Generalized Routing Problems with Continuous Neighborhoods Jindřiška Deckerová, Supervisor: Jan Faigl, Faculty of Electrical Engineering of the Czech Technical University in Prague

Motivation – Robotics Routing Problems

- Data collection with aerial vehicles.
- Inspection tasks with mobile robots and manipulators.
- Robotic tasks sequencing in industrial robotic applications.

Multi-goal planning problems can be formulated as robotic variants of the Traveling Salesman Problem (TSP) to find the optimal sequence of visits to the goal locations.

Solutions of Practical Problems can Benefit from more Advanced Problem Formulations

- In many practical cases, an exact visit to the point goal is not required.
- Exploiting a certain degree of freedom by visiting goal regions (neighborhood) instead of exact point locations.
- The required travel cost can be significantly saved by determining optimal waypoints.
- The desired combinatorial and continuous optimizations can be combined in the **TSP** with Neighborhoods (**TSPN**).
- The TSPN is known to be APX-hard in general.
 - Approximation algorithms exist only for specific types of neighborhoods.
 - Fast heuristics, with only empirically evaluated performance.

Thesis Goals

- Address multi-goal planning problems as robotic variants of the TSPN motivated by practical deployments.
- Study lower and upper bounds of the TSPN variants.
- Establish a relative optimality gap as the solution quality.
- Develop fast heuristics with solution quality estimation.
- Use established tight lower bounds in optimal solutions.

Addressed Variants of the TSPN

1. Visual aerial surveillance and data collection missions Problem formulated as the Close Enough TSP (CETSP). Disk-shaped neighborhoods in 2D and 3D.

2. Multi-goal planning in UAV-based Reflectance Transformation Imaging (RTI) of cultural heritage objects New non-Euclidean TSPN with disk-shaped neighborhoods on a sphere called the **TSPN** on a **Sphere** (**TSPNS**).

3D non-overlapping instances of the TSPNS 3D overlapping instances of the TSPNS

3. Robotic-arm tasks and mobile robotic arm inspections Improved flexibility of the problem formulation using sets of target regions in the **Generalized TSPN (GTSPN)**. 3D and 7D instances with sets of goal regions as polyhedrons.

Contribution Highlights

 Introduction of the TS New quick heuristics unsupervised learning of t transformation to the (G) Branch-and-bound fram lower bound estimation Tight lower bounds 	
First reported	lower
Lower bounds for	or the TSF
5 4 - 3 - 49% 2 -	
	8

CETSP in 2D

problems with neighborhoods.

Publication activity

- *(ICRAI)*, 2018, pp. 45–50.
- Systems With Applications, 2020, (in review).
- salesman problem with neighborhoods," 2021, (in preparations).
- Automation (ICRA), 2021, (in review).
- *(ITAT)*, 2020.

PNS for UAV-based RTI.

with a real-time response based on the Growing Self-Organizing Array (GSOA);)TSP and solution using (G)LKH solvers. nework for the **optimal** solution and on of the optimal solution value. and **optimal solver** for the CETSP. **bounds** for the TSPNS and GTSPN. PNS are considered tight.

Thesis consolidated in [1], [2], [3] and further in preparation [4] and [5]. Optimal solution of multi-goal planning for mobile manipulator [6]. Solving routing problems with profits and neighborhoods [7].

[1] J. Faigl and **J. Deckerová**, "On unsupervised learning based multi-goal path planning for visiting 3d regions," in International Conference on Robotics and Artificial Intelligence

[2] J. Faigl, P. Váňa, and **J. Deckerová**, "Fast heuristics for the 3-d multi-goal path planning based on the generalized traveling salesman problem with neighborhoods," IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 2439–2446, 2019.

[3] J. Deckerová, V. Krátký, and J. Faigl, "Traveling salesman problem with neighborhoods on a sphere in reflectance transformation imaging scenarios," Expert

[4] J. Deckerová, P. Váňa, and J. Faigl, "On combinatorial solution of lower bounds for the generalized traveling salesman problem with neighborhoods," 2021, (in preparations).

[5] J. Deckerová, P. Váňa, and J. Faigl, "On optimal solution of non-linear traveling

J. Deckerová, J. Kubík, and J. Faigl, "Optimal multi-goal path planning for mobile robotic arm on hexapod walking robot," IEEE International Conference on Robotics and

J. Deckerová and J. Faigl, "Hopfield neural network in solution of the close enough orienteering problem," in Conference Information Technologies - Applications and Theory