Pružná deformace objektů v kontextu muskuloskeletálního modelování


Cíl práce
Projekt VPHOP (www.vhop.eu), jehož součástí je zde prezentovaná práce, se zabývá výzkumem osteoporozy (řídkutí kostí) a jedním z jeho cílů je vytvoření komplexního softwarového vybavení pro simulaci různých situací zatěžujících opěrnou soustavu konkrétního pacienta. Na základě výsledků simulace je poté možné přesněji navrhnout správný léčebný postup. Ačkoliv samotné kosti lze uvažovat jako nepružné objekty, důležitou roli v takové simulaci hrají svalové tkáně a právě pro jejich reprezentaci jsou potřeba pružně deformovatelné modely. Fyzikálně přesnou simulaci části lidského těla se zabývá obor biomechaniky, avšak metody, které používá, jsou výpočetně velmi náročné - výpočet jedné modelové situace, při které je model přemístěn z počáteční polohy do zkoumané cílové polohy, trvá řádově dny. Cílem této práce proto bylo navrhnout rychlou, byť fyzikálně ne zcela přesnou metodu, která by umožnila vytvořit dostatečně věrný náhled simulované situace v interaktivním čase. Ten poskytne lékaři-operátorovi dostatek informací pro určení toho, které situace (pohyby pacienta) jsou kritické a je tedy třeba je přesně prozkoumat s využitím komplexních metod biomechaniky.

Zpracování
Objem svalu je tvořen svalovými vlákny. Navržený systém pro simulaci pružných deformovatelných systémů používá pružinové (mass-spring) systémy pro reprezentaci jednotlivých svalů - na svalových vláknách jsou navzorkovány hmotné body, které se spojí fiktivními pružnami. Ty po rozpohořování svalu "nutli" jednotlivé hmotné body navrátit se co možná nejblíže původnímu stavu a tím zachovat původní tvar svalu. Pomocí hierarchického systému obalových těles (upraveného pro deformovatelné modely) jsou řešeny vzájemné kolize jak pružných objektů s pružnými, tak pružných s nepružnými, aby se zamezilo jejich vzájemnému průniku. To je pro muskuloskeletální model klíčové, neboť svaly a kosti jsou v nepřetržitém kontaktu. Systém poskytuje různá uživatelská nastavení pro korekci poměru kvality výstupu ku rychlosti simulace.

Návrh byl implementován v prostředí MAF a otestován na reálném datovém modelu sestávajícího ze svalů připnutých ke stehenní kosti. Čas pro vygenerování věrohodného tvaru svalu v cílové poloze se pohybuje řádově v desítkách vteřin, přičemž lze očekávat, že paralelizaci a další optimalizaci bude možné jej ještě snížit.

vlevo: svalová vláknina jednotlivých svalů a neb vstupní data v počáteční poloze vpravo: hmotné body částicového systému navzorkované z vláken, již v cílové pozici (po vykročení nohou - pohled zezadu)