Parallel Data-processing on GPGPU

Radim Vansa, Charles University in Prague, Faculty of Mathematics and Physics

Motivation

Modern graphic cards are no longer limited to image rendering and geometric calculations but also allow parallel processing of non-graphical data.

In practice, these general-purpose GPUs can be used in database management systems as co-processors, accelerating certain time-consuming tasks.

Challenges

The execution model used on GPUs called SIMT is substantially different from the common one used on multi-core systems. In order to achieve best performance, the programmer must effectively use the system of caches and adhere optimal memory access patterns.

Ouicksort

Bitonicsort

Mergesort

Implemented Algorithms

- Merge-join
- Binary search
- Interpolation search
- Generalized quadratic search
- Linear hashing
- Cuckoo hashing
- Universe reduction (bucketting)
- Set reduction using Bloom filters

Objectives

We have studied two problems often solved in database systems:

- sorting, used for index creation, duplicities removal or grouping
- set intersection, basically the table ioin, with either sorted or unordered sets

OpenCL

OpenCL framework was used as an open standard for parallel programming of heterogeneous systems.

This allowed us to write GPGPU programs portable across graphic cards from different vendors.

Results and Conslusion

We have implemented and benchmarked parallel versions of many algorithms, bringing an extensive comparison of various approaches to our problems. Significant speedup was achieved compared to CPU-based solutions - for example our mergesort implementation was up to 12.4x faster than std::sort and up to 3.1x faster than tbb::parallel sort. Our GPU set intersection algorithm was also more than twice faster optimized parallel CPU algorithm.

Comparison of GPGPU and CPU algorithms for sorting

GPGPU algorithms for unordered set intersection

