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Motivation
Bayesian filtering is used in many

applications in various fields, such as

target tracking, stock exchange, or

bioprocesses. It is still limited by a few

complications, such as:

* Necessaty to know the noise
covariance matrices

* Inability to combine information from
multiple sensors

Problem statement

Given a network of collaborating
agents (e.g., sensors) that can
communicate with it nearest
neighbors They observe a real process
(target locations, stock price, bio
values...) and aim to learn a
convenient model that mimics the
process and allows to predict values of
interest (e.g., forecasts).
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Results

All tests were run on simulated 2-D
trajectories

Our goal: Make this possible even
under a severely underspecified
model.

Methods

Our approach is based upon the
following methods:

* Variational inference

* Message passing

We have used those methods to
develop a collaborative variational
Kalman filtering approach with
information diffusion to solve the
proposed problem.

Comparison with standard Kalman

filter:

e Onlysingle agent

* Two different settings of forgetting
for variational filter

e Performance very close to the
standard Kalman filter

Distributed estimation with constant

measurement noise covariance matrix:

* Four different variants compared

* Excellent performance comparable to
the filters with known cov. matrices

Distributed estimation with variance

measurement noise covariance matrix:

* Four different variants compared

* Covariance matrix varies
throughout the trajectory

* Good performance assuming an

appropriate setting of forgetting

Example of the generated trajectory
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Conclusions

* The proposed method provides
filtering under severely
underspecified models.

* Straightforward representation
and explainability.

* Low number of tunable
parameters
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