
Masaryk University
Faculty of Informatics

Mapping 2D Skeleton
Sequences from Speed

Climbing Videos onto a Virtual
Reference Wall

Master’s Thesis

Jan Pokorný

Brno, Spring 2021

This is where a copy of the official signed thesis assignment and a copy of the
Statement of an Author is located in the printed version of the document.

Declaration

Hereby I declare that this paper is my original authorial work, which
I have worked out on my own. All sources, references, and literature
used or excerpted during elaboration of this work are properly cited
and listed in complete reference to the due source.

Jan Pokorný

Advisor: RNDr. Petr Eliáš, Ph.D.

i

Abstract

Speed climbing is an Olympic sport with a growing interest in auto-
matic performance analysis. We design, implement, and evaluate a
pipeline to compute transformations of speed climbing videos to a
reference wall. First, an object detection model is fine-tuned for the
task of hold detection. Next, the detections are tracked using optical
flow and associated to the reference wall using Coherent Point Drift.
Finally, a sequence of absolute transformations is computed, cleaned,
and smoothed. A substitution study is performed, evaluating multiple
algorithm choices in each step of the pipeline. The resulting transfor-
mation sequence is compatible with any 2D skeleton representation,
mapping the estimated pose to reference wall coordinates. The output
is an essential step in analyzing speed climbing performances without
specialized equipment.

ii

Keywords

speed climbing, pose estimation, object detection, perspective correc-
tion, machine learning, deep learing, computer vision, motion data

iii

Contents

1 Introduction 1
1.1 Contributions of this thesis 2
1.2 Structure of this thesis 3

2 Related work 7
2.1 Speed climbing analysis 7
2.2 Human pose estimation 8
2.3 Object detection . 8
2.4 Finding a transformation between sets of points 11

2.4.1 Paired sets of points 11
2.4.2 Unpaired sets of points 12
2.4.3 Associating aligned sets of points 13

2.5 Optical flow . 13

3 Preliminaries and definitions 14
3.1 Speed climbing sport . 14

3.1.1 Reference wall . 14
3.1.2 Hold description 14

3.2 Pipeline input and output 15
3.3 Glossary . 15
3.4 Transforming points using a homography transforma-

tion matrix and the influence of degrees of freedom . . 17

4 Designing the data pipeline 20
4.1 High-level overview . 20
4.2 Hold detection . 20

4.2.1 Expected errors 22
4.2.2 Representing detections 22
4.2.3 Detection threshold 23

4.3 Detection tracking . 23
4.3.1 Using optical flow to associate detections 23
4.3.2 Computing relative transformations between

frames . 25
4.4 Detection registration . 25

4.4.1 Unrolling relative transformations 25
4.4.2 Associating clusters with the reference wall . . . 26

iv

4.5 Obtaining the final transformations 26
4.5.1 Computing the transformations 28
4.5.2 Removing outlier transformations 28
4.5.3 Interpolating transformations 28
4.5.4 Smoothing transformations 29

4.6 Summary . 29

5 Data and implementation 30
5.1 Dataset . 30
5.2 Hold detection . 31

5.2.1 Preparing training data 31
5.2.2 Object detection framework 32
5.2.3 Training the model 32

5.3 Pipeline implementation 33
5.3.1 Programming language 33
5.3.2 Model inference 33
5.3.3 Computer vision 33
5.3.4 Scientific libraries 33

5.4 Packaging and portability 33

6 Evaluation and substitution study 35
6.1 Performance . 35
6.2 Methodology . 35

6.2.1 Substitution study 35
6.2.2 Chosen metric . 36
6.2.3 Evaluation dataset 38
6.2.4 Experiments . 38

6.3 Hold detection . 38
6.3.1 Model size . 38
6.3.2 Training . 39
6.3.3 Detection threshold 40

6.4 Hold tracking . 40
6.5 Calculating relative transformations 42
6.6 Calculating absolute transformations 44

6.6.1 Degrees of freedom 44
6.6.2 Clustering . 44
6.6.3 A naïve method assuming precise detections . . 46
6.6.4 Results . 48

v

6.7 Cleaning absolute transformations 48
6.8 Smoothing absolute transformations 49
6.9 Study conclusion . 50

7 Conclusion 51

A Attachments 52

Bibliography 53

vi

1 Introduction

Speed climbing is a sport that is getting more attention due to its
recent inclusion in the Olympic Games. With growing popularity,
interest is emerging in automatic analysis of climber’s performances,
allowing for more effective training. Furthermore, this sport is a good
candidate for analysis using computer visionmethods. Thewall layout
is unified, and the climber’s movement happens on a fixed plane.
While automatic performance analysis is standard for many sports,
the research on automatic analysis of speed climbing is still in its
infancy.

This thesis is a part of a larger effort to analyze and compare
speed climbing performances by machine learning, statistical, and
visualization-based methods. We design and implement a pipeline
that computes transformations from source video frames to reference
wall coordinates (see Figure 1.1). The resulting transformations al-
low inter-comparability between performances shot on non-calibrated
cameras.

The pipeline created in this thesis integrates with an ongoing re-
search effort to provide a complete automated framework for ana-
lyzing and comparing speed climbing performances. Unlike existing
contemporary research in speed climbing analysis [1, 2], the goal is
to derive usable data from footage that can be shot “in the wild”, i.e.,
at speed climbing competitions or arbitrary training facilities with an
ordinary phone or video camera. Therefore, there is no reliance on
specially calibrated cameras, drones, markers, or any other kind of
physical intervention.

This is a challenging problem, given that general video footage
may contain unpredictable camera movement, is shot from an un-
known vantage point, and often may be low resolution. In addition,
the most common way of shooting speed climbing videos is following
the climber with the camera, with only a fraction of the wall visible.
These factors make it difficult to determine the correspondence of the
footage to the reference wall, which is necessary for comparison with
performances shot in different conditions. Therefore, the framework
has to rely only on visual clues in the video – specifically, the climbing
holds – to minimize the influence of the mentioned factors.

1

1. Introduction
In order for this to be possible using a single camera, we perform

the transformations in 2D planes. Detecting an inherently 3D skeleton
of the climber using a 2D pose estimator inadvertently projects the
skeleton to a 2D plane of the camera frame. Thus, we assume that the
camera view angle is approximately perpendicular to the wall and
that the climber-wall distance is negligible. These assumptions allow
us to use a 2D transformation to map the video-plane skeleton to the
reference wall plane.

1.1 Contributions of this thesis

The full analysis framework is planned to operate as follows, with the
topic of this thesis printed in bold. For graphical representation, see
Figure 1.2.

• Video preparation: Videos of speed climbing performances are cut
and cropped to show a single performance.

• Pose estimation: A pose estimation model is used to determine
coordinates of the climber’s specific skeleton joints.

• Hold detection: Hold detectionmodel is used to determine co-
ordinates of dominant hand-holds in the frame.

• Hold registration: Detections are assigned to corresponding
reference wall holds.

• Transformation calculation: Hold positions are used to deter-
mine the transformation of each frame onto a reference wall
plane.

• Analysis: The transformed skeleton data are now comparable
and allow for analyses, visualizations, or further processing via
the means of machine learning.

This thesis focuses on creating a pipeline with the purpose of
transforming skeleton joint locations in frame coordinates to reference
wall coordinates, as visualized in the Figure 1.1.

The mapping is determined by exploiting the knowledge of hold
positions. Speed climbing always uses the same reference wall layout

2

1. Introduction
(as depicted in Figure 1.3), with a non-repeating pattern of hand-holds.
The holds are an easily recognizable landmark and form a “path” that
the climber follows, making them an ideal choice for alignment points.
All of the hand-holds are of the same design, making it necessary
to rely on relative hold positions to determine the detection-hold
correspondence.

Hold positions are detected from the input video using a deep-
learning object detection model. It is then determined which detec-
tions belong to which physical hold on the reference wall, using a
combination of computer vision techniques. Transformations (homo-
geneous 3× 3 transformation matrices) are then computed, cleaned,
and smoothed for continuity. The pipeline’s output is a series of trans-
formations, one for each input video frame, transforming the frame to
the reference wall plane. These transformations then can be applied
to video (for visual evaluation) and, finally applied to skeleton data
enabling their representation in uniform coordinate system.

The designed pipeline is evaluated in a substitution study, which
explores the influences of various algorithm choices in the pipeline.
Examined choices include different training options for the object
detection model, and different approaches to finding relative transfor-
mations.

1.2 Structure of this thesis

The structure of this thesis is as follows: Chapter 2 describes the state-
of-the-art work in relevant areas of speed climbing analysis, object
detection, point registration, and related topics. Chapter 3 describes
preliminaries and terminology necessary for the following main con-
tributing parts. Chapter 4 describes in detail the design of the pipeline
(hold detection, detection tracking, transformation calculation), and
chapter 5 elaborates on the used dataset, implementation, and techni-
cal aspects. The pipeline is then evaluated in chapter 6 using a substi-
tution study on 20 randomly selected videos.

3

1. Introduction

(a) skeleton detected in frame
coordinates

(b) skeleton transformed to
reference wall coordinates

Figure 1.1: Objective of this work it to map estimated skeletons from
video (a) into uniform coordinate space of the reference wall (b)
by applying point set transformations exploiting the knowledge of
automatically detected holds and wall proportions.

