18 µs 8042 ± 20 µs 8113 ± 70 µs

512k 8390 ± 340 µs 8470 ± 340 µs 8580 ± 310 µs 9470 ± 220 µs 10420 ± 190 µs 10570 ± 200 µs

1M 11470 ± 45 µs 11377 ± 59 µs 11930 ± 190 µs 13350 ± 420 µs 14510 ± 370 µs 15330 ± 370 µs

2M 18400 ± 120 µs 18520 ± 140 µs 19300 ± 180 µs 22330 ± 310 µs 25460 ± 190 µs 26050 ± 470 µs

4M 32120 ± 110 µs 32242 ± 88 µs 33720 ± 310 µs 39580 ± 500 µs 45461 ± 41 µs 47060 ± 270 µs

8M 59750 ± 230 µs 59780 ± 260 µs 62910 ± 550 µs 76140 ± 310 µs 86.7 ± 1.6 ms 91890 ± 130 µs

16M 114480 ± 100 µs 114230 ± 250 µs 121960 ± 290 µs 143680 ± 160 µs 166360 ± 570 µs 171.9 ± 1.2 ms

Table 20: Intersection time: Indexing into large bitmap – no split (ILBN)

74

Sizes of sets
Binary search

(BSS)

Binary search
with look-up

(BSLS)

Interpolation
search (ISS)

Interpolation
search with

look-up (ISLS)

Generalised
quadratic

search (GQSS)

Local search
(jobs created

on CPU)
(LSJCCPUS)

Local search
(jobs created

on GPU)
(LSJCGPUS)

126976 4096 678 ± 13 µs 671 ± 28 µs 654 ± 13 µs 677 ± 12 µs 688 ± 13 µs 873 ± 17 µs 929 ± 45 µs

4096 126976 683 ± 22 µs 705 ± 46 µs 661 ± 19 µs 678 ± 35 µs 649 ± 27 µs 890 ± 22 µs 939 ± 25 µs

122880 8192 674 ± 33 µs 669 ± 23 µs 655 ± 18 µs 730 ± 200 µs 699 ± 57 µs 886 ± 52 µs 920 ± 300 µs

8192 122880 672 ± 34 µs 671 ± 26 µs 662 ± 18 µs 663 ± 23 µs 666 ± 27 µs 913 ± 25 µs 946 ± 34 µs

114688 16384 688 ± 15 µs 670 ± 18 µs 673 ± 14 µs 682 ± 9.9 µs 694 ± 14 µs 898 ± 28 µs 898 ± 24 µs

16384 114688 691 ± 32 µs 656 ± 12 µs 657 ± 12 µs 651 ± 11 µs 658 ± 26 µs 945 ± 30 µs 961 ± 22 µs

98304 32768 764 ± 19 µs 779 ± 13 µs 756 ± 23 µs 785.2 ± 8.5 µs 772 ± 21 µs 971 ± 34 µs 994 ± 20 µs

32768 98304 694 ± 21 µs 704 ± 33 µs 679 ± 20 µs 690 ± 22 µs 690 ± 21 µs 973 ± 17 µs 987 ± 18 µs

65536 65536 745 ± 12 µs 746 ± 12 µs 735 ± 11 µs 747 ± 11 µs 749.8 ± 8.3 µs 984 ± 40 µs 993 ± 31 µs

520192 4096 1580 ± 110 µs 1564.2 ± 8.8 µs 1525.3 ± 9.6 µs 1579 ± 8.7 µs 1621 ± 15 µs 1809 ± 10 µs 1968 ± 25 µs

4096 520192 1484 ± 12 µs 1482 ± 12 µs 1476 ± 16 µs 1477 ± 16 µs 1481 ± 13 µs 1895 ± 11 µs 2111 ± 31 µs

516096 8192 1581 ± 12 µs 1596 ± 16 µs 1534.6 ± 8.6 µs 1595.7 ± 9.6 µs 1641 ± 11 µs 1791 ± 37 µs 1983 ± 22 µs

8192 516096 1489 ± 13 µs 1487 ± 10 µs 1480 ± 11 µs 1481 ± 12 µs 1489 ± 18 µs 1913 ± 13 µs 2102 ± 28 µs

507904 16384 1590.4 ± 9.6 µs 1601 ± 11 µs 1535 ± 16 µs 1597 ± 14 µs 1640 ± 15 µs 1822 ± 29 µs 1981 ± 30 µs

16384 507904 1501 ± 15 µs 1495.7 ± 8.8 µs 1489 ± 11 µs 1486.4 ± 9.8 µs 1504.4 ± 9.9 µs 1913 ± 12 µs 2112 ± 32 µs

491520 32768 1672 ± 33 µs 1694 ± 12 µs 1613 ± 39 µs 1678 ± 12 µs 1733 ± 14 µs 1922 ± 47 µs 2041 ± 48 µs

32768 491520 1528 ± 18 µs 1526 ± 18 µs 1510 ± 12 µs 1515 ± 11 µs 1528 ± 11 µs 1926 ± 29 µs 2091 ± 41 µs

