
Given a network of collaborating 
agents (e.g., sensors) that can 
communicate with it nearest 
neighbors They observe a real process 
(target locations, stock price, bio 
values...) and aim to learn a 
convenient model that mimics the 
process and allows to predict values of 
interest (e.g., forecasts).

Our goal: Make this possible even 
under a severely underspecified 
model. 
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Problem statement

Bayesian filtering is used in many 
applications in various fields, such as 
target tracking, stock exchange, or 
bioprocesses. It is still limited by a few 
complications, such as:
• Necessaty to know the noise 

covariance matrices
• Inability to combine information from 

multiple sensors

Our approach is based upon the 
following methods:
• Variational inference
• Message passing
We have used those methods to 
develop a collaborative variational 
Kalman filtering approach with 
information diffusion to solve the 
proposed problem.

Used linear state-space model

Graphical model of message passing algorithm

All tests were run on simulated 2-D 
trajectories

Comparison with standard Kalman 
filter:
• Only single agent
• Two different settings of forgetting 

for variational filter
• Performance very close to the 

standard Kalman filter

Distributed estimation with constant 
measurement noise covariance matrix:
• Four different variants compared
• Excellent performance comparable to 

the filters with known cov. matrices

Example of the generated trajectory

Single-agent performance comparison

Distributed estimation with variance 
measurement noise covariance matrix:
• Four different variants compared
• Covariance matrix varies 

throughout the trajectory
• Good performance assuming an

appropriate setting of forgetting

Constant noise covariance matrix 
performance comparison

• The proposed method provides 
filtering under severely 
underspecified models.

• Straightforward representation 
and explainability.

• Low number of tunable
parameters

• K. Dedecius and O. Tichý, “Collaborative 
sequential state estimation under unknown 
heterogeneous noise covariance matrices”.

• Y. Huang, Y. Zhang, Z. Wu, N. Li, and J. Chambers, 
“A novel adaptive Kalman filter with inaccurate 
process and measurement noise covariance 
matrices”.
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