
Advanced Static Analysis of Atomicity in Concurrent
Programs through Facebook Infer

Author: Dominik Harmim | Supervisor: prof. Ing. Tomáš Vojnar, Ph.D.
Brno University of Technology, Faculty of Information Technology

� https://github.com/harmim/infer

Motivation and Goals

In concurrent programs, there are often atomicity requirements for the execution of

specific sequences of instructions. Violating these requirementsmay causemany kinds

of problems, such as unexpected behaviour, exceptions, segmentation faults, or other

failures. Atomicity violations are usually not verified by compilers. Furthermore, it is

generally challenging to avoid errors in atomicity-dependent programs, especially in

large projects, and finding and fixing them is even more laborious and time-consuming.

The paper [1] discusses the importance of atomicity-related bugs and shows some

bugs in real-world programs. Unfortunately, tool support for automatically discovering

such kinds of errors is currently minimal.

For example, assume the below code snippet where method is invoked on server
only if it is registered on it. Methods isRegistered and invoke should be executed

atomically. If not locked, method can be unregistered by a concurrent thread.

if (server.isRegistered(method))
server.invoke(method);

Goal of the Thesis

The thesis aims to improve the detection of atomicity violations within Atomer [2]

implemented in the Facebook Infer framework. The improvements aim at both in-

creasing scalability as well as precision.

Facebook Infer Framework

Java
C

C++
Obj-C

Analyser Plugins

0101001
0000001
1111011
0010000

Function Summary

C#

Transfer Functions
(Command Interpreter)

0101001
0000001
1111011
0010000
StateOUT

Domain

0101001
0000001
1111011
0010000

StateIN

Domain Command

Abstract Interpreter
(Control Interpreter)

Control Flow Graph

Frontend

Scheduler + Results
Database

Open-source static analysis framework for interprocedural analyses.

Based on abstract interpretation.

Provides analysers that check, e.g., for buffer overflows, data races, null-dereferencing, memory

leaks, or some forms of deadlocks and starvation.

Lacks better support for concurrency bugs. Atomer [2] is the only available checker of atomicity

of call sequences.

Highly scalable.

Follows principles of compositionality and incrementality.

Computes function summaries bottom-up on call-trees.

Supports C, C++, Java, Objective-C, and C#.

Atomer: Atomicity Violations Analyser

Atomer is a static analyser based on the idea that if some sequences of functions of

a multi-threaded program are executed under locks in some runs, likely, they are al-

ways intended to execute atomically. Atomer thus strives to look for such sequences

and then detects for which of them the atomicity may be broken in some other pro-

gram runs. In fact, the idea of checking the atomicity of certain sequences of function

calls is inspired by the work of contracts for concurrency [1].

The first version of Atomer was proposed and implemented as a plugin of the Face-

book Infer framework within the author’s BSc thesis [2]. The implementation targets

C programs that use PThread locks. However, the scalability and precision of the first

Atomer’s version are limited on large codebases.

Atomer can both automatically derive sequences of functions that are sometimes

executed atomically as well as subsequently check whether they are indeed always

executed atomically. Both of these steps are done statically. The analysis is thus

divided into two parts (phases of the analysis):

1. Detection of atomic call sets.

Approximates sequences by sets.

Summary: χ ∈ 22Σ

(set of atomic call sets)

void f() {
a();
lock(L);
x(); y(); // {x,y}
unlock(L);
b();

}

χf = {{x, y}}

2. Detection of atomicity violations.

Derives “atomic pairs” from the

first phase: Ω ∈ 2Σ×Σ .

Looks for “non-atomic pairs” of

calls assumed to run atomically.

Summary: χ ∈ 2Σ×Σ

(set of atomicity violations)

void g() {
a(); x(); y(); b();

}

Ω = {(x, y), (y, x)}
Atomicity Violation!

(x, y) ∈ Ω =⇒ χg = {(x, y)}

Proposed Enhancements

Within this thesis, a new and significantly improved version of Atomer is proposed.

The improvements aim at both increasing scalability as well as precision. Moreover,

support for several initially not supported programming features has been added.

In particular, the following enhancements were implemented:

Approximating sequences of calls by sets of calls (improves scalability).

Support for C++ and Java.

Advanced manipulation with locks: re-entrant locks, monitors, lock guards, etc.

Distinguishing different lock instances.

Approximating locks using syntactic access paths [3]— a representation of heap locations via

the paths used to access them.

Formally, an access path is defined as follows: π ∈ Π ::= V ar × F ield∗ where V ar is

a set of all variables and F ield is a set of all field names.

Analysis’s parametrisation (aims to reduce the number of false alarms):

possibility to ignore generic functions and/or concentrate on critical functions;

limiting the number of calls and/or the depth of nested calls in critical sections.

Considering interprocedural locks when checking for atomicity violations.

Experimental Evaluation

The scalability of the analysis has been evaluated on 61 real-life complex concurrent

C programs (806,431 LOC in total) derived from the Debian GNU/Linux distribution.

The table below shows aggregated results of the evaluation. There are times of ana-

lyses for both phases of the analysis for both the first/new version of Atomer, i.e.,

v1.0.0/v2.0.0, resp. On average, the new version of Atomer is about twice faster.

v1.0.0 v2.0.0

Phase 1 Phase 2 Phase 1 Phase 2

Average Time (s) 70.98 109.11 37.96 50.93

Total Time (s) 4,117 5,892 2,164 2,750

Furthermore, two open-source real-life extensive (both ∼250 KLOC) Java programs

were analysed—Apache Cassandra 3.11 and Apache Tomcat 8.5. Atomer success-

fully rediscovered already fixed reported real atomicity-related bugs (they were ori-

ginally discovered in [1]). The number of reported bugs by the Atomer’s new version

was significantly reduced (∼4×).

Summary

Within this thesis, Atomer’s scalability was improved using the approximation of

call sequences by sets. Furthermore, several new features were implemented in

the new version of Atomer, e.g., support for C++ and Java (including various ad-

vanced kinds of locks, such as re-entrant locks or lock guards), a more precise way

of distinguishing between different lock instances, or the analysis parametrisation.

Through a number of experiments (including experiments with real-life code and

real-life bugs), it is shown that the new version of Atomer is indeed much more

general, scalable, and precise.

Future Work

The future work will focus mainly on further increasing accuracy/reducing the num-

ber of false alarms, e.g., by:

combining with a dynamic analysis;

statistic ranking of atomic functions/reported errors;

considering formal parameters of functions/methods involved in the contracts;

or machine learning of appropriate values of the analysis’ parameters.

References

[1] R. J. Dias, C. Ferreira, J. Fiedor, J. M. Lourenço, A. Smrčka, D. G. Sousa, and T. Vojnar. Verifying Concurrent Programs

Using Contracts. In Proc. of ICST, 2017.

[2] D. Harmim. Static Analysis Using Facebook Infer to Find Atomicity Violations, 2019. Bachelor’s Thesis. Brno University of

Technology, Faculty of Information Technology. Supervisor T. Vojnar.

[3] J. Lerch, J. Spath, E. Bodden, and M. Mezini. Access-Path Abstraction: Scaling Field-Sensitive Data-Flow Analysis with

Unbounded Access Paths (T). In Proc. of ASE, 2015.

Acknowledgements

This work was supported by the H2020 ECSEL projects AQUAS: Aggregated Quality Assurance for Systems, Arrowhead Tools

for Engineering of Digitalisation Solutions, and VALU3S: Verification and Validation of Automated Systems’ Safety and Security.

https://github.com/harmim/infer