458752 65536 1699 ± 13 µs 1706 ± 14 µs 1631 ± 17 µs 1693 ± 21 µs 1744 ± 16 µs 1973 ± 42 µs 2096 ± 16 µs

65536 458752 1502 ± 12 µs 1505 ± 17 µs 1482 ± 18 µs 1488.5 ± 9 µs 1500 ± 10 µs 1915 ± 49 µs 2051 ± 15 µs

393216 131072 1675 ± 38 µs 1706 ± 31 µs 1615 ± 36 µs 1673 ± 29 µs 1715 ± 34 µs 1940 ± 34 µs 2122 ± 57 µs

131072 393216 1670 ± 77 µs 1655 ± 34 µs 1577 ± 15 µs 1619 ± 13 µs 1684 ± 43 µs 1989 ± 45 µs 2117 ± 16 µs

262144 262144 1781 ± 19 µs 1805 ± 34 µs 1733 ± 19 µs 1753 ± 45 µs 1767 ± 37 µs 2056 ± 38 µs 2249 ± 53 µs

2093056 4096 4934 ± 31 µs 4962 ± 37 µs 4728 ± 31 µs 4955 ± 29 µs 5107 ± 37 µs 4978 ± 48 µs 5549 ± 46 µs

4096 2093056 4289 ± 34 µs 4288 ± 35 µs 4276 ± 44 µs 4263 ± 37 µs 4271 ± 35 µs 5101 ± 56 µs 5821 ± 57 µs

2088960 8192 4987 ± 31 µs 5047 ± 30 µs 4750 ± 18 µs 5015 ± 33 µs 5186 ± 38 µs 5025 ± 44 µs 5646 ± 30 µs

8192 2088960 4300 ± 37 µs 4314 ± 38 µs 4269 ± 38 µs 4272 ± 41 µs 4296 ± 40 µs 5183 ± 53 µs 5860 ± 41 µs

2080768 16384 5047 ± 35 µs 5070 ± 34 µs 4778 ± 31 µs 4998 ± 23 µs 5210 ± 38 µs 5111 ± 72 µs 5704 ± 40 µs

16384 2080768 4329 ± 38 µs 4328 ± 42 µs 4289 ± 34 µs 4301 ± 48 µs 4325 ± 33 µs 5216 ± 47 µs 5894 ± 47 µs

2064384 32768 5194 ± 33 µs 5248 ± 34 µs 4880 ± 29 µs 5145 ± 37 µs 5336 ± 41 µs 5150 ± 100 µs 5862 ± 63 µs

32768 2064384 4589 ± 39 µs 4572 ± 21 µs 4563 ± 34 µs 4579 ± 35 µs 4588 ± 43 µs 5299 ± 52 µs 5965 ± 41 µs

2031616 65536 5238 ± 42 µs 5338 ± 40 µs 4943 ± 37 µs 5190 ± 34 µs 5411 ± 34 µs 5230 ± 120 µs 5916 ± 65 µs

65536 2031616 4607 ± 44 µs 4594 ± 96 µs 4527 ± 85 µs 4548 ± 79 µs 4621 ± 44 µs 5277 ± 58 µs 5923 ± 38 µs

1966080 131072 5316 ± 42 µs 5397 ± 49 µs 4972 ± 43 µs 5270 ± 40 µs 5445 ± 38 µs 5330 ± 120 µs 6009 ± 69 µs

131072 1966080 4795 ± 29 µs 4840 ± 200 µs 4790 ± 120 µs 4830 ± 53 µs 4862 ± 53 µs 5515 ± 58 µs 6143 ± 56 µs

1835008 262144 5453 ± 73 µs 5487 ± 34 µs 5050 ± 61 µs 5377 ± 35 µs 5515 ± 38 µs 5492 ± 91 µs 6186 ± 65 µs

262144 1835008 4822 ± 55 µs 4813 ± 38 µs 4715 ± 34 µs 4775 ± 40 µs 4802 ± 56 µs 5447 ± 61 µs 6130 ± 38 µs

1572864 524288 5054 ± 40 µs 5049 ± 25 µs 4668 ± 23 µs 4934 ± 46 µs 5154 ± 39 µs 5170 ± 110 µs 5966 ± 49 µs

524288 1572864 4697 ± 40 µs 4752 ± 37 µs 4566 ± 36 µs 4697 ± 37 µs 4710 ± 39 µs 5175 ± 52 µs 5880 ± 43 µs

1048576 1048576 4778 ± 36 µs 4835 ± 38 µs 4532 ± 36 µs 4760 ± 37 µs 4816 ± 34 µs 5090 ± 110 µs 5900 ± 65 µs

Table 21: Intersection time: Asymmetric sorted sets (part I)

75

Sizes of sets
Binary search

(BSS)

Binary search
with look-up

(BSLS)

Interpolation
search (ISS)

Interpolation
search with

look-up (ISLS)

Generalised
quadratic

search (GQSS)

Local search
(jobs created

on CPU)
(LSJCCPUS)

Local search
(jobs created

on GPU)
(LSJCGPUS)

