Parallel Data-processing on GPGPU

Radim Vansa, Charles University in Prague, Faculty of Mathematics and Physics

Motivation

Modern graphic cards are no longer
limited to image rendering and geometric
calculations but also allow parallel
processing of non-graphical data.

In practice, these general-purpose GPUs
can be used in database management
systems as co-processors, accelerating
certain time-consuming tasks.

Challenges

The execution model used on GPUs called
SIMT is substantially different from the
common one used on multi-core systems.
In order to achieve best performance, the
programmer must effectively use the
system of caches and adhere optimal
memory access patterns.

multiprocessor 1
| instruction decoding unit ‘ I
stream processors
[

shared
memory

multiprocessor 16
instruction decoding unit |
stream processors

AR BIEE[E

shared
| L1 cache || memory

| L1 cache H

cache cache cache cache

ﬂﬂmﬂ\n(emal bus Internal busﬂmm]

L2 cache |

mmm Internal bus (384 bit)
global memory |

ﬂmﬂHPC\Express 20

| host memory (RAM) |

| constant H texture ‘ | constant || texture |

Scheme of GPGPU
memory hierarchy

Implemented Algorithms

* Merge-join

* Binary search

* Interpolation search

* Generalized quadratic search
* Linear hashing

* Cuckoo hashing

* Universe reduction (bucketting)
* Set reduction using Bloom filters

¢ Quicksort
e Bitonicsort
* Mergesort

Objectives

We have studied two problems often
solved in database systems:
* sorting, used for index creation,
duplicities removal or grouping
« set intersection, basically the table
join, with either sorted or unordered sets

OpenCL

OpenCL framework was used as an open
standard for parallel programming of
heterogeneous systems.

This allowed us to write GPGPU programs
portable across graphic cards from
different vendors.

SEESY

/A

OpenCL

Results and Conslusion

We have implemented and benchmarked
parallel versions of many algorithms,
bringing an extensive comparison of
various approaches to our problems.
Significant speedup was achieved
compared to CPU-based solutions - for
example our mergesort implementation
was up to 12.4x faster than std::sort and
up to 3.1x faster than tbb::parallel_sort.
Our GPU set intersection algorithm was
also more than twice faster than
optimized parallel CPU algorithm.

Sorting rate (millions of keys/second)

Intersection rate (millions of elements/second)

Comparison of GPGPU and CPU algorithms for sorting

130
125
120

2}
a
LS| | | of | S|d|Side| T .F | T | | W) | | | | | |

mergesort

bitonicsort

tbb::parallel_sort

—_—— e &

quicksort

~ 130
— 125
~ 120

T
4k

T T T T T T T T T T T
8k 16k 32k 64k 128k 256k 512k ™ 2M 4M 8M

Size of set (logarithmic scale)

GPGPU algorithms for unordered set intersection

—#— Linear hashing basic (LHB)
Linear hashing with sorted keys (LHS)
Cuckoo hashing into global table (CHG)
Cuckoo hashing into local table (CHL)

=%- Indexing into large bitmap - no split (ILBN)

=@~ Indexing into large bitmap with buffered split (ILBS)

- 160
F 150
- 140
F 130
F 120
F 110
F 100
- 90
80
F 70
F 60
F 50
40
F 30
F 20
F 10
Fo

T T T T T T T T T T T
8k 16k 32k 64k 128k 256k 512k ™ 2M 4M 8M

Size of set (logarithmic scale)

T
16M