4

1. Introduction

Video preparation

Pose estimation
Hold detection

Hold registration
Transformation calculation

Analysis

Figure 1.2: Outline of the research context, showing this thesis (high-
lighted node) as a part of a larger research project to perform analysis
on speed climbing performances.

5

1. Introduction

Figure 1.3: Speed climbing wall used in Climbing World Champi-
onships 2018. All the competitions use the exact same wall layout.
Image sourced from Wikimedia Commons, author Simon Legner,
licence CC BY-SA 4.0. [3]

6

2 Related work

While computer vision and deep learning are already prevalent in
sports analysis [4], automated analysis of speed climbing is an emerg-
ing field. This chapter describes the state-of-the-art approaches in
speed climbing analysis, as well as other fields relevant to this thesis
(pose estimation, object detection, point set registration, and optical
flow).

2.1 Speed climbing analysis

Since the Summer Youth Olympic Games 2018 in Buenos Aires, Ar-
gentina, Speed climbing is an Olympic sport and will be included in
the upcoming Tokyo 2021 Olympic games. This has kindled research
interest in the subject in recent years [5, 6, 7].

Existing approaches to speed climber motion tracking use special-
ized cameras and markers to capture the climber’s position.

Reveret et al. [5] use a pair of drones that synchronize their move-
ment with the wall using a prepared 3D scan to record a video of
the climber’s ascent. They then show that this approach can track a
marker placed on the climber, approximating their center of mass.
Alternatively, a method is proposed where a 3D hull of the athlete
is approximated using a machine learning model trained using 68
cameras.

Legreneur et al. [6] use a camera stabilized using a 3D axis stabi-
lization platform (DJI Ronin-M), placed in a specific position relative
to the wall. A marker placed on the climber’s body was tracked and
interpreted as an estimation of the climber’s center of mass.

Iguma et al. [7] research the general case of sport climbing analysis.
Their research relies on a combination of 3D motion tracking using
markers on climbers and force tracking using sensors placed in holds.
This approach thus uses not only specialized cameras and tracking
markers but also a modified wall.

No current methods for speed climbing analysis operate on stan-
dard video footage of the event alone, requiring videos captured using
specialized equipment or using a marker placed on the climber.

7

2. Related work
The pipeline designed in this thesis does not have such limitations,

allowing it to operate on historical footage. It has, however, different
limitations compared to the two approaches outlined above. Most
notably, it is 2D-only and has inherently lower accuracy given the
projection to 2D.

2.2 Human pose estimation

Human pose estimation is a problem of extracting joint coordinates
of a virtual skeleton corresponding to a human body from video.
The state-of-the-art solutions are based on machine learning keypoint
detection models.

While some approaches extract 3D coordinates from 2D video
[1], they are in practice usable only on videos of usual circumstances
(walking, running), and in our experiments did not perform well on
speed climbing videos, as seen in Figure 2.1.

For this reason, it was decided to focus on 2D pose estimation
methods, like OpenPose [8], which is demonstrated in Figure 2.2. The
skeleton in OpenPose consists of 18 points, but other pose detection
frameworks may use a different skeleton model. The pipeline created
in this thesis does not make any assumptions about the skeletonmodel
used, as the output transformation can be used to transform any set
of points.

While this thesis does not directly work with pose estimation mod-
els, pose estimation is a core part of the broader research context (as
outlined in Figure 1.2). Therefore, the pipeline in this thesis is de-
signed with this usage in mind while not laying further assumptions
on the pose estimation model used.

2.3 Object detection

Object detection is a problem of identifying physical objects in a photo-
graph and determining their type and position. State-of-the-art object
detection models are usually based on convolutional neural networks.
The most notable object detection models are YOLO [2], RetinaNet
[9], and SSD [10], variant of which was chosen for this thesis due to
its low memory footprint.

8

2. Related work

Figure 2.1: Climber’s 3D pose as extracted using VideoPose3D [1].
While the 2D keypoints in the image are estimated correctly, the 3D
reconstruction is obviously lacking.

9

2. Related work

Figure 2.2: Visualisation of climber’s 2D pose as extracted using Open-
Pose [8], consisting of 18 points.

10

2. Related work
An input of a convolutional object detection model is a square

raster image (size depending on the model). The outputs are object
detections, usually represented by bounding boxes (coordinates of
the smallest box framing the detected object).

Implementations of different models are often grouped in frame-
works. Using such frameworks gives the ability to evaluate various
models and to easily switch to a better model in the future. For this
thesis, TensorFlow 2 [11] Object Detection API was chosen due to its
extensive configuration, large model zoo, and focus on inference.

There are many high-quality pre-trained model weights published.
However, the models are trained on a limited set of object classes,
“speed climbing hold” not being covered. It is still possible to take
advantage of the published pre-trained models, though, using a tech-
nique called transfer learning (or fine-tuning).

The book Deep Learning by Ian Goodfellow et al. [12] describes
transfer learning as “the situation where what has been learned in one
setting [. . .] is exploited to improve generalization in another setting”.
In the case of this thesis, a model trained to detect everyday objects
(people, cars, animals, . . .) is exploited to detect a new class of objects:
speed climbing holds, using just low hundreds of training examples
and few hours of GPU time.

2.4 Finding a transformation between sets of points

One problem, occurring multiple times within the designed pipeline,
is finding a homography transformation matrix between two planes
while knowing a corresponding set of points in both planes – that
is, each point in one plane has a known counterpart in the other. A
point-wise matching (pairing) between the two sets may or may not
be known. This section discusses the approaches employed by this
thesis.

2.4.1 Paired sets of points

In an ideal case, finding the transformations for paired sets of points
would mean solving the system of equations obtained for each pair of
points from the following transformation equation:

11

2. Related work

H

p0

p1

1

 =

cp′0
cp′1
c

 (2.1)

However, when operating with inexact real-world data, the prob-
lem comes out to minimizing the transformation error. In this case,
the problem is to find such a transformation matrix that minimizes
the sum of squared differences between the mapped source points
and corresponding destination points.

The problem can be further extended by allowing outlier pairs.
These can be detected using methods like random sample consensus
(RANSAC) [13], which ensures that instead of fitting the transforma-
tion to the whole set, some samples are removed in order to minimize
the projection error of the rest.

2.4.2 Unpaired sets of points

The problem of finding a transformation aligning two sets of points
where the correspondence is not known is called “point set registra-
tion” [14]. In addition, some variants allow outliers (points without a
counterpart) in one or both sets as a further complication.

Since this is a much more complex problem than the paired case,
the typical approach for computer vision tasks – where the point sets
usually correspond to an image – is to exploit image data for finding
the point set correspondence. This approach is called “point feature
matching” [15], and consists of computing a descriptor for each point
using local image data – usually an n-bit number – and then pairing
the points according to the local descriptors. A robust algorithm for
finding a transformation between sets of paired points is then used.

However, the feature matching approach is not suitable for prob-
lems where there is no image data to back the point sets – as is the case
with the topic of this thesis, where the reference wall is an abstract
concept without a concrete image representation.

For the general case of registration of unpaired point sets, there are
probabilistic algorithms based on point density. One such algorithm,
called “Coherent point drift”, was proposed in 2010 by Myronenko
and Song [14]. This algorithm is employed by this thesis.

12

2. Related work
2.4.3 Associating aligned sets of points

When given two aligned planes with sets of points, assigning the
correspondence between the point sets is often necessary. A functional
method uses an algorithm for linear assignment [16] on a distance
matrix. In order to not “over-assign”, a maximum distance threshold
can be added by appending a same-sized matrix full of the threshold
distance to the distance matrix, allowing the points to be assigned
to the “dummy” points, and interpreting those assignments as “no
assignment”. This method, further called “linear assignment with
threshold”, is employed by the selected pipeline.

2.5 Optical flow

Optical flow refers to an array of 2Ddisplacement vectors, representing
movement between two frames of a video. Optical flow can be used
for object tracking by following the displacement vectors across video
frames.

A standard algorithm for estimating optical flow, employed by this
thesis, is the Lucas-Kanade method [17]. This method assumes that
for each tracked point, some neighborhood moves uniformly with the
point. Figure 2.3 shows an example of this technique.

Due to optical flow operating on pixel-level, micro-deviations (like
video compression artifacts) may cause errors. It is thus usual to
combine optical flow-based tracking with other techniques.

Figure 2.3: Using optical flow to track moving objects. Image sourced
from OpenCV documentation [18].

13

3 Preliminaries and definitions

3.1 Speed climbing sport

Speed climbing is a performance sport where individuals compete to
climb a 15 meters tall wall with carefully placed holds. The run starts
when the starting device plays a sound and ends when the climber
touches the end device at the top of the wall.

The run may also end unsuccessfully by either a fall, or a false start.
This thesis only considers successfully finished runs.

According to IFSC, the current world record is 5.48 seconds, held
by an Iranian climber Reza Alipourshenazandifar.

3.1.1 Reference wall

Speed climbing uses a standardized wall across all competitions, with
the exact shape, placement, and even the color of the holds prescribed
in the documentation published by the International Federation of
Sport Climbing (IFSC) [19]. The official reference wall blueprint pub-
lished by the IFSC is reproduced in Figure 3.2.

The wall has a slight incline of 5 degrees but is otherwise planar.
The reference wall used in this project is an approximation obtained
visually from the published schematics. Given the resolution, holds
may be displaced by at most 4 mm.

3.1.2 Hold description

The speed climbing wall contains two types of holds: large hand-holds
with a specific shape and small foot-holds. Since the large hand-holds
are easily identifiable by their specific shape and color and occur along
the entire length of the wall, it was decided to use them as reference
points for computing the transformation. Thus, the pipeline uses only
the large hand-holds (see Figure 3.1), and this text will refer to them
as “holds”.

14

3. Preliminaries and definitions

Figure 3.1: Closer look at speed climbing holds. Image by Hans
Braxmeier from Pixabay, under a permissive licence.

3.2 Pipeline input and output

The pipeline’s input is an MP4 video, which is then represented in-
memory as a sequence of RGB raster frames. The pipeline’s output is
a 3× 3 transformation matrix for each frame, transforming it into the
reference wall plane. This transformation can then be easily applied by
equation 3.1 to transform any set of 2D points, including 2D skeleton
data1 extracted by a pose estimation model, as outlined in Figure 1.2.

3.3 Glossary

Detection is an instance of a presumed hold position extracted from a
video. It is represented by a detection box (represented as a 4-tuple of
coordinates (top, left, bottom, right)) or detection point (cen-
ter of the detection box, represented as a pair of coordinates (x, y)).
Detections can be associated (or tracked) across frames to create de-
tection tracks, which refers to determining which detections from
neighboring frames correspond to the same real-world hold.

Video is as described in section 5.1. Frame refers to the raster data
of a specific video frame, as well as the associated detections.

Referencewall is a set of hold positions in a 2D plane, representing
the real-world speed climbing wall.

1. Skeleton data from various pose estimation frameworks are usually represented
as an ordered set of keypoints in frame coordinates.

15

3. Preliminaries and definitions

Figure 3.2: Reference blueprint of the speed climbing wall, as pub-
lished by the IFSC [19].

16

3. Preliminaries and definitions

Transformation is a 3× 3 transformation matrix that can be ap-
plied to 2D points or combined. In the pipeline, each transformation is
associated with a frame. Relative transformation is a transformation
representing the camera movement between two frames. Unrolling
relative transformationsmeans computing a combination of all pre-
vious relative transformations up to the current frame and then pro-
jecting all detections onto a common plane. Absolute transformation
is a transformation between a frame and the reference wall.

3.4 Transforming points using a homography
transformation matrix and the influence of
degrees of freedom

This thesis works with 2D points corresponding to a plane in a 3D
space – the real world. One such plane is the plane of the speed climb-
ing wall, where positions of holds can be described by their 2D coor-
dinates relative to the wall. Another plane is the video frame, where
positions of holds can be described by their 2D coordinates relative
to the camera view. When there is a correspondence between two 2D
planes, as in the two examples presented, it is beneficial to describe
the relative difference of the two planes, allowing one to transform
point coordinates in one plane to point coordinates in the other. This
is achieved by using a homography transformation matrix, which
(for 2D planes) is a 3× 3 matrix H that is used to transform 2D point
coordinates p to p′ as follows (where c is some non-zero constant):

H

p0

p1

1

 =

cp′0
cp′1
c

 (3.1)

This type of transformation is a homomorphism, and for real-world
camera transformations, also an isomorphism – meaning that H−1

can be used for an inverse transformation.

17

3. Preliminaries and definitions

8 degrees of freedom

The homography transformation matrix, of the size 3× 3, has only
8 degrees of freedom, since all the matrices cH for all c ∈ R, c 6= 0
represent the same transformation. It is thus usually normalized so
h33 = 1, and thus the full homography transformation matrix, also
called the perspective transformationmatrix, has the following form:

h11 h12 h13

h21 h22 h23

h31 h32 1


Since a perspective transformationmatrix has 8 degrees of freedom,

it is possible to compute it from 4 pairs of 2D points (4 × 2 scalar
coordinates). Conversely, it is possible to compute a homography
transformation matrix with fewer degrees of freedom from fewer
pairs of points.

6 degrees of freedom

A limited homography transformation matrix with 6 degrees of free-
dom representing translation, scaling, rotation, and skew is called an
affine transformation matrix. It has two additional elements fixed:
h31 = h32 = 0 , and thus has the following form:

h11 h12 h13

h21 h22 h23

0 0 1



4 degrees of freedom

Further limiting the transformation matrix to 4 degrees of freedom,
representing translation, uniform scaling, and rotation, creates a par-
tial affine transformation matrix, also often called a rigid transfor-
mationmatrix. It has two additional elements fixed: h21 = −h12, h22 =
h11, and thus has the following form:

18

3. Preliminaries and definitions

 h11 h12 h13

−h12 h11 h23

0 0 1


2 degrees of freedom

Limiting the transformation matrix to just 2 degrees of freedom repre-
senting translation (translation transformation matrix) encodes the
translation vector in h13 and h23:1 0 h13

0 1 h23

0 0 1


Even though translation can be represented simply as vector ad-

dition, it is beneficial to represent it in the same format as the more
complex transformations.

19

4 Designing the data pipeline

This chapter describes the data pipeline for mapping speed climbing
performance videos to a reference wall. While this chapter offers an
algorithmic view, chapter 5 offers more details on the specific imple-
mentation.

Design and algorithm choices made in this chapter were based on
iterative testing on a subset of dataset videos. The choices are then
manually evaluated on a different set of videos and shown to be ideal
in chapter 6.

4.1 High-level overview

An input of the data pipeline is a video capturing a single speed climb-
ing performance, as described in section 5.1. A trained object detector
is used to detect holds in each frame. The detections are then asso-
ciated across frames using optical flow. Detection pairs are used to
estimate relative transformations between neighboring frames. The
relative transformations are then used to project detections from all
frames to a common plane. The projected detections form clusters. The
cluster-hold correspondence is then obtained by running a point reg-
istration algorithm, associating detection clusters with specific holds
on the reference wall. The perspective transformation matrix from
the video frame plane to the reference wall plane is then computed
for each frame. The resulting sequence of transformations is finally
smoothed using cubic spline regression. The output is a sequence of
transformations that, applied to the input video frame-by-frame, maps
the video frame plane to the reference wall plane.

4.2 Hold detection

We use a pre-trained object detection model and fine-tune it for the
hold detection task using transfer learning. A state-of-the-art object
detection model created by Sandler et al. [20] called “SSD MobileNet
V2 FPNLite 320x320” was chosen for this task. The specific model was

20

4. Designing the data pipeline

Load reference wall

Find mapping to the reference wall

 Reference hold positions

Calculate absolute transformations

 Reference hold positions

Load video

Detect holds

 Raster frames

Calculate optical flow

 Raster frames

Track detections

 Detections

Remove short tracks

 Unclean detection tracks

Calculate relative transformations

Unroll detections

 Relative transformations

Clean absolute transformations

 Relative transformations

 All detections in common plane

 Detection tracks

 Detection tracks

 Detections associated to reference holds

 Absolute transformations

Smoothen absolute transformations

 Absolute transformations without outliers

Save output

 Smooth absolute transformations

 Optical flow

Figure 4.1: An overview diagram of the pipeline. Nodes represent
pipeline steps. Edges (labeled to the right) represent data.

21

4. Designing the data pipeline

chosen due to its small memory footprint, allowing it to be fine-tuned
even on consumer hardware1.

The training used the default configuration for the “SSDMobileNet
V2 FPNLite 320x320” model with a few changes. Due to hardware
reasons, the batch size needed to be set to 32 (down from 128). The
learning rate was lowered to compensate for the loss of accuracy due
to the smaller batch size. Additionally, data augmentations of random
horizontal and vertical flips, rotations, cropping, padding, and color
distortions were added to the training pipeline to ensure robustness
even with the small dataset.

4.2.1 Expected errors

Since the videos follow a climber as they climb the wall, it is expected
that some holds will be temporarily covered by the climber’s body,
resulting in “false negative detections”. In addition, overlay graphics
can partially occlude holds, and the bounding box can be distorted
by the hold entering or exiting the frame. Furthermore, both false
positives and false negatives may be expected in any machine learning
approach. Thus we design the pipeline to be resilient to both types of
errors.

4.2.2 Representing detections

Standard object detectors work with bounding boxes – detections are
represented by coordinates of the two diagonal corners of the smallest
rectangle fully containing the detected object. However, the bounding
box corner coordinates do not correspond to any physical point on the
wall and are view-dependent since the bounding box is always axis-
parallel to the frame. Therefore, to minimize distortion and simplify
further pipeline steps, it was decided to represent hold positions using
a single coordinate, corresponding to the middle point of the hold’s
bounding box in the reference wall plane. This point is from now on
referred to as “detection point”.

1. Only consumer hardware was available. Although consumer GPUs possess
enough processing power for complex neural networks, most of them are limited by
their VRAM capacity.

22

4. Designing the data pipeline

4.2.3 Detection threshold

With each detection, the model assigns a confidence percentage that
this detection is correct. It was chosen to include all detections with
confidence> 50%, since, in practice, the following pipeline steps work
better with more detections, even when some spurious detections are
present.

4.3 Detection tracking

“Detection tracking” refers to the process of determining the relative
change in detected hold positions between two captured frames and
associating the hold detections between frames that belong to the
same physical hold.

4.3.1 Using optical flow to associate detections

The previous step in the pipeline yielded the center points of detected
holds. These detection points are now used in optical flow calculations,
yielding projected positions of current frame detection points in the
next frame.

The algorithm used is Lucas-Kanade feature tracker [17], which
is a de-facto industry standard way of estimating optical flow. The
algorithm’s input are two consecutive frames from a video, capturing
a slight movement between them and a set of points to be tracked,
representing features in the first image. The algorithm’s output is
an estimation of the positions of the features in the second image,
given pixel displacement between two images. It is assumed that
the displacement is approximately constant in some neighborhood
around a feature. This condition is satisfied most of the time in the
input videos2, given that the tracked features are the center points of
detected holds. See Figure 4.2.

All the holds in the frame are expected to translate by roughly the
same vector – perspective/rotational change between two frames is
usually minimal. Therefore, the deltas of current and projected detec-

2. One situation where this constraint is not satisfied is when the climber’s body
covers the center of the hold between frames.

23

4. Designing the data pipeline

Figure 4.2: Associating detections through optical flow. Red dots repre-
sent detections in previous frame, green dots detections in the current
frame, blue dots optical flow estimation of the previous frame detec-
tions.

24

4. Designing the data pipeline

tion points are averaged to obtain an estimated translation velocity of
the scene in the frame to minimize error.

The translation velocity is then added to each detection point to
obtain a set of projected positions, to which the detection points from
the following frame are associated using linear assignment with a
threshold (see section 2.4.3).

Repeating this process for all pairs of frames creates “tracks” of
detection points that can be followed across frames.

Detections whose tracks are shorter than a specified threshold can
then be removed, as they more likely represent spurious detections.
In the selected pipeline, detections with tracks shorter than 3 were
removed.

4.3.2 Computing relative transformations between frames

The associated detections are now used to calculate relative transfor-
mation between frames. A standard algorithm as described in 2.4 is
used to determine the transformation between two sets of points – de-
tection points in the current frame and the corresponding associated
detection points in the next frame. This method leads to amore precise
estimation of frame movement than the “frame velocity” calculated in
the previous step.

4.4 Detection registration

“Detection registration” refers to the process of mapping detections to
holds on the reference wall.

4.4.1 Unrolling relative transformations

The relative transformations obtained in 4.3.2 are now used to project
detection points onto a common plane. To each frame’s detection
points, a transformation created by accumulating all previous relative
transformations is applied.

As this process is prone to even minor errors in computing the
relative transformations, it is beneficial to compute the relative trans-
formations with few degrees of freedom – lowering overall accuracy
while also minimizing the chance of errors.

25

4. Designing the data pipeline

The projection step creates a common plane, where detections from
multiple frames group into clusters, representing the same physical
hold.

4.4.2 Associating clusters with the reference wall

Detection clusters are positioned in a pattern that resembles the refer-
ence wall holds but in a different plane. Furthermore, there might be
deviations to the pattern caused by imprecise calculation of the rela-
tive transformations between frames, and there may be both spurious
points and missing ones.

The problem of finding a transformation between two sets of points
with these constraints is called a point-set registration problem. A proba-
bilistic algorithm called “Coherent point drift”, proposed in 2010 by
Myronenko and Song [14] is used to calculate an approximate affine
transformation between the detection plane and the reference wall
plane (see Figure 4.3).

Since Coherent point drift takes only point density into account
and does not attempt to perform point associations, it is not necessary
to perform any form of clustering on the detection plane.

The transformed detections in each frame are then matched with
reference wall holds using a linear sum assignment algorithm with
a threshold (see section 2.4.3). This ensures that the sum of errors
between transformed detections and matched reference wall holds is
minimized.

The matching reference wall holds are then associated with all
detections in the corresponding clusters.

The method is visualised on Figure 4.3.

4.5 Obtaining the final transformations

In the final step of the pipeline, transformations of frames to the refer-
ence wall are computed from the detection-hold associations made in
the previous step. These transformations are referenced as “absolute
transformations”.

26

4. Designing the data pipeline

Figure 4.3: Result of Coherent Point Drift – matched unrolled plane of
detections (blue) with the reference wall (red). The wall might not
be recognizable, as this visualisation uses a transformed coordinate
space.

27

4. Designing the data pipeline

4.5.1 Computing the transformations

As described in 2.4, the absolute transformations are computed for
each frame using pairs of detection points and the corresponding
reference wall hold.

4.5.2 Removing outlier transformations

Even with precise detections, some absolute transformations may not
be determined correctly. Partially covered holds may create a large
error – especially in frames with few holds. Also, some parts of the
speed-climbing wall have holds placed on the same line, meaning
that there is not enough information to construct the full transfor-
mation. These and similar situations lead to sub-optimal absolute
transformations produced in the previous step.

Since it is expected that the transformations do not deviate much
from the “no-op transformation” except for the translation element, it
is possible to define a threshold for acceptable transformations as
a difference from the unit matrix. All transformations not within
this threshold are discarded, and the remaining ones are marked
as keyframes.

4.5.3 Interpolating transformations

Since the previous step discards some transformations, this step at-
tempts to interpolate transformations from the neighboring frames.
This is done by utilizing the relative transformations computed in
section 4.3.2. For each “gap” between keyframes, a forward transfor-
mation is computed for each frame in the gap by applying the relative
transformations of the frames in the gap to the absolute transformation
of the preceding keyframe. Conversely, a backward transformation
is computed. An average of these two transformations, weighed by
frame distances to previous and next keyframes, is then used as the
interpolated absolute transformation of each frame in the gap. For
gaps at the start and end of the video, only forward or backward
transformation is used.

28

4. Designing the data pipeline

4.5.4 Smoothing transformations

Since the previous steps do not take temporal continuity into account,
the computed absolute transformations often appear “shaky” and
“noisy”. Since camera movements are expected to be relatively smooth,
the last step is to smoothen the absolute transformations using cubic
spline interpolation.

However, there is one abrupt camera movement present in most
videos – the start, where the camera stays still for a moment before
starting to follow the climber. In order to not “smooth out” the start, a
100 times larger weight is given to the first 12 starting frames when
computing the splines.

4.6 Summary

The pipeline uses an object detection model to detect hold positions.
The detections are then tracked using optical flow, and registered to
the reference wall using Coherent Point Drift.

The final result is a smooth sequence of transformation matrices,
projecting each corresponding frame to the reference wall.

In chapter 5, more details are offered on the technology choices.
Effectiveness of the pipeline is then evaluated in chapter 6.

29

5 Data and implementation

This chapter further elaborates on the previous chapter, discussing
data manipulation in detail and specific technology choices. The com-
plete pipeline code is attached to this thesis, as described in appendixA.

5.1 Dataset

Figure 5.1: Example stills from the video dataset.

The dataset contains 367 videos in MPEG-4 format of speed climb-
ing performances (see Figure 5.1). Veronika Škvarlová [21] extracted
the videos from the recordings of speed climbing world finals pub-

30

5. Data and implementation

lished by the International Federation of Sport Climbing on YouTube1.
The beginnings and ends of the videos are aligned with the start and
finish of the performance. The frame is cropped, so only one climber
and the corresponding wall are shown in the frame.

The dataset videos are all normalized to the size of 960× 1080
pixels.

The framerates differ: 80% of videos are in 25 frames per second,
12% in 30 frames per second, and 8% in 50 frames per second. Further-
more, some videos appear to be interpolated from a different fram-
erate, which is possible given that the videos went through several
steps of post-processing between being captured and being uploaded
to YouTube.

The videos are shot across several competitions worldwide, oc-
curring between the years 2018 and 2020. While the hold shape and
color are consistent across competitions, the surroundings vary. Some
videos capture parts of adjacent walls, showing holds that are not part
of the analyzed wall. The light conditions vary, with some videos shot
in darkness with just the climber illuminated by a stage light. Overlay
graphics (showing information like the climber’s name) are present
in most videos. Some of the videos have significant compression arti-
facts. Overall, the dataset videos represent a wide range of real-world
conditions.

5.2 Hold detection

5.2.1 Preparing training data

In order to train the hold detector, training data is needed. Using the
video-processing command line tool ffmpeg [22], a frame is sampled
from the dataset videos every 2 seconds, and 500 frames are hand-
labeled using labelImg [23], a graphical program for labeling images
with bounding boxes.

labelImg saves the labels in the Pascal Visual Object Challenge
XML format [24]. In order to use them in the next step, a conversion to
the tfrecord format native to TensorFlow is performed using a script
created by Lyudmil Vladimirov [25].

1. https://www.youtube.com/channel/UC2MGuhIaOP6YLpUx106kTQw

31

https://www.youtube.com/channel/UC2MGuhIaOP6YLpUx106kTQw

5. Data and implementation

5.2.2 Object detection framework

It was chosen to use the TensorFlow 2 [11] Object Detection API
[26], specifically the model “SSD MobileNet V2 FPNLite 320x320”
[20]. TensorFlow is a de-facto industry standard in machine learning,
focusing on both research and practical applications (e.g., mobile
inference). The associated model zoo2 contains state-of-the-art object
detection models, and the API offers a modern declarative way of
defining training parameters for fine-tuning. These features allow for
easy extendability, for example, replacing the model with a stronger
one in the future.

5.2.3 Training the model

Training a deep learning model is a computationally intensive task,
even when only fine-tuning an existing model, as is the case here.
Commonly, specialized hardware is utilized for this task, like TPUs
(Tensor Processing Units), which TensorFlow creators used to train the
original model. However, since no specialized hardware was available,
a consumer GPU (NVIDIA RTX 2070) was used for fine-tuning the
model.

The dataset size of 500 images is relatively small. In order to pre-
vent overfitting on the training set and improve generalization, we
employ a set of data augmentations. The training script creates new
variants of each training sample by randomized operations that alter
the image but preserve the semantics3. These include flips and rota-
tions, cropping and padding, color distortion (brightness, contrast,
saturation), and JPEG compression.

The model is then left to train on for 20 thousand steps, taking
several hours.

2. https://github.com/tensorflow/models/blob/master/research/object_
detection/g3doc/tf2_detection_zoo.md
3. For example, an image depicting a hold in a specific position will still depict it
when 5% darker.

32

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md

5. Data and implementation

5.3 Pipeline implementation

5.3.1 Programming language

We decided to use Python 3 due to its extensive catalog of libraries,
often covering cutting-edge research. Although Python is a high-level
language, meaning that it offers lower performance than low-level lan-
guages, the data processing tasks mostly happen in compiled libraries
offering native performance.

5.3.2 Model inference

As mentioned before, TensorFlow 2 [11] Object Detection API [26]
was used to train the object detector model. The inference is then
run on the exported model using TensorFlow 2 Python API. Unlike
training, a GPU is not necessary for the inference – the performance
of a standard consumer CPU is satisfactory.

5.3.3 Computer vision

For video processing tasks, the OpenCV [18] computer vision library
was used. Uses of this library in the pipeline include loading and
saving video, adding graphics to video, and computing optical flows
and frame transformations.

5.3.4 Scientific libraries

Multi-dimensional array operations are performed using the numpy
[27] library. As a Coherent Point Drift [14] implementation, pycpd
[28] was used. For the linear sum assignment algorithm [16] imple-
mentation and more, scipy [29] was used. scikit-learn [30] was
used for DBSCAN clustering. csaps [31] was used for cubic spline
interpolation.

5.4 Packaging and portability

Projects involving machine learning and scientific libraries are often
dependent on a particular operating system environment. Therefore,
the project was equipped with a configuration file for Docker [32], a

33

5. Data and implementation

containerization solution. The usage of Docker ensures that the project
(including model training on the GPU) can be run effortlessly on any
modern machine, regardless of the OS.

The code including the Docker configuration is attached to this
thesis. See Appendix A for more details.

34

6 Evaluation and substitution study

In the chapter 4, a pipeline was described. In this chapter, we perform
a substitution study on the pipeline. For each step of the pipeline,
we evaluate alternative approaches to ensure that the pipeline from
chapter 4, referred to as “selected pipeline”, performs the best among
all the possible approaches.

The setting of the selected pipeline are as follows:

• Training options: 20k steps, augmentations

• Detection threshold: 50%

• Hold trackingmethod: Optical flow association, removing tracks
shorter than 3

• Relative transformation calculation: Using hold association, 2
degrees of freedom

• Absolute transformation calculation: Using 8 degrees of freedom

• Cleaning: Using ε = 0.3

• Smoothing: Cubic spline smoothing, coefficient 0.0005

6.1 Performance

On a modern CPU (AMD Ryzen 5 3600), processing a single 6-second
video takes around 15 seconds, with the most demanding part being
hold detection. The performance could probably be further improved
by batched inference and parallelization of some pipeline stages.

6.2 Methodology

6.2.1 Substitution study

A substitution study consists of replacing different parts of the pipeline
to evaluate their contribution. As such, in each experiment, all the
stages but one remain as in the selected pipeline. This method assumes

35

6. Evaluation and substitution study

that the contribution of each pipeline step can be measured indepen-
dently and may miss possible improvements achievable by changing
more than one pipeline step at once. In other words, this method does
not disprove the possibility of the selected pipeline being a local, not
global, maximum. A more thorough examination is, however, not
possible without an automated metric.

6.2.2 Chosen metric

Since there is no ground truth to compare against, it is impossible to
construct an automated metric for evaluating the mapping quality.
Therefore, we decided to create a scale of transformation quality that
will be evaluated manually for each video.

From each source video, we generate an evaluation video by ap-
plying the computed series of transformations to video frames and
overlaying with positions of the reference wall holds. Black rectangle
outlines mark detected holds. The plane of unrolled detections as
transformed by Coherent point drift is visualized using X’s for detec-
tion positions, colored according to the matched reference hold: red,
green, blue, magenta, yellow, cyan cyclically for matched ones, white
for unmatched ones. We show examples of such evaluation videos in
Figure 6.1.

In an ideal case, the holds visible in the video will align with the
overlay, and the transformation will exactly copy the camera motion
without any extraneous movement or deformations. We devised a
rating scale as follows:

• level 5 – perfect mapping

• level 4 – small deviations, like short drift at the beginning or the
end

• level 3 – small part of the video out of sync

• level 2 – large part of the video out of sync

• level 1 – video completely unusable

36

6. Evaluation and substitution study

(a) good mapping (b) acceptable
mapping

(c) bad mapping

Figure 6.1: Examples of the evaluation visualisations, here presented
as a combination of three frames from the evaluation video.

37

6. Evaluation and substitution study

6.2.3 Evaluation dataset

The evaluation dataset was constructed by randomly choosing 20
videos from the entire dataset of 367 videos (as described in section
5.1). We skipped the videos already in the detector’s training set
to evaluate the detector on “fresh” data. We chose the number 20
since this amount of videos is possible to be scored by hand: with 24
experiments, 480 videos were scored.

6.2.4 Experiments

Experiments were split into categories. In each category, we compare
the selected pipeline with alternative approaches. We generate a set
of evaluation videos from the evaluation dataset for each experiment
and assign scores by hand.

For each experiment category, we present a table where the first
row (in bold) represents the selected pipeline, and other rows (sorted
by average score, descending) represent other experiments. For each
experiment, the average score and a histogram of scores are presented.

6.3 Hold detection

6.3.1 Model size

The model used for the pipeline is “SSD MobileNet V2 FPNLite”,
which with its size 320× 320 input RGB pixels is one of the slimmest
models in the TensorFlow 2 Object Detection API model ZOO1. It is
quite probable that a larger model would perform better. However,
the hardware for examining this possibility was not available, and
evaluating the performance of a larger model remains a subject of
further research.

1. https://github.com/tensorflow/models/blob/master/research/object_
detection/g3doc/tf2_detection_zoo.md

38

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md

6. Evaluation and substitution study

6.3.2 Training

Our metrics

For each model published in the TensorFlow 2 Object Detection API’s
model ZOO, a default configuration is attached. Two types of training
configurations were compared in this step – the original ones (with the
only change of batch size from 128 down to 32 for hardware reasons)
and our modified ones with added augmentations as outlined in
section 4.2.

As seen in table 6.1, the combination of augmentations and training
with 20 thousand steps turned out to be the most efficient. The model
trained with 30 thousand training steps did most likely over-fit.

Standard object detection metrics

It should be noted that out of all stages of the pipeline, the object
detection model has a numerical metric available: TensorFlow 2 Object
Detection API supports model evaluation using the Average Precision
and Average Recall metrics. However, this metric is designed for gen-
eral multi-class object detection and thus is not entirely reflective of
pipeline performance.

A set of 100 test images, taken from different videos than the train-
ing set, was used to evaluate the Average Precision and Average Recall
metrics. As seen in Figure 6.1, these metrics favor the 20 thousand
steps model without augmentations and the 30 thousand step model
over the chosen model.

39

6. Evaluation and substitution study

Training options avg #5 #4 #3 #2 #1 AP AR@10d
20k steps, aug-
mentations

4.10 10 5 3 1 1 0.680 0.744

30k steps, augmen-
tations

3.95 11 2 3 3 1 0.687 0.759

20k steps, no aug-
mentations

3.80 10 3 2 3 2 0.755 0.814

10k steps, augmen-
tations

3.75 8 5 3 2 2 0.665 0.745

Table 6.1: Scores for different model training options, from our metric
and from TF2 OD API metrics (Average Precision and Average Recall
over 10 detections)

6.3.3 Detection threshold

Different detection thresholds, as outlined in section 4.2.3, were evalu-
ated. It is expected that lower detection thresholds add somedetections
that might otherwise be missed, but at the same time add spurious
detections. Thresholds of 30%, 50% (the selected pipeline), 70% and
90% were evaluated.

As seen in table 6.2, the threshold of 50% was found to be the most
effective.

Detection threshold avg #5 #4 #3 #2 #1
Detection with threshold 50% 4.10 10 5 3 1 1
Detection with threshold 70% 3.95 9 5 3 2 1
Detection with threshold 90% 3.85 10 4 1 3 2
Detection with threshold 30% 3.85 7 6 5 1 1

Table 6.2: Scores for different detection thresholds.