8384512 4096 19140 ± 60 µs 19258 ± 76 µs 18311 ± 53 µs 19276 ± 71 µs 19784 ± 62 µs 17406 ± 87 µs 19660 ± 140 µs

4096 8384512 16286 ± 66 µs 16256 ± 58 µs 16260 ± 59 µs 16258 ± 61 µs 16220 ± 360 µs 17448 ± 85 µs 19960 ± 110 µs

8380416 8192 19230 ± 180 µs 19689 ± 54 µs 18467 ± 58 µs 19500 ± 190 µs 20128 ± 78 µs 17500 ± 110 µs 19805 ± 93 µs

8192 8380416 16248 ± 48 µs 16284 ± 58 µs 16353 ± 52 µs 16570 ± 120 µs 16612 ± 70 µs 17710 ± 170 µs 20480 ± 120 µs

8372224 16384 19529 ± 66 µs 20013 ± 58 µs 18507 ± 64 µs 19790 ± 120 µs 20155 ± 60 µs 17780 ± 110 µs 20120 ± 110 µs

16384 8372224 16350 ± 58 µs 16323 ± 64 µs 16246 ± 68 µs 16260 ± 55 µs 16323 ± 65 µs 17920 ± 110 µs 20580 ± 110 µs

8355840 32768 19924 ± 73 µs 20580 ± 190 µs 18882 ± 99 µs 20060 ± 260 µs 20692 ± 64 µs 18185 ± 66 µs 20564 ± 67 µs

32768 8355840 16720 ± 110 µs 16690 ± 120 µs 16600 ± 100 µs 16590 ± 110 µs 16680 ± 180 µs 18596 ± 79 µs 21180 ± 210 µs

8323072 65536 20080 ± 390 µs 20800 ± 180 µs 18895 ± 72 µs 20190 ± 100 µs 20696 ± 66 µs 18425 ± 68 µs 20811 ± 72 µs

65536 8323072 16752 ± 87 µs 16790 ± 110 µs 16660 ± 160 µs 16670 ± 170 µs 16780 ± 180 µs 18788 ± 89 µs 21350 ± 170 µs

8257536 131072 20440 ± 74 µs 20747 ± 95 µs 18920 ± 200 µs 20390 ± 190 µs 20727 ± 71 µs 18711 ± 70 µs 21040 ± 220 µs

131072 8257536 16985 ± 98 µs 17000 ± 130 µs 16870 ± 100 µs 16810 ± 95 µs 17072 ± 86 µs 18893 ± 79 µs 21344 ± 74 µs

8126464 262144 20629 ± 57 µs 21052 ± 64 µs 19124 ± 62 µs 20120 ± 69 µs 21006 ± 68 µs 19025 ± 56 µs 21453 ± 76 µs

262144 8126464 17630 ± 450 µs 17440 ± 340 µs 17440 ± 240 µs 17600 ± 170 µs 17981 ± 68 µs 19521 ± 91 µs 22100 ± 140 µs

7864320 524288 20416 ± 51 µs 20900 ± 65 µs 18757 ± 60 µs 20040 ± 200 µs 20721 ± 70 µs 18985 ± 59 µs 21570 ± 180 µs

524288 7864320 17228 ± 63 µs 17300 ± 290 µs 16964 ± 62 µs 17170 ± 43 µs 17310 ± 200 µs 18993 ± 88 µs 21570 ± 100 µs

7340032 1048576 20290 ± 150 µs 20932 ± 67 µs 18709 ± 58 µs 20143 ± 86 µs 20530 ± 63 µs 19004 ± 63 µs 21499 ± 81 µs

1048576 7340032 17118 ± 59 µs 17071 ± 54 µs 16701 ± 55 µs 16920 ± 55 µs 16962 ± 48 µs 18725 ± 79 µs 21650 ± 230 µs

6291456 2097152 19901 ± 57 µs 20282 ± 58 µs 18418 ± 57 µs 19872 ± 48 µs 20033 ± 60 µs 18926 ± 65 µs 21783 ± 94 µs

2097152 6291456 17498 ± 56 µs 17707 ± 57 µs 16920 ± 53 µs 17580 ± 59 µs 17457 ± 53 µs 18325 ± 68 µs 21124 ± 67 µs

4194304 4194304 18663 ± 52 µs 19387 ± 57 µs 17604 ± 58 µs 18944 ± 55 µs 18670 ± 50 µs 18610 ± 190 µs 21480 ± 230 µs

33550336 4096 75210 ± 170 µs 75660 ± 230 µs 72500 ± 190 µs 76290 ± 190 µs 78810 ± 230 µs 66610 ± 200 µs 75520 ± 470 µs

4096 33550336 63160 ± 240 µs 63240 ± 190 µs 63280 ± 230 µs 63190 ± 220 µs 63230 ± 160 µs 67270 ± 950 µs 77670 ± 490 µs

33546240 8192 75830 ± 220 µs 78260 ± 230 µs 72350 ± 170 µs 77400 ± 190 µs 78810 ± 160 µs 66070 ± 240 µs 75680 ± 480 µs

