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Abstrakt

V této praci studujeme slozité zobecnéné smérovaci problémy motivované robotickymi
tlohami jako je planovéani pro robotické manipuldtory, shér dat nebo osvétleni objektu
autonomnimi vzdusnymi prostiedky. Studované smérovaci problémy, ve kterych je cilem
nalézt cestu navstévujici mnozinu danych regionu, muzeme povazovat za variantu ulohy
obchodniho cestujici s okolimi (TSPN). Resenim TSPN je nejkratsi uzaviend cesta spo-
jujici vechny dand okoli (regiony). Okoli mohou mit ruzné tvary - konvexni, nekonvexni,
prekryvajici se, nepiekryvajici se, a presna feSeni TSPN jsou znama pouze pro specidlni
typy okoli. Z tohoto divodu je obtizné porovnat metody feseni zobecnénych problému
a ohodnotit kvalitu feSeni vzhledem k optimu. Proto v praci vyuzivame vypoctu dolni
a horni meze hodnoty optimalniho feSeni a stanoveni relativni odchylky od optima. V této
praci jsme navrhli zobecnénou metodu vétvi a mezi, abychom ziskali dolni a horni meze
ruznych obecnych problému, kontrétné problému obchodniho cestujiciho s dostateéné
blizkym okolim (CETSP), problému obchodniho cestujictho s okolimi na sfére (TSPNS),
a zobecnéného problému obchodniho cestujiciho s okolimi (GTSPN). Empirické vyhod-
noceni naznacuje, ze dolni meze pro CETSP vypoctené prezentovanou metodou dosahuji
podobné kvality jako stavajici meze. Pro TSPNS a GTSPN neexistuji zadné dolni meze,
proto predkladame prvni dolni meze na optimalnim feSeni téchto slozitych problému.
Dale problémy fesime metodou uceni bez ucitele rostouciho samo-organizujicitho se pole
(GSOA). GSOA poskytuje kvalitni feseni v kratkém vypocetnim case a v nékolika piipa-
dech GSOA ptekondva stavajici metody.

Klicova slova: Dolni mez, Metoda vétvi a mezi, Uceni bez ucitele, Problém obchodniho
cestujictho s dostateéné blizkymi okolimi, Problém obchodniho cestujiciho s okolimi
na sfére, Zobecnény problém obchodniho cestujictho s okolimi
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Abstract

This thesis focuses on studying complex generalized routing problems arising from prac-
tical applications in robotics, such as robotic manipulator tasks, data collection missions,
and object illumination by aerial vehicles. These problems can be considered tour con-
struction problems, and thus variants of the well-known Traveling Salesman Problem with
Neighborhoods (TSPN). The TSPN stands to determine the shortest tour visiting each
of the given neighborhoods. The neighborhoods can be of various shapes, convex or non-
convex, overlapping or non-overlapping, and exact solutions are known only for specific
cases. Hence, it is difficult to compare and evaluate new approaches to general problem
variants because of a lack of optimal solutions. Thefore, a lower and upper bounds val-
ues on the optimal solution value of a particular problem instance can be determined to
estimate a relative optimality gap. We develop the Branch-and-Bound method to obtain
the lower bound and upper bound values of various generalized routing problems, namely
the Close Enough Traveling Salesman Problem (CETSP), the Traveling Salesman Prob-
lem with Neighborhoods on a Sphere (TSPNS), and the Generalized Traveling Salesman
Problem with Neighborhoods (GTSPN). Regarding the reported empirical evaluation and
comparison of the proposed lower bounds with the existing lower bounds for a particular
problem of the CETSP, the results indicate the provided lower bounds are of similar
quality. For the TSPNS and the GTSPN, such lower bound estimates have not yet been
published in the literature (to the best of our knowledge); hence, we present the first
lower bound values on the optimal solution of the TSPNS and GTSPN. Further, we ad-
dress the studied problems by the proposed modifications of the unsupervised learning
Growing Self-Organizing Array (GSOA) to address all of the studied problems. The com-
putationally efficient GSOA is evaluated using the relative optimality gap and provides
solutions of competitive quality, and in several cases, the GSOA outperforms the existing
methods.

Keywords: Lower bounds, Branch and Bound, Unsupervised learning, Close Enough
Traveling Salesman Problem, Traveling Salesman Problem with Neighborhoods on a Sphere,
Generalized Traveling Salesman Problem with Neighborhoods
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Chapter 1
Introduction

Routing problems are combinatorial problems that can be classified into two categories:
the pathfinding problems and tour construction problems . The first category denotes plan-
ning problems to determine single-source shortest paths. The second category of the routing
problems includes a set of problems to determine a tour that visits multiple targets within
a given network. The herein studied generalizations of the well-known combinatorial routing
problem, the Traveling Salesman Problem (TSP), fall into the second category of the tour con-
struction problems. Having a set of locations, the TSP stands to determine the cost-efficient
closed path, such that it visits each of the locations. Thus, the combinatorial optimization
of the TSP is to determine the optimal sequence of visits to the given locations. Consequently,
we can study the TSP and its variants in robotics as the robot sequencing problems [2],
see Fig. 1.1(a), or with aerial vehicles [3] such as shown in Fig. 1.1(b). The robotic variant
of the TSP is referred to as the Multi-goal Path Planning (MTP) [2| because it inherently
includes a solution of the path planning problem for a robot that needs to satisfy the robot
motion constraints.

(a) Robotic manipulator for (b) An UAV in a data col- (c) Object illumination by a team of UAVs H
vision inspection . lection mission.

Figure 1.1: Examples of applications of routing problems in robotics.

Furthermore, in robotic routing, it might not be required to visit the defined target lo-
cations precisely. Instead of that, it might be beneficial to exploit the possibility to visit
the targets remotely, such as a customer visit by a utility company to read data distantly
using wireless radio-based transmission @ or to photograph a distant object with a constant
illumination [5] shown in Fig. 1.1(c). Thus, we can consider locations as regions and exploit
a degree of freedom to save the total travel cost. Such a variant of the TSP is called the TSP
with Neighborhoods (TSPN), where the neighborhoods can be represented as continuous re-
gions or as complex clustered regions motivated by tasks for robotic manipulators and
data collection missions [11}H13].

The problems with neighborhoods can be addressed by various existing heuristics and
exact methods . The heuristics vary from approximation heuristic and soft com-
puting techniques to sampling-based approaches using discretization of the continuous neigh-
borhoods. Heuristics are designed to provide solutions to particular types of problem instances
of sufficient quality with respect to the required computational time that is to be lower than
time required by the exact methods because the underlying TSP is known to be NP-hard .
It is worth noting that even an optimal solution of problems with discretized neighborhoods is



1. Introduction

a solution of the approximate subproblem, not the optimal solution of the original continuous
problem.

Optimal solutions to routing problems can be obtained by the exact methods .
Having the optimal solution to a particular problem, we can study the problem in more
detail; however, some types of robotic routing problems are so complex that it is nearly
impossible to obtain the optimal solution. Therefore, we aim to determine a tight interval
defined by the lower and upper bounds on the optimal solution value of the particular problem.
The lower and upper bounds can be utilized in the evaluation of the solvers for routing
problems. In addition, a relative optimality gap can be established for a particular solution
with the known tight value of the lower bound of the same problem instance. Several methods
to determine lower bounds of the TSP with the continuous neighborhoods can be found in
the literature .

In this thesis, we study the generalized routing problems by estimating the lower bounds
using the Branch-and-Bound (BNB) method. In particular, to the best of our knowledge,
we provide the first baseline methods for lower bound estimations of several studied prob-
lems, namely the Traveling Salesman Problem with Neighborhoods on a Sphere (TSPNS)
and the Generalized Traveling Salesman Problem with Neighborhoods (GTSPN). Moreover,
we address each of the studied problems by a relatively fast heuristic based on the unsupervised
learning method of the Growing Self-Organizing Array (GSOA) [22]. Then, the proposed and
existing solvers of the studied routing problems are empirically evaluated utilizing the estab-
lished lower bound values and compared with the state-of-the-art approaches. The estimated
lower bound values are also compared with the existing lower bounds, which are available only
for a few of the herein studied problems, in particular, the CETSP. Regarding the presented
results, in most cases, the proposed GSOA-based approaches provide competitive solutions
to the existing solvers but with lower computational requirements. Note that most of the re-
ported results have been already published in during the work on the thesis.

The thesis is organized as follows. State-of-the-art approaches to the studied generalized
routing problems are briefly described in Chapter 2. The notation, together with the specific
problem formulations, is presented in Chapter 3. The BNB method for the lower bounds
estimation of the generalized routing problems is presented in Chapter 4. The heuristic
approaches based on the GSOA are in Chapter 5. Empirical evaluation results on the proposed
GSOA-based approaches and the evaluation of the existing approaches for particular problems
based on the lower bounds are summarized in Chapter 6. Finally, the thesis is concluded in
Chapter 7.



Chapter 2

Related Work

The herein studied generalized routing problems are considered a subgroup of tour construc-
tion problems referred to as the Traveling Salesman Problem with Neighborhoods (TSPN).
The TSPN stands to determine the optimal sequence of visits to the neighborhoods together
with particular points of visits to the neighborhoods. Thus, the TSPN combines combinatorial
optimization to determine the sequence of visits with continuous optimization in determining
the points of visits. It is known the TSPN is APX-hard, unless P=NP . There are many ap-
proaches to solve the TSPN such as approximation schemata , exact methods ,
decoupled approaches , sampled-based techniques , and also neural networks
based learning methods ; each approach proposed to address the TSPN with a par-
ticular type of the neighborhoods.

The approximation schemata and Polynomial-Time Approximation Schema (PTAS) |14]
are algorithms that for a given e can approximate the problem within a factor 1 4 € in
polynomial time, and in some cases even with a constant factor . In , the authors
prove that the TSPN can be approximated within the factor 391/390. One of the very first
constant approximation schemata is proposed in [15], where the authors select a point to
represent the neighborhood and then apply a known approximation algorithm for the TSP.
The selected representative points are parallel segment units to achieve the constant fac-
tor approximation. The work has been later extended in to address the connected
neighborhoods with a similar diameter. The neighborhoods represented as disjoint unit disks
are addressed by the PTAS algorithm based on the m-guillotine structure. Further work
regarding the approximation algorithms is presented in [16], where the authors introduce
the constant factor approximation algorithm for disjoint convex neighborhoods. The authors
of address the continuous neighborhoods and the neighborhoods represented by a set of
points. The approximation algorithms solve the TSPN in polynomial time; however, the ex-
isting algorithms are specifically designed for particular neighborhood types. Besides, they
are parameter sensitive and also sensitive to the representation of the neighorboods .

The TSPN can be solved optimally by formulating the problem as Linear Programming
(LP) model. In , the authors address polygonal neighborhood and formulate the TSPN
as the Mixed Integer Linear Programming (MILP) model. Although these approaches might
provide the optimal solutions, they are computationally very demanding, and solutions are
provided in reasonable computational time only for relatively small instances.