6.4 Hold tracking

The selected method for hold tracking, as described in section 4.3.1,
uses optical flow for associating the holds, and tracks of length lower

40

6. Evaluation and substitution study

than 3 are removed. Different thresholds for track removal are evalu-
ated (0, 3, 6, 12). Higher values perform better in removing spurious
detections while also increasing the possibility of removing a valid
hold track. Especially the topmost holds are shown in the video for a
very short time, meaning that too eager track removal could remove
their tracks and cause a drift at the end of the video.

A variant where instead of using the position projected using
optical flow, a previous position is used is also evaluated. Figure 4.2
shows the flow estimations as blue dots and previous positions as red
dots. It is apparent that when the spacing of holds is large enough, this
distinction should not make a difference. There might, however, be a
difference when the holds are close together, especially in zoomed-out
low-framerate videos.

As seen in table 6.3, threshold 6 has the same efficiency as threshold
3, while threshold 12 has slightly lower efficiency, probably due to the
removal of “good” tracks. Association without short track removal
leads to worse results, which can be explained by spurious detections
continuing into the following pipeline steps.

Previous position association has a slightly lower score than op-
tical flow association, most likely due to some holds being tracked
incorrectly.

Hold tracking method avg #5 #4 #3 #2 #1
Optical flow association, removing
tracks shorter than 3

4.10 10 5 3 1 1

Optical flow association, removing
tracks shorter than 6

4.10 10 5 3 1 1

Optical flow association, removing
tracks shorter than 12

4.05 10 3 6 0 1

Previous position association, remov-
ing tracks shorter than 3

4.05 9 6 3 1 1

Optical flow association, no short
track removal

4.00 9 6 2 2 1

Table 6.3: Scores for different hold tracking methods

41

6. Evaluation and substitution study

6.5 Calculating relative transformations

In the selected pipeline, hold associations are used to compute the
relative transformations between two frames in 2 degrees of freedom
(i.e., translation only). For every two consecutive frames, pairs of old
and new tracked holds are used to compute the transformation.

A variant where 4 degrees of freedom is used instead (allowing
uniform scaling and rotation) is evaluated.

In an alternative approach, a method where optical flow is used
to estimate the transformation is used. A standard computer vision
solution for this task is extracting features2 from the source frame and
calculating optical flow to the destination frame. However, this ap-
proach is not suitable for the class of videos this thesis deals with since
most of the scene’s features come from a dynamic object – the climber,
as shown in Figure 6.2. It is thus necessary to explicitly track the wall
and not the climber. Detection boxes are used to mask holds (which
move in the direction we are interested in), corners are extracted using
the “Good Features to Track” algorithm [33]. Their optical flow vector
is then computed using a Lucas-Kanade feature tracker [17]. Vectors
that do not land in one of the detection boxes in the next frame are
discarded. An average value of all the flow vectors is then used as a
translation estimation.

As seen from the results in 6.4, using the alternative optical-flow-
based approach is much less precise than using hold association, with
most videos from score 5 moving to score 4.

Hold association with 4 degrees of freedom performs terribly, with
no videos with a score of more than 3. The accumulation of errors in
the detection plane unrolling (see section 4.4.1) is most likely too high
to produce a feasible plane.

2. A set of points that are readily identifiable between frames, like sharp corners.

42

6. Evaluation and substitution study

Figure 6.2: Red dots represent features detected by a library function
from OpenCV, most of which are located on the climber and station-
ary graphics. This illustrates how a targeted approach, using hold
detections, is needed in order to estimate relative transformations
correctly.

43

6. Evaluation and substitution study

Relative transformation calculation avg #5 #4 #3 #2 #1
Using hold association, 2 degrees of
freedom

4.10 10 5 3 1 1

Using optical flow, 2 degrees of free-
dom

3.80 5 10 2 2 1

Using hold association, 4 degrees of
freedom

1.70 0 0 3 8 9

Table 6.4: Scores for different relative transformation calculation meth-
ods.

6.6 Calculating absolute transformations

6.6.1 Degrees of freedom

Absolute transformations are computed using the assignment of de-
tection points to the reference wall points. In the selected pipeline,
the assignment is performed using a combination of unrolling the
detections onto a common plane using relative transformations from
the previous step, finding a transformation aligning it with the refer-
ence plane using Coherent point drift [14], and finally using linear
assignment with a threshold to associate points in each frame.

Different degrees of freedom for the absolute transformation com-
putation are evaluated. (See section 3.4 for more information on de-
grees of freedom in transformation matrices.) While the transforma-
tion should naturally use the full 8 degrees of freedom, since a per-
spective transformation is present in many videos of the dataset, it is
beneficial to examine the possibility of using fewer degrees of freedom
as a trade-off of perspective accuracy for increased precision in other
degrees.

6.6.2 Clustering

An alternative approach employs a clustering algorithm before run-
ning Coherent point drift. Each cluster is then represented by its cen-
troid.

44

6. Evaluation and substitution study

Figure 6.3: Result of the Coherent point drift algorithm over detections
clustered by DBSCAN. Red dots represent the reference wall, blue
holds the detection cluster centroids. A false negative (unmatched
reference hold) can be observed in the bottom left, and a false positive
(unmatched detection cluster centroid) in the bottom right. Compare
with Figure 4.3 that shows the non-clustered approach.

45

6. Evaluation and substitution study

It is not possible to use standard K-means clustering since K is not
known in advance – the expected number of holds is known, but false
positives may create spurious clusters.

It was decided to use the clustering algorithm DBSCAN [34] avail-
able from scikit-learn [30]. It has the advantage of detecting the cor-
rect number of clusters and being resilient to clusters having stretched
or non-convex shapes – something that can happen due to the way
the plane unrolling is performed. Another positive property of this
clustering algorithm is that not all input points need to be a part of a
cluster – points can be outliers, like spurious detections.

6.6.3 A naïve method assuming precise detections

It is possible to connect “severed” tracks of the same physical hold
by estimating the hold’s position once the track disappears. This ap-
proach enables to associate tracks with reference holds directly, with-
out employing further steps in the pipeline. Very precise detections
are required for this approach to work, which is not a reasonable as-
sumption – some videos in the dataset even crop out some holds fully,
never showing them on screen. However, while naïve, this approach
is surprisingly functional for “good” videos and worth mentioning.

Since some detection tracks may be severed by an occasional false
negative from the object detector or simply by covering the hold with
the climber’s body, one physical hold will usually result in multiple
detection tracks. In order to partially mitigate this, a “fake” detection
is inserted and marked as such to the projected position whenever
there is no actual detection to associate it with, as shown in Figure 6.4.
“Fake” detections continue to be tracked until they leave the frame or
associate with an actual detection in some of the following frames.

“Fake” detections are not used for further steps when a precise
detection point position is required – their purpose is only to connect
severed tracks.

The tracks are then associated from bottom to top to corresponding
reference wall holds in order of appearance. When the input video is
detected correctly (no spurious detections left after removing short
tracks, all tracks correctly connected), this results in the correct detec-
tion registration.

46

6. Evaluation and substitution study

Figure 6.4: Full circles represent actual detections, empty circles rep-
resent “fake” detections. Arrows show the position of the associated
detection in the next frame.

47

6. Evaluation and substitution study

This method was not evaluated in the substitution study since
it does not integrate well with the rest of the pipeline. However, it
is included here for completeness, as it could be helpful in further
research if a better hold detector is developed.

6.6.4 Results

As seen in table 6.5, the best results are achieved using full 8 degrees
of freedom, with 6 and 4 degrees of freedom showing worse mapping
quality. It is to be noted, though, that depending on the use case of the
obtained absolute transformations, it might still be possible to prefer
fewer degrees of freedom (which is easily configurable in the pipeline
implementation).

The variant with DBSCAN clustering scores low, showing that
pre-clustering holds separately leads to a loss of information.

Absolute transformation calculation avg #5 #4 #3 #2 #1
8 degrees of freedom 4.10 10 5 3 1 1
6 degrees of freedom 3.95 10 2 5 3 0
4 degrees of freedom 3.95 8 4 7 1 0
8 degrees of freedom, clustered 3.65 7 5 4 2 2

Table 6.5: Scores for different absolute transformation calculationmeth-
ods.

6.7 Cleaning absolute transformations

The series of absolute transformations is cleaned by removing outliers,
which are detected by an element-wise difference from the unit matrix
(except for the translation vector). The maximum difference from unit
matrix permittable is labeled ε. While small values of ε may cause
correct transformations to be dropped, too high values may introduce
some outliers to further steps, causing erratic movement.

Values 0.2, 0.3 (as in selected pipeline) and 0.4 were evaluated for
ε. As shown in the table 6.6, best results were achieved with ε = 0.2.

48

6. Evaluation and substitution study

Cleaning absolute transformations avg #5 #4 #3 #2 #1
Cleaning with ε = 0.3 4.10 10 5 3 1 1
Cleaning with ε = 0.4 4.05 7 10 1 1 1
Cleaning with ε = 0.2 3.85 9 4 4 1 2

Table 6.6: Scores for different cleaning constants

6.8 Smoothing absolute transformations

Absolute transformations output by the previous step are calculated
separately for each frame. Since the absolute transformations are sup-
posed to correspond to camera movement, a smoothing algorithm is
employed.

Smoothing coefficients 0.005, 0.0005, and 0.00005 are evaluated,
and variants of the selected pipeline’s smoothing coefficient (0.0005)
with the weight of non-keyframes adjusted to 0 and 0.5, as well as the
increased weight for starting frames disabled.

As an alternative approach, a cubic Savitzky-Golay filter [35] with
window length 49 is used instead of the cubic spline smoothing. A
Savitzky-Golay filter operates with each datapoint separately, fitting
a polynomial to a window centered around the datapoint and then
smoothing the value by evaluating the polynomial. This approach
is different from spline smoothing, which operates on the whole se-
quence and fits the splines between well-defined “knots”.

As seen from the results in table 6.7, the smoothing coefficients
0.0005 and 0.00005 offer equivalent performance, with 0.005 not be-
ing “smooth enough”. No increased starting weight helps a small
number of videos reduce the initial drift. Lowering the weight for non-
keyframes lowers the score by a large margin. Finally, the Savitzky-
Golay filter outputs a smooth result, but the nature of the algorithm
does not smooth out outliers as correctly as the cubic spline smoothing.

49

6. Evaluation and substitution study

Smoothing method avg #5 #4 #3 #2 #1
Cubic spline smoothing, coefficient
0.0005

4.10 10 5 3 1 1

Cubic spline smoothing, coefficient
0.00005

4.10 10 5 3 1 1

Cubic spline smoothing, coefficient
0.0005, no increased start weight

4.05 9 5 4 2 0

Cubic spline smoothing, coefficient
0.005

3.95 8 6 4 1 1

Cubic spline smoothing, coefficient
0.0005, keyframes have double weight

3.90 6 9 3 1 1

Savitzky-Golay filter, window size 49 3.75 4 11 2 2 1
Cubic spline smoothing, coefficient
0.0005, only keyframes

3.40 3 7 6 3 1

Table 6.7: Scores for different absolute transformation smoothing op-
tions.

6.9 Study conclusion

From the evaluation dataset of 20 videos, the chosen pipeline output
achieved the highest score on 10 videos, with 5 more videos scoring
one less. The substitution study showed the influence of different
constants and approaches in all steps of the pipeline.

Common mapping errors included drift at the start and at the end
of a video, where not enough holds are visible to find a good transfor-
mation, and “shakiness” of the transformation sequence, caused by
imprecise hold detections.

It was shown that the method of computing relative transforma-
tions has a significant influence on the overall success of the pipeline,
thus pinpointing this area as a candidate for future research.

The most notable omission from this substitution study was evalu-
ating larger object detection models, which was skipped due to hard-
ware reasons. However, we expect larger models to perform better,
thus sending higher-quality detections to further pipeline steps.

50

7 Conclusion

A pipeline for finding transformations between speed climbing videos
and a reference wall was designed, implemented, and evaluated. The
main steps of the pipeline are hold detection using an object detec-
tion model trained on custom data, detection tracking using optical
flow, and hold registration in which the detections are unrolled on a
common plane and then mapped to the reference wall holds using
the Coherent point drift algorithm.

We have implemented the pipeline using Python 3, TensorFlow 2
Object Detection API, OpenCV, and several more scientific libraries.
In addition, Docker is used as a containerization solution to ensure
better compatibility across platforms. The complete pipeline source
code is attached (see Appendix A).

In the evaluation chapter, we proposed a manual metric to de-
termine a mapping effectiveness score for a video. We have then
shown that the selected pipeline design maximizes this metric. We ob-
served that the method of obtaining relative transformations between
frames has a significant influence on the overall result, pinpointing
this stage as a subject for further research. The lack of ground truth
data hindered the effectiveness of the evaluation. To further improve
the pipeline in further research, a dataset with ground truth associated
must be obtained.

The plan for future research is to analyze and compare nuances in
top-level athletes’ speed climbing styles. For this analysis the pipeline
proposed in this workwill be employed to obtain the unrolled skeleton
data from hundreds of climbs.

51

A Attachments

The attachments to this thesis are as follows:

speed-climbing-mapping.zip is an archive containing source code
for the pipeline. It includes:

• The full source code of the pipeline

• Hold detection training dataset

• Pre-trained weights for all 4 evaluated models

• Docker configuration, allowing easy setup on a new machine

• Evaluation dataset of 20 videos (in the test_data subfolder)

• Evaluation videos generated by the selected pipeline (in the out
subfolder)

For more details and usage, see the included README.md file.
The code is also published to GitHub1. The published version does

not include the data and pre-trained models.

substitution-study.xlsx is aMicrosoft Excel file containing source
data for the substitution study performed.

1. https://github.com/JanPokorny/speed-climbing-mapping

52

https://github.com/JanPokorny/speed-climbing-mapping

Bibliography

1. PAVLLO, D.; FEICHTENHOFER, C.; GRANGIER, D.; AULI, M.
3D Human Pose Estimation in Video with Temporal Convolutions and
Semi-Supervised Training [online]. 2019-03-29 [visited on 2021-05-
14]. Available from arXiv: 1811.11742 [cs].

2. BOCHKOVSKIY, A.; WANG, C.; LIAO, Hong-Yuan Mark.
YOLOv4: Optimal Speed and Accuracy of Object Detection [online].
2020-04-22 [visited on 2021-05-14]. Available from arXiv: 2004.
10934 [cs, eess].

3. LEGNER, S. Climbing World Championships 2018 Speed [online].
2018 [visited on 2021-05-01]. Available from: https://commons.
wikimedia.org/wiki/File:Climbing_World_Championships_
2018_Speed_(DSC09055).jpg.

4. PUEO, B.; JIMENEZ-OLMEDO, J. Application of Motion Cap-
ture Technology for Sport Performance Analysis. Retos: nuevas
tendencias en educación física, deporte y recreación. 2017, vol. 2017,
pp. 241–247.

5. REVERET, L.; CHAPELLE, S.; QUAINE, F.; LEGRENEUR, P. 3D
Visualization of Body Motion in Speed Climbing. Frontiers in
Psychology [online]. 2020, vol. 11 [visited on 2021-05-14]. issn
1664-1078. Available from doi: 10.3389/fpsyg.2020.02188.

6. LEGRENEUR, P.; ROGOWSKI, I.; DURIF, T. Kinematic Analysis
of the Speed Climbing Event at the 2018 Youth Olympic Games.
Computer Methods in Biomechanics and Biomedical Engineering [on-
line]. 2019, vol. 22, S264–S266 [visited on 2021-05-11]. issn 1025-
5842, issn 1476-8259. Available from doi: 10.1080/10255842.
2020.1714907.

7. IGUMA, H.; KAWAMURA, A.; KURAZUME, R. A New 3D Mo-
tion and Force Measurement System for Sport Climbing. In: 2020
IEEE/SICE International Symposium on System Integration (SII).
2020, pp. 1002–1007. issn 2474-2325. Available from doi: 10.1109/
SII46433.2020.9026213.

53

https://arxiv.org/abs/1811.11742
https://arxiv.org/abs/2004.10934
https://arxiv.org/abs/2004.10934
https://commons.wikimedia.org/wiki/File:Climbing_World_Championships_2018_Speed_(DSC09055).jpg
https://commons.wikimedia.org/wiki/File:Climbing_World_Championships_2018_Speed_(DSC09055).jpg
https://commons.wikimedia.org/wiki/File:Climbing_World_Championships_2018_Speed_(DSC09055).jpg
https://doi.org/10.3389/fpsyg.2020.02188
https://doi.org/10.1080/10255842.2020.1714907
https://doi.org/10.1080/10255842.2020.1714907
https://doi.org/10.1109/SII46433.2020.9026213
https://doi.org/10.1109/SII46433.2020.9026213

BIBLIOGRAPHY
8. CAO, Z.; HIDALGO, G.; SIMON, T.; WEI, S.; SHEIKH, Y. Open-

Pose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity
Fields [online]. 2019-05-30 [visited on 2021-05-14]. Available from
arXiv: 1812.08008 [cs].

9. LIN, T.; GOYAL, P.; GIRSHICK, R.; HE, K.; DOLLÁR, P. Focal
Loss for Dense Object Detection [online]. 2018-02-07 [visited on
2021-05-14]. Available from arXiv: 1708.02002 [cs].

10. LIU, W.; ANGUELOV, D.; ERHAN, D.; SZEGEDY, C.; REED, S.,
et al. SSD: Single Shot MultiBox Detector [online]. 2016 [visited
on 2021-05-14]. Available from doi: 10.1007/978-3-319-46448-
0_2.

11. ABADI, M.; AGARWAL, A.; BARHAM, P.; BREVDO, E.; CHEN,
Z., et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Distributed Systems [online]. 2016-03-16 [visited on 2021-05-01].
Available from arXiv: 1603.04467 [cs].

12. GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep Learn-
ing. Cambridge, Massachusetts: The MIT Press, 2016. Adaptive
Computation and Machine Learning. isbn 978-0-262-03561-3.

13. DERPANIS, Konstantinos G. Overview of the RANSAC Algo-
rithm. Image Rochester NY. 2010, vol. 4, no. 1, pp. 2–3.

14. MYRONENKO, A.; SONG, X. Point-Set Registration: Coherent
Point Drift. IEEE Transactions on Pattern Analysis and Machine
Intelligence [online]. 2010, vol. 32, no. 12, pp. 2262–2275 [visited
on 2021-04-17]. issn 0162-8828. Available from doi: 10.1109/
TPAMI.2010.46.

15. MOUNT, David M; NETANYAHU, Nathan S; MOIGNE, Jacque-
line Le. Efficient Algorithms for Robust FeatureMatching. Pattern
Recognition [online]. 1999, vol. 32, no. 1, pp. 17–38 [visited on
2021-05-04]. issn 00313203. Available from doi: 10.1016/S0031-
3203(98)00086-7.

16. CROUSE, David F. On Implementing 2D Rectangular Assign-
ment Algorithms. IEEE Transactions on Aerospace and Electronic
Systems [online]. 2016, vol. 52, no. 4, pp. 1679–1696 [visited on
2021-05-03]. issn 0018-9251. Available from doi: 10.1109/TAES.
2016.140952.

54

https://arxiv.org/abs/1812.08008
https://arxiv.org/abs/1708.02002
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1007/978-3-319-46448-0_2
https://arxiv.org/abs/1603.04467
https://doi.org/10.1109/TPAMI.2010.46
https://doi.org/10.1109/TPAMI.2010.46
https://doi.org/10.1016/S0031-3203(98)00086-7
https://doi.org/10.1016/S0031-3203(98)00086-7
https://doi.org/10.1109/TAES.2016.140952
https://doi.org/10.1109/TAES.2016.140952

BIBLIOGRAPHY
17. BOUGUET, J. Pyramidal Implementation of the Affine Lucas

Kanade Feature Tracker. Intel corporation. 1999, vol. 5, no. 1-10,
p. 4.

18. BRADSKI, G. The OpenCV Library. Dr. Dobb’s Journal of Software
Tools. 2000, vol. 25, pp. 120–125.

19. IFSC SPORT DEPARTMENT. Speed Licence Rules [online]. IFSC,
2014 [visited on 2020-11-29]. Available from: https://cdn.ifsc-
climbing.org/images/ifsc/Footer/Manufacturers/140429_
SDSpeedLicenseRules41-corrected.pdf.

20. SANDLER, M.; HOWARD, A.; ZHU, M.; ZHMOGINOV, A.;
CHEN, L.MobileNetV2: Inverted Residuals and Linear Bottlenecks
[online]. 2019-03-21 [visited on 2021-03-14]. Available fromarXiv:
1801.04381 [cs].

21. ŠKVARLOVÁ, V. Labeled Dataset of Speed Climbing Performances.
Brno, 2021. Available also from: https : / / is . muni . cz / th /
ll5rp/. Bechelor’s thesis. Masaryk University.

22. TOMAR, S. Converting Video Formats with FFmpeg. Linux Jour-
nal. 2006, vol. 2006, no. 146, p. 10.

23. LIN, Tzu Ta. Tzutalin/labelImg [online]. 2015 [visited on 2021-05-
03]. Available from: https://github.com/tzutalin/labelImg.

24. EVERINGHAM, M.; ESLAMI, S. M. A.; VAN GOOL, L.;
WILLIAMS, C. K. I.; WINN, J.; ZISSERMAN,A. The Pascal Visual
Object Classes Challenge: A Retrospective. International Journal of
Computer Vision [online]. 2015, vol. 111, no. 1, pp. 98–136 [visited
on 2021-05-01]. issn 0920-5691, issn 1573-1405. Available from
doi: 10.1007/s11263-014-0733-5.

25. VLADIMIROV, L. Training Custom Object Detector — TensorFlow 2
Object Detection API Tutorial Documentation [online]. 2020 [visited
on 2021-05-01]. Available from: https://tensorflow-object-
detection - api - tutorial . readthedocs . io / en / latest /
training.html.

26. HUANG, J.; RATHOD, V.; SUN, C.; ZHU, M.; KORATTIKARA,
A., et al. Speed/Accuracy Trade-Offs for Modern Convolutional Object
Detectors [online]. 2017-04-24. Version 3 [visited on 2021-04-27].
Available from arXiv: 1611.10012 [cs].

55

https://cdn.ifsc-climbing.org/images/ifsc/Footer/Manufacturers/140429_SDSpeedLicenseRules41-corrected.pdf
https://cdn.ifsc-climbing.org/images/ifsc/Footer/Manufacturers/140429_SDSpeedLicenseRules41-corrected.pdf
https://cdn.ifsc-climbing.org/images/ifsc/Footer/Manufacturers/140429_SDSpeedLicenseRules41-corrected.pdf
https://arxiv.org/abs/1801.04381
https://is.muni.cz/th/ll5rp/
https://is.muni.cz/th/ll5rp/
https://github.com/tzutalin/labelImg
https://doi.org/10.1007/s11263-014-0733-5
https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/training.html
https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/training.html
https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/training.html
https://arxiv.org/abs/1611.10012

BIBLIOGRAPHY
27. HARRIS, C. R.;MILLMAN,K. J.; van derWALT, S. J.; GOMMERS,

R.; VIRTANEN, P., et al. Array Programming with NumPy. Na-
ture. 2020, vol. 585, no. 7825, pp. 357–362. Available from doi:
10.1038/s41586-020-2649-2.

28. KHALLAGHI, S. Siavashk/Pycpd [online]. 2021 [visited on 2021-
05-03]. Available from: https://github.com/siavashk/pycpd.

29. VIRTANEN, P.; GOMMERS, R.; OLIPHANT, Travis E.; HABER-
LAND, M.; REDDY, T., et al. SciPy 1.0: Fundamental Algorithms
for Scientific Computing in Python.NatureMethods [online]. 2020,
vol. 17, no. 3, pp. 261–272 [visited on 2021-05-06]. issn 1548-7091,
issn 1548-7105. Available from doi: 10.1038/s41592-019-0686-
2.

30. PEDREGOSA, F.; VAROQUAUX, G.; GRAMFORT, A.; MICHEL,
V.; THIRION, B., et al. Scikit-Learn: Machine Learning in Python.
Journal of Machine Learning Research. 2011, vol. 12, pp. 2825–2830.

31. PRILEPIN, E. Espdev/Csaps [online]. 2021 [visited on 2021-05-03].
Available from: https://github.com/espdev/csaps.

32. MERKEL, D. Docker: Lightweight Linux Containers for Con-
sistent Development and Deployment. Linux J. 2014, vol. 2014,
no. 239. issn 1075-3583. Available from doi: 10.5555/2600239.
2600241.

33. SHI, J.; TOMASI. Good Features to Track. In: 1994 Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition. 1994,
pp. 593–600. issn 1063-6919. Available from doi: 10.1109/CVPR.
1994.323794.

34. SCHUBERT, E.; SANDER, J.; ESTER, M.; KRIEGEL, Hans Peter;
XU, X. DBSCAN Revisited, Revisited: Why and How You Should
(Still) Use DBSCAN. ACM Transactions on Database Systems [on-
line]. 2017, vol. 42, no. 3, pp. 1–21 [visited on 2021-04-28]. issn
0362-5915, issn 1557-4644. Available from doi: 10.1145/3068335.

35. SAVITZKY, Abraham.; GOLAY, M. J. E. Smoothing and Differen-
tiation of Data by Simplified Least Squares Procedures.Analytical
Chemistry [online]. 1964, vol. 36, no. 8, pp. 1627–1639 [visited
on 2021-05-06]. issn 0003-2700. Available from doi: 10.1021/
ac60214a047.

56

https://doi.org/10.1038/s41586-020-2649-2
https://github.com/siavashk/pycpd
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://github.com/espdev/csaps
https://doi.org/10.5555/2600239.2600241
https://doi.org/10.5555/2600239.2600241
https://doi.org/10.1109/CVPR.1994.323794
https://doi.org/10.1109/CVPR.1994.323794
https://doi.org/10.1145/3068335
https://doi.org/10.1021/ac60214a047
https://doi.org/10.1021/ac60214a047

	Introduction
	Contributions of this thesis
	Structure of this thesis

	Related work
	Speed climbing analysis
	Human pose estimation
	Object detection
	Finding a transformation between sets of points
	Paired sets of points
	Unpaired sets of points
	Associating aligned sets of points

	Optical flow

	Preliminaries and definitions
	Speed climbing sport
	Reference wall
	Hold description

	Pipeline input and output
	Glossary
	Transforming points using a homography transformation matrix and the influence of degrees of freedom

	Designing the data pipeline
	High-level overview
	Hold detection
	Expected errors
	Representing detections
	Detection threshold

	Detection tracking
	Using optical flow to associate detections
	Computing relative transformations between frames

	Detection registration
	Unrolling relative transformations
	Associating clusters with the reference wall

	Obtaining the final transformations
	Computing the transformations
	Removing outlier transformations
	Interpolating transformations
	Smoothing transformations

	Summary

	Data and implementation
	Dataset
	Hold detection
	Preparing training data
	Object detection framework
	Training the model

	Pipeline implementation
	Programming language
	Model inference
	Computer vision
	Scientific libraries

	Packaging and portability

	Evaluation and substitution study
	Performance
	Methodology
	Substitution study
	Chosen metric
	Evaluation dataset
	Experiments

	Hold detection
	Model size
	Training
	Detection threshold

	Hold tracking
	Calculating relative transformations
	Calculating absolute transformations
	Degrees of freedom
	Clustering
	A naïve method assuming precise detections
	Results

	Cleaning absolute transformations
	Smoothing absolute transformations
	Study conclusion

	Conclusion
	Attachments
	Bibliography