8192 33546240 63320 ± 140 µs 63250 ± 170 µs 63250 ± 160 µs 63230 ± 180 µs 63260 ± 180 µs 66320 ± 150 µs 76730 ± 480 µs

33538048 16384 76640 ± 150 µs 78630 ± 180 µs 72220 ± 180 µs 77690 ± 200 µs 78700 ± 190 µs 66270 ± 410 µs 76400 ± 740 µs

16384 33538048 63330 ± 190 µs 63400 ± 170 µs 63300 ± 170 µs 63310 ± 200 µs 63260 ± 180 µs 67080 ± 170 µs 78.6 ± 1 ms

33521664 32768 78400 ± 750 µs 80300 ± 880 µs 73390 ± 560 µs 77920 ± 960 µs 80500 ± 720 µs 68080 ± 760 µs 76580 ± 240 µs

32768 33521664 64.5 ± 1.6 ms 64210 ± 550 µs 64060 ± 550 µs 64050 ± 570 µs 64150 ± 570 µs 68370 ± 600 µs 78.2 ± 1.4 ms

33488896 65536 78990 ± 580 µs 81390 ± 570 µs 73490 ± 590 µs 77640 ± 850 µs 80570 ± 570 µs 69150 ± 710 µs 77850 ± 220 µs

65536 33488896 64360 ± 570 µs 64240 ± 540 µs 64090 ± 560 µs 64060 ± 560 µs 64.8 ± 1 ms 70060 ± 900 µs 79480 ± 150 µs

33423360 131072 79860 ± 830 µs 81540 ± 850 µs 73840 ± 560 µs 78780 ± 850 µs 81060 ± 580 µs 70690 ± 740 µs 79300 ± 190 µs

131072 33423360 64500 ± 630 µs 64490 ± 570 µs 64180 ± 560 µs 64020 ± 990 µs 64420 ± 560 µs 70440 ± 580 µs 83530 ± 480 µs

33292288 262144 80570 ± 280 µs 82450 ± 200 µs 73510 ± 200 µs 80010 ± 780 µs 81200 ± 510 µs 72.6 ± 1.1 ms 82 ± 1.1 ms

262144 33292288 64710 ± 160 µs 64730 ± 130 µs 64590 ± 630 µs 65 ± 1.1 ms 65940 ± 120 µs 72930 ± 660 µs 82440 ± 900 µs

33030144 524288 81020 ± 240 µs 83020 ± 200 µs 73620 ± 190 µs 79660 ± 200 µs 81370 ± 210 µs 71620 ± 230 µs 81620 ± 730 µs

524288 33030144 65370 ± 160 µs 65440 ± 180 µs 64900 ± 180 µs 64840 ± 180 µs 65780 ± 170 µs 72080 ± 210 µs 82890 ± 780 µs

32505856 1048576 81780 ± 210 µs 83540 ± 250 µs 73930 ± 200 µs 80160 ± 240 µs 81810 ± 190 µs 72330 ± 200 µs 82440 ± 760 µs

1048576 32505856 65980 ± 130 µs 65990 ± 140 µs 65540 ± 160 µs 65370 ± 210 µs 66880 ± 240 µs 72210 ± 210 µs 83.5 ± 1.2 ms

31457280 2097152 82030 ± 240 µs 83700 ± 200 µs 74130 ± 190 µs 81080 ± 200 µs 82180 ± 200 µs 72980 ± 320 µs 83130 ± 700 µs

2097152 31457280 66290 ± 140 µs 66640 ± 150 µs 65740 ± 170 µs 66350 ± 150 µs 67160 ± 270 µs 72410 ± 200 µs 83480 ± 850 µs

29360128 4194304 81620 ± 180 µs 86260 ± 380 µs 73780 ± 250 µs 83920 ± 460 µs 81210 ± 190 µs 73580 ± 760 µs 83980 ± 980 µs

4194304 29360128 66910 ± 160 µs 67140 ± 210 µs 65230 ± 210 µs 66840 ± 210 µs 66320 ± 160 µs 71340 ± 340 µs 82830 ± 910 µs

25165824 8388608 79570 ± 210 µs 84230 ± 220 µs 72240 ± 150 µs 81960 ± 190 µs 78760 ± 180 µs 72820 ± 310 µs 83870 ± 620 µs

8388608 25165824 68920 ± 160 µs 72800 ± 150 µs 66230 ± 220 µs 72200 ± 140 µs 68360 ± 140 µs 70750 ± 520 µs 82580 ± 850 µs

16777216 16777216 74170 ± 160 µs 80500 ± 210 µs 69050 ± 170 µs 78520 ± 210 µs 73270 ± 180 µs 71120 ± 240 µs 83030 ± 680 µs

Table 22: Intersection time: Asymmetric sorted sets (part II)

76

Sizes of sets
Linear hashing
with buffered
output (LHB)

Linear hashing
with sorted keys

(LHS)

Cuckoo hashing
to global table

(CHG)

Cuckoo hashing
to local table

(CHL)

Indexing into big
bitmap with

buffered split
(ILBS)

Indexing into big
bitmap - no split

(ILBN)

126976 4096 979 ± 45 µs 981 ± 44 µs 1301 ± 11 µs 1750 ± 360 µs 5588 ± 43 µs 4678 ± 16 µs

4096 126976 872 ± 12 µs 856 ± 19 µs 1200 ± 12 µs 1659 ± 26 µs 5203 ± 19 µs 4673 ± 13 µs

122880 8192 938 ± 21 µs 937 ± 16 µs 1360 ± 190 µs 1662 ± 13 µs 5532 ± 24 µs 4648 ± 14 µs

8192 122880 835 ± 14 µs 831 ± 30 µs 1323 ± 16 µs 1819 ± 30 µs 5224 ± 17 µs 4698 ± 13 µs

114688 16384 956 ± 11 µs 956.1 ± 8.3 µs 1297 ± 18 µs 1709 ± 39 µs 5430 ± 14 µs 4632 ± 18 µs

16384 114688 892 ± 12 µs 880 ± 12 µs 1257 ± 19 µs 1660 ± 19 µs 5201 ± 12 µs 4696 ± 11 µs

98304 32768 987 ± 16 µs 988.3 ± 9.1 µs 1313 ± 12 µs 1693 ± 15 µs 5414 ± 15 µs 4704 ± 12 µs

32768 98304 956 ± 17 µs 953 ± 22 µs 1268 ± 12 µs 1673 ± 15 µs 5263 ± 15 µs 4681.6 ± 9.8 µs

65536 65536 946.5 ± 8.1 µs 941 ± 11 µs 1299.4 ± 8 µs 1722 ± 15 µs 5316 ± 12 µs 4696 ± 10 µs

520192 4096 2370 ± 110 µs 2338 ± 12 µs 2840 ± 120 µs 3040 ± 21 µs 7087 ± 17 µs 5874 ± 19 µs

4096 520192 1799 ± 21 µs 1773 ± 18 µs 2253 ± 26 µs 2996 ± 37 µs 6466 ± 27 µs 6093 ± 26 µs

516096 8192 2405 ± 82 µs 2365 ± 24 µs 2783 ± 6.1 µs 2964 ± 10 µs 7068 ± 21 µs 5867 ± 14 µs

8192 516096 1806 ± 11 µs 1763.2 ± 8.5 µs 2372 ± 11 µs 2909 ± 15 µs 6475 ± 19 µs 6099 ± 14 µs

507904 16384 2307 ± 14 µs 2309 ± 11 µs 2781.5 ± 7.4 µs 2962 ± 13 µs 6928 ± 15 µs 5849.6 ± 7.4 µs

16384 507904 1827.3 ± 9.5 µs 1782.6 ± 7.5 µs 2443 ± 11 µs 2897 ± 14 µs 6455 ± 21 µs 6089 ± 13 µs

491520 32768 2458 ± 14 µs 2456 ± 15 µs 2889 ± 12 µs 3066 ± 19 µs 6962 ± 10 µs 6051 ± 11 µs

32768 491520 1861.9 ± 9.4 µs 1815.9 ± 7 µs 2516 ± 10 µs 2919 ± 13 µs 6495 ± 22 µs 6105 ± 14 µs

458752 65536 2438 ± 18 µs 2428 ± 16 µs 2912 ± 11 µs 3060 ± 23 µs 6872 ± 12 µs 6075 ± 15 µs

65536 458752 1962 ± 17 µs 1920 ± 13 µs 2634 ± 12 µs 2910 ± 18 µs 6463 ± 22 µs 6095 ± 49 µs

393216 131072 2477 ± 45 µs 2437 ± 26 µs 2867 ± 19 µs 3103 ± 43 µs 7019 ± 31 µs 6155 ± 31 µs

131072 393216 2110 ± 14 µs 2065.2 ± 8.4 µs 2860 ± 140 µs 3047 ± 55 µs 6695 ± 20 µs 6162 ± 54 µs

262144 262144 2287 ± 33 µs 2256 ± 37 µs 3014 ± 14 µs 3082 ± 14 µs 6908 ± 15 µs 6268 ± 32 µs

2093056 4096 8270 ± 140 µs 8141 ± 44 µs 8853 ± 48 µs 13721 ± 87 µs 13950 ± 60 µs 11460 ± 57 µs

4096 2093056 5395 ± 91 µs 5190 ± 43 µs 6547 ± 56 µs 13315 ± 86 µs 12454 ± 61 µs 11795 ± 53 µs

2088960 8192 8200 ± 130 µs 8126 ± 44 µs 8862 ± 55 µs 13773 ± 74 µs 13904 ± 58 µs 11461 ± 52 µs

8192 2088960 5527 ± 40 µs 5347 ± 33 µs 7018 ± 43 µs 13340 ± 81 µs 12487 ± 42 µs 11799 ± 50 µs

2080768 16384 8102 ± 34 µs 8097 ± 37 µs 8872 ± 52 µs 13838 ± 68 µs 13752 ± 59 µs 11434 ± 61 µs

16384 2080768 5720 ± 110 µs 5413 ± 35 µs 7299 ± 47 µs 13366 ± 84 µs 12475 ± 59 µs 11778 ± 47 µs

2064384 32768 8316 ± 44 µs 8314 ± 42 µs 8970 ± 120 µs 13977 ± 93 µs 13722 ± 97 µs 11519 ± 94 µs

32768 2064384 5850 ± 35 µs 5593 ± 20 µs 7475 ± 35 µs 13630 ± 100 µs 12540 ± 160 µs 11790 ± 140 µs

2031616 65536 8350 ± 95 µs 8301 ± 41 µs 8951 ± 91 µs 13980 ± 89 µs 13636 ± 96 µs 11520 ± 100 µs

65536 2031616 5863 ± 59 µs 5870 ± 110 µs 7820 ± 110 µs 13490 ± 94 µs 12380 ± 83 µs 11649 ± 19 µs

1966080 131072 8293 ± 59 µs 8263 ± 48 µs 8990 ± 76 µs 14190 ± 110 µs 13716 ± 90 µs 11590 ± 93 µs

131072 1966080 6440 ± 230 µs 5996 ± 27 µs 8340 ± 150 µs 13840 ± 150 µs 12770 ± 110 µs 11860 ± 130 µs

1835008 262144 8235 ± 46 µs 8189 ± 47 µs 9248 ± 94 µs 13770 ± 110 µs 13681 ± 88 µs 11820 ± 100 µs

262144 1835008 6746 ± 53 µs 6512 ± 55 µs 9098 ± 91 µs 14104 ± 80 µs 12840 ± 130 µs 12090 ± 180 µs

1572864 524288 7752 ± 98 µs 7602 ± 42 µs 8798 ± 90 µs 13740 ± 100 µs 13194 ± 99 µs 11550 ± 110 µs

524288 1572864 6904 ± 50 µs 6651 ± 32 µs 9014 ± 56 µs 13462 ± 82 µs 12716 ± 53 µs 11722 ± 49 µs

1048576 1048576 7238 ± 46 µs 7073 ± 44 µs 9010 ± 100 µs 7514 ± 90 µs 12830 ± 99 µs 11540 ± 110 µs

Table 23: Intersection time: Asymmetric unsorted sets (part I)

77

Sizes of sets
Linear hashing
with buffered
output (LHB)

Linear hashing
with sorted keys

(LHS)

Cuckoo hashing
to global table

(CHG)

Cuckoo hashing
to local table

(CHL)

Indexing into big
bitmap with

buffered split
(ILBS)

Indexing into big
bitmap - no split

(ILBN)

8384512 4096 32040 ± 110 µs 32030 ± 110 µs 32960 ± 170 µs 41920 ± 160 µs 41010 ± 160 µs 33490 ± 140 µs

4096 8384512 20714 ± 78 µs 19868 ± 67 µs 23660 ± 260 µs 39860 ± 280 µs 36220 ± 250 µs 34440 ± 280 µs

8380416 8192 32500 ± 200 µs 31980 ± 120 µs 33030 ± 240 µs 42080 ± 240 µs 41070 ± 230 µs 33820 ± 340 µs

8192 8380416 21399 ± 83 µs 20400 ± 72 µs 25650 ± 240 µs 39670 ± 260 µs 36250 ± 250 µs 34420 ± 250 µs

8372224 16384 32060 ± 210 µs 31980 ± 100 µs 33170 ± 340 µs 42540 ± 250 µs 40950 ± 290 µs 33490 ± 240 µs

16384 8372224 21378 ± 50 µs 20664 ± 60 µs 26810 ± 260 µs 40170 ± 250 µs 36200 ± 220 µs 34420 ± 260 µs

8355840 32768 32270 ± 280 µs 32570 ± 360 µs 33130 ± 290 µs 42200 ± 120 µs 40760 ± 130 µs 33590 ± 160 µs

32768 8355840 21980 ± 220 µs 21270 ± 210 µs 27421 ± 96 µs 40120 ± 110 µs 36240 ± 100 µs 34480 ± 110 µs

8323072 65536 32670 ± 330 µs 32300 ± 260 µs 33000 ± 170 µs 42590 ± 140 µs 41010 ± 110 µs 33550 ± 110 µs

65536 8323072 22150 ± 210 µs 21390 ± 190 µs 28570 ± 110 µs 40190 ± 120 µs 36210 ± 120 µs 34370 ± 100 µs

8257536 131072 32300 ± 260 µs 32250 ± 240 µs 33470 ± 110 µs 42350 ± 130 µs 41190 ± 160 µs 33640 ± 190 µs

131072 8257536 23060 ± 250 µs 22220 ± 220 µs 30300 ± 150 µs 40640 ± 140 µs 36880 ± 150 µs 34360 ± 170 µs

8126464 262144 32500 ± 110 µs 32460 ± 110 µs 33490 ± 200 µs 42470 ± 210 µs 40910 ± 250 µs 33940 ± 250 µs

262144 8126464 24830 ± 110 µs 24190 ± 130 µs 33000 ± 270 µs 41050 ± 310 µs 37280 ± 370 µs 35120 ± 590 µs

7864320 524288 32480 ± 230 µs 31880 ± 110 µs 33430 ± 350 µs 42340 ± 240 µs 40420 ± 230 µs 33620 ± 210 µs

524288 7864320 25530 ± 130 µs 23904 ± 81 µs 34240 ± 270 µs 40620 ± 230 µs 36720 ± 230 µs 34560 ± 230 µs

7340032 1048576 31490 ± 110 µs 30981 ± 95 µs 33710 ± 210 µs 42460 ± 210 µs 40050 ± 200 µs 33640 ± 210 µs

1048576 7340032 25320 ± 100 µs 24536 ± 75 µs 34850 ± 250 µs 40590 ± 220 µs 36990 ± 250 µs 34200 ± 220 µs

6291456 2097152 30400 ± 330 µs 30190 ± 120 µs 33190 ± 200 µs 42910 ± 210 µs 39450 ± 190 µs 33710 ± 230 µs

2097152 6291456 27060 ± 230 µs 25677 ± 74 µs 34950 ± 210 µs 41480 ± 180 µs 37250 ± 190 µs 34000 ± 170 µs

4194304 4194304 28400 ± 100 µs 27706 ± 92 µs 34330 ± 250 µs 44870 ± 270 µs 38160 ± 240 µs 33830 ± 240 µs

33550336 4096 126440 ± 320 µs 126350 ± 310 µs 126600 ± 510 µs 133520 ± 650 µs 148770 ± 470 µs 121030 ± 440 µs

4096 33550336 79630 ± 210 µs 77590 ± 190 µs 91050 ± 500 µs 122650 ± 450 µs 129870 ± 420 µs 123890 ± 440 µs

33546240 8192 126840 ± 200 µs 126820 ± 290 µs 127.1 ± 2.6 ms 133500 ± 480 µs 148690 ± 330 µs 120840 ± 290 µs

8192 33546240 82900 ± 180 µs 80180 ± 180 µs 99040 ± 400 µs 122450 ± 330 µs 129800 ± 300 µs 123780 ± 330 µs

33538048 16384 126670 ± 350 µs 126610 ± 240 µs 126460 ± 340 µs 133480 ± 460 µs 148430 ± 250 µs 120780 ± 230 µs

16384 33538048 84190 ± 270 µs 81270 ± 220 µs 103400 ± 250 µs 122640 ± 490 µs 129660 ± 340 µs 123740 ± 250 µs

33521664 32768 126860 ± 420 µs 126750 ± 270 µs 126520 ± 300 µs 133700 ± 540 µs 148370 ± 200 µs 120910 ± 220 µs

32768 33521664 85700 ± 730 µs 81970 ± 240 µs 105700 ± 200 µs 129.3 ± 1.1 ms 130490 ± 770 µs 124250 ± 650 µs

33488896 65536 126830 ± 230 µs 126760 ± 250 µs 127.7 ± 1.5 ms 134060 ± 270 µs 148600 ± 400 µs 121170 ± 200 µs

65536 33488896 87560 ± 310 µs 83090 ± 510 µs 111580 ± 570 µs 123.7 ± 1 ms 131110 ± 650 µs 123550 ± 170 µs

33423360 131072 126850 ± 320 µs 126760 ± 260 µs 126890 ± 490 µs 134290 ± 480 µs 148580 ± 230 µs 121040 ± 410 µs

131072 33423360 88620 ± 540 µs 85000 ± 260 µs 115340 ± 300 µs 126830 ± 510 µs 129880 ± 240 µs 123750 ± 240 µs

33292288 262144 128800 ± 340 µs 127950 ± 840 µs 127.2 ± 1.5 ms 134330 ± 920 µs 148420 ± 250 µs 121980 ± 730 µs

262144 33292288 93710 ± 190 µs 90520 ± 150 µs 124980 ± 350 µs 127690 ± 640 µs 130270 ± 520 µs 124610 ± 750 µs

33030144 524288 126430 ± 260 µs 126320 ± 260 µs 127 ± 2.4 ms 132120 ± 290 µs 147880 ± 250 µs 120850 ± 240 µs

524288 33030144 97160 ± 270 µs 92140 ± 180 µs 132530 ± 280 µs 125260 ± 260 µs 130070 ± 210 µs 123680 ± 230 µs

32505856 1048576 126140 ± 240 µs 125890 ± 250 µs 127020 ± 620 µs 132310 ± 580 µs 147690 ± 230 µs 120930 ± 250 µs

1048576 32505856 98980 ± 220 µs 93870 ± 240 µs 137100 ± 300 µs 123190 ± 220 µs 130030 ± 290 µs 123560 ± 200 µs

31457280 2097152 125180 ± 250 µs 124750 ± 230 µs 127580 ± 710 µs 132020 ± 360 µs 147030 ± 230 µs 120960 ± 230 µs

2097152 31457280 100760 ± 200 µs 95350 ± 230 µs 138590 ± 250 µs 123720 ± 370 µs 130740 ± 230 µs 123380 ± 230 µs

29360128 4194304 123950 ± 180 µs 123090 ± 220 µs 128610 ± 340 µs 132350 ± 240 µs 145740 ± 250 µs 121120 ± 170 µs

4194304 29360128 102270 ± 230 µs 97570 ± 210 µs 138330 ± 190 µs 127600 ± 230 µs 131510 ± 210 µs 122860 ± 190 µs

25165824 8388608 120530 ± 240 µs 118920 ± 190 µs 130140 ± 340 µs 132280 ± 220 µs 143380 ± 220 µs 121270 ± 280 µs

8388608 25165824 105940 ± 250 µs 101780 ± 380 µs 137380 ± 270 µs 126600 ± 210 µs 133950 ± 310 µs 122550 ± 240 µs

16777216 16777216 112360 ± 320 µs 109610 ± 300 µs 132840 ± 230 µs 135490 ± 310 µs 138160 ± 200 µs 121470 ± 210 µs

Table 24: Intersection time: Asymmetric unsorted sets (part II)

78

Size Binary search
Generalized

quadratic search
Local search (jobs
created on CPU)

Local search (jobs
created on GPU)

32M 147.8 ± 4.1 ms 166.5 ± 7.2 ms 148 ± 2.2 ms 169.3 ± 3.2 ms

64M 293.7 ± 6.2 ms 331 ± 11 ms 289.7 ± 3.2 ms 333.8 ± 4.6 ms

128M 587.3 ± 7.9 ms 671 ± 13 ms 576.5 ± 7.1 ms 661.1 ± 8.8 ms

256M 1180 ± 15 ms 1358 ± 19 ms 1143 ± 15 ms 1327 ± 12 ms

512M 2368 ± 22 ms 2724 ± 21 ms 2293 ± 21 ms 2665 ± 33 ms

Table 25: Intersection time: Multirun sorted template (MST) with various inner strategies

Size MBT + LHS MLBS MLBB

32M 1561 ± 12 ms 2026.5 ± 3 ms 324.6 ± 7.3 ms

64M 3129 ± 24 ms 4017.9 ± 5.8 ms 606.7 ± 9.4 ms

128M 6281 ± 37 ms 8026.9 ± 8.2 ms 1128 ± 13 ms

256M 12708 ± 84 ms 16001 ± 18 ms 2301 ± 38 ms

512M 25670 ± 220 ms 32420 ± 230 ms 4400 ± 40 ms

Table 26: Intersection time: Multirun hash-based strategies

79

Appendix B: Enclosed DVD contents
• /bin Executable binaries of the test programs

• /results

• raw/ Raw output of the testing

• charts/ All charts both included and not included in this text

• r/ Source code in R language for generating the charts

• /src/ All source code (both C++ and OpenCL)

• Intersection/ Algorithms for intersection

• Sorting/ Algorithms for sorting

• Shared/ Code shared by all algorithms (testing framework)

• /test_data/ Data used for tests

• /thesis.pdf This document in electronic version

80

	1. Introduction
	2. GPGPU Programming
	2.1 GPGPU Architecture Overview
	2.2 OpenCL
	2.2.1 Execution Model
	2.2.2 Memory Model

	2.3 Performance Considerations
	2.3.1 Coalesced Access to Global Memory
	2.3.2 Bank Conflicts in Local Memory
	2.3.3 Differences Across GPU Vendors

	3. Benchmarking Methodology
	3.1 Comparing GPUs
	3.2 Execution Time
	3.3 Data Selection
	3.4 Size of Work‑group

	4. Sorting
	4.1 Related Work
	4.2 Implementation
	4.2.1 Quicksort
	4.2.2 Bitonicsort
	4.2.3 Mergesort

	4.3 Results
	4.3.1 Quicksort
	4.3.2 Bitonicsort
	4.3.3 Mergesort
	4.3.4 Comparison of CPU and GPU Based Sorts

	4.4 Future Work

	5. Intersection
	5.1 Related Work
	5.2 Intersection of Sorted Sets
	5.2.1 Search Algorithms
	Binary Search (BSS)
	Interpolation Search (ISS)
	Generalized Quadratic Search (GQSS)
	Initial Lookup Optimization

	5.2.2 Parallel Single-pass Algorithms
	Dividing The Sets
	Searching for Common Elements

	5.2.3 Results
	GPU Strategies Comparison
	Asymmetric Sets
	Comparison With CPU

	5.3 Hash-based Intersection
	5.3.1 Linear Hashing
	5.3.2 Cuckoo Hashing
	5.3.3 Indexing into Large Bitmap
	5.3.4 Bloom Pre-filtering
	5.3.5 Results
	GPU Strategies Comparison
	Bloom Pre-filters
	Asymetric Sets
	Comparison with CPU

	5.4 Sets Not Fitting into Memory of GPU
	5.4.1 Splitting into Multiple Partitions
	5.4.2 Indexing into Large Bitmap
	5.4.3 Results
	Intersection of Sorted Sets
	Hash-based Intersection

	5.5 Future Work

	6. Conclusion
	Bibliography
	Appendix A: Results
	Appendix B: Enclosed DVD contents