Less computationally demanding and also less parameter sensitive are heuristic algorithms
such as decoupled approach where a sequence of visits is determined before points of visits .
There are several soft computing techniques for the TSPN. The one based on unsupervised
learning of the self-organizing maps is of our particular interest because it has been already
deployed in several robotic routing problems @

There are many variants of the TSPN based on the particular type (shape) of the neighbor-
hood. In this thesis, we focus on variants of the TSPN, where neighborhoods are represented
as disks both in the Euclidean space and on a sphere, and variants with neighborhoods repre-
sented as groups of convex shapes. The variant of the TSPN with disk-shaped neighborhoods
in the Euclidean space is known in the literature as the Close Enough TSP (CETSP) [6], and
an example of the problem instance with its solution is depicted in Fig. 2.2 The CETSP
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(a) Example of the CETSP instance. (b) Example of the 3D CETSP instance.

Figure 2.2: Example of the TSP with disk-shaped neigborhoods together with the solution (blue)
and the lower bound (red). For the instance in Fig. 2.2(a), the lower bound coincides with the solution.

has been introduced in @ motivated by collecting utility data via wireless communication.
The authors propose a method based on supernodes determination. The CETSP is further
addressed in and thoroughly studied in . The author of proposed several ap-
proaches to address the continuous neighborhoods based on the formulation of the CETSP
as the Mixed Integer Programming (MIP) model, the discretization of the continuous neigh-
borhoods, the genetic algorithm, and Steiner Zones, i.e., intersections of convex regions, that
provide the best trade-off between the solution quality and computational requirements. More-
over, the author presented a set of benchmark instances for the CETSP that support empirical
evaluation of further approaches.

Steiner Zones are further exploited in the Variable Neighborhood Search (VNS) based
approach to decrease the computational time. In , the authors address continuous
neighborhoods by determining the point of visit based on the neighboring regions. The re-
ported results show that the provided solutions are competitive with the Steiner Zones-based
approaches. However, the approach is outperformed by the Growing Self-Organizing Array
(GSOA) that originates from Self-Organizing Maps to the TSP [36]. The GSOA-based
approach is similar to ; the method simultaneously determines the sequence of visits with
the exact point of visits. A GSOA-based solution of the multidimensional CETSP is presented
in 28], see an instance example and its solution depicted in Fig. 2.2(b).

A variant of the CETSP, where the disk-shaped neighborhoods are on a sphere, is called
the TSPN on a Sphere (TSPNS), and it is motivated by the requirement of the constant
distance object illumination in reflectance transformation imaging tasks. An example of
a problem instance is depicted in Fig. 2.3(a). The TSPNS can also be addressed by a variant
of the GSOA or by the sampling-based approach, where the neighborhoods are sampled, and
the problem is transformed to the Generalized TSP (GTSP).

The GTSP can be considered a variant of the TSPN with neighborhoods strictly formed by
discrete points, or the continuous neighborhoods are sampled into sets of discrete points .
The problem stands to determine the cost-efficient path visiting one point of each set of points.
Various approaches have been proposed to address the GTSP, such as meta-heuristics or
genetic algorithms . Besides, the GTSP can be directly transformed to the Asymmetrical
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(a) Example of the TSPNS instance. (b) Example of the GTSPN instance.

Figure 2.3: Example of the TSP with various, more complex neighborhoods together with the solution
(blue) and the lower bound (red).

TSP , and thus solved as a regular TSP at the cost of increased problem size. Furthermore,
two heuristics solvers to the GTSP have been proposed relatively recently .

The last variant of the TSP studied in this thesis is a generalization of the TSPN, where
neighborhoods are considered sets of possibly overlapping and non-convex regions. The variant
called the Generalized TSPN (GTSPN) is introduced in as a combination of the GTSP
and TSPN to address limitations of the discrete target locations of the GTSP and gener-
alize single continuous sets of the TSPN. An example of the problem instance is depicted
in Fig. 2.3(b). The authors of proposed to adapt the Hybrid Random-Key Genetic Algo-
rithm (HRGKA) to address the complex GTSPN. The regions of the addressed GTSPN
are non-overlapping sets of convex possibly overlapping regions represented as polyhedrons,
ellipsoids, or a combination of both, where the particular shape of the neighborhood regions
is motivated by the real-world application. In , the GTSPN has been addressed by the un-
supervised learning of the GSOA. Besides, a decoupled approach has been proposed based on
transformation to an instance of the GTSP using centroids of the regions followed by local
optimization to find the particular points of visits to the sets.

2.1 Lower and Upper Bound Values

Regarding the existing approaches to estimate the lower and upper bound values on the opti-
mal solutions of variants of the TSP and the TSPN, the lower bounds of the TSP are addressed
by several approaches [44H46]. On the other hand, the TSPN is more complex and so far less
studied. The most studied variant of the TSPN regarding the lower bounds is the Close
Enough TSP (CETSP) [6], i.e., the TSPN with disk-shaped neighborhoods. In [20], among
several approaches to the CETSP, the author presents a quick determination of the lower
bound value on the optimal solution of the CETSP that is based on the simplification of
the problem using distances between disk-shaped neighborhoods if neighborhoods do not
overlap; otherwise, the distance is set to zero. However, the estimated lower bound values
are relatively poor and do not provide a good quality indicator. The lower and upper bound
values can be improved by solving the problem exactly. The authors of propose to formu-



2. Related Work

late the CETSP as the Mixed Integer Programming (MIP) model based on the partitioning
of the neighborhoods and derive the lower and upper bound values from the obtained solution
of MIP model.

The lower and upper bounds of are further improved in [19], where the authors pro-
pose the exact Branch-and-Bound (BNB) method with the Second-Order Cone Programming
(SOCP) formulation of the CETSP to obtain the lower and upper bound values. The BNB
method provides the optimal solution for all problem instances presented in and several
instances presented in , and thus, establishes new benchmark solutions. For the remaining
instances studied in , the method finds improved lower bound values.

Heuristic to establish the lower bound values on the optimal solution of the CETSP is
proposed in based on the graph reduction algorithm that reduces the size of the problem
instance and applies the discretization schema to partition the continuous neighborhoods.
The algorithm is further improved in using the SOCP model. Further, the discretiza-
tion schema and the SOCP-based heuristic are improved by a new adaptive method in .
A mathematical approach is adapted in to prove the tightness of the bounds for small
disk-shaped neighborhoods.

Although several approaches to the lower bound values of the CETSP have been recently
proposed, to the best of the authors’ knowledge, there are not similar results available for
the herein studied TSPNS and GTSPN. Therefore, we propose to address the lower bounds
values on the optimal solutions of these generalized routing problems together with the solu-
tion of the problems.



Chapter 3
Problem Statement

In this thesis, we study generalized routing problems, specifically the Close Enough Traveling
Salesman Problem (CETSP) with disk-shaped neighborhoods, the Traveling Salesman Prob-
lem with Neighborhoods on a Sphere (TSPNS) with disk-shaped neighborhoods, and the Gen-
eralized Traveling Salesman Problem with Neighborhoods (GTSPN) with non-overlapping sets
of convex (possibly overlapping) neighborhoods, i.e., the neighborhoods are allowed to over-
lap within the set. Each of these problems is a variant of the Traveling Salesman Problem
with Neighborhoods (TSPN) with a particular neighborhood type. Thus, we first formally
introduce the TSPN in Section 3.1. The formal definitions of the particular problems are
presented in Section 3.2, and used terms are summarized in Section 3.3.

3.1 Traveling Salesman Problem with Neighborhoods (TSPN)

The Traveling Salesman Problem with Neighborhoods (TSPN) is to find the most cost-efficient
path to given regions. Having a set of n target regions S = {S1,...,S,}, the TSPN stands
to determine the closed path visiting each of the target regions such that the cost of the path
is minimal. Thus, we need to determine a sequence of visits to the target regions, denoted as
Y = (01,...,0p), where 0; € {1,...,n} and 0; # o0; for i # j, and a set of exact points of
visits to the target regions denoted as waypoint locations P = {P,..., P,}, represented as
points P; € R? for which (4) holds. The cost of travel from the waypoint P; to the waypoint P;
is considered as the Euclidean distance between P; and P; denoted as || P; — Pj||. The TSPN
is then formulated as Problem 3.1.1.

Problem 3.1.1 (Traveling Salesman Problem with Neighborhoods (TSPN))

n—1
mi%i,rjr)lize L(Z,P)=|P,, — Pyl + z; | P, — Po || (1)
s.t.
Y= (01,...,0n), o;€{l,...,n},0;F#c;fori#j Vi,je{l,....,n} (2)
P={P,...,P.}, PeRiVie{l,...,n} (3)
P e S;, We{l,...,n} (4)

3.2 Studied Variants of the TSPN

The particular problem formulations of the CETSP, TSPNS, and GTSPN specify the formu-
lation of the TSPN depicted in Problem 3.1.1. In particular, the constraint ensuring each
waypoint P; is within the particular target region S; (4). The constraint is specified de-
pending on the particular neighborhood type; hence we present three variants of the problem
formulation.
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3.2.1 Close Enough Traveling Salesman Problem (CETSP)

The Close Enough TSP (CETSP) [6] is a variant of the TSPN with disk-shaped regions.
Having a set of n regions S = {51, ..., Sy}, each S; defined by its center C; € RY (d € {2,3} in
our case), and the corresponding radius §;, the CETSP stands to determine a sequence of visits
Y = (01,...,0n), where 0; € {1,...,n} and 0; # o for i # j, and a set of waypoint locations
P = {Py,...,P,}. Each waypoint location P; is within the §; distance from the center C;
of the corresponding target region S; (8). An instance of the CETSP with the notation is
depicted in Fig. 3.4. The CETSP can be formulated as Problem 3.2.1.

S 3 S 4
L ag’ S1

Py

=
03",

P, . o

51,

“e

S2 -, 2

Figure 3.4: An instance of the CETSP with n = 4 disk-shaped target regions & = {51, 52,53, 54}.
Each region S; (yellow) is defined by its center C; (green) and radius ¢;. The waypoints
P = {P1, P, P3, Py} with ¥ = (1,4, 3,2) form a solution (blue) of the instance.

