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Abstrakt:
V posledných rokoch sa zvýšilo využívanie automatických metód v lekárskej diag-
nostike. Značný počet publikácií bol zameraných na analýzu očných poškodení
a chorôb. Jedným z najzávažnejších ochorení oka je zelený zákal (glaukóm).
Spôsobuje poškodenie očných nervov a postupnú stratu zraku. Podstatný krok
k rýchlejšej diagnóze tejto choroby je presná segmentácia terča zrakového nervu
a jeho exkavácie. Táto úloha je náročná z dôvodu mnohých druhov poškodenia
očnej sietnice, rôznych prístupov k získavaniu obrázkov očného pozadia a chýb
spôsobených zachytávaním obrazu v kamere. Táto práca popisuje prahovací al-
goritmus založený na postupnom zlepšovaní zvoleného prahu pre segmentáciu
terča zrakového nervu. Definujeme funkciu podobnosti objektu k terču ako ria-
diaci prvok vylepšovania prahu. Následne poskytneme algoritmus pre nájdenie ex-
kavácie zrakového nervu založený na klasifikácií superpixelov. Predkladáme prí-
stup používajúci gradientom zosilnené rozhodovacie stromy, ktoré ukazujú lepšie
výsledky oproti náhodnému lesu a mechanizmus podporných vektorov. Ďalej vy-
hodnotíme predstavené algoritmy na verejne dostupnej dátovej množine snímok
očného pozadia. Nakoniec prediskutujeme získané výsledky a rozdiely medzi jed-
notlivými metódami. Poslednou súčasťou tejto práce je implementácia našich
algoritmov v programovacom jazyku Python.

Kľúčové slová: segmentácia, prahovanie, superpixely, terč zrakového nervu, ex-
kavácia zrakového nervu
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Abstract: Over the recent years, there has been an increase in the use of automatic
methods in medical diagnosis. A significant number of publications have analysed
eye disorders and diseases. One of the most severe eye conditions is glaucoma. It
damages optic nerves and causes gradual loss of vision. An essential step towards
a faster diagnosis of this disease is accurate segmentation of the optic disc and
cup. This task is difficult due to many retinal defects, different image acquisition
techniques, and artefacts caused by imaging devices. This thesis describes an
iterative threshold-based algorithm for extraction of the optic disc. An objective
function quantifying object similarity to the optic disc is defined to direct the
iteration. Following that, we introduce a superpixel-based classification algorithm
for extraction of the optic cup. We propose the use of gradient boosted decision
trees which outperform random forest and support vector machine. In addition,
we evaluate the proposed algorithms and their alternatives on a publicly available
retinal fundus image dataset. Finally, we discuss the reason for performance
differences and implement our algorithms in the programming language Python.
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Introduction
Glaucoma is a disease of the major nerve of vision, called the optic nerve. The op-
tic nerve receives light-generated impulses from the retina and passes them to
the brain. We recognize those electrical signals as vision. Glaucoma is charac-
terized by progressive damage to the optic nerve, which starts with a subtle loss
of peripheral vision. If it is not treated, it can progress to central vision and
cause blindness. Glaucoma is generally associated with higher pressure in the eye
(intraocular pressure). In some cases, it can appear in the eyes without elevated
pressure. In these cases, it is often believed to be caused by poor blood flow to
the optic nerve. The damage to the eye as a result of this disease is irreversible. It
cannot be cured with medication, and it cannot be operated on either. However,
if caught early, the treatment of glaucoma can halt the progressive damage and
loss of vision [1].

Furthermore, glaucoma is the leading cause of blindness, which is the result
of untreated disease. Even so, approximately 10% of people who receive proper
treatment experience loss of vision. It is a chronic condition, and it has to be mon-
itored for life. Diagnosis is the first step to the preservation of vision. Everyone is
at risk for glaucoma. For instance, babies can be born with it. Approximately 1
in 10000 babies born in the United States have glaucoma. Certain demographics
are more susceptible than others, and older people are at a higher risk of devel-
oping the disease. Next, there almost no symptoms of glaucoma. Gradual loss
of peripheral vision is difficult to notice, and there is no pain associated with
the disease. Let us include several statistics to put a perspective on the sever-
ity of glaucoma. It is estimated that over 3 million Americans have the disease,
but only half of them know about it. Also, in the U.S., more than 120000 are
blind from glaucoma, which accounts for 9% to 12% of all cases of blindness.
Next, according to the World Health Organization, glaucoma is the second lead-
ing cause of blindness in the world. Estimates put the total number of suspected
cases of glaucoma at over 60 million worldwide. These figures are taken from
the webpage of Glaucoma research foundation [2]. We would like to specifically
mention the source of worldwide statistics in different demographics projected
into the year 2010 and 2020 [3].

Diagnosis of glaucoma using retinal imaging is carried out by calculating Cup
to Disc Ratio (CDR), Inferior Superior Nasal Temporal (ISNT) rule, Disc Damage
Likelihood Scale (DDLS) and Glaucoma Risk Index (GRI) which can be achieved
by extracting the optic disc and the optic cup to calculate their ratio. The optic
disc is the place where nerve fibres are bundled together and leave the eye towards
the brain. It is also the entry point of blood vessels that pass blood to the retina.
The optic cup is a depression at the centre of the disc. Orange or pink colouring
of the OD is generally normal, whereas a disc region pallor indicates disease [4].
We will discuss the main structures of the retina and their significance in the next
section.

As a result of the requirements posed by glaucoma diagnosis metrics, it is
immaterial to correctly segment the optic nerve head in healthy individuals as
well as in diseased cases. Furthermore, the extraction of the optic cup is based
on the assumption of a correctly extracted disc region. Thus the algorithm has
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to have two robust phases where the first one returns the segmented optic disc
and the second one finds the cup region within the result of the previous phase.
Not only is it difficult to extract the right boundary of the retinal structure but
also to find an approximate optic disc region. This approximation is difficult
due to the fact that the retinal fundus image can contain unwanted features as
a result of a failure of the imaging technology or a pathologic case, see Figure 1
for difficult disc localisation examples. The segmentation of optic disc is a much
more researched topic, and we are able to solve it with high accuracy. Although
there has been a significant amount of work conducted on optic cup segmentation,
this problem remains largely unsolved. The main challenges include differences
between fundus images taken on different devices and rather small datasets often
consisting of images taken only from a certain demographic [4], [5].

Figure 1: This figure shows examples of retinal fundus images, which can confuse
algorithms searching for bright regions. Parts of the non-disc area with high-
intensity values in the right image can match a circular or elliptical shape. That
can confuse even algorithms searching for an approximate shape.

Retinal fundus image
A retinal fundus image is an image of the rear of an eye, known as the fundus,
taken by a special fundus camera. It is used for the diagnosis of various eye dis-
eases. Specialists take the images to check for different abnormalities. It contains
various features which differ from human to human and also between normal and
abnormal cases. Some of the structures visible in a fundus image are the central
and peripheral retina, optic disc and macula. More information about the indi-
vidual structures can be found in [4] where glaucoma and its relation to fundus
images are described in greater depth. Furthermore, for a more comprehensive
explanation behind fundus photography, see [6] which is the webpage for oph-
thalmic photographers’ society. The available information is excerpted from [7].

An example of retinal fundus image can be seen in Figure 2. It shows the most
important areas of a fundus image related to our work. These are the optic disc,
the optic cup and blood vessels. Other areas such as the macula or fovea can be
seen in the image as well. However, they are not very useful for the segmentation
of the optic nerve head. The image also shows the boundaries of the optic disc

3



and cup marked by trained professionals as a part of the Drishti retinal fundus
image dataset [8]. Now, we describe the optic nerve head in more detail since it
is the primary focus of our work.

Figure 2: Example of a retinal fundus image with its main structures highlighted.
The optic disc is marked with blue colour, and the optic cup is marked with
green colour. Blood vessels are not highlighted. Nevertheless, there is an arrow
pointing to a visible vessel. Trained professionals selected the optic disc and cup
boundaries as part of the retinal fundus image dataset.

Optic disc
The optic disc is a bright central part of the retina. It is an entry point for
the blood vessels outgoing into the retina. Its shape is approximately circu-
lar, although sometimes it can match an ellipse with high eccentricity due to
the photographic projection. The size and shape vary from one person to an-
other. The optic disc is often referred to as the blind spot since it does not
contain rods and cones, which are photoreceptor cells. A normal optic disc is
orange to pink in colour. A pale disc is an optic disc that varies in colour from
pale pink or orange to white. It is an indication of diseased condition [4].

The optic disc is in general divided into three different regions: the optic
cup, the neuroretinal rim and sometimes parapapillary atrophy (PPA), see [5].
Note that the cup is the central part of the optic disc, the neuroretinal rim
is the area surrounding the cup and parapapillary atrophy surrounds the main
region of the disc. We show an example of these features in Figure 3. In fact, for
segmentation purposes, the desired area of the optic disc entirely excludes PPA.
In addition, correctly selecting only the main region of the optic disc is one of
the more considerable challenges of optic nerve head segmentation.
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Figure 3: This figure shows an example of the optic nerve head area of a retinal
fundus image with highlighted optic disc, optic cup and a general area of par-
apapillary atrophy. The disc and cup regions were selected by experts, the par-
apapillary atrophy region is chosen as an example and should not be taken as
a clinician’s selection.

Optic cup
An optic cup is a bright area in the centre of the optic disc. It is a depression
where bundled retinal nerve fibres exit to the brain. Generally, the optic cup is
small compared to the whole disc, and it enlarges due to dying nerve fibres. That
is a result of increased pressure in the eye, or a loss of blood flow to the optic nerve
[9]. In Figure 2 we can see optic cup region approximately half the size of the optic
disc. We can compare that to Figure 3 where the optic cup is significantly larger
with respect to the optic disc.
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1. Related Work
There has been extensive work done on optic nerve head segmentation. Vari-
ous methods proposed in the literature use different approaches to solving object
segmentation. Among the applied algorithms, there are thresholding, clustering,
level set and active shape modelling. A comprehensive list of the various ap-
proaches is available in [4] and also in [5]. The second survey does not distinguish
between lists of algorithms belonging to a certain methodology. Nevertheless, it
contains references to a large variety of different articles proposing algorithms for
the segmentation of optic disc or optic cup. We focus mainly on the proposed
approaches directly related to our work and mention others only for completeness.

Based on the extracted feature, we can divide the investigated problem into
two main parts. Some algorithms work only with the disc whereas others work
only with the cup. However, the most common approach is to segment both
retinal features. There has been significantly more work done on the segmentation
of the optic disc than the optic cup. In recent years, the focus has shifted more
towards the cup since there are already methods capable of segmenting the optic
disc with a high degree of accuracy.

The most common starting point of optic nerve head segmentation algorithms
is optic disc localisation and region of interest selection. In [10], the approximate
optic disc area coverage is described to be between 13% and 20%. Intensity-based
OD localisation was applied as the first step of the algorithm. A simple fringe
removal based method was used in [11]. Further, a de-hazing algorithm followed
by Otsu’s thresholding [12] composed the optic disc localisation step in [13].
The presence of artefacts caused by inadequate image acquisition was noted in [14]
and border masking was used to overcome it. Optic disc localisation by wavelet
transform and ellipse fitting was proposed in [15]. Region of interest detection
methods give several candidates for the location of the optic disc. The right one
is selected based on the highest intensity or similarity to a circle.

