
Dynamic Scene Understanding for Mobile Robot Navigation

Ondrej Miksik
Laboratory of Telepresence and Robotics & Computer Vision Group, Faculty of Electrical Engineering and Communication,

Brno University of Technology, Brno, Czech Republic

Self-supervised Learning for General Road Extraction

I Suitable for primarily teleoperated mobile robots, e.g. Orpheus-AC (military reconnaissance
mobile robot)
I Automatic return from teleoperated mission in case of signal loss

I System demands
I Diverse light conditions (direct sunlight, strong shadows, . . . )
I Structured and unstructured roads (gravel, tarmac, . . . )

1. Texture flow estimation
I A bank of self-similar Gabor wavelets decomposed into linear combinations of Haar-like box functions
I Efficient computation – integral images; over-complete dictionary: NP-hard → OOMP

2. Vanishing point voting & Smoothing
I Coarse-to-fine voting scheme reduces computational complexity
I Smoothing filter CONDENSATION reduces the influence of noise and the jumpy characteristics of output

Figure 1 : Vanishing Point – texture flow (a), superpixels (b), coarse-to-fine voting (c) and (d), output (f)

3. Road Extraction – Gaussian Mixture Model (GMM)
I Vanishing point determines the non-static training area (cf. Fig. 3)
I Color models are constructed from sample pixels by self-supervised learning algorithm and adaptively updated
I A few simple rules define properties of the color segmentation system (adaptivity speed, selectivity, robustness

or behavior in shady and/or overexposed highlighted road segments)

Results - Adaptivity & Robustness

Figure 2 : Anti wind-up and decay (top) and without (bottom) Figure 3 : Training area

Results (road/non-road regions)

Spatio-temporal Consistency for Total Scene Understanding

I The vision systems for advanced applications should
provide
I More reliable predictions
I Predictions should be consistent in both, space and time
I Information about the semantic classes present in the scene:

objects (cars, pedestrians, etc.) and stuff (sky, grass, etc.)

I The dynamic scene understanding can be formalized as

I A set of uncalibrated monocular images I = {i(1), i(2), . . . , i(n)}
I Random variables over data i(t) = {x(t)

1 , x
(t)
2 , . . . , x(t)

m }
I Assign a unique label li from L = {l1, l2, . . . , lk}
I Label li represents a sample that corresponds to the highest

probability of the random variable over the labels
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Figure 4 : Output of our system

1. Labels are propagated from frame t − 1 to frame t (large displacement optical flow)
I Matching pixels – not all pixels in a neighborhood are matches

2. Learning similarity metric
I The standard radial basis function kernel is usually used to express the similarity between the features fi and fj
I Color features and Euclidean distance are not sufficient to distinguish small objects from the background
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I We need a better feature representation (LBPs, textons, . . . ) and a novel similarity metric based on a
Mahalanobis distance parametrized by matrix M obtained with off-line subgradient optimization

I We aim to obtain an M that results in small distances between the features that belong to the same semantic
class and a large distance between the others

I Sparse bundle adjustment → positive Ep (matching points) and negative Ep (distractors) examples

3. Temporal smoothing
I Measurement: Mahalanobis distance parametrized by matrix M with radial basis function
I Update:
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