Problem 3.2.1 (Close Enough TSP (CETSP))

n—1
mi%i’r,,glize ‘C(Z’P) = HPUn - PU'lH + z; HPU«; - PU¢+1H (5)
s.t.
Y= (01,...,0n), oi€{l,...,n}, 05#0;fori#j Vi,je{l,...,n} (6)
P={P,....,P,}, PieR:Vie{l,...,n},de{23} (7)
|Ci — Bi|| <&, Vie{l,...,n} (8)

3.2.2 Traveling Salesman Problem with Neighborhoods on a Sphere
(TSPNS)

The Traveling Salesman Problem with Neighborhoods on a Sphere (TSPNS) can be
considered a variant of the CETSP with the disk-shaped target regions on a sphere. The sphere
Q is given by its center @ € R? and radius § > 0, see Fig. 3.5. Each disk-shaped target region
S; on the sphere is considered to be a spherical cap defined by the required direction vector
¢;! and the solid angle €); that represents the allowed tolerance to the direction ¢;. The angle
between two vectors x; and x; is defined as Z(x;, x;) = arccos(x; - ;). Having a normalized

'E.g., required lighting direction in reflectance transformation imaging tasks .
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Figure 3.5: An instance of the TSPNS with n = 3 target regions S = {57, 52,53} on the sphere
Q. Each region S; (yellow) is defined by the vector denoting center ¢; (green) and solid angle Q;.
The waypoint vectors P = {py, py, P35} with ¥ = (1,3,2) form a solution (blue) of the instance.

vector x originating from @, the target region 5; is defined as a set of all points X that are
within § distance from @) under the angle €2;:

Si={X|X=Q+dx && |z| =1 && L(x,¢;) < Q;}. 9)

Then, the TSPNS stands to determine a sequence of visits ¥ = (o1,...,04), 0; € {1,...,n},
o; # oj for i # j, together with a set of waypoint locations P, where the locations are
represented by the normalized vectors X = {x1,...,x,} from Q as P, = Q + oz, |z;]| = 1,
that are within the solid angle Q; from ¢;, i.e., Z(x;,¢;) < ;. The distance between two
points on the sphere P; and P; is defined by the representing normalized vectors x; and x;
as

Ly(P;, Pj) =0 Z(x;,xj) = 0 arccos(x; - ;). (10)

The TSPNS can be formulated as Problem 3.2.2.
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Problem 3.2.2 (TSP with Neighborhoods on a Sphere (TSPNS))

n—1
minimize L(S,P) = Ly(Po,, Pry) + Y _ Ly(Po,, Pr,y,) (11)
’ i=1
s.t.
Y= (01,...,0n), o;€{l,...,n},0;#0cjfori#jVije{l,...,n} (12)
P={P,....P}, X={z,....z,}, B eR x, eR% Vie{l,...,n} (13)
P =Q+ oz, ||zi|| =1, L(wi,co,) < Qy, Vie{l,...,n} (14)

3.2.3 Generalized Traveling Salesman Problem with Neighborhoods
(GTSPN)

The Generalized Traveling Salesman Problem with Neighborhoods (GTSPN) [12] is a gen-
eralization of the TSPN, where the target regions S are represented as neighborhood sets.
Each neighborhood set S; consists of m; convex regions R; 1., k € {1,...,m;}, and each region
Rik is defined by its center Cjj € R? and the particular geometrical representation of its
shape. The regions might overlap within the particular set. The GTSPN is to determine
a sequence of visits ¥ = (01,...,04), 05 € {1,...,n}, 0; # o; for i # j, together with a set
of waypoint locations P = {Py,..., P,}, where each waypoint location P; € R? is within at
least one region R; j, of the corresponding neighborhood set S; (18). Note that, in this thesis,
we consider d = 3 and d = 7. The GTSPN can be formally defined as Problem 3.2.3. An
instance of the GTSPN together with its solution is depicted in Fig. 3.6.

S3

R2.2 SQ

Figure 3.6: An instance of the GTSPN with n = 3 target regions S = {51, Sa, S5}, each represented
as neighborhood set of m = 2 regions R. Each region R, , - polyhedron (green), ellipsoid (red), hybrid
(yellow) - is defined by its center C; ; (green) and all points satisfying the particular equations defining
the region. The waypoint vectors P = {Py, P», P3} form a solution (blue) of the instance.

10
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Problem 3.2.3 (Generalized TSP with Neighborhoods (GTSPN))

n—1
mi%i%lize L(X,P) =P, — Py, || + z; HPUi - PUiJrlH (15)
s.t.
Y= (01,...,0n), o;€{l,...,n},0;F0;fori#j Vi,je{l,...,n}, (16)
P={P,...,P.}, PieR:Vie{l,...,n},de{3,7} (17)
PieRip, Vie{l,...,n}3ke{l,...,m} (18)

In [12], regions of the neighborhood sets are approximated by linear and quadratic con-
straints and are of three shapes: polyhedron shape, ellipsoid shape, and hybrid shape, i.e.,
the combination of ellipsoid and polyhedron.

Polyhedron The polyhedron-shaped regions R; are defined by the set of [ half-spaces
represented as the matrix A; € R%! the corresponding vector b; j € R! (I =12 for d = 3,
and | = 20 for d = 7), and all points X € R? (d € {3,7}) satisfying the equation

Aika—biijO, iG{1,...,n},1€{1,...,mi}. (19)

Ellipsoid Each ellipsoid-shaped region R, is defined by the symmetric positive definite
matrix P;j, € R?, its center Cik € R? and all points X € R satisfying the equation

(X = Cip)"Pip(X —Cip) <1, ie{l,....n},1€{l,...,m}. (20)

Hybrid The hybrid-shaped neighborhoods are defined similarly as the ellipsoids by the sym-
metric positive definite matrix P; ) € R? and the center Cik € R?, but the ellipsoid is cut
of by | = 6 half-spaces (represented as the matrix A, € R% and the corresponding vector
b; . € R'). Thus both (19) and (20) holds for all points X € R%.

3.3 Used Terms

In this section, we present a description of three terms widely used in the thesis. We define
the terms regarding the lower and upper bound values. Having a solution (3, P) of the instance
of the particular routing problem consisting of the sequence of visits ¥ and the set of visits
to the targets P, we can consider it a feasible solution or optimal solution. Besides, we
further distinguish lower bound. The terms are defined as follows.

Feasible solution A solution (X,P) is a feasible solution if the path formed by ¥ and P
visits each target region S; € S.

Optimal solution A solution (3,7P) is the optimal solution if it is feasible solution with
L(3,P) such that L(X,P) <UB(X3,P), where UB(X, P) is the upper bound value on (X, P),
and there is no other feasible solution (¥, P’) with smaller length than (X, P), i.e., L(¥X', P) >
L(X,P).

Lower bound The tight lower bound value £B(X,P) on the optimal solution (3,P) is
a value such that LB(X,P) < L(X,P) and VLB (X, P) : LB (3, P) < LB(XZ, P).

11



Chapter 4
Lower Bounds on the Solutions of
Generalized Routing Problems

The proposed approach in estimating the lower bound values of generalized routing problems
is based on the Branch-and-Bound (BNB) algorithm. The BNB is a well-known combinato-
rial method to solve NP-hard combinatorial problems being adapted to particular problems.
The core of the method is problem independent, and therefore, we present a brief overview
of the BNB method first. Then, we introduce the proposed BNB method based on [19]
to address herein studied generalized routing problems, namely the Close Enough Travel-
ing Salesman Problem (CETSP), the Traveling Salesman Problem with Neighborhoods on
a Sphere (TSPNS), and the Generalized Traveling Salesman Problem with Neighborhoods
(GTSPN), to estimate lower bounds on solutions of these problems.

The BNB method is used to solve a combinatorial problem represented as Linear Pro-
gramming (LP) model. The model comprises of the objective function f(x) and constraints
g(x), where x = (z1,...,24) denotes a set of variables. A solution of the model is obtained
by assignment of values to variables & = (z1,...,x4), such that the objective function f(x)
is minimized (or maximized) and all constraints g(x) are satisfied. However, finding an exact
solution to the problem by assigning all variables is computationally demanding. Therefore,
the BNB method can be employed for problems, for which we can derive a set of subproblems
of the original problem. Subproblems can be are created by assigning a value to the arbitrary
variable of & and leaving the rest of the values to be assigned in further steps of the method.
The subproblems and their solutions are referred to as the partial problems and partial solu-
tions; the set of partial problems forms a solution space of the method and is represented as
a tree graph. Thus, each partial problem with its solution can be represented as a tree node,
where leaves contain feasible solutions to the problem. Since the solution space is represented
as a tree graph, it can be searched by a graph search algorithm such as the Depth-First Search
(DFS), the Breadth-First Search (BFS), or the Best-First Search (BeFS).

However, the searched solution space is large, and searching it can be computationally
demanding. Moreover, searching infeasible subtrees of the solution space is undesirable.
Hence two critical components, branching and bounding, are included in the method and
form the BNB algorithm. The first critical part of the BNB is to create the child nodes of
the most suitable nodes of the solution space, i.e., branch the nodes according to branch-
ing rule. The branching rule is a heuristic that takes as an input the partial problem and
the partial solution associated with the current node and determines an arbitrary variable and
a value we assign to the variable. Thus a new partial solution is created, and it is assigned
to the child node of the current node. For the bounding part of the BNB, the solution values
of each of the feasible partial problems of the solution space (partial solutions in leaves) are
known, thus provide so far the best solution value. We can utilize the current best solution
value to bound the other partial solutions by disregarding branches of the solution space that
are not suitable for expansion.

Various heuristics and components can further modify the BNB to address the particular
problems . In the following section, we describe the proposed BNB to address the herein
studied routing problems.

12
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4.1 Proposed BNB-based Method

In the proposed BNB-based method, we modify the BNB approach to address herein studied
routing problems, namely the CETSP, the TSPNS, and the GTSPN. We propose the general
branching rule and the estimation technique to speed up the algorithm since, in general,
the routing problems can be complex and consists of large instances. We utilize the Second-
Order Cone Programming (SOCP) [19], Non-Linear Programming (NLP), and Mixed Integer
Quadratically Constrained Programming (MIQCP) in the solution of the partial problems of
the particular studied generalized routing problems. An overview of the proposed method is
depicted in Algorithm 1.

Algorithm 1: Proposed BNB-based solver for generalized routing problems

Input: S = {51,...,S,} — set of neighborhood sets

Input: .« — timeout

Output: £B — lower bound value on the solution (X, P)
UB — upper bound value on the solution (X, P)

1 Function compute_bounds (X'):

2 LB + compute_lower_bound(X’)
3 UB' «+ compute_upper_bound (')
4 | return LB, UB’

» Initialization

uroot.Z — select,root(é‘) // select three regions forming path of the maximal length
root - LB, froot-UB +— compute_bounds(firoot-X)

Hroot-€xact <— true

LBUB < iroos. LB, firoos UB

O [/ffroot]

© 0w N o »

» Solution Loop
10 while ¢,,,« is not reached do
11 | p + dequeue(O)
12 | if not p.exact then

13 M.[:B, /L.UB — compute,bounds(,u.E) // compute exact solution of u
14 UB + minimum(UB, u.UB)

15 p.exact < true

16 O + push(O, p)

17 Continue

18 LB+ maximum(ﬁB,u.EB) // update lower bound of input problem
19 | B <+ compute_not_covered(u)

20 S* argmaxsjeB ||SJ — (/.L.Z, /.LP)H // branching rule

21 | if is_.empty(B) then
22 Lreturn LB,UB

23 | for kin 1:|p.X| do

24 Pehild- X 4= (07, oo 0y S0y Oy 1s -+ UI/(M-Z)\)

25 Lhenild - LB estimate,lower,bounds(uchﬂd.E) // estimate solution of u
26 lehild-exact <— false

27 O + push((’),uchﬂd) // add pchilq with estimated solution to O

28 O « ﬁlter((’),v,u’ : ,u’.EB < UB) // filter open list based on lower bounds of nodes in list
29 return LB, UB

13
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X LA > ;{m :
(a) Detail of B; for the CETSP. (b) Detail of B; for the TSPNS. (c) Detail of B; for the GTSPN.

Figure 4.7: The bounding box B; of the target region S; is determined as the most lower-left point
X! and the most upper-right point X}*. Special case is for the GTSPN (Fig. 4.7(c)), where the points
are selected from all bounding boxes of particular regions R; , 1 < k < m,, as X%b = ming—1, . m, lebk
and XZ‘-lb =milg—1,. m, X;J’E.

In the proposed method, we search the solution space M represented as a tree, where
each node u consists of the partial problem with a limited set of regions &’ C S represented
by the sequence of regions, the solution of the partial problem (u.X, 4. P) obtained by solving
the programming model (SOCP, NLP, or MIQCP), and the lower bound u.LB and upper
bound p.UB values, whereas p.LB is the exact solution value of the partial problem (u.3, 1. P),
and p.UB is the solution value of a feasible solution of the original problem constructed from
the partial solution. The solution space M is initialized by creating a root node fiyoor. Then
M is searched by the Best-First Search (BeFS) utilizing the open list O, where the nodes are
ordered by the LB value associated with the particular node.

The root node proot is created by selecting three target regions such that the length
of the solution of the partial problem formed by these regions is maximal over all possible
combinations. Having the partial problem and its solution, we can create the root node and
insert it into the open list O.

Once the solution space M is initialized, the method iteratively dequeues the open list O.
For each dequeued node p, the method determines a set of regions B such that the regions of
B are not covered by the partial solution (u.%, p.P) (Line 19 of Algorithm 1). From the set B,
a region S* is selected to be used for the branching of the node u based on the branching rule.
The branching rule is a heuristic that selects the most remote region S* from the solution,
Le., §* = argmaxg ¢p [|S; — (1.3, . P)||. In the branching, the method creates child nodes of
p by inserting S* (its index label S, ) at each position of the sequence X, thus |p.X| new
child nodes pcphilq are created. For each new sequence fichig.2, we determine the lower bound
value pichilg-LB, i.e., given pcpig.> of the partial problem, we determine picpig.P, such that
the length of the path formed by (pichilq-2, fiehild-P) is minimal, by solving the programming
model. The length of the obtained path is the desired lower bound value on the solution of
the original problem. Then, the child node pchjg is added to the open list @. The method
iteratively dequeues O until either the optimal solution is found or the predefined timeout
tmax 18 reached.

Solving the partial problems of nodes can be potentially computationally demanding; thus,
we first estimate the lower bound value using the bounding boxes of the target regions (Line
27 of Algorithm 1). The exact solution value of the partial problem is determined right after
the node is dequeued from O (Line 13 of Algorithm 1). The bounding boxes utilized in
the estimation are constructed from the most lower-left point X}b and the most upper-right
point Xiub of the target regions S; as depicted in Fig. 4.7. Having leb and Xiub, we can
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formulate the partial problem for estimation as the model of the SOCP Model 4.1.1.

Model 4.1.1 (Second-Order Cone Programming (SOCP) for Solution Estimation)

ﬁ
minimize Z fi (21)
N i=1
s.t.
f2 > w! w; Vie{l,...,n} (22)
W; = Tjp1 — T; V’iE{l,...,ﬁ—l} (23)
zlP < x; <P Vie{l,...,n} (24)

Model 4.1.1 is to determine a set of n < n waypoint variables x; such that, the path
formed by x; is of the minimal length. The objective function (21) is thus minimized, while
the constraints (22) to (24) are satisfied. The variables f € R™, f; € R, and = € R™? are
continuous; the variable f represents the length between two successive waypoint variables,
and the variable & denotes the set of the waypoint locations. The variable w € R™? ig
auxiliary and denotes the difference in coordinates of the two following waypoint variables (23).
The partial solution is then estimated as the set of waypoints, where each waypoint variable
x; is within the bounding box B; represented by the variables w%b and :I:;‘b corresponding
to points X}b and Xiub of the particular S; (24). The value of x; represents the waypoint
location P;.

The exact solution value of the partial problem of a node is determined after the node
is dequeued (Line 13 of Algorithm 1). The exact solution value of the partial problem is
considered as a lower bound value of the original problem (Line 18 of Algorithm 1), and it is
computed by solving the SOCP, NLP, and MIQCP model formulated to represent the partial
problem, for the solution of the CETSP, TSPNS, and GTSPN, respectively. Together with
the lower bound value, the upper bound value is computed as a value of a feasible solution
created by iteratively adding regions not covered by the exact solution of the node to the so-
lution at the most suitable position of (p.X, u.P) (Line 3 of Algorithm 1). The description of
the particular models is presented in Sections 4.1.1] to 4.1.3.

4.1.1 Second-Order Cone Programming Model

The Second-Order Cone Programming (SOCP) model utilized for the CETSP is based on
the SOCP model presented in . The SOCP is a convex optimization model with linear
objective function and affine constraints. It is thus suitable for the formulation of the CETSP
as Problem 3.2.1. The utilized model is formulated in Model 4.1.2.

Model 4.1.2 (Second-Order Cone Program (SOCP))

minimize > f (25)
=1
s.t.
2> w! w; Vie{l,...,n} (26)
Wi = Tiy1 — T Vie{l,...,n—1} (27)
v; - v; <67 Vie{l,...,n} (28)
v, =¢; — T Vie{l,...,n} (29)
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Model 4.1.2 is to determine a set of n < n waypoint variables x; that form the short-
est path visiting 7 disk-shape regions &’. Hence, the model aims to minimize the objective
function (25), while the constraints (26) to (29) are satisfied. The model consists of the con-
tinuous variable f € R, f; € R, that represents the length of the path between two successive
waypoint variables, and the continuous variable & € R™% representing the waypoint locations.
Further, the model contains four constraints that need to be satisfied to obtain a feasible
solution for the model. The constraints (26) and (27) denote the length of the path between
two consecutive waypoint locations as the difference in coordinates using the auxilary variable
w € R™9; the constraints (28) and (29) with the auxilary variable v € R™¢ ensure the value
of the waypoint variable x; is within the §; distance from the center C; of the corresponding
region S;, where C; is represented as variable c;.

4.1.2 Non-Linear Programming Model

The Non-Linear Programming (NLP) model is utilized in solution the TSPNS, where the disk-
shaped regions are on the sphere @. The NLP is an optimization model with non-linear ob-
jective function or constraints. We utilize Model 4.1.3|in the solution of the TSPNS as Prob-
lem 3.2.2.

Model 4.1.3 (Non-Linear Program (NLP))
7

minimize > fi (30)

i=1
s.t.

fi > arccos(w;) vie{l,...,n} (31)
—l<w <1 Vie{l,... n} (32)
Wi = Xj - Tit1 Vie{l,...,n—1} (33)
v = ¢C; - T; Vie{l,...,n} (34)
arccos(v;) < Vie{l,...,n} (35)
—1<v <1 Vie{l,...,n} (36)
]| =1 Vie{l,...,a} (37)

Model 4.1.3 is to determine a set of n < m waypoint variables x;, such that the path
connecting these points is the shortest. Thus the objective function (30) is minimized while
the constraints (31) to (37) are met. The model consists of the continuous variables f € R",
fi € R, that denotes the length of the arc between two consecutive variables, the auxiliary vari-
ables w € R™, w; € R, and v € R”, v; € R, and the continuous variable & € R corresponding
to the waypoint locations P. The model also contains seven constraints; the constraints (31)
to (33) represent the minimization of the length of the arc between two consecutive waypoint
variables. The constraints (34) to (36) express that the waypoint vector is within €; angle
from the center ¢; of the region S;. Finally, (37) expresses the constraints on the variable .

4.1.3 Mixed Integer Quadratically Constrained Programming Model

The Mixed Integer Quadratically Constrained Program (MIQCP) model is utilized for the for-
mulation of the GTSPN. The MIQCP is an optimization model with a linear objective func-
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tion and at least one quadratic constraint. The utilized Model 4.1.4 follows the formulation
of Problem 3.2.3.

Model 4.1.4 (Mixed Integer Quadratically Constrained Program (MIQCP))
7

minimize Z fi (38)
=1
s.t.

2> w! w; Vie{l,...,a} (39
W; = Tjy1 — T Vie{l,...,n—1} (40)
(i —cip) Pip(xi—cig) <1+ My By  Vie{l,....,n},Vke{l,....,m;}  (41)
Ai,kxi_bi,k < Mz‘,sz',k Vi € {1,...,%}, Vk € {1,...,mi} (42)
> Bip=1 Vie{l,...,n}  (43)
k=1

B, €{0,1} ie{l,...,a}, Vke {l,...,m;} (44)

The MIQCP is to determine a set of n < n waypoint variables x;, such that the path
formed by the value of waypoint variables has the minimal length. Thus, the model is to
minimize function (38), while the constraints (39) to (44) are satisfied. Model 4.1.4 consists
of two continuous variables f € R™, f; € R, and & € R™% corresponding to the waypoint loca-
tion P, the binary variable B € R™™, the auxilary variable w € R™?, and several constraints.
The constraint (39) denotes the length of the path between two successive neighborhood sets
by the difference in coordinates of waypoint locations is minimized using variable w (40). We
need to determine which region R, € S; of m; regions is visited, and therefore, we model it
as a selection of one of the constraints that represent the particular region, i.e., either (41) or
(42) is selected. We introduce the binary variable B together with the large enough variable
M € R™™ to ensure only one of these constraints (41) and (42) that each corresponds to
the particular region is in effect. Then, the variables B and M allow for turning off and on
constraints so that only one of m; constraints is “activated” per each set .5;.

The variable M needs to be large enough (the so called big M) so that all infeasible
solutions of Model 4.1.4 are discarded. Hence, M, j, is determined for each region R, ;, of each
set S; € § as the maximal distance between the region R;j and its bounding box B, i.e.,
M; = maxg, ,es, [|Rix — Birll, where ||R;x — Bl is the distance between the region and
its bounding box. The bounding box B is determined using the MIQCP model with (19)
and (20) as the particular constraints and minimization (or maximization) of the particular
bounding box coordinate x;, j € {1,...,d}, as the objective function. The bounding box B
is determined from the lower-left point X' and the upper-right point X',
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Chapter 5
GSOA-based Heuristics to Generalized
Routing Problems

The herein studied heuristics solutions of the generalized routing problems are based on
the unsupervised learning heuristic approach of the Growing Self-Organizing Array (GSOA) [22].
The GSOA originating from the Self-Organizing Map is adapted to address various
routing problems such as the three-dimensional Close Enough Traveling Salesman Problem
(CETSP) [28§], the Traveling Salesman Problem with Neighborhoods on a Sphere (TSPNS) [10],
and the Generalized Traveling Salesman Problem with Neighborhoods (GTSPN) [23]. To
make the text of this thesis self-contained, we first describe the GSOA approach and then
present particular modifications addressing the studied problems.