Thresholding is a simple segmentation approach extensively used in the optic
disc and sometimes optic cup extraction. In [16], adaptive thresholding based on
Gaussian window was applied to red and green colour channels for the extraction
of the optic disc and optic cup. Similarly, the red and green channels were used
for OD, and OC segmentation in [17]. The threshold was computed based on
statistical features of the processed image improved by background suppression
and histogram smoothing. Further, in [13], the value channel of HSV was used
together with adaptive thresholding for optic disc segmentation. The best con-
nected component from the binarised image was selected based on its area and
eccentricity. Following that, an algorithm using the blue colour channel for OC
thresholding was proposed in [18]. The noise in binarised images was removed
using morphological operations, and a convex hull was computed to approximate
the smooth boundary of the optic disc and cup.

An iterative multi-threshold approach that uses information from the red,
green and blue channels was introduced in [19]. In each iteration, the colour
distribution of the selected object is analysed, and a new threshold is computed
based on the mean pixel value of the object. An improved multi-threshold method
based on histogram analysis was described in [20]. An additional preprocessing
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step was blood vessel removal from the source image for accurate segmentation.
Clustering and classification of pixels and superpixels is a second popular

method in image segmentation. It was successfully applied to the problem of op-
tic nerve head extraction. Superpixels are acquired using the SLIC (Simple Linear
Iterative Clustering) algorithm. Unsupervised classification of superpixels for op-
tic cup extraction was proposed in [21]. A low-rank representation of the data
was computed, and an adaptive clustering on non-vessel superpixels was used for
classification. The article reports good results, but it does not take into consid-
eration imprecise segmentation of the optic disc. Next, a hard class assignment
of edges by the k-means algorithm was used in [22] to extract the boundary of
the optic disc and cup. For the improvement of hard class assignment results,
fuzzy c-means classification of morphologically processed retinal images was pro-
posed in [23]. Morphological operations were used for vessel noise suppression.
Soft assignment of fuzzy logic was considered advantageous in both optic disc and
cup extraction. Different improvement of the hard assignment was introduced in
[24]. A Gaussian mixture model was used to classify pixels from a region of
interest.

Furthermore, in [25], a superpixel based classification approach was introduced
for the segmentation of both optic disc and optic cup. Several features, including
colour channel histograms and centre surround statistics computed from a Gaus-
sian pyramid, were defined. Finally, support vector machine classifiers were used
for the classification of superpixels. A multi-scale method using SVM was pro-
posed in [26]. This approach focuses on optic cup segmentation, and it does not
consider imprecise disc extraction. The class assignment was done by multiple
trained models on different superpixel scales. The final prediction is made by
combining the results of the individual models using a unique integration model.

There have been attempts at training convolutional neural networks for optic
nerve head segmentation [27]. However, the general concern is that retinal image
datasets are too small. Thus, it is not easy to train the models properly on
available data.

Our approach aims to improve the region of interest detection by introducing
a refinement phase. Further, we look to improve threshold-based algorithms by
introducing an empirical objective function describing the similarity of a selected
object and optic disc. Finally, our optic cup segmentation algorithm builds on
the superpixel classification methods and improves them by ensemble learning
with gradient boosted decision trees.
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2. Methodology
Implementing a complex algorithm in image processing or other disciplines is
rarely an endeavour where we implement all necessary tools from scratch. Our
proposed approach is no different, and we applied several well-established al-
gorithms and techniques to perform the required tasks. Although it is unne-
cessary to describe every tool in detail, we provide a brief description of each
algorithm we decided to use in our work. These short summaries provide general
information and references to literature with additional details.

In addition, we describe techniques that are not part of our final proposed
algorithm. We applied these techniques during our investigation of the problem,
and very often, they pose an alternative to the algorithm we ended up using.
As a part of this work, we decided to write down a comparison of different al-
gorithms used to solve the presented tasks. For instance, we tried different clus-
tering algorithms with various levels of success. To provide a brief overview of
the performance of these algorithms, we compare them against our final chosen
approach in Chapter 4.

2.1 Thresholding algorithms
One of the most common approaches for the extraction of objects from images
is thresholding. The basic idea of the algorithm is finding a threshold for some
greyscale image which separates the foreground object from its background. This
type of algorithm is used when the segmented objects are distinguishable from
their surroundings based on intensity. It is an approach that requires a careful
selection of the colour channel in which we search for the threshold. In general, it
also performs better on images with higher contrast, so algorithms such as con-
trast stretching are often used in conjunction with threshold searching techniques,
see [12].

There are several types of thresholding algorithms. Some analyse the image
histogram to find peaks and valleys from which they select the most probable
threshold. For instance, these algorithms can smooth the histogram and select
the deepest valley or, in the case of a popular Otsu’s method, select the threshold
maximising inter-class variance, see [12]. We can observe the histogram of a well
separable optic disc region in Figure 2.1. We computed the histogram in the figure
from the red channel of the image. It clearly shows two prominent peaks. In
addition, the right image in the figure shows the result of Otsu’s thresholding
in the red channel. We can take, for example, the deepest point of the valley
in between the two peaks as an optic disc separating threshold. Unfortunately,
most examples do not show a clear bimodal histogram, and it is not easy to apply
simple thresholding algorithms to our task.

Another class of thresholding algorithms uses the information obtained from
the thresholded image or differences between the original and binarised version.
This class is called thresholding algorithms based on attribute similarity [12]. We
can observe that the optic disc and cup have a clear elliptical shape, see Figure
2.1 for an example, and we are interested in the algorithm which can find objects
with a specific shape.
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Figure 2.1: Optic disc area of a well separable fundus retinal image (on the left)
with the histogram of its red channel (in the middle) and the result of thresholding
by Otsu’s method (on the right).

2.2 Simple linear iterative clustering
Simple linear iterative clustering (SLIC) is a method that separates the input
image into a predefined number of superpixels based on their colour similarity
and their distance in the image plane. Achanta et al. first introduced it in [28].
Superpixel is a general name for an object consisting of several related pixels.
Superpixel-based classification methods have become increasingly popular in ob-
ject segmentation due to a significant computational cost reduction compared to
pixel-based approaches. The most popular algorithm for superpixel separation is
SLIC. Its main principle is similar to K-means clustering. First, the algorithm
selects N centres at regular grid points within the image. Then it assigns similar
pixels to the groups defined by the centres and updates the centre positions. The
algorithm clusters pixels of the image in a five-dimensional space labxy. The fea-
ture space comprises two main parts: lab and xy. The first one denotes the L,
a and b channels of the CIELAB colour space, and xy is the pixel position in
the image plane. The distance measure introduced by the authors of SLIC en-
sures the compactness of created superpixels. It is denoted by D′ in the following
formula.

dc =
√︂

(lj − li)2 + (aj − ai)2 + (bj − bi)2

ds =
√︂

(xj − xi)2 + (yj − yi)2

D′ =

⌜⃓⃓⎷(︄ dc

Nc

)︄2

+
(︄

ds

Ns

)︄2

(2.1)

Indices i and j in the formula denote a pair of pixels considered for grouping.
The terms Nc and Ns are maximum colour and spatial distances expected within
a given cluster. The maximum spatial distance should correspond to the sampling
interval Ns = S =

√︂
N/K where K is the desired number of superpixels. De-

termining the maximum colour distance is more difficult, and so the authors of
[28] use constant Nc = m. We can write the simplified distance measure D as
follows.
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D =

⌜⃓⃓⎷d2
c +

(︄
ds

S

)︄2

m2 (2.2)

In our work, we use the algorithm implemented in the library scikit-image [29]
for Python. In Figure 2.2 we can see an example of the SLIC algorithm applied on
the optic disc region of a retinal fundus image. We can observe that the created
superpixels preserve the shape of the optic disc and also follow the bright areas
which belong to the optic cup.

Figure 2.2: Superpixels generated by the SLIC algorithm on the same image with
different values of K. We used K = 48, 96 and 144 for the left, centre and right
example respectively.

2.3 Clustering algorithms
Similar to thresholding algorithms described in Section 2.1, clustering approaches
separate data examples into multiple groups based on their features. The main
difference is that clustering algorithms try to assign similar examples to the same
class, whereas thresholding algorithms try to find a separating threshold for
the two classes. We can describe a subset of thresholding algorithms as clus-
tering into exactly two classes [12].

Given two data points, their similarity is defined by their distance. Cluster-
ing algorithms can use one of several standard functions as a measure of point
dissimilarity. Let us denote Minkowski distance by dist. Then it is defined as
follows.

dist =
(︄

d∑︂
i=1
|xji − xki|n

)︄ 1
n

(2.3)

Minkowski distance is probably the best-known metric, and given n = 2 we
arrive at Euclidean distance. We are working with image pixels that carry in-
formation about intensity and position in a 2D plane. Minkowski distance is best
suited for this type of data. For a comprehensive list of distance metrics used for
clustering, refer to [30].
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Let us assume that we have a distance metric. Now we can apply a clustering
algorithm to our dataset, which groups together data examples based on the value
of our selected metric. We can define several types of clustering algorithms that
differ based on their approach to data grouping.

The first notable class is called algorithms based on partition. Two of the most
famous examples belonging to this group are K-means and K-medoids. These
algorithms are based around the idea that a centre of data points is the centre of
the corresponding cluster [30].

The second class of clustering algorithms represents those based on hierarchy.
This class is divided into two basic principles: agglomerative and divisive clus-
tering. The basic idea of this group of algorithms is that they define a starting
point, such as every data example is one cluster. Then they create a hierarchy
on the data examples by merging selected clusters or dividing one. The decision
which clusters to use for these operations is made based on the distance between
them. For instance, it can be an average distance between each pair of points
from the clusters given by our selected metric. Hierarchical algorithms often build
the entire tree representing the data example hierarchy, and we can choose where
to cut this tree to obtain the required number of clusters. An example of this
class of algorithms is the Birch algorithm [30].

Fuzzy theory is the base for another set of algorithms. The basic idea of fuzzy
logic is that a data point does not have a hard assignment. For instance 0 or 1
depending on whether it belongs to a cluster or not. Instead, the assignment is
changed to continuous in the interval from 0 to 1. It is called a soft assignment,
and it allows us to describe the belonging relationship between data points more
reasonably. The examples of this class include Fuzzy c-means and Fuzzy c-shells
[30] It is not easy to determine whether something belongs to our segmented
object or the background. Therefore algorithms based on the fuzzy theory are of
significant interest to us.

The fourth class of algorithms which we introduce is based on data distribu-
tion. The basic idea is that given an existing distribution in the original data,
the points generated from the same distribution belong to the same cluster. One
of the algorithms which belong to this class is the Gaussian mixture model, which
assumes that data points were generated from a multivariate normal distribution
[30].

The final class of algorithm which we present is based on density. The basic
idea is that algorithms consider data points lying in a high-density region of
the data space to belong to the same cluster. Typical examples of this class
include DBSCAN and Mean-shift algorithms. Contrary to the previous classes
we introduced, the algorithms from this class often do not need an exact number
of clusters as a parameter. Instead, they induce the number of clusters from
the data itself [30].

In the figure 2.3 we can observe the results of algorithms highlighted in this
section. We applied them to a toy dataset and used parameters that give us
reasonable classification. The toy dataset contains three clusters with different
variance. That allows us to show how do the individual algorithms handle clusters
with varying sizes.

The presented list of clustering algorithm types is by no means exhaust-
ive. Further information on the individual types and a comprehensive list of
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Figure 2.3: Results of clustering algorithms on a toy dataset. Red, blue and
orange colours represent different clusters. Black represents points that do not
have an assignment.

algorithms belonging to them can be found in [30].
In our experiments, we used implementations of the algorithms mentioned

above from the Python scikit-learn library [31]. Next, we generated the toy
dataset in the figure 2.3 using this library as well. Finally, the implementation of
the Fuzzy c-means algorithm is from the Python library scikit-fuzzy [32].

2.4 Morphological operations
Morphology represents a general concept, and it is known in many scientific dis-
ciplines. It revolves around the analysis of the structure or relationship of objects.
For instance, in biology, morphology works with the structure and relationship
of organisms. In signal and image processing, we work with mathematical mor-
phology, which is a theoretical model based on the lattice theory [33].

Mathematical morphology is a theory for the analysis of planar and spa-
tial structures. It is suitable for shape analysis of objects, and due to a simple
mathematical formalism, it can be used to create powerful image analysis tools.
The key idea of morphological analysis of images is extracting information about
the relation of an image and a simple object called structuring element. This
small probe has a predefined shape, and we are checking whether it matches local
shapes in the image. We can define a variety of operations. However, the most
common morphological transformations are dilation, erosion and complex opera-
tions built on top of them. In the figure 2.4, we can observe the standard set of
morphological operations applied to a thresholded image from the Drishti dataset
[8]. A comprehensive overview of these operations can be found in [34] together
with details about their mathematical definition. In the following subsections,
we briefly describe the individual operations in the area of binary image pro-
cessing. The definitions presented in this work can be extended to greyscale im-
ages. The resulting morphological operations are a powerful tool in many areas of
image processing, e.g., removal of small unwanted structures from images. There
is more detailed information about both binary and greyscale operation in [35].

We used the fast implementation of morphological operations from the scikit-
image library for Python [29]. Although the algorithms are not complicated,
a fast implementation is required to process large images efficiently.
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Figure 2.4: Image after the application of morphological dilation, erosion, closing
and opening.

Morphological dilation
The definition of binary morphological dilation is given in Equation 2.4. The
space EN is Euclidian N -space [34].

A⊕B = {c ∈ EN |c = a + b for some a ∈ A and b ∈ B} (2.4)

Dilation acts as a local maximum filter. It sets the value of the currently
processed pixel to the maximum within the area given by the structuring element.
In practice, it enlarges objects as it adds pixels on both their inner and outer
boundary. Additionally, it removes holes in objects smaller than the structuring
element. We can compare the effect of using circular structuring element to dilate
an image in Figure 2.4.

Morphological erosion
The definition of binary morphological erosion is given in Equation 2.5. The space
EN is Euclidian N -space [34].

A⊖B = {x ∈ EN |x + b ∈ A for every b ∈ B} (2.5)

Erosion is the opposite operation to the dilation and acts as a local minimum
filter. It sets the value of the currently processed pixel to the minimum within
the area given by the structuring element. In practice, it shrinks objects by
removing pixels from their boundary. In addition, it removes islands smaller than
the structuring element. We can compare the result of erosion with the original
image in Figure 2.4.

Morphological opening
The compound morphological opening operation consists of erosion followed by
dilation. It removes narrow connections between regions, small islands and sharp
peaks. The definition of the binary opening is written in Equation 2.6. An
example of an image opened by a circular structuring element can be seen in
Figure 2.4.

A ◦B = (B ⊖K)⊕K (2.6)
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Morphological closing
The compound morphological closing operation consists of a dilation followed by
erosion. It removes narrow gaps in objects and holes smaller than the structuring
element. The definition of closing is given in Equation 2.7. An example of
an image closed by a circular structuring element can be seen in the figure 2.4.

A •B = (B ⊕K)⊖K (2.7)

Morphological gradient
The morphological gradient is the difference between the dilation and the erosion
of an image. It can be used to find the pixel boundary of an object by applying
a structuring element with a radius of 1. An example of gradient computed using
circular structuring element can be seen in Figure 2.5. It is recommended to apply
filtering to an image before computing the gradient because of the algorithm’s
high sensitivity to noise. Hence, we computed the gradient from the closed image
that filled in the noisy boundary of the object.

Figure 2.5: Thresholded image (left). The image after the application of morpho-
logical closing (middle). The morphological gradient computed from the closed
image (right).

We use the fast implementation of morphological gradient from the OpenCV
library [36] for Python.

Morphological top-hat transform
Top-hat transform operations are used to enhance features smaller than the struc-
turing element. We distinguish two types of top-hat operation: the white and
the black top-hat. The definition of the white top-hat is an image minus its mor-
phological opening. It enhances bright spots and lines in the image. On the other
hand, the definition of the black top-hat of an image is its morphological closing
minus the image. It enhances the dark spots and lines in the image [33]. In
Figure 2.6, we can see the result of top-hat operations. The image of the white
top-hat returns noisy pixels and small islands, whereas the black top-hat returns
the dark gaps in the object. Both operations return pixels around the boundary
due to noise. They either respond to white pixels surrounded by black pixels or
vice versa.
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Figure 2.6: A binary image computed by thresholding (left). The result of mor-
phological white top-hat (middle) and black top-hat (right) applied to the binary
image.

2.5 Shape approximation algorithms
There are many cases when the shape of an object acquired through some seg-
mentation technique is very far from a good approximation of our target. Some-
times, we can describe the sought shape in simple terms and apply post-processing
to get a more desirable result. Our task is to extract elliptical objects from ret-
inal images. Therefore, we focus on methods which produce convex shape. We
present two algorithms that are useful in this regard. It is the computation of
a convex hull and an ellipse fitting.

Figure 2.7: The left image shows the convex hull of the object selected by
a threshold. The right image shows an ellipse fitted to the boundary of the object
selected by a threshold.

Convex hull
The convex hull of an object is the smallest convex set that contains it. For a set
of points in Euclidian space, it is the smallest convex set of points that contains
the entire initial set. In a binary image, the convex hull of a group of pixels
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is the smallest convex polygon that contains the entire shape [37]. An example
of convex hull computed for an object extracted by thresholding can be seen in
Figure 2.7 on the left. We use the implementation of the Quickhull algorithm
from the Python library scipy [38].

Least squares ellipse fitting
In Section 2.1, we noted that the optic disc strongly resembles an ellipse. To
improve the final segmented shape, we can apply an ellipse fitting algorithm to
the boundary of our selected object to gain the best possible elliptical shape.
The most common approach to ellipse fitting is using the least-squares method.
Although it is prone to error on noisy or partially obscured data, it is sufficient for
the optic disc boundary improvement task. The main reasons are that the optic
disc in fundus retinal images is fully observable, and we can already extract
a roughly elliptical shape. An example of an ellipse fitted to the boundary of
a thresholded object can be seen in Figure 2.7 on the right. We used the least-
squares ellipse fitting algorithm implemented in the OpenCV library ([36]) for
Python.

2.6 Gaussian matched filters
One of the most common forms of pattern detection in signals are matched filters.
They are nicely introduced in [39]. It presents mainly the definition and applica-
tions in the time domain of 1D signals. These filters enhance features in the input
signal, which allows us to distinguish between, for instance, noise and radio signal.
It can be easily observed that such filters can be extended into the 2D domain
by applying a separable filter on a 2D signal. Furthermore, we do not need to
restrict ourselves to continuous signals or the time domain. Therefore, we can
use matched filters given by a discrete kernel on a matrix of pixels describing
an image. The authors of [40] applied this technique to the detection of blood
vessels after analysing their cross-section, which tends to resemble a Gaussian
curve.

Whereas we can use morphological operations to improve the segmentation
result of our algorithms, they are rarely a good starting point for the process
itself. As proposed in [40], we can create a filter bank of rotated Gaussian kernels
with different standard deviation for the individual axes. An example of such
a bank can be seen in Figure 2.8. We use two as the ratio of standard deviation
in the X-axis to the Y-axis. An actual application of the filter set needs a larger
bank with kernel sizes scaled with respect to the size of the processed image.

Figure 2.8: A bank of 6 rotated Gaussian matched filter kernels with angles
linearly spaced in the range from 0 to 180 degrees. The kernels are square with
the size of 15 pixels.
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2.7 Gabor filters
We can define several more types of feature enhancing filters similarly to the pre-
vious section. One filter which is useful for detection of vessel-like structures in
images is Gabor filter based on the human visual system [35]. It matches wave-
like textures where it produces the strongest response. The filter is a Gaussian
function modulated by a sine wave. It is composed out of a real and an imaginary
part. We consider only the real part of the filter in our application. Similarly to
the Gaussian matched filter, it is computed using oriented kernels. We have to
produce a filter bank that considers all possible rotations of the texture we are
trying to match. Considering sine wave with a longer period, we can observe that
the kernels are composed of one valley and two adjacent hills. This shape re-
sembles Laplacian of Gaussian in one direction, see Figure 2.9. It shows a simple
Gabor filter bank that can be used to detect vessel-like structures in images. In
the example, we use Gaussian with the ratio of standard deviation in the X-axis
to the Y-axis equal to 1.5. Gabor filter bank in this form was used for blood
vessel segmentation in [41]

Figure 2.9: A bank of 6 rotated Gabor filter kernels with angles linearly spaced
in the range from 0 to 180 degrees.

2.8 Support vector machine
We presented unsupervised classification in the form of clustering algorithms in
Section 2.3. Let us consider that we have gold data available. Then, we can
apply supervised techniques which can significantly improve our results. Many
different supervised algorithms can be applied to our problem. Several of these
algorithms are known to produce significantly better results.

The first algorithm is support vector machines, abbreviated to SVM. It is
a supervised learning algorithm, which can be used for both classification and
regression. It was first introduced in [42], and since then, it became one of
the most popular and widely accepted machine learning algorithms. It is used in
many areas, including glaucoma patient classification.

The algorithm searches for a hyperplane separating data points of two classes
with the maximal margin. We assign the term margin to the perpendicular
distance of the separating hyperplane and its closest data point. We can see
an illustration of the found hyperplane and its margin in the figure 2.10. The
optimisation problem of SVM can be described in two formulations. We call
them the primary formulation, written in Equation 2.8, and the dual formulation,

1The image is taken from the Wikipedia entry on support vector machine https://en.
wikipedia.org/wiki/Support-vector_machine.
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Figure 2.10: An example of the maximum margin search result of the SVM
optimisation1.

written in Equation 2.9. We also distinguish between a hard-margin and a soft-
margin SVM. Equations 2.8 and 2.9 describe only the soft-margin algorithm which
is more general. Hard-margin SVM assumes that our dataset is linearly separable
and does not handle points that do not fulfil this assumption. This definition is
generalised by introducing so-called slack variables, which allow data points to
lie within the margin and even on the other side of the separating hyperplane.
The algorithm with the slack variables is called soft-margin SVM, and every
time we refer to the support vector machine algorithm, we mean the soft-margin
definition [42]. Let us denote the prediction of SVM by y(xi) = wxi + b. Now,
we define the primary formulation of SVM as

argmin
w,b

C
∑︂

i

ξi + 1
2 ||w||

2 given that ξi ≥ 0 and tiy(xi) ≥ 1− ξi (2.8)

where ξi is ith slack variable, w are the weights, and b are the biases of the model.
Further, ti marks the ground truth class of the ith example and y(xi) is the pre-
diction of the model for the example xi. Finally C is a regularisation constant
that determines the trade-off between the accuracy of separation and general-
isation. More general behaviour stems from allowing training examples to lie on
the wrong side of the separating hyperplane. The symbols mentioned above apply
to the dual formulation as well. We define the dual form as

L =
∑︂

i

ai −
1
2
∑︂

i

∑︂
j

aiajtitjK(xi, xj) given that (2.9)

∀i : C ≥ ai ≥ 0 and
∑︂

i

aiti = 0 (2.10)
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where L denotes the Lagrangian with multipliers ai which we optimise and
K(xi, xj) is the kernel value computed from the data points xi and xj.

The SVM model remembers only the essential data points which define the de-
cision boundary. They are called support vectors, and given a large dataset; there
is usually only a small number of them. The low number of memorised examples
makes the algorithm efficient, and it often performs significantly better than
simple classifiers.

The model we defined until now searches for a linear separator - a hyper-
plane. In general, classification problems are not linearly separable, and it would
be difficult to apply the algorithm to these problems. Therefore we use the ker-
nel function K to transform our data into a higher dimensional space where it
becomes linearly separable [42]. The most common kernels are polynomial and
radial basis function (RBF). We define RBF as

K(x, y) = e−γ||x−y||2 (2.11)

where x and y are data points, and γ describes how far does the influence of
a single example reach.

In conclusion, a soft-margin SVM with an appropriate kernel function can be
used for classification of pixels or superpixels to determine the optic disc and cup
regions.

2.9 Decision tree based algorithms
Decisions trees are one of the simplest supervised machine learning models. A de-
cision tree is a flowchart-like tree structure, where each internal node represents
a test on an attribute, each branch represents an outcome of the test, and each
leaf node represents a prediction. We realise a prediction from a tuple of feature
values by tracing a path from the root of the tree down to some leaf node. This
final node represents the value assigned to the tuple. Training a decision tree
means selecting a feature and an associated threshold for the given node. This
process is repeated in the groups of data created by splitting the examples based
on the threshold [43].

There are multiple well-known algorithms for decision tree learning. One of
the simplest methods is the ID3 algorithm which tests each attribute at every
node. The suitable property is generally selected based on information gain.
Another algorithm is C4.5. It is capable of handling continuous attributes and
missing values. Further, there is the CART algorithm which is based on bin-
ary splitting. In general, decision trees do not perform well compared to other
machine learning models. However, they can be easily extended by ensemble
methods to create robust and well-performing models [43].

Decision tree classifier is used in a variety of machine learning problems. Its
main advantages are fast execution speed and a low amount of memory necessary
for storing the tree. It is, however, prone to overfitting on the training dataset,
which we can reduce by introducing methods such as pruning.
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2.9.1 Random Forest
An extension of a traditional decision tree classifier that improves its generalisa-
tion at a minimal cost to its ability to learn the training data is a random forest
(RF). It is an ensemble of trees where every tree gives a classification result,
and the final class is selected based on some strategy. For instance, whichever
class had the most votes is chosen. Each tree in the forest is constructed from a
random subspace of the feature space of the data. Randomness allows the trees
to complement each other in learning the training data and reduces the gener-
alisation error. Random forest was first introduced in [44] and later improved
and extended in [45]. We can see an illustration showing the basic structure of
a random forest in Figure 2.11.

Figure 2.11: An illustration of a random forest. It can be used for both regression
and classification without any significant changes2.

2.9.2 Gradient boosted decision trees
The gradient boosted tree classifier trains a collection of trees similar to the
random forest. The difference is that the RF classifier trains the trees inde-
pendently, whereas the gradient boosted classifier trains the trees sequentially to
correct the error of the previous ones. We can write a combined prediction of T
trees as

y(xi) =
T∑︂

t=1
yt(xi) (2.12)

where yt(xi) is the prediction of the tth tree for data point xi. Next, we define
the loss in the tth iteration, i.e. for the tth tree as

ℓ(t)(xi) =
∑︂

i

[︂
ℓ(ti, y(t−1)(xi)) + yt(xi)

]︂
+ 1

2λ||Wt||2 (2.13)

2The image is taken from https://tex.stackexchange.com/questions/503883/
illustrating-the-random-forest-algorithm-in-tikz.
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where ℓ(t) denotes the loss at the step t, xi is a data point and ti denotes its
ground truth target. Next, y(t−1)(xi) is the prediction of the classification forest
for all the previous trees 1..(t− 1), the full term ℓ(ti, y(t−1)(xi)) indicates the loss
of the forest composed out of the first t−1 trees and yt(xi) denotes the prediction
for the tth tree. Finally, λ is the regularisation constant, and Wt denotes the para-
meters, i.e., leaf values of the tth tree. The minimisation of the loss happens in
iterations similar to the gradient descent algorithm, however instead of improving
a set of weights in each step, we improve the tth tree by selecting decision splits
which minimise the loss. This new tree complements all of the previously created
trees. For a more detailed description of the gradient boosted tree classifier see
[46].

Figure 2.12: An illustration of the gradient boosted tree classifier. The image is
taken from [46]

We do not need a special implementation of gradient boosted tree classifier,
which can handle large amounts of data. Therefore, we use the implementation
of the algorithm from the scikit-learn library for Python [31].

2.10 Evaluation criteria
Several metrics can be used to evaluate the quality of object segmentation.
The metrics are related to each other. However, there is no easy way of converting
values from one to another. A survey summarizing different approaches to optic
nerve head segmentation has described all standard metrics which have been used
in related works, see [4]. We describe the most important ones in this work for
completeness. We also evaluate our algorithm using the described metrics to be
more easily compared against previous work. In the following descriptions, we
denote the ground truth object as Ag and the result of segmentation as A. Fur-
thermore, symbols TP , FP and FN represent true positive, false positive and
false negative areas. These values are defined at the pixel level as follows.

TP = |A ∩ Ag| (2.14)
FP = |A− Ag|
FN = |Ag − A|

21



Overlap area ratio
The most common criterium for quality of object segmentation is overlap area
ratio which is also known as intersection over union, abbreviated to IoU. It de-
scribes the ratio of intersection between ground truth and our result to their
union. We define it as

IoU = |Ag ∩ A|
|Ag ∪ A|

. (2.15)

The overlap area ratio assesses how well does the segmented area match
the ground truth. It produces numbers ranging from 0 to 1, and a higher value
of the ratio means better performance.

Non-overlap area ratio
A metric closely related to overlap area ratio is its complement. It is called non-
overlap area ratio in [4], but it can be found under names such as an error rate or
a segmentation error. We can define it as the complement to overlap area ratio
such that their sum equals 1. We can write its formula as

err = 1− |Ag ∩ A|
|Ag ∪ A|

. (2.16)

A non-overlap area ratio assesses the dissimilarity between the ground truth
and the segmented area. It produces numbers ranging from 0 to 1, and a lower
value means better performance.

Dice metric
The dice metric is very similar to the overlap area ratio. It describes the ratio of
the intersection between the ground truth and the segmented area to their sum.
We can write its formula as

dm = 2 · (|Ag ∩ A|)
|Ag|+ |A|

. (2.17)

Dice metric assesses how well does the segmented area match the ground
truth. It produces numbers ranging from 0 to 1, and a higher value means better
performance. The values produced by this metric are larger than values of overlap
area ratio.

Recall
A standard metric to evaluate the quality of classification is recall, also known
as sensitivity. It describes the ability of a model to identify diseased examples
correctly. It is defined as the ratio of true positive to all actual positive examples.
We can easily extend it to the segmentation case, where we denote each pixel as
an example and compute the ratio of correctly segmented pixels. We can write
its formula as

recall = TP

TP + FN
. (2.18)

22



Recall describes how well does the segmentation result encompass the ground
truth area. It produces numbers ranging from 0 to 1, and higher values mean
better performance. It is important to note that sensitivity does not consider
false positive examples, and denoting the entire image as positive would result in
a value equal to 1.

Precision
The second important metric for the evaluation of correctly classified examples
is precision. Contrary to recall, it works with false positive examples rather than
false negative ones. Therefore, it describes the ratio of true positive examples
to all predicted positive examples. Similarly to the previous case, we can easily
extend it to the segmentation case by denoting individual pixels as examples for
classification. We can write its formula as

precision = TP

TP + FP
. (2.19)

Precision describes how well does the ground truth encompass our segmented
area. It produces numbers ranging from 0 to 1, and higher values mean better
performance. Similarly to the recall metric, it is important to note that it does
not consider false negative examples. Therefore, depending on our definition of
the ratio 0

0 , denoting the entire image as negative would result in the value equal
to 1.

F-score
To alleviate the biases of precision and recall, we introduce their harmonic mean
as another performance measure. This metric is commonly known as F-score,
and the most used form is the F1 score. A more general form of the metric is
called Fβ score where β factor is chosen so that recall is considered β times as
important as precision. The F1 score is defined as

F1 = 2 · precision · recall

precision + recall
. (2.20)

Further, we can define the Fβ score as

Fβ = (1 + β2) · precision · recall

(β2 · precision) + recall
. (2.21)

The F1 score is equal to the dice metric. We can prove this by substituting
formulas for precision and recall into the F1 formula. We obtain the dice metric
by applying simple algebraic operations to the substituted form.
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3. Proposed approach
Our algorithm combines several approaches to leverage the best properties out of
each one. It includes an image preprocessing step, vessel extraction and region
of interest search, which estimates the location of the optic nerve head. Then we
extract the optic disc and apply additional image processing techniques to the
OD area. The last step is optic cup extraction. A diagram showing all these
steps with images of the intermediary results can be seen in Figure 3.1. We
describe each of these steps in the following sections. In addition, we discuss the
advantages and shortcomings of the techniques to provide better reasoning for
our decisions.

Figure 3.1: This figure shows a diagram of the combined optic disc and cup
extraction algorithm. The parts for each retinal feature are separate, which is
denoted by rectangles encompassing the smaller steps. We show the final results
of both segmentation methods in their respective regions of interest rather than
the full image.
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3.1 Region of interest selection
The optic nerve head is a bright circular structure in a fundus retinal image that
a human observer can identify without much difficulty. Teaching machines to
see the obvious pattern is a much more daunting task. Primarily due to many
visible retinal structures and disease-related image artefacts. For more details,
see the section about retinal images in the introduction. Consequently, direct
segmentation of the optic disc from the full retinal image is challenging. It is
advantageous to find an approximate position of the optic nerve head and proceed
from there. Localisation of the region of interest for the optic nerve head is a
common preprocessing step for segmentation algorithms, see [4] and [5] for an
overview. Several different methodologies can be used to extract the region of
interest. In [47], a Hough transform is used to find the elliptical shape of the
optic disc and an area around it is selected as RoI. An approach that considers
0.5% of the brightest pixels in the retinal image and selects a rectangular area
around them was proposed in [48]. Another method proposed in [49] is based on
a similar principle. The algorithm selects all pixels brighter than a predetermined
threshold, and a region around the largest connected component is taken as RoI.

There is a large number of different algorithms and features that can be used
for the detection of regions of interest. We could, for instance, use the fact that the
optic disc is a bright circular area surrounded by darker background and compute
Haar-like features where the maximum response is the optic disc. We propose an
algorithm based on this idea which uses meta-information about retinal images
to detect the region of interest in two subsequent phases. We can see a scheme
of our RoI selection algorithm in Figure 3.2.

The first phase of the region selection
The optic nerve head is visible in all colour channels. The optic disc is best
visible in the red channel, the optic cup in the green channel, and although the
blue channel contains a significant amount of noise, OC is visible there. Based
on that, we want to use information from all colour channels. Therefore, we want
to choose coefficients cr, cg and cb in Equation 3.1. The Green channel has the
highest contrast, and therefore it is reasonable to set cg to the highest value. In
addition, setting cb to the lowest value reduces the effect of noise. We can define
greyscale intensity computation from an RGB image as

I = cr ·R + cg ·G + cb ·B, (3.1)
where R, G, B are the colour channels and I is the combined intensity. We
decided to use colourimetric greyscale transform on the retinal image. The colour
transformation is defined in Equation 3.2. It uses the principles of colourimetry
to calculate the greyscale values to have the same luminance as the original colour
image according to its colour space. Additionally, it gives the highest coefficient
to the green channel and the lowest coefficient to the blue channel.

Icm = 0.2126 ·R + 0.7152 ·G + 0.0722 ·B (3.2)
The terms R, G and B in Equation 3.2 are the colour channels of the image in

linear RGB colour space. Additional information about the greyscale conversion
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Transform the retinal image into
colorimetric greyscale

Multiply by pixel distance from the
centre of the nonzero area

Response at size
100px

Response at size
150px

Response at size
200px

Response at size
250px

Compute the maximum response

Select pixels brighter than 95% of
the maximum brightness

Choose the connected component
closest to the centre and compute

the initial RoI rectangle

Multiply the greyscale RoI with its
red channel

Compute the response of the
previous step

Refine the RoI rectangle

Figure 3.2: This figure shows a scheme of our region of interest selection al-
gorithm. Some of the minor steps and details are omitted for clarity.

can be found in [50].
The next step of our RoI detection algorithm is scaling the transformed retinal

image to a smaller size for improved performance. We use the width of 500px
with heigh computed so that the aspect ratio of the image is preserved. We
observed that changing this resolution to higher values does not affect the quality
of the result. We consider 500px to be a good combination of performance and
detail preservation. Before we locate the region of interest we have to resolve
issues arising from bad retinal images. A failure of the imaging technology can
cause very bright artefacts at the edges of the retina, which we need to suppress
before any selection of bright pixels. An example of such artefact can be seen
in Figure 3.3, image (a). We are using prior information about the processed
datasets, which places the optic disc close to the centre of the retinal image.
The assumption about OD location is not a rule which applies to every retinal
dataset. However, those used for optic nerve head segmentation usually fulfil
this condition. Therefore, we use the distance from the centre of the retina for
unwanted artefact suppression.

We start by computing the distance matrix of pixels with intensity higher than
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1% of the maximum intensity in the image. The mask created by this threshold
encompasses the circular retina and excludes the black border. We found that
the values which fill the retinal image to form a rectangle are not always zero, but
they are very close. Hence, we use an empirical threshold of 1%. Then we divide
the distance matrix by its maximum value, which produces distances ranging
from 0 to 1 with the lowest values at the edges of the retinal image. We can
observe the source image and its distance matrix in Figure 3.3. The distances
computed at this step are linear. The normalised distance matrix is shown in
image (b).

Figure 3.3: a) The original retinal image scaled down to 500px, b) Linear distances
of non-zero area of the retinal image, c) Distances modified by an exponential,
d) The retinal image multiplied with the non-linear distances

Next, we apply a non-linear transformation to the linear distance matrix to
obtain our pixel modification values. Note that pixels at the retina centre have
distance values close to 1, and those at the border are nearing 0. We introduce
non-linearity by computing an exponential out of negative distances. An import-
ant observation is that exponential out of any value ranging from −1 to 0 belongs
to the range 0 to 1. Thus, we assign the right order of distances, i.e. the highest
values in the centre, by subtracting them from 1. We define the precise formula
as

d = (1− exp(−dlinear)). (3.3)

where dlinear is a linear distance of a pixel from the retinal border. In Figure 3.4,
we can observe how does the distance modifier behave in the range from 0 to 1.

The suppression of artefacts appearing at the retinal border is done by mul-
tiplying the intensity values with the computed distance modifier. The non-linear
distances and the final suppressed intensity image is shown in Figure 3.3.

In the next step of our algorithm, we search for bright circular areas in the
retinal image and enhance them. We use convolution with a disc kernel modified
by pixel distance from its centre, similar to the image modification done in the
previous step. We use the same formula for the kernel computation as for the
image distance, see Equation 3.3.

To properly distinguish between bright circular areas and monochrome re-
gions, we subtract the mean value of the kernel from the kernel itself. We com-
pute the mean only from the values within the original disc area. Then, we set
the pixels outside of the disc to zero. This modification assures that the response
of the monochrome region is zero. The result behaves similarly to Laplacian of
Gaussian, which matches blobs in images. Our definition uses a sharp cut-off
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Figure 3.4: Plot of the non-linearity applied to pixel distances for values in the
range from 0 to 1.

instead of a smooth transition which gives more importance to the darker sur-
roundings of the bright region. The base disc shape, the distance modifier and
final kernel can be seen in Figure 3.5. We also use mean subtraction in non-zero
areas on the processed greyscale image to enhance the response of bright regions.
The convolution can produce negative values in darker areas. However, we do
not need to worry about the range of values because we are only interested in the
maximum response.

Figure 3.5: Basic disc kernel (left), the distance modifier computed according
to the formula in Equation 3.3 (middle) and the final kernel combined from the
distance modifier and the basic disc kernel.

We cannot predict the size of the optic disc before the region of interest
selection. Therefore, we apply the convolution at different scales and select the
maximum response. The resolutions used in our algorithm are 100px, 150px,
200px and 250px with the kernel width 25px. This matches optic discs, which
cover the area from 1

16 to 1
100 of the retinal image. In practice, the matched shapes

are smaller due to the negative values of the kernel’s border. Each response
image is divided by the area of the kernel to ensure that computed values are
comparable. The response is computed simply as I = Icurrent

adiv
where Icurrent is the

response image before kernel normalisation. We define the precise formula for

28



the division term as

adiv = (Kwidth
250

Wcurrent

)2, (3.4)

where Kwidth is the width of the kernel which is 25px in our case and Wcurrent

denotes the width of the currently processed response image. An example of
kernel responses at the respective resolutions is shown in Figure 3.6. Note that
the apparent brightness of pixels in the response images does not represent the
values that we compare while selecting the maximum response. That is due to
intensity scaling for the display of images.

Figure 3.6: Responses returned by convolution with our disc matching kernel at
resolutions 100px, 150px, 200px and 250px from left to right.

Now that we have a single maximum response image, we continue by selecting
the pixels brighter than 0.95 times the maximum value in the image. Next, we use
the prior information about optic discs being close to the centre of the retina and
select the connected component, which is closest to the centre, as our approximate
location of the optic nerve head. We define the centre of the region of interest
as the mean pixel position of the chosen component. The final step of the first
phase of our RoI selection algorithm is computing the width of the region. Let us
assume that retinal images in our dataset are of approximately equal size. Then,
we need to consider only the size of the optic disc in a particular image. We
define the width of our selected region as

WRoI = Wdata(1 + r1), (3.5)

where WRoI is the width of the region, Wdata is a data dependent constant and
(1 + r1) denotes a scaling factor computed based on the approximate size of the
optic nerve head. We set Wdata = 100px for the Drishti dataset used in our
experiments. We define the ratio r1 as

r1 = Abright

Asize

, (3.6)

where the term Abright is the number of pixels brighter than 0.95 times the max-
imum value from which we chose the location of RoI. The remaining term Asize

denotes 5% of all pixels in the image. Following that, the factor r1 is a ratio
between the number of pixels surpassing a certain brightness threshold and the
surface covering a certain percentage of the image. The core idea of this formula
is that larger optic disc returns high response values in a larger area, whereas
smaller discs have a sharper response. This property is quantified in the term r1,
and we observed that the values of 0.95 for the brightness threshold and 5% for
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the area give the best results. We can see the partial results of the first phase
of our algorithm in Figure 3.7. The middle image shows the maximum response,
which is much sharper compared to the individual responses shown in 3.6.

Figure 3.7: The greyscale image computed for the RoI selection (left), the max-
imum response of each pixel with respect to our modified disc kernel (middle)
and pixels surpassing the threshold 0.95 of the highest response value.

Let us denote the centre coordinates computed from the brightest pixels as cx

and cy. Then, we define the region of interest of the first phase as a square with
the top left corner tl and bottom right corner br with coordinates computed as
follows.

tlx = cx −
WRoI

2 (3.7)

tly = cy −
WRoI

2
brx = cx + WRoI

2
bry = cy + WRoI

2

The second phase of the region selection
The second phase of our algorithm starts by cropping the retinal image to the
region selected in the first phase. The second phase aims to refine the region of
interest to be smaller if possible and better centred on the optic disc. The steps
of this part of the algorithm are very similar to the first phase.

Firstly, we compute the colourimetric greyscale transformation of the region.
Then we multiply it with the red channel of the image. The majority of in-
formation about the optic disc is carried in the red channel, see [4]. Thus, the
multiplication enhances the optic disc area. This step was not done in the first
phase due to retinal and image defects, which might be present in the red channel.
This concern becomes irrelevant after we crop the image.

Secondly, we scale the cropped region down so that its width is 100 pixels.
Then, we convolve it with the kernel defined in the previous section. We set
the width of the kernel to 40px. We do not need to do a multi-scale response
computation because all optic discs have a similar size in the cropped and scaled
image. After analysing our dataset, we concluded that setting kernel width to
40% of the image width is a reasonable estimation of the disc sizes in the second
phase.
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Thirdly, we calculate the new location of the optic disc as the mean pixel
position of pixels brighter than 0.9 times the highest value in the image. Compare
that with the first phase, where we used the threshold of 0.95. We can use a lower
threshold because the optic disc in the second phase covers a much larger region
of the image than it did in the first one. Subsequently, we compute the equivalent
ratio r2 using the same formula as for r1, see Equation 3.6. However, together
with the brightness threshold, we also increase the area considered in the term
Asize from 5% to 10%. The resulting formula is equivalent to the computation of
r1 if we assume a larger disc region. The cropped region of interest, its response
and the brightest area used for localisation are shown in Figure 3.8.

Figure 3.8: The greyscale image of the RoI from the first phase (left), the max-
imum response of each pixel with respect to the disc kernel (middle) and pixels
surpassing the threshold 0.9 of the highest response value.

Finally, we have to compute the width of the refined region of interest. The
goal of the second phase is to reduce the size of the region such that it still contains
the entire optic disc. We introduce an empirical constant κ = 0.3, which defines
the maximum scale reduction, i.e., we cannot make the region smaller than 70%
of the original. This limitation helps us prevent cutting off parts of the optic disc
due to a small r2 factor. We chose the constant of 0.3 based on the observed
results of the first phase computed on images from our dataset. In addition to
the term r2, we add a new distance factor ϵ, which penalises the size reduction
for cases where the new approximate disc location is far from the previous one.
We define the complete reduction factor ℓ as

ℓ = (1− ϵ)2(1− r2)κ, (3.8)
where the term ϵ is computed as the distance between the approximate disc
centres divided by half of the diagonal of the rectangular region. We subtract it
from one to receive high values for short distances. We are working under the
assumption that placing the new refined centre close to the original one means
that the first approximation was already good. Then we can significantly reduce
the size of the region because we were in the correct position. However, if the
approximate centres are far apart, we are not confident in our centre localisation,
and we keep the size of the region similar to the original. The new centre tends
to be quite close to the previous one, and therefore we take the factor to the
power of two, which enhances the penalisation effect of distant centres. Next,
the term r2 specifies how large is the new disc. Subtracted from one, it penalises
the size reduction for large discs. Subsequently, we compute the width of the
new region of interest as the width of the previous region multiplied by the factor
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(1 − ℓ). Finally, we define the new region of interest as a square centred at the
new approximate disc centre with the width obtained in the previous steps. We
can see an example of the result produced by our algorithm in Figure 3.9. Note
that the area of the refined region of interest reaches outside of the first phase
rectangle.

Figure 3.9: This figure shows an example of the results computed using our RoI
detection algorithm. Blue colour denotes the region extracted in the first phase
of the algorithm, and red denotes the region from the second phase.

In conclusion, our region of interest detection algorithm is robust and also
fast due to the low resolution of images, it processes. A disadvantage of the
algorithm is that it has data-dependent constants, which should be specified for
custom datasets individually. The algorithm performs well on fundus images that
contain the whole retina because the default constants specified for our dataset
consider that type of images. Modification of the constants is necessary only if
we execute the algorithm on images where some form of region of interest was
already selected or when the fundus image is significantly larger than the images
from our dataset. The width of our images is around 2000px, which is a standard
resolution for retinal fundus images.

3.2 Vessel extraction and suppression
One of the most prominent features of a retinal fundus image is the blood vessel
network. It is composed of vessels originating in the optic disc. Their convergence
point is usually situated at one side of the optic cup, depending on whether we
have an image of the left or right eye. The vessels split and spread as they reach
the outer parts of the retina. This expansion results in a significant variance in
vessel thickness. The goal of our work is to extract the area of the optic disc and
the optic cup. Therefore we do not need to be able to extract vessels precisely.
Correctly segmenting the major vessels in the optic disc region selected by our
RoI detection algorithm is sufficient. As a result, we chose a simple, morphology-
based extraction algorithm. We show an example of the results produced by our
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algorithm in Figure 3.10. The vessel structure is incomplete, but we are interested
in the central knot of vessels which is pretty accurate.

Figure 3.10: The result of our vessel segmentation algorithm on the region of
interest extracted with 3.1. The left image shows the original image from the
dataset and the right image shows the detected blood vessels.

A comprehensive survey of different vessel segmentation algorithms together
with datasets used for their evaluation can be found in [51]. As a result of
our requirements, we decided to implement a modified version of the algorithm
presented in [52]. Instead of the application of three vessel-enhancing filters,
we applied only two of them. We excluded the Frangi filter, which we deemed
superfluous for our task. A general scheme of our vessel segmentation algorithm
can be seen in Figure 3.11.

Let us discuss the individual steps of the algorithm in more detail. Firstly
we select an appropriate colour channel for vessel extraction. The highest vessel
contrast is observable in the green colour channel, which was used for feature
extraction in several proposed approaches [51]. In other cases, a combination of
colour channels with special coefficients is used to enhance the contrast. In [52],
the authors estimated the values of channel coefficients from the training dataset
and discovered that values cr = 0.1, cg = 0.7 and cb = 0.2 are best performing
for intensity computation defined as

I = cr ∗R + cg ∗G + cb ∗B (3.9)

where I is the grey level intensity intended for blood vessel extraction. Further,
terms R, G and B denote the colour channel of RGB colour space. Finally, cr,
cg and cb are the channel coefficients used in the grey level conversion. Generally,
the coefficients are constrained by cr + cg + cb = 1, i.e., their sum has to be 1. In
Figure 3.12 we can observe the optic disc region of interest split into individual
colour channels. We decided to use the green channel for vessel segmentation due
to its high contrast. We omitted the red channel due to low contrast in the optic
disc region and the blue channel due to noise.

The second step of our algorithm estimates the blood vessel regions using
matched filters. We scale the processed image down to 256px for faster computa-
tion. Similarly to [52], we apply Gaussian matched filtering described in Section
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Select the green channel of the
image

Convolve the green channel with a
Gabor filter bank

Convolve the green channel with a
Gaussian matched filter bank

Compute the maximal response of
the filter bank

Compute the white top-hat of the
maximal response

Compute the maximal response of
the filter bank

Compute the white top-hat of the
maximal response

Compute vessel features

K-means of the features with 3
clusters

Select two brightest clusters as
blood vessels

Remove noise and small objects

Figure 3.11: This figure shows a diagram of our vessel extraction algorithm.

2.6 and Gabor filtering describe in Section 2.7. We modify the kernels of these
filters to ensure that they produce responses with the value 0 for monochrome
areas spanning the entire kernel. We ensured this behaviour by subtracting the
mean of the given kernel from the kernel itself. In some cases, blood vessels have
thin bright stripes in their centre. These artefacts can cause incorrect segment-
ation of the vessel structure [52]. We found the bright stripes in our dataset as
well. We consider them a general issue rather than a problem stemming from a
faulty imaging device. An example of this artefact in an image from our dataset
can be observed in Figure 3.13. To suppress these bright areas, we applied a
morphological opening operation, see Section 2.4, with a disc-shaped structuring
element. We use a disc with a radius of 5 pixels, representing about 2% of the
image size after scaling it to 256px.

The purpose of both Gaussian and Gabor filtering is very similar. They are
supposed to enhance the vessel strands in the image. After that, we can apply
further processing, which extracts the vessel region. As we noted in Section 2.6,
the stretched and rotated Gaussian kernel responds to oriented strand-like areas.
Therefore we convolve the image with a Gaussian filter bank of 12 rotated kernels
with the angle of rotation linearly spaced in the range from 0 to 180 degrees. We
consider 12 kernels to be a sufficient number for matching all vessel orientations.
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Figure 3.12: The region of interest separated into the RGB colour channels. The
blood vessels are prominent in the green channel and they blend together with the
optic disc in the red channel. The blue channel is too noisy for shape extraction.

Figure 3.13: The left image shows a section of the colour channel intended for
vessel extraction containing a bright stripe artefact. The right image shows the
result of morphological opening applied to the left image.

Increasing the number of kernels does not improve the result. We take the max-
imum value for every pixel from the stack of response images computed for the
set of kernels. The resulting pixel value represents the highest vessel-like response
among the kernels, and the entire image represents enhanced vessel regions. Note
that the response is still 0 for monochrome areas.

Similarly, we construct a Gabor filter bank of 12 rotated kernels with the
angle of rotation linearly spaced in the range from 0 to 180 degrees. Then we
apply the same enhancement process as for Gaussian filtering. We convolve the
source image with the kernels and take the per-pixel maximum from the stack of
responses. We show the computed responses for both types of filters in Figure
3.14.

The next step of the algorithm is further enhancement of the vessel strands
by applying a morphological white top-hat operation as proposed in [52]. We
use a disc structuring element with a radius of 13 pixels. White top-hat returns
thin bright areas from the image, which match the vessel regions of the images
produced by Gaussian and Gabor filtering. In Figure 3.15, we show the results
of morphological white top-hat for Gabor and Gaussian filter responses.

Let us denote the results of white top-hat IGauss and IGabor for the Gaussian
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Figure 3.14: The left image shows the per-pixel maximum of the oriented Gabor
filter responses. The right image shows the per-pixel maximum of oriented Gaus-
sian matched filter responses.

and Gabor responses, respectively. We compute features for the clustering step
of our algorithm from these two images by applying a polynomial feature trans-
formation with the degree 2. More precisely, the set of features can be defined
by the enumeration

F = {IGauss, IGabor, I2
Gauss, I2

Gabor, IGauss ∗ IGabor}, (3.10)

where F is the set of features, and ∗ denotes per-element multiplication. We
decided to compute the feature set using polynomial transformation due to the
apparent value in combining our feature images. We can observe that multiplica-
tion suppresses false and weak vessel responses. The full set of features is shown
in Figure 3.16. The original feature images are included to add the weak vessel
responses to the decision-making process. Finally, we stretch each feature from
the set in Equation 3.10 to span the range from 0 to 1.

With the feature set computed in the previous steps, we can proceed to vessel
classification. Generally, we would classify pixels into two groups: vessel and
non-vessel. However, following the approach proposed in [52] and our feature set
definition, we define three classes of vessels. Let us call them vessel pixels with
high, medium and low probability. Then we assign the first two classes to the
vessel region and the last class to the non-vessel region. The main reason for
this assignment stems from the properties of the feature set. High values of all
the features describe the class of vessel pixels with high probability. Next, high
values of the original features and low values of multiplied features represent the
class with medium probability. Finally, pixels with low values features represent
the class with low probability.

The final step of our vessel extraction algorithm is the classification of pixels.
The approach in [52] suggests using fuzzy c-means classifier instead of k-means.
We discovered that classification of pixels using fuzzy c-means often selects false
vessel regions and that k-means is marginally more reliable. The result of classi-
fication into three classes by the k-means algorithm can be seen in Figure 3.17.
Each step of the algorithm is subjected to noisy input, which can cause small
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Figure 3.15: The results of morphological white top-hat operation applied to per-
pixel maximum responses of rotated Gabor filters (the left image) and Gaussian
matched filters (the right image).

Figure 3.16: The set of features described in Equation 3.10 displayed in the order
of their definition.

vessel-like islands to appear in the classified result. We filter out all objects
smaller than 100 pixels from the result to resolve this issue.

Our vessel extraction algorithm has several shortcomings. Among the signi-
ficant issues belong incomplete segmentation of thinner vessels visible in Figure
3.17 and false vessel areas appearing at the boundary of the optic disc and the
optic cup. These problems would have to be resolved if the algorithm was applied
to the vessel segmentation task. However, in our case, precise vascular regions
are not necessary because we use them only for suppression. Thinner vessels do
not cover large parts of the optic cup. Consequently, they do not affect segment-
ation substantially. Further, the false vessel regions at the optic disc and cup
boundary are replaced by values that reflect the closer retinal structure. In our
experiments, suppressing these regions did not move the boundary of either the
optic disc or the optic cup. Nevertheless, we do not suppress vessels for our disc
segmentation algorithm due to interference in the parapapillary atrophy of the
retinal image and use it only during the optic cup extraction.

Vessel suppression
Until now, we talked about vessel segmentation, which is not useful for our overall
optic nerve head extracting algorithm. We want to use the segmented vessel
regions to suppress vessels. In this context, suppression means an approximation
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Figure 3.17: This figure shows the original image (left) and pixel labels produced
by the k-means algorithm classifying into three classes.

of the pixel values in the vascular area from a retinal image without blood vessels.
We display an example of a region of interest before and after vessel suppression
in Figure 3.18.

Figure 3.18: The original image (left) and an image with suppressed vessel regions
(right).

We suppress the vessels in an image by replacing the colour values of vascular
pixels with the median of non-vascular pixels in the pixel neighbourhood defined
by a square window with the width of 30 pixels. The non-vascular pixels are left
unchanged. We selected a large filtering window due to thicker vessel areas at the
centre of the optic disc. Due to imprecise detection of blood vessel boundary, the
resulting image can have dark lines around the suppressed areas. These artefacts
result from the replacement value being significantly higher than the effective
threshold by which we selected the vascular area. To remove these dark lines, we
apply morphological grey level closing to the suppressed image.
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3.3 Region of interest preprocessing
Retinal fundus images can vary a lot from one to another. These variations can
be caused by the slightly different calibration of the imaging device, angle under
which the retinal image was taken or slight movement resulting in blurry images.
Like every other imaging technique, acquiring images can introduce noise, which
reduces the quality of the image. The most crucial difference between retinal
images is their contrast. Whereas some of them can have a very bright optic
disc and dark background, others can have similar values in both regions. There
are large variations within each dataset as every person has a slightly different
retina, resulting in significant colour differences. Diseases such as glaucoma can
cause additional issues resulting in low contrast of the image. These problems are
even more apparent when we consider images from different datasets that were
usually taken on particular devices. Therefore we want to improve the contrast
of processed images and reduce noise introduced by the imaging process [4].

In Section 3.1 we located a region of interest containing the optic nerve head.
Therefore, it is advantageous to apply preprocessing techniques on this region
rather than on the full retinal image. For example, any contrast stretching on
the full image would encounter problems with the black area surrounding the
retina. In addition, the full image may contain various artefacts, which reduce
the effectiveness of contrast stretching. An example can be observed in Figure
3.3, image (a). The displayed retinal image contains values from the entire colour
range, mainly the black border and bright region contain the extrema. Therefore,
contrast stretching on this image would be ineffective. However, the selected
region of interest excludes both unwanted areas and allows contrast-enhancing
algorithms to improve the processed image.

We apply adaptive histogram equalisation (AHE) to enhance the contrast
of images. An ordinary histogram equalisation uses the same transformation
derived from the image histogram to transform all pixels. It works well when
the distribution of pixel values is similar across the entire image. Areas that are
bright or dark will not be sufficiently enhanced. Adaptive equalisation transforms
pixels based on the histogram of their neighbourhood. A simple algorithm can
compute the histogram from the square neighbourhood of a pixel and use the
same transformation as global equalisation [53]. The effect of AHE on the optic
disc region of interest in the individual RGB colour channels can be observed
in Figure 3.19. We used the adaptive equalisation implementation available in
scikit-image [29].

The second preprocessing technique which we apply to the equalised image
is median filtering for noise suppression [35]. Adaptive equalisation tends to
enhance noise in the image, and therefore we apply the noise reduction on the
equalised image. We use a median filter of size 7 by 7 pixels. We found that this
size of the filter gives the best results. An example of median filtering applied to
the equalised image is shown in Figure 3.19.

These two techniques improve the contrast and reduce the noise in the image.
This step is important to reduce differences between images from one or more
datasets before proceeding to the object detection algorithm.
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Figure 3.19: This figure shows the effect of adaptive histogram equalisation
(middle) and median filtering (right) on the original image cropped to the re-
gion of interest (left).

3.4 Iterative optic disc thresholding algorithm
Optic nerve head segmentation can be divided into two major parts: the extrac-
tion of the optic disc and the optic cup. Most of the approaches in [4] and [5]
propose a solution for both tasks. In these cases, the optic disc segmentation
must be done first because the optic cup extraction depends on it. We propose
an algorithm that also locates and extracts both retinal features. We present the
overall diagram of the iterative algorithm in Figure 3.20. The scheme contains
the region of interest selection and image filtering as the first step. It does not
mean that these actions are done multiple times.

Let us assume that we have a region of interest computed using the algorithm
in Section 3.1 from some retinal image. Furthermore, this region is preprocessed
using the methods described in Section 3.3. Therefore, our starting point is
a contrast stretched square area approximately centred on the optic disc with
eliminated noise. Now, let us begin the description of our iterative optic disc
segmentation algorithm.

The first task of optic disc segmentation is similar to the first step of the region
of interest detection. It is an appropriate colour channel selection. Generally, the
red channel from the standard RGB version of the image is taken since the optic
disc has the highest contrast in it. We observed that the blue channel contains
a distinct optic disc region when the noise is not dominant in some cases. Fur-
thermore, various brightness and intensity channels show high contrast between
the disc region and its background. For instance, the value (V) component of the
HSV colour model is computed as the maximum of R, G and B values or the Y
component of the YIQ colour space. We can also consider the L component of
CIE L*a*b* or L*u*v* colour models. For more information on the individual
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Figure 3.20: Scheme of our iterative thresholding algorithm for optic disc seg-
mentation. Some of the minor steps are omitted for clarity.

colour spaces, see [54]. In Figure 3.21, we can see the individual colour channels
of the transformed region of interest.

We decided to use colour channels R, B, V, and Y for the segmentation.
Our algorithm can compute the quality of a given object, i.e., how much does it
resemble the optic disc. Therefore, we do not combine these colour channels to
produce an intensity image for segmentation. Instead, we execute the main part
of the algorithm on each colour channel scaled down to a small resolution for
improved performance. Each of these processes produces the best object it could
detect in the colour channel together with its score. Based on the obtained scores,
we choose the best colour channel for the segmentation and continue examining
this colour channel. The initial run of our algorithm also gives us a starting point
in the form of the best object found in the subroutine.

Before we start with the detection of objects in the selected colour channels,
we execute the blood vessel extraction algorithm defined in Section 3.2. We noted
in the referenced section that blood vessel suppression is not used for optic disc
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Figure 3.21: Channels of RGB, HSV, L*a*b*, L*u*v*, YIQ and YCbCr colour
spaces transformed from the RGB image.

segmentation. That is due to our definition of object quality. Removing blood
vessels from the image can cause small objects representing the optic cup to be
marked as optic disc instead. Nevertheless, a blood vessel mask is used by the
algorithm to evaluate the quality of detected objects. Therefore we compute
it from the region of interest at the start of the algorithm. Then we use it in
each subroutine, which produces an object. The scheme in Figure 3.20 shows
the blood vessel segmentation slightly separated from the flow of the algorithm.
This separation represents the fact that transformations and thresholding are not
dependent on the vessel extraction, but parts of the algorithm use the vascular
mask.

The central part of the algorithm can be split into two phases. The first,
initial phase is different from the subsequent one because it runs on multiple
colour channels and has a different starting point. The following phase builds on
the results of the initial one. Each branch of the algorithm corresponding to a
particular colour channel starts with the normalisation of the processed image.
Normalisation ensures that all branches work with data consisting of values in
the range from 0 to 1. Now, any operation working with intensity is going to
produce comparable results between the colour channels.

Figure 3.22: From left to right: the result of Otsu’s thresholding, the result of
the first phase and the result of the second phase.
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Let us consider the first phase of the algorithm. Its input is a normalised
single-channel intensity image. Firstly, we scale the image down so that its width
is 128px. We do not require precise segmentation of the object, and this phase
is running for multiple colour channels. Thus, we chose a small resolution of
images for better performance. Optic discs at a low scale tend to lose details
on their boundary. However, the ability to select an object resembling the optic
disc is unchanged. Simply, if OD is well separable from its background in the
original image, it will remain separable in the scaled-down version. There are
certainly cases where the pixel interpolation causes the disappearance of a thin
line separating the disc from some artefact. The issue of the unwanted region
is resolved in the second phase. The second step of the initial phase is image
analysis by Otsu’s method for the selection of starting threshold, see Section 2.1.
Otsu’s thresholding performs well, and in most cases, it produces an object close
to the ground truth OD. Nonetheless, there are cases where it cannot separate
the object from its background even though a threshold exists. In addition,
it tends to under-segment objects, i.e., the obtained object is smaller than the
one we are trying to locate in the image. We apply it to the unscaled image
because the computation requirements of Otsu’s thresholding are relatively low,
and we observed a notable improvement in the results. To improve the result of
Otsu’s method we run 3 iterations of threshold improving algorithm based on the
segmented object’s quality with the Otsu’s threshold as its starting point. The
search range of the algorithm is bounded by the values given in Equation 3.11.
The formulas assume that the image is normalised. Otherwise, the additive term
would have to be computed using the maximum and minimum value of the image.
In Figure 3.22, we can compare the result of Otsu’s method and the results of
subsequent phases. Note that phase two has only marginal changes. It improves
the result by adding details to the segmented object.

tmin = tOtsu −min(1.0− tOtsu, tOtsu) (3.11)
tmax = tOtsu + min(1.0− tOtsu, tOtsu)

Following the selection of the initial threshold and search boundaries, we can
proceed to the iterative improvement of the returned threshold. Let us start by
describing the general iteration scheme and search updates. A diagram displaying
this part of the algorithm is shown in Figure 3.23. Endpoints of the search
interval are denoted by tmin and tmax. Further, the starting threshold is denoted
by tstart. If we find an object at a certain threshold and do not have additional
information, we cannot decide whether we should search for a better object in
the lower or upper intervals. Therefore, our algorithm finds the best object at
three thresholds: tstart, tmin+tstart

2 and tstart+tmax

2 . It chooses the best object out
of the three propositions, and then it shifts the interval boundary so that the
whole range is reduced to one half. Assuming that the best object lies in the
lower half of the interval, we shift the upper boundary to the starting threshold
tnew
max ← tstart. If the best object lies in the upper half of the interval, then the

situation is analogical. Lastly, if the starting threshold is the best then we simply
shift endpoints of the interval to the thresholds tmin+tstart

2 and tstart+tmax

2 . The final
step of a single iteration is the assignment of the new starting threshold. It is
simply set to the midpoint between the new interval boundaries tstart ← tnew

min+tnew
max

2 .
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This set of steps is repeated for a small number of iterations. Note that the search
interval is reduced by half in each iteration and, for a standard 8-bit greyscale
image with 256 possible values for a pixel, it takes nine iterations to reach the
precision of one intensity value. We do not need to run all nine iterations. In our
experiments, we discovered that seven iterations are enough for convergence.

An interval from L to R and an initial
threshold I

Find the best object at (L+I)/2 Find the best object at I Find the best object at (I+R)/2

Select the best of the three proposed
objects

Update the interval range

Figure 3.23: A scheme of the iterative process for the threshold improvement.

Until now, we described the algorithm by a general scheme saying that it
finds the best object for a threshold and evaluates its quality, i.e. it assigns
a score to objects which allows us to compare them. The subroutine for best
object selection receives the source image and a threshold at which it should find
the object. Firstly, we smooth the image by convolution with Gaussian kernel,
and then we binarise the filtered image using the given threshold. Secondly, we
remove small objects and holes which represent noise from the binarised image.
Thirdly we select the remaining connected component which resembles an ellipse
the most according to the similarity metric defined as

ϕ = 1.4e

⌜⃓⃓⎷ 1
N

N∑︂
i=1

(di − d̄)2. (3.12)

The formula of our ellipse metric given in Equation 3.12 is a standard root mean
squared error (RMSE) of relative distances between object boundary pixels and
the covariance ellipse calculated from object’s pixel positions. It is multiplied by
an eccentricity penalisation term 1.4e where e is the ratio of the major and minor
ellipse axes. We use exponentiation to penalise highly eccentric ellipses more sig-
nificantly compared to circular ones. We opted for the base of the exponentiation
such that for e = 2, the term is approximately equal to 2. We decided to use 1.4
instead of

√
2 for simplicity. The term N denotes the number of boundary pixels

considered in the RMSE computation, the term di is a relative distance of the
ith pixel to its closest point on the ellipse, and the term d̄ denotes the mean of
these distances. More precisely, di is computed as the pixel distance divided by
the average of the major and minor axes of the ellipse. We define it as

di = dpixel
i
a+b

2
, (3.13)
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where a and b are the ellipse axes and dpixel
i is the image plane distance of a point

to the ellipse.
Lastly, we compute additional parameters of the selected object, which de-

termine its quality as an optic disc candidate. We use these parameters to calcu-
late the final score and return it together with the mask of the selected object.
In Figure 3.24, we can see a visualisation of this sequence of steps.

Binarise the image using the given
threshold

Remove small objects and small
holes

Select the best remaining connected
component based on similarity to an

ellipse

Compute the final object score

Figure 3.24: A scheme of the best object selection part of the algorithm.

The full optic disc score computation uses additional properties of selected
objects. The base value is the ellipse similarity ϕ defined in Equation 3.12. In
general, having a shape resembling an ellipse or a circle is not a good criterion
for comparing different optic disc shapes. For instance, optic cups can be visible
in the same intensity images as optic discs, and they can appear circular. An
algorithm that decides purely on the similarity to an ellipse might select the
optic cup area because it is more circular. Therefore, we define the optic disc
quality metric as

ϵ = ϕνδλ, (3.14)
where the term ϕ is base value of ellipse similarity and the remaining factors
determine how likely is the current object an optic disc. Each factor defines a
condition that OD should fulfil and quantifies the success of the selected object in
fulfilling it. Our objective is to minimise the function defined by ϵ to obtain the
best object. The factor ν denotes vessel coverage description, δ penalises dark
and distant objects, and λ denotes a penalisation term for large objects.

Now, let us consider the properties of optic discs within the region of interest
acquired via the algorithm in Section 3.1. The optic disc is an elliptical shape
positioned approximately in the centre of the RoI. Further, according to our data,
it covers 25% or fewer pixels of the region. Next, it is an area where blood vessels
converge and also where they obscure a significant section. Finally, the optic
disc is a bright region on a relatively dark background, and it has no intersection
with the boundary of the region of interest. An example of the score function
evaluated for all thresholds of the red channel is shown in Figure 3.25. Notice that
the function has a roughly convex shape. Nonetheless, it contains several local
minima. In addition, the right image in the same figure shows the object mask
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at the global minimum. The graph shows the score value only for thresholds in
the viable range. Those higher and lower are considered invalid by the algorithm,
and their score is set to a very high value so that they do not interfere with the
real disc candidates.

Figure 3.25: The left image shows the score function for the best object across all
thresholds of the red channel. The right image shows the mask with the global
minimum score.

The first important term in distinguishing small elliptical objects likely be-
longing to the optic cup from those which we are searching for is the vessel
coverage term ν defined as

ν = 1− (clamp( |Aobj ∩ Avessel|
|Avessel| ∗ 0.5 , 0, 1) ∗ 0.75). (3.15)

It considers the area of the selected object covered by vessels and assigns it
a value in the range from 0.25 to 1. The value 0.25 means that the object
fulfils the condition perfectly and 1 marks an object which does not intersect
the vessel network at all. The core of the formula is (clamp( |Aobj∩Avessel|

|Avessel|∗0.5 , 0, 1)
where clamp(x, 0, 1) is the standard mathematical clamp function which returns
x for x ∈ (0, 1), 0 for x ≤ 0 and 1 for x ≥ 1. The inner part |Aobj∩Avessel|

|Avessel|∗0.5
describes the ratio of vessel coverage of the object to the vessel coverage of the
region of interest. Terms Aobj and Avessel denote the area covered by vessels for
the selected object and the whole region, respectively. The vessel area in the
denominator is multiplied by 0.5 to resolve the problem of objects spanning the
entire RoI having a better vessel coverage score than OD candidates. Based on
our available data, we discovered that the actual optic disc rarely contains less
than half of the pixels marked as vascular by our algorithm. The average vessel
coverage for ground truth optic discs in our training dataset is 66.6%, and the
minimum is 43.9%. Based on these figures, we selected the threshold for the score
clamping to be 50%. A lower value results in a linearly scaling penalisation. The
constant 0.75 by which we multiply the clamped value describes how important
is the vessel coverage information. A higher value of this term would increase
penalisation for objects not intersecting the vessel structure. We observed that it
is possible to select thresholds in specific images with an almost perfectly circular
and bright optic cup during our data analysis. Further, the optic disc area has an
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uneven boundary increasing its ellipse similarity score. Therefore, based on the
variance of ϕ, we decided that an object which does not intersect vessels should
be penalised by having its score four times as high as those that fulfil the vessel
coverage condition. The calculated value is subtracted from one so that lower
values are associated with better objects.

Vessel coverage is a good indicator for eliminating false disc-like objects which
are too small. However, it cannot distinguish those too large. There are two types
of objects more extensive than the optic disc, which our algorithm might consider.
The first is visible parapapillary atrophy, which we described in the introduction.
It appears as a bright region surrounding the optic disc with an uneven boundary
due to the noisy texture present in this area. The second type of large object is
caused by selecting a low threshold and obtaining an elliptical object by chance.
We cannot avoid this problem in our algorithm due to a broad search for a suitable
threshold. Based on our data examination, we concluded that these objects often
share a significant part of their boundary with the region of interest. Therefore,
we define an object boundary score λ as

λ = 1
(1− |Aboundary∩Aobj |

|Aboundary | )2 + α
. (3.16)

The formula computes the intersection of the object’s area Aobj and the boundary
of the examined image Aboundary. It divides the result by the number of pixels
that lie on the image edges. This value is subtracted from one to obtain λ = 1
for an object which does not intersect the image boundary. We get a value of
less than 1 otherwise. We take the result to the power of two to reinforce the
effect. This exponentiation is based on observations where objects with large edge
intersection were convex. This shape lowered their ellipse similarity score, and
they were falsely selected as optic disc candidates. Finally, to ensure that lower
values denote better objects, we invert the formula and add a smoothing constant
α to the denominator. The added constant eliminates problems with division by
zero, and we set it to 0.01. The boundary score is non-linear to not penalise
small intersection severely but to ensure that objects spanning the whole image
are not considered as optic disc candidates. Note that the non-linear scaling of λ
without exponentiation has a value of two for an object which intersects half of
all edge pixels. This penalisation can be overcome by a non-convex object sharing
only a small part of the image border. Therefore, we introduce exponent into the
formula to increase the penalty of objects which span nearly half of the image
boundary.

The third score factor is denoted by δ and we define it as

δ = 0.5(1 + d

h
)(1− (Dobj −Dneighbour)). (3.17)

It describes two of general optic disc properties. Let us assume that we have an
object described by a binary mask, and we want to evaluate δ on this object.
The first described property, defined as 0.5(1 + d

h
), is a penalisation for objects

which are far from the centre of the RoI. We assume that the second phase
of our region of interest algorithm centres the square on the optic disc. The
term d is the distance between centres of the region of interest and selected
object. We divide this distance by half of the RoI diagonal. The second property

47



describes the contrast between an object and its background. We define it as
(1 − (Dobj − Dneighbour), where Dobj denotes the median intensity value from
the processed image restricted to the object area. Next, the term Dneighbour

denotes the median intensity value from the processed image restricted to the
area surrounding the object. We compute the surrounding area as the difference
between the dilated version of the object and the object itself. The dilation radius
in the computation is 20% of the image width. Finally, we subtract the Dneighbour

from Dobj. This value is always greater than zero because pixels of the object
have values above the threshold, and the neighbourhood pixels have values below
it. Lastly, to assign a lower score to brighter objects, we subtract the calculated
value from one. Multiplication of the distance and contrast terms produces the
final factor δ.

The combined score ϵ is computed for every proposed object and defines an
empirical function on the set of possible objects. We can find the optic disc
by minimising this function. It is defined for every object. However, its global
minimum is not necessarily the ground truth due to our empirical definition.
Note that there does not exist a function that describes features of retinal images
perfectly. Nevertheless, the minima of the function represent reasonable estimates
of the true optic disc, and we are looking for them by applying a modified binary
search defined in this chapter.

Following the application of our iterative algorithm to several colour channels
in search of the minimum of our optic disc score, we obtain a proposed object in
low resolution for each channel together with its score. We select the object with
the minimum score and continue by processing only the colour channel of the best
object. The concluded initial phase is followed by another phase which executes
almost the same algorithm at a higher resolution. Instead of normalisation of the
image, we reduce the intensity of all pixels selected as background in the previous
phase by 10%. This modification assumes that previously obtained results are
a good estimation, and we suppress the noise in the background. An additional
difference of the second phase is that we start with a threshold that produced the
best object in the previous phase. The starting threshold tstart and a new interval
boundary for the following phase tmin and tmax are defined as

r = min(ti
max − ti

best, ti
best − ti

min) (3.18)
ti+1
start ← ti

best

ti+1
min ← ti

best −
1
3r

ti+1
max ← ti

best + 1
3r

We reduce the starting interval of the previous phase to 1
3 instead of starting

with the last examined range of the previous phase so that the next phase can
resolve minor errors of the previous one. This approach is general, and it can be
extended to multiple phases. However, we found that the third phase no longer
improves the result.

Each iteration reduces the size of the search interval by 1
2 , so the reduction

between phases amounts to slightly more than one iteration. We consider this to
be a sufficient reduction that narrows the interval and allows for minor corrections.
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To conclude the iterative algorithm, we introduced a multi-channel technique
that can adaptively select a suitable colour channel for optic disc segmentation.
We defined an iterative algorithm that selects the best threshold based on an
empirical objective function. Finally, we extended the base algorithm by an
additional phase which processes images at higher resolution and improves the
final result.

3.5 Optic disc region preprocessing
We applied a preprocessing step to the region of interest for improved optic disc
segmentation. Let us assume that our iterative algorithm successfully extracted
the disc area. Now, we crop the source image to the minimum bounding rectangle
of the disc, which becomes the source image for the optic cup segmentation. This
rectangular area has a different colour distribution than the region of interest.
Furthermore, we have a mask that marks the approximate shape of the optic
disc. Therefore, RoI preprocessing cannot be optimal for the new rectangular
area. We have to apply a new set of filtering steps to improve the segmentation
of the optic cup.

Contrary to the task of disc extraction, blood vessels obscure a large part of
the optic cup. As a result, it is advantageous to remove the vessels from our
cropped image. We use the vessel removal algorithm proposed in Section 3.2
which replaces values of vascular pixels by those derived from the neighbourhood
of the processed pixel.

The main property of cup segmentation is intensity difference in specific colour
channels, e.g., the green channel or saturation from HSV colour space as proposed
by several approaches in [4]. Consequently, we improve the contrast in selected
channels by adaptive equalisation before we extract features from them. Note
that we do not apply AHE to the image before segmentation into superpixels.
We observed that reduced performance with equalisation applied before running
the SLIC algorithm.

3.6 Superpixel based classification for optic cup
segmentation

Extraction of the optic cup is significantly more difficult due to blood vessels in
the respective area. Contrary to the optic disc, the optic cup is largely obscured
by the vessel structures. In addition, it often happens that the covered part is
located only on one side, depending on the displayed eye. Vessel regions make
it nearly impossible to extract the optic cup purely on the intensity information
from any given colour channel. We can see an example of a significantly obscured
optic cup in Figure 3.26. The figure shows a particular retinal image before and
after vessel suppression. The obscured optic cup region regained its colour at
the boundaries of vessels. However, the thicker section to the left of the centre
cannot be replaced accurately by using intensities from its neighbourhood.

It is easy to observe that the thresholding algorithm we introduced in Section
3.4 will not work when applied to the problem of optic cup segmentation. There
are two main issues connected to the application of iterative thresholