
PORT OF VALGRIND TO SOLARIS/X86
Author: Ing. Petr Pavlů (FIT ČVUT), Advisor: Mgr. Jiří Svoboda (Oracle Czech)

VALGRIND

Valgrind is a dynamic instrumentation
framework and a set of associated tools
which can detect many programming
errors and also do profiling. It is a free
software available for Linux, FreeBSD
and Mac OS X.
It uses disassemble-and-resynthesize
instrumentation with an architecture-
neutral intermediate representation.

Machine
code

disassemble

Neutral
IR

instrument
Neutral

IR

resynthesise

Machine
code

SOLARIS/X86

Solaris is a commercial Unix-type oper-
ating system developed by the Oracle
Corporation. The port is focused on its
Intel x86-32 variant.

MEMCHECK EXAMPLE

A problem found by the Memcheck tool in the Solaris standard C library:

setup@sol:~$ cat bug.c

#include <stdio.h>

int main(void)

{

char buf[64];

snprintf(buf, sizeof(buf), "Hello");

return 0;

}

setup@sol:~$ cc -g bug.c -o bug

setup@sol:~$ valgrind --quiet --track-origins=yes ./bug

==857== Conditional jump or move depends on uninitialised

value

==857== at 0xFEF20AAF: getxfdat (in /lib/libc.so.1)

==857== by 0xFEF20B47: _realbufend (in /lib/libc.so.1)

==857== by 0xFEF0FB7A: _ndoprnt (in /lib/libc.so.1)

==857== by 0xFEF1446D: snprintf (in /lib/libc.so.1)

==857== by 0x8050CC0: main (bug.c:5)

==857== Uninitialised value was created by a stack

allocation

==857== at 0xFEF1440C: snprintf (in /lib/libc.so.1)

A hack is used inside the Solaris standard C library to differentiate between two
structures. The ported Memcheck tool correctly detects it as a potential problem.

CACHEGRIND EXAMPLE

Profiling branch prediction of the GNU C compiler:

setup@sol:~$ valgrind --tool=cachegrind --cache-sim=no

--branch-sim=yes cc bug.c

==854== I refs: 1,118,378

==854==

==854== Branches: 248,769 (245,051 cond + 3,718 ind)

==854== Mispredicts: 18,625 (18,273 cond + 352 ind)

==854== Mispred rate: 7.4% (7.4% + 9.4%)

PROGRAM ANALYSIS

Program analysis is a process of auto-
matically analysing behaviour of com-
puter programs. It can be split into two
categories: static and dynamic analy-
sis. Static analysis derives properties of
programs without executing them. Dy-
namic analysis observes programs by
executing them. Valgrind is a represen-
tative of the dynamic approach.

PORT IMPLEMENTATION

Valgrind is tightly tied to an underly-
ing operating system, therefore porting
it to a new platform is a challenging
task that requires detailed knowledge
of the targeted environment.
The changes needed to support So-
laris/x86 in Valgrind span over several
areas:

• build system,

• Valgrind’s standard library,

• client program loading,

• thread support,

• signal processing,

• system calls (Valgrind needs to
know effects of each syscall),

• debug information reader,

• function replacement.

The functionality of the port and the
tools was evaluated using the Valgrind
test suite (consisting of more than 300
tests), proving that the port works cor-
rectly.

TOOLS

Valgrind is shipped with eleven official
tools. The port supports nine of them,
including Memcheck (a memory er-
ror detector), Cachegrind (a cache and
branch prediction profiler) and Massif
(a heap profiler).
Only two thread error detectors (DRD
and Helgrind) are currently not avail-
able.