Algorithm 2: GSOA-based solver for generalized routing problems
Input: S = {51,...,5,} — set of target regions
Parameters : ¢,,,, — the number of learning epochs, ¢, = 150
o — learning gate, o = 10
« — gain decreasing rate, a = 0.0005
1 — learning rate, = 0.6
Output: (X, P) — solution represented as sequence of visits ¥ and correspoding waypoints P

» Initialization

1¢c+0 // set the learning epoch counter
2 N+ {Vl} // v1.N is randomly selected location within bounding box of S
3 Cazx < min(cmw, 1/&) // avoid negative o

» Learning Loop
4 while ¢ < ¢4, and termination cond. is not satisfied do
5 | foreach S; in a random permutation of S do

6 (v*.N,v*.P,vj,vji1) < select_winner_node(N, S;)

7 N < insert_node(N, v*.N, vj, vj41)

8 N « adapt(N, p, o, v*, v*.P)

9 c+—c+1 // update the epoch counter
10 | N+ Remove all nodes from the previous epoch ¢ — 1
11 (o (1 — ca) oz // decrease the learning gain

12 | (X', P") « Traverse N, determine ', and P’ using waypoints associated with nodes
13 | ife=1or L(X,P') < L(X,P) then
14 L(E,'P) — (Z','Pl) // update the best solution found so far

15 return (3, P)

The GSOA is a growing array of nodes N' = {v1,...,vy} that is iteratively adapted
towards the target regions S in a finite number of learning epochs. During each epoch,
the number of nodes M is varying since new nodes are added to the array, and the nodes
added in the previous epoch are removed. Each node v; € M is associated with its location
vi.N € R? in the input space, the region v;.8; € § it covers, and the waypoint location
vj.P € v;.5; defining the point of visit to the region. Thus, the array A defines a sequence
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5. GSOA-based Heuristics to Generalized Routing Problems

Figure 5.8: Determination of the new winner node v* using shortest distance of the path (formed
from the array N) to the region S;. The new winner node v* is determined together with the node
location v*.N and the waypoint location v*.P using the shortest distance between N, which forms
a sequence of straight line segments (v}, v;41), and the particular region S;. The shortest distance can
be quickly determined in 2D, but it needs to be modified for multidimensional cases studied in this
thesis.

of visits ¥ to the target regions S, and by traversing the array A, the waypoint locations
associated with the nodes form the closed path of the waypoints P. The array N converges
to a stable state in which locations of nodes correspond to locations of their waypoints
in the finite number of learning epochs. The GSOA for the generalized routing problems is
summarized in Algorithm 2, and the overview of the method follows.

The GSOA method starts by initialization of the array A/. The array A is initialized with
one node vy, where the location of the node is randomly set within the bounding box of all
target regions §. The learning parameters: the gain decreasing rate «, the learning rate p,
and the learning gain o are set to initial values based on , and the maximal number
of epochs cpax 18 set according to the gain decreasing rate « to avoid negative learning gain
o (Line 3 of Algorithm 2).

Then, the method iteratively adapts the array N to the target regions S, until the number
of epochs cpax is reached or the solution is stable. In each epoch, the method iterates over
target regions (randomly to avoid local extremes) and for each target region S; € S deter-
mines a new winner node v* in the function select_winner node (Line 6 of Algorithm 2).
The winner node v* is determined together with the corresponding waypoint location v*.P
as a new node of the path represented by the array N with the closest distance to the target
regions S;. The node of the array v*.N (whereas the array is defined as the path of con-
secutively connected node locations) and the waypoint location v*.P are determined during
the examination of the closest distance between the path and region. The waypoint is either
on the boundary of the target region S; or is identical to v*.N if the path intersects the region
Si. The determination of v*.IN and v*.P depends on the particular type of the region; the de-
scription of the proposed winner node selections is described in Sections 5.1 to 5.3 for regions
defined as disks (CETSP), disk-shaped regions on a sphere (TSPNS), and the regions defined
as neighborhood sets (GTSPN), respectively. The new winner node v* is inserted into the ar-
ray N at position v*.N between nodes v;. and v, 1, since the array is considered as a sequence
of consecutively connected nodes (vj,vj41), 1 < j < M and vp41 = v1, see Fig. 5.8.

After the winner node is determined, the array A with M nodes is adapted towards
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5. GSOA-based Heuristics to Generalized Routing Problems

(a) Locations of winner node v*.N and its neighbor- (b) Locations of winner node v*.N and its neighboring
ing nodes before adaptation towards the waypoint lo- nodes adapted towards the waypoint location v*.P.
cation v™.P.

Figure 5.9: Visualization of the GSOA adaptation. The location of the winner node v*.IN and its
neighboring nodes are adapted towards the determined waypoint location v*.P.

the regions S; by adapting the new winner node v* and its neighboring nodes towards v*.P.
The adapted neighboring nodes are within d’ < 0.2M distance from v* in the array, and their
locations are updated according to

v.N < v.N + pf(o,d)v*.P —v.N), (45)

where the neighboring function is defined as

a2
f(o,d) =exp Jd2 . (46)

The adaptation is visualized in Fig. 5.9.

After the adaptation to all target regions, all nodes from the previous epoch are removed,
and only nodes added in the current epoch are preserved. Hence the array N contains M = n
nodes, each associated with a target region and waypoint location, and thus a solution can be
extracted from A after each learning epoch. The selection of the winner nodes and adaptation
are repeated until cyax is reached or the solution is stable, i.e, nodes are negligibly close to
their waypoint locations, ||(v.N,v.P)|| <107 for all v € N/ . The final solution is found
as the best solution from the performed epochs.

5.1 Winner Selection for the 3D CETSP

The deployment of the GSOA in the solution of the 2D CETSP (d = 2) is presented in [22]
and the extension to the 3D (d = 3) is relatively straightforward. Therefore, we present only
an overview of select_winner node method from .

The winner node v* is determined using the array A with M nodes defined as path of
straight line segments between two consecutive nodes (vj,vj11), 1 < j < M and var41 = v1.
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5. GSOA-based Heuristics to Generalized Routing Problems

(a) Determination of the waypoint v*.P in (b) Determination of the waypoint v*.P
case when v*.N is outside region S;. in case v*.N is within region S;, hence
v*.P = v*.N.

Figure 5.10: Visualization of the proposed determination of the winner node location v*.N and
the associated waypoint v*.P at which the disk-shaped region 5; is visited. The node location v*.N
corresponding to the closest point of the line segment (v;, vj41) to S; is determined as the intersection
of the perpendicular segment consisting of C; and the determined v*.N with (v, vj41). The way-
point location is determined as intersection of the region border and (v*.P,C;) (Fig. 5.10(a)); how-
ever, if (v;, v;41) intersects S;, the waypoint locations is the same as the node location v*.N within
S; (Fig. 5.10(b)).

We iterate over the segments and determine the node location v*.N as the closest point of
the j-th segment (vj,vj41) to the disk-shaped region S; defined by its center C; and radius
0;, and we select the segment with the minimal distance to C; (47).

v*.N = argmin
N'e(vjvj+1)

e (47)

With the node location v*. N, we determine the corresponding location v*. P, where we distin-
guish two cases, see Fig. 5.10. In the first case shown in Fig. 5.10(a), the node location v*.N is
outside the d;-neighborhood of C;. The corresponding waypoint location v*.P is determined
on the border of the disk-shaped region with distance ¢; (and some small constant €) from C;
as

0; — €

(48)

In the second case, the node location v*.IN is within the d;-neighborhood from C;, and thus,
v*.P = v*.N, see Fig. 5.10(Db).

5.2  Winner Selection for the TSPNS

The deployment of the GSOA in the solution of the TSPNS is presented in [10]. Since the disk-
shaped regions are on the sphere, we need a different approach to determine the winner
node than the one used in . We consider the array A as a path of arcs between
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Figure 5.11: Proposed determination of winner node location vector v*.n and the associated way-
point vector v*.p at which the region S; is visited. The node location v*.n corresponds to the closest
vector of the arc (v, vj41) to S; and is determined as the cross product of the vectors v; and wu;.
The vector v*.p is derived from the rotation of v*.n to the close neighborhood of ¢;.

two consecutive nodes (v;,vj41), 1 < j < M and vy = vi, the locations represented
as vectors, and the measured distance as distance on the sphere. Detailed visualization of
the determination of the winner node v* for the target region S; is depicted in Fig. 5.11 and
it as follows.

First, we determine the vector w; that is perpendicular to the plane formed by the arc
between two vectors corresponding to the node locations (vj.m,vj41.1m) as the cross product
of two vectors

U; =Vim X Vi .n. (49)

After that, we determine the vector v; as perpendicular vector to the plane formed by the vec-
tor u; and ¢; (the vector defining the target region S;). The vector v; is determined as cross
product of two vectors

V; = C; X Uj;. (50)

Then, we rotate the vector v; to the plane (v;.n,v;;1.n) represented as u; (49) to determine
the node vector v*.n
v n =wv; X u;. (51)

Now, to determine the waypoint vector v*.p, we need to rotate v*.n so that Z(¢;,v*.p) < Q;
holds, i.e., the v*.p is determined as

/

p

= [k (52)

v'.p
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where

, {ci +tanQ; (v . x ¢;) x ¢;, if L(e;, v .m) > Q,

r*.n otherwise.

5.3 Winner Selection for the GTSPN

In the deployment of the GSOA in the solution of the GTSPN presented in , we consider
non-overlapping neighborhood sets with 3D and 7D convex possibly overlapping regions (d €
{3,7}) . Thus, we cannot deploy the winner node selection as presented in and Section 5.1.
We consider the array A as a sequence of straight line segments of two consecutive nodes
(vj,vj41), 1 <j < M and vpr41 = vi. Then, we determine the winner node v* for the target
region S; by exploiting the convexity of regions of sets and the centroids of regions depicted
in Fig. 5.12 as follows.

Rik
oCi
....... vj
(a) Determination of winner node location v*.N (b) Determination of winner node location v*.N
and corresponding waypoint location v*.P for and corresponding waypoint location v*.P for
ellipsoid-shaped region R; k. polyhedron-shaped region R; k.

Figure 5.12: Visualization of the proposed determination of the winner node location v*.N and
the associated waypoint v*.P at which the neighborhood set S; is visited. The node location v*.N
corresponding to the closest point of the line segment (v;, vj41) to S; is determined as the intersection
of the perpendicular segment consisting of C; and the determined v*.N to (v;, v;41). The visualization
is shown in 2D, but the principle also holds for 3D and 7D regions .

First, we determine the shortest paths from the center of each particular region R;; € S;
to the array N. From these paths, we select the shortest path with the corresponding region

VN, k = arg min HN/_Ci,k’

1<k <my,N'€(vj,vj+1)

. (54)

The waypoint locations are then determined based on the type of the region. Having
the ellipsoid-shaped region, we denote the left side of equation of the ellipsoid (20) A, i.e.,
A= (X =Cip)'P;x(X —Ciyg)). If A <1, then v*.N is inside the ellipsoid, and thus v*.P =
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v*.N. Otherwise, we determine the point v*.P as point on the segment (v*.N,C; ) with
the distance 1/ from the ellipsoid center C; j. It is ensured that the point is inside the ellipsoid
since in this case A > 1, and thus, + < 1. For polyhedron regions Rir € Si, we utilize
the definition of the polyhedra as a set of half-spaces. Thus, we determine the waypoint as
the closest intersection point to the segment (v}, vj11). The intersection points are intersection
of (v*.N,C; ) and half-spaces of the polyhedron. For hybrid regions, both the methods are
combined, and the waypoint v*.P is the closest point to v*.N that satisfies (19) and (20).
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Chapter 6
Results

In this chapter, we present and discuss empirical evaluation and results of the proposed BNB
method and the GSOA-based methods for the generalized routing problems. Since we study
several routing problems with various neighborhoods: the Close Enough Traveling Sales-
man Problem (CETSP), the Traveling Salesman Problem with Neighborhoods on a Sphere
(TSPNS), and the Generalized Traveling Salesman Problem with Neighborhoods (GTSPN),
the problems are evaluated in particular sections.

The obtained lower bound values are compared with the existing lower bound values;
however, in the literature, the lower bounds are reported only for CETSP in 2D and 3D, and
thus, we compare the proposed lower bounds only for CETSP with lower bounds obtained by
the Branch-and-Bound , the simplification method by Mennell , and the adaptive algo-
rithm (Ib/ub)Alg [27]. We report the first-ever obtained lower bounds values for the TSPNS
and GTSPN.

The proposed GSOA-based methods are compared with the existing approaches to each
particular problem; the solutions of the CETSP are compared with solutions obtained by
the Steiner-Zone-based method SZ2 and the adaptive algorithm (Ib/ub)Alg [27]. For
the TSPNS, the baseline methods are the TSPN-LKH and TSPN-GLKH . In the case of
the GTSPN, we consider the GTSPN solvers HRGKA and Centroid-GTSP™ [23].

The proposed BNB-based method is implemented in Julia 1.5.3 and further re-
ferred to as the BNB. The BNB solver is deterministic and executed only once with the pre-
defined timeout tmax. The solver utilizes JuMP v0.21.6 , the domain-specific modeling
language for modeling the proposed mathematical models listed in Model 4.1.2, Model 4.1.3,
and Model 4.1.4. The models are solved using two mathematical solvers, the CPLEX v0.6.6
solver for the SOCP and MIQCP models, and the Ipopt v.0.6.5 solver for the NLP
model. The GSOA-based methods are implemented in C++ and denoted as GSOA. Since
the GSOA is randomized, each examined instance is solved for multiple trials. The computa-
tional environment consists of the Intel Xeon Scalable Gold 6146.

Evaluation of the solvers is based on the reference solution value L,.; for each particular
problem instance obtained as the best solution value among all evaluated solvers. The solution
value £ obtained by the particular solver is considered as the best solution value among
the performed trials. The reported lower and upper bounds are obtained by the BNB solver
and denoted as LB and UB, respectively. The quality of solutions provided by a particular
solver is measured as the percentage deviation of £ to L,.¢ denoted %PDB and computed as

L—-L

%PDB = .ciff 100% . (55)
re

The solution robustness is measured as the percentage deviation of the mean solution value
Linean t0 Lyey denoted %PDM and determined as

L

Emean - ~re
%PDM = —mean — =rel 100% (56)
['ref

where the mean solution value L4, is obtained as an average solution value among the per-
formed trials by the particular solver. Moreover, we report solution values as the relative gap
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%GAP for the particular problem instance and solver computed as

%GAP = £- LB

100%. (57)

Besides, we utilize the five-number summary to describe the obtained results with the mini-
mum value, the first quartile, the median value, the third quartile, and the maximum value.
A summary of the evaluation results is presented in the following sections.

6.1 Lower Bounds

The presented lower bound values LB and the upper bound values U B are obtained by the pro-
posed BNB-based solver that is executed for a single trial since the solver is deterministic and
with the maximal computation time %, set to 16 hours. The lower and upper bounds are
established for instances of the CETSP, TSPNS, and GTSPN and are described in detail in
the following Sections 6.2 to 6.4. Since no lower bounds are reported for the TSPNS and GT-
SPN, we only compare the obtained lower bounds for the CETSP with the lower bounds for
the CETSP reported in . The results are listed in Table A.1, Table A.2, Table A.3,
Table A.4, Table A.5, and Table A.6. The obtained lower bounds for TSPNS and GTSPN
are reported in Table A.7.

CETSP The results for the CETSP reported in Table A.1, Table A.2, and Table A.3 indicate
that the proposed BNB solver provides lower bounds values competitive to the Branch-and-
Bound . In several cases, the proposed BNB provides better lower bound values than
(Ib/ub)Alg, albeit the BNB solver is significantly more computationally demanding. Regard-
ing the varying results between the similar approaches of the Branch-and-Bound and proposed
BNB solver, both solvers are based on the BNB method; however, the Branch-and-Bound
utilizes several branching rules specifically designed for the CETSP and uses feasible solution
values obtained by as the first UB estimates for particular problem instances. In the pro-
posed BNB, we utilize only one general branching rule, and the first B is obtained as a feasible
solution to the first partial solution. Besides, the proposed BNB utilizes the bounding box
based estimation of the partial solutions.

3D CETSP The lower bounds for the CETSP in the 3D are reported only in ; hence
the comparison in Table A.4, Table A.5, and Table |A.6 is between the proposed BNB solver
and the Branch-and-Bound , whereas the most of the instances for Varied ratio are
not reported in . Similarly to the established lower bounds for the CETSP in the 2D,
the lower bounds estimated by the proposed BNB are competitive to values reported in .
For the Varied ratio instances, the proposed BNB provides the first lower bounds values for
the most of the problem instances.

TSPNS and GTSPN The lower bounds values of the TSPNS and GTSPN instances are
depicted in Table A.7. The lower bounds for the TSPNS are tight for 13 problem instances. On
the other hand, the lower bound values for the GTSPN are relatively weak since the problem
is complex and computationally demanding to solve. However, no other lower bounds are
reported in the literature, and therefore, the values obtained by the proposed BNB solver are
used in the evaluation of heuristic solutions to these problems.
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6.2 Close Enough TSP

Overall, 62 problem instances of the CETSP in 2D and 3D have been examined. The in-
stances can be divided into three groups.

e Overlap ratios - The group consists of 21 problem instances with specified overlap
ratio from {0.02,0.10,0.30}. An example of instances is shown in Fig. 6.13.

(a) Problem 1in318-0r0.02: (b) Problem 1in310-0r0.02:
LB =1902.99, UB = 3652.78, %WGAP = 47.90 LB =1902.80, UB = 3943.35, %GAP = 51.72

Figure 6.13: Problem instances from the category Overlap ratios of the CETSP in the 2D and 3D
with solution and lower bound obtained by the BNB. The solution is depicted in blue and the lower
bound in red.

e Varied overlap ratios - The group of 27 problem instances with varied overlap ratio,
where all locations of particular instance are associated with the same radius §;. An
example of instances is depicted in Fig. 6.14.

o Arbitrary radius - The group of 14 problem instances, where every location of the par-
ticular instance is associated with different arbitrary radius §;. An example of instances
is depicted in Fig. 6.15.

Performance in 2D instances of the CETSP The performance results of the examined
solvers in the solution of 2D instances of the CETSP are reported in Table A.8, Table A.9, and
Table A.10. In particular, we examined solutions obtained by the Steiner-Zone-based method
S72 , the adaptive algorithm (Ib/ub)Alg , and the unsupervised learning method of
the GSOA . The implementation available for has been utilized to obtained the results
for the 2D CETSP instead of using the results reported in . It is because we were unable to
replicate therein reported results, and we discovered that few instances were not as originally
proposed in [20].? The solution optimality is measured by %GAP (57) utilizing £B and UB
obtained by the proposed BNB solver executed for a single trial, since it is deterministic, with

2Here, we would like to acknowledge a discussion with our collegue Miroslav Kulich, who pointed out that
there might be some mistakes in few instances reported in [22].
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(a) Problem bubbles6: (b) Problem rotatingDiamondsé4:
LB =945.30, UB = 1817.29, %GAP = 47.98 LB =568.48, UB = 842.19, %GAP = 32.50

Figure 6.14: Problem instances from the category Varied ratios of the CETSP in the 2D and 3D
with solution and lower bound obtained by the BNB. The solution is depicted in blue and the lower
bound in red.

(a) Problem team3_-300rdmRad: (b) Problem 1in318rdmRad:
LB =367.11, UB = 404.77, %GAP = 9.3 LB =1670.27, UB = 2557.20, %GAP = 34.68

Figure 6.15: Problem instances from the category Arbitrary radius of the CETSP in the 2D and 3D
with solution and lower bound obtained by the BNB. The solution is depicted in blue and the lower
bound in red.
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the timeout ¢ is set to 16 hours. Comparing the reported results of the examined methods,
the (Ib/ub)Alg provides solutions of better quality than the other two solvers. Besides, it
provides 7 optimal solutions and 11 close to the optimal solutions. However, (Ib/ub)Alg is
computationally demanding, and both SZ2 and GSOA have significantly low computational
requirements. An overview of the aggregated results as the five-number summary is depicted
in Fig. 6.16(a).

o (=]
AN AN
- O Proposed BNB o - O Proposed BNB
S _| B GSOA S _| B Proposed GSOA
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(a) 2D CETSP instances (b) 3D CETSP instances

Figure 6.16: Aggregated quality of solutions %PDB depicted as five-number summary obtained by
the CETSP solvers in the groups based on the overlap ratio.

Performance in the 3D instance of the CETSP In the case of 3D instances, we present
LB and UB provided by the proposed BNB-based solver and report results of the existing
solver SZ2 and the proposed GSOA solver. The BNB solver is executed for a single trial
since it is deterministic, and the proposed GSOA solver is executed for 20 trials. Results
depicted in Table A.11, Table A.12, and Table A.13 indicate the proposed GSOA-based solver
outperforms the SZ2 method for most of the instances. However, it fails in highly overlapping
instances, as it can be seen in Fig. 6.16(b).

6.3 TSP with Neighborhoods on a Sphere

The instances of the TSPNS that vary in the number of regions, the volume of the sphere
surface covered by regions, and the distribution of regions over the sphere’s surface, can be
divided into several categories. Hence each instance is denoted by the type of the distribution,
if the regions overlap, and the number of regions. The distribution of regions is either random
or regular even distribution. The instances with the random distribution are denoted with
rand, and the instances with even distribution reg, where the distribution is created based on
the Fibonacci Lattice method. Moreover, the instances with the even distribution can be dis-
tinguished based on the locations of regions. Instances with regions placed in the middle part
of the sphere are denoted with band, instances with regions located on the top of the sphere
are denoted either as cap if they are in a spherical pattern, and rect_cap if the regions are
in a rectangular pattern. If at least one region of the particular instance overlaps with at
least one other region, the instance is denoted as ol, nol otherwise. Finally, each instance is
denoted by the number of regions n selected from the range n € {10, 25, 50, 100, 500}. The in-
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stances are created with a sphere Q centered in @ = (0,0,0) with § = 1. Examples of selected
instances are depicted in Fig. 6.17.

(a) Problem (b) Problem (c) Problem
sphere_cap_rand nol_50x1: sphere_rand_ol_10x1: sphere_reg nol_10x1:
LB =10.46, UB = 10.88, LB =7.56, UB = 7.56, LB =10.11, UB = 10.11,
%GAP = 3.85 %GAP = 0.00 %GAP = 0.00

Figure 6.17: Problem instance of the TSPNS with solution and lower bound obtained by the BNB.
The solution is depicted in blue and the lower bound in red.

The performance indicators of examined methods are reported in Table A.14. In particular,
the instances are solved by the TSPN-LKH and TSPN-GLKH, both introduced in [10], and
the herein proposed GSOA solver for the TSPNS. The lower bound £5 and upper bound UB
values are obtained by the proposed BNB solver. The BNB solver is executed for a single
trial since it is deterministic, and the GSOA solver is executed for 20 trials.

» _ B Proposed BNB » _ B Proposed BNB
B Proposed GSOA B Proposed GSOA
< _| @ TSPN-LKH < _| @ TSPN-LKH
B TSPN-GLKH @ TSPN-GLKH

%PDB
%PDB

o~ - ~

N H I i - N

O - - Ei - T — — o
25

S m - -
n=10 n= n =50 n =100 n=50 n=100 n =500
No. of neighborhood sets n No. of neighborhood sets n
(a) Overlapping TSPNS instances (b) Non-overlapping TSPNS instances

Figure 6.18: Aggregated quality of solutions %PDB depicted as five-number summary obtained by
the TSPNS solvers in groups of problems based on the number of regions.

Based on the reported results that are further summarized in Fig. 6.18, the proposed
GSOA-based solver computationally outperforms both the TSPN-LKH and TSPN-GLKH
methods. In comparison to the TSPN-GLKH, the results reported for the TSPNS-based
method with 10 samples indicate that the TSPN-GLKH provides optimal solutions to most
of the problem instances. However, both the TSPN-based methods perform relatively poorly
for the overlapping instance, see Fig. 6.18(a).
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6.4 Generalized TSP with Neighborhoods

The instances of the GTSPN are randomly generated with varying number of neighbor-
hood sets n € {30, 35,40, 45,50}, the constant number of the regions per neighborhood set
m; = 6,1 € {1,...,n}, and the dimension d = 3 and d = 7. The regions generated within
the particular configuration of the lower and upper bounding box are approximated to simu-
late complex robotics neighborhoods using linear constraints (to create polyhedra), quadratic
constraints (to create ellipsoids), or a combination of both (to create hybrid regions) [43].
An example of the examined GTSPN instances is depicted in Fig. 6.19.

(a) Problem 3D_40_6_c: (b) Problem 3D_45_6_f:
LB = 2370.80, UB = 4663.88, NGAP = 49.16 LB = 2608.16, UB = 5193.72, %GAP = 49.78

Figure 6.19: Problem instance of the GTSPN with solution and lower bound obtained by the BNB.
The solution is depicted in blue and the lower bound in red.
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S T SE
o9 9o |
a° a8c<
2 g, .
3 1 3 1 = = <
- T - =
1o e Bz =z S S -
o p H .
=T - ' I oEs ~ . _ —_
o | =8 *! — L. o o | - - = - - -
(=} (=]
n =30 n=35 n =40 n=45 n =50 n =30 n =35 n =40 n=45 n =50
No. of neighborhood sets n No. of neighborhood sets n
(a) 3D GTSPN instances (b) 7D GTSPN instances

Figure 6.20: Aggregated quality of solutions %PDB depicted as five-number summary obtained by
the GTSPN solvers in groups of problems based on the number of regions.

Results for the evaluated methods the HRGKA , Centroid-GTSP* , and the pro-
posed GSOA solver are reported in Table A.15 and Table A.16. The lower bound £B and
upper bound UB values are obtained by the proposed BNB solver. The BNB solver is executed
for a single trial since it is deterministic, and the GSOA solver is executed for 20 trials.

Regarding the reported results for the 3D instances, the proposed GSOA solver provides
competitive solutions with the HRGKA; although the Centroid-GTSP™ outperforms both
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methods, see the aggregated results in Fig. 6.20(a). In the 7D instances of the GTSPN,
the HRGKA outperforms both the Centroid-GTSP* and GSOA, see Fig. 6.20(b).
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Chapter 7
Conclusion

In this thesis, we study the generalized routing problems by estimating the lower bounds on
the optimal solution values and heuristic solutions. We study three problems motivated by
different robotics tasks and formulated with various continuous and convex neighborhoods;
namely, we study the Close Enough Traveling Salesman Problem (CETSP), the Traveling
Salesman Problem with Neighborhoods on a Sphere (TSPNS), and the Generalized Traveling
Salesman Problem with Neighborhoods (GTSPN). We establish the lower bounds on the op-
timal solution values by the proposed BNB solver for each of these problems. The solver is
designed to be easily extended to address more generalized routing problems since it includes
a general branching rule. Each addressed problem is modeled using programming models
such as the Second-Order Cone Programming, Non-Linear Programming, or Mixed Integer
Quadratically Constrained Programming. Moreover, we established the solutions of the herein
studied problems by the Growing Self-Organizing Array (GSOA) extended to the address
these problems.

Regarding the reported results, we utilize the performance indicator %GAP to indicate
the optimality of the reported solutions. The optimality indicator %GAP is measured as a rel-
ative gap of the solution values to the established lower bound values. The proposed GSOA
solver provides competitive solutions in a short computational time compared to the existing
approaches. For several instances, it provides optimal solutions to the herein studied prob-
lems. The established lower bounds are competitive to the existing lower bounds; however,
only lower bounds for the CETSP are reported in the literature. The newly established lower
bound values for the TSPNS and GTSPN are the first such results for these problems, and
therefore, they can be used for further developed heuristic and benchmarking.

There are two possible streams in the developed BNB-based solver for the generalized
routing problems in future work. First, the computational requirements can be decreased by
additional branching rules and initialization using heuristics solutions. Besides, the framework
might be further generalized to challenging robotic routing problems such as the Dubins
Traveling Salesman Problem with Neighborhoods.
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Appendix A
Computational Results

Table A.1: Lower bound values LB obtained for the 2D CETSP problem instances with various
Qwerlap ratio.

Problem Mennell Branch and Bound (Ib/ub)Alg Proposed BNB
LB T LB T LB T LB T

Overlap ratios (0.02)

d493-0r0.02 5746 <o05s 146.33 4 hours 129.05 4 min 137.92 16 hours
delOOO—OI‘OOQ 100.19 <o05s 559.14 4 hours 521.52 16 min 496.15 16 hours
kroD100-0r0.02 7883 <055 142.87 4 hours 118.64 2 min 140.80 16 hours
lin318-0r0.02 97743 <o05s 1 990.90 4 hours 1 830.97 4 min 1 902.99 16 hours
pcb442-0r0.02 3251 <o05s 185.85 4 hours 177.36 13 min 174.51 16 hours
rat195-or0.02 28.20 <05 108.10 4 hours 93.72 9 min 103.69 16 hours
rd400-0r0.02 284.03 <o05s 567.19 4 hours 609.79 11 min 534.41 16 hours
Overlap ratios (0.10)
d493-0r0.10 31.73 <o05s 100.72 53 s 91.90 33 s 100.72 11 hours
de1000—01‘0.10 10.17 <o05s 373.73 4 hours 317.33 1 min 361.82 16 hours
kroD100-0r0.10 0.00 <o05s 89.67 1s 85.39 3 min 89.67 3 min
1in318-0r0.10 0.00 <o05s 1 394.63 2 hours 1139.23 26 s 1 358.76 16 hours
pCb442—OI‘0.10 1.87 <o05s 137.45 4 hours 110.99 3 min 131.54 16 hours
rat195-or0.10 0.00 <o05s 67.99 17s 65.41 1 min 67.99 48 min
rd400-0r0.10 0.00 <o05s 432.80 4 hours 329.82 1 min 406.58 16 hours
Overlap ratios (0.30)
d493-0r0.30 16.75 <o05s 69.76 <05s 68.64 2s 69.76 1 min
dsj1000-0r0.30 0.00 <o0s5s 199.95 <05s 193.50 6s 179.69 30 min
kroD100-0r0.30 0.00 <o05s 58.54 <05s 56.89 <o05s 58.54 12s
1lin318-0r0.30 0.00 <o05s 765.96 <05s 754.21 1s 765.96 1 min
pcb442-0r0.30 0.00 <o05s 83.54 <05s 81.88 <o05s 83.54 2 min
rat195-0r0.30 0.00 <o05s 45.70 <05s 4451 <o05s 45.70 26 s
rd400-0r0.30 0.00 <o5s 224.84 <05s 219.29 4s 224.84 2 min
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Table A.2: Lower bound values LB obtained for the 2D CETSP problem instances with various
Varied ratio.

Problem Mennell Branch and Bound (Ib/ub)Alg Proposed BNB
LB T LB T LB T LB T
bonus1000 0.00 <o05s 359.38 18 min 285.32 1 min 332.06 16 hours
bubbles1 60.62 <o05s 349.14 <05s NA* NA* 349.13 4s
bubbles2 60.62 <o05s 428.28 1s NA* NA* 428.28 10s
bubbles3 60.62 <o05s 529.96 2s NA* NA* 529.95 24 min
bubbles4 60.62 <o05s 690.58 9s NA* NA* 678.53 16 hours
bubblesh 60.62 <o05s 851.82 37s NA* NA* 820.43 16 hours
bubbles6 60.62 <o05s 993.98 14s NA* NA* 945.30 16 hours
bubbles7 60.62 <o05s 1123.52 50 s NA* NA* 1 055.25 16 hours
bubbles8 60.62 <o05s 1 252.71 1 min NA* NA* 1 158.90 16 hours
bubbles9 60.62 <o05s 1374.41 2 min NA* NA* 1 260.83 16 hours
chaoSingleDep 439.26 <055 1 000.15 12s 831.06 1 min 972.14 16 hours
concentricCircles1 14.00 <o05s 53.16 <05s 45.84 65 53.16 42's
concentricCircles2 43.59 <o05s 149.87 <05s 114.56 51s 148.68 16 hours
concentricCircles3 115.28 <055 247.62 1s 191.50 6 min 244.76 16 hours
concentricCircles4 161.11 <o05s 358.89 5s 289.36 1 min 352.02 16 hours
concentricCirclesb 249.98 <o05s 459.41 10's 392.89 5 min 450.15 16 hours
rotatingDiamonds1 6.20 <055 32.39 <05s 30.73 7s 32.39 25
rotatingDiamonds2 13.87 <055 140.48 <05s 111.44 2 min 140.48 1 hour
rotatingDiamonds3 27.87 <o05s 348.61 8s 272.76 10 min 339.11 16 hours
rotatingDiamonds4 35.57 <o05s 593.35 18's 572.85  4min 569.46 16 hours
rotatingDiamonds5 69.57 <o05s 1 106.58 53 s 1098.37 3 min 1 011.90 16 hours
team1_100 33.52 <05s 307.34 3s 270.49 1 min 307.34 1 min
team2_200 0.00 <o05s 246.68 16 s 232.87 36s 246.68 1 min
team3_300 8.75 <o05s 447.53 3ls 330.92 56 s 424.41 16 hours
team4_400 20.59 <o05s 507.30 43's 391.45 2 min 477.33 16 hours
teamb_499 231.21 <o0s5s 524.59 1 min 481.49 13 min 492.52 16 hours
team6_500 0.00 <o05s 225.22 11 min 217.74 8s 225.22 4 min

* NA - Results not reported in Iﬁj

Table A.3: Lower bound values LB obtained for the 2D CETSP problem instances with various
Arbitrary radius.

Problem Mennell Branch and Bound (Ib/ub)Alg Proposed BNB
LB T LB T LB T LB T
bonus1000rdmRad NA* NA* 506.13 4 hours 700.54 12 min 442.17 16 hours
d493rdmRad NA* NA* 125.31 4 hours 116.57 1 min 120.83 16 hours
dsj1000rdmRad NA* NA* 509.74 4 hours 545.38 4 min 435.45 16 hours
kroD100rdmRad NA* NA* 136.62 4 hours 119.46 46 s 137.06 16 hours
lin318rdmRad NA* NA* 1 807.68 4 hours 1719.54 59 s 1 672.64 16 hours
pcb442rdmRad NA* NA* 175.83 4 hours 181.21 2 min 165.93 16 hours
rat195rdmRad NA* NA* 68.22 55 65.12 9s 68.22 1 hour
rd400rdmRad NA* NA* 571.48 4 hours 880.91 18 min 555.73 16 hours
team1_100rdmRad NA* NA* 388.54 4 min 350.78 20 s 388.54 44 min
team2_200rdmRad NA* NA* 488.18 4 hours 428.10 3 min 495.17 16 hours
team3_300rdmRad NA* NA* 378.09 11 min 342.65 16 s 367.11 16 hours
team4_400rdmRad NA* NA* 549.91 4 hours 737.16 10 min 540.06 16 hours
teamb_499rdmRad NA* NA* 442.64 4 hours 405.46 51s 412.87 16 hours
team6_500rdmRad NA* NA* 489.61 4 hours 507.43 5 min 471.62 16 hours

* NA - Results not reported in
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Table A.4: Lower bound values LB obtained for the 3D CETSP problem instances with various
Owerlap ratio.

Branch and Bound Proposed BNB

Problem
LB T LB T

Overlap ratios (0.02)
d493-0r0.02 496.79 4 hours 441.76 16 hours
dsj1000-0r0.02 751.51 4 hours 620.84 16 hours
kroD100-0r0.02 148.23 4 hours 145.86 16 hours
lin318-0r0.02 1994.37 4 hours 1 902.80 16 hours
pCb442—OI‘0.02 186.38 4 hours 174.85 16 hours
rat195-or0.02 126.49 4 hours 122.54 16 hours
rd400-0r0.02 868.19 24 min 810.65 16 hours

Overlap ratios (0.10)
d493-0r0.10 421.16 4 hours 396.59 16 hours
dSJlOOO—OI‘OlO 602.99 4 hours 477.17 16 hours
kroD100-0r0.10 91.66 7s 91.66 2 min
lin318-0r0.10 1 398.25 4 hours 1 361.17 16 hours
pch442-0r0.10 137.95 4 hours 132.10 16 hours
rat195-or0.10 88.72 4 hours 85.28 16 hours
rd400-0r0.10 752.42 4 hours 672.62 16 hours

Overlap ratios (0.50)
d493-0r0.30 325.21 31s 325.21 5 hours
dsj1000-0r0.30 267.75 25 s 225.83 16 hours
kroD100-0r0.30 58.93 <05s 58.93 18 s
1lin318-0r0.30 766.83 <05s 766.83 1 min
pcb442-0r0.30 83.72 <05s 83.72 2 min
rat195-or0.30 47.89 <05s 47.89 36's
rd400-0r0.30 450.72 4 hours 441.94 16 hours
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Table A.5: Lower bound values LB obtained for the 3D CETSP problem instances with various
Varied ratio.

Problem Branch and Bound Proposed BNB
LB T LB T

bonus1000 472.56 4 hours 386.16 16 hours
bubbles1 NA* NA* 349.13 6s
bubbles2 NA* NA* 428.28 16's
bubbles3 NA* NA* 529.95 26 min
bubbles4 NA* NA* 677.95 16 hours
bubblesh NA* NA* 819.23 16 hours
bubbles6 NA* NA* 944.20 16 hours
bubbles7 NA* NA* 1 053.57 16 hours
bubbles8 NA* NA* 1 158.06 16 hours
bubbles9 NA* NA* NA* NA*
chaoSingleDep NA* NA* 971.18 16 hours
concentricCirclesl NA* NA* 53.16 1 min
concentricCircles2 NA* NA* 148.72 16 hours
concentricCircles3 NA* NA* 244.84 16 hours
concentricCircles4 NA* NA* 351.71 16 hours
concentricCirclesb NA* NA* 450.18 16 hours
rotatingDiamonds1 NA* NA* 32.39 3s
rotatingDiamonds2 NA* NA* 140.48 1 hour
rotatingDiamonds3 NA* NA* 338.77 16 hours
rotatingDiamonds4 NA* NA* 568.48 16 hours
rotatingDiamonds5 NA* NA* 1 009.42 16 hours
team1_100 690.30 4 hours 677.41 16 hours
team?2_200 273.38 9 min 273.38 13 hours
team3_300 762.68 4 hours 714.44 16 hours
team4_400 509.80 4 hours 477.71 16 hours
team5_499 705.63 4 hours 637.46 16 hours
team6_500 230.92 <05s 230.92 10 min

* NA - Results not reported in M; results by the BNB have not been determined in predefined time

Table A.6: Lower bound values LB obtained for the 3D CETSP problem instances with various
Arbitrary radius.

Branch and Bound Proposed BNB

Problem
LB T LB T

bonus1000rdmRad 578.64 4 hours 488.23 16 hours
d493rdmRad 438.70 4 hours 410.85 16 hours
dsﬂOOOrdded 696.29 4 hours 566.88 16 hours
kroD100rdmRad 137.76 4 hours 143.03 16 hours
lin318rdmRad 1 807.68 4 hours 1 670.27 16 hours
pcbh442rdmRad 177.23 4 hours 167.49 16 hours
rat195rdmRad 82.10 13 min 82.10 2 hours
rd400rdmRad 876.28 4 hours 833.38 16 hours
team1_100rdmRad 726.68 4 hours 712.23 16 hours
team2_200rdmRad 525.31 4 hours 525.73 16 hours
team3_300rdmRad 676.18 4 hours 619.06 16 hours
team4_400rdmRad 551.05 4 hours 541.83 16 hours
teamb_499rdmRad 599.74 4 hours 519.46 16 hours
team6_500rdmRad 507.12 4 hours 481.89 16 hours

41



A. Computational Results

Table A.7: Lower bound values £5 obtained for the TSPNS problem instances and GTSPN problem

instances.

Proposed BNB

Proposed BNB

Problem Problem
LB T LB T
GTSPN - 3D TSPNS - 3D

3D_306_a 2 355.65 16 hours sphere_cap_rand_nol_10x1 6.12 3s
3D_30.6b 2 366.88 16 hours sphere_cap reg nol 10x1 5.01 7s
3D_30.6_¢ 2 469.97 16 hours sphere_rand_nol_10x1 8.50 27 s
3D_30.6.d 2399.34 16 hours sphere_rect_cap_reg nol_10x1 4.91 Ts
3D_306-¢ 2 080.82 16 hours sphere_reg_nol_10x1 10.11 1 min
3D_30.6-f 2 001.75 16 hours sphere_band rand nol 25x1 ~ 7.41 1 min
3D_35.6_a 2 510.82 16 hours sphere_cap_rand_nol_25x1 6.18 3 min
3D_35.6_b 2 593.22 16 hours sphere_cap_reg nol 25x1 6.74 1 hour
3D 356c¢ 2 220.29 16 hours sphere_rand nol 25x1 10.62 52 min
3D_35.6_d 2 543.07 16 hours sphere_rect_cap_rand_nol_25x1 8.56 29 min
3D_356_¢ 2 369.09 16 hours sphere_reg_nol 25x1 13.23 16 hours
3D_35.6-f NA* NA* sphere_rect_cap_reg nol 25x1 6.46 29 min
3D_40.6_a 2 285.08 16 hours sphere_band _rand nol 50x1  9.62 16 hours
3D_40.6_b 2 676.64 16 hours sphere_cap_rand_nol_50x1 10.46 16 hours
3D_40.6_c 2 370.80 16 hours sphere_cap_reg_nol_50x1 7.70 16 hours
3D_40.6.d 2 531.37 16 hours sphere_rand nol 50x1 12.04 16 hours
3D_40.6_¢ 2 495.36 16 hours sphere_rect_cap_rand_nol_50x17.22 16 hours
3D_40.6_f 2191.26 16 hours sphere_rect_cap_reg nol_50x1 7.58 16 hours
3D_456.a 2 363.86 16 hours sphere_reg_nol_50x1 13.15 16 hours
3D_456-b 2 856.89 16 hours sphere_rand nol_100x1 13.11 16 hours
3D_45_6_¢ 2 676.80 16 hours sphere,reg,nol,l()()xl 13.28 16 hours
3D_45.6.d 2 418.94 16 hours sphere_rand_nol_500x1 12.24 16 hours
3D 45 6. ¢ 2 639.43 16 hours sphere_rand ol 10x1 7.56 10s
3D .45 6_f 2 608.16 16 hours sphere_cap_reg_ol_25x1 3.96 42's
3D_50.6_a 2 397.78 16 hours sphere_rand_ol_25x1 9.86 9 min
3D_50_6_b 2 346.24 16 hours sphere_band_rand_ol_50x1 9.39 5 hours
3D_50_6_c 2 296.86 16 hours sphere_rand_ol_50x1 11.82 16 hours
3D_50.6_d 2 545.90 16 hours sphere_rand_ol_100x1 12.02 16 hours
3D_50-6_e 2 673.90 16 hours

3D_50_6_f 2 733.57 16 hours

GTSPN - 7D

7D_30.6_a 3 959.10 16 hours

7D_356_-a 3 674.35 16 hours

7D_40.6_a 3 746.87 16 hours

7D_456_a 3 643.74 16 hours

7D_50_6_a 3 897.62 16 hours

* NA - Results by the BNB have not been determined in predefined time
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Appendix B

Content of the Enclosed CD

CD
README.md
bnb.tspn.zip
gsoa.3d.zip
gsoa.tspns.zip
gsoa.gtspn.zip
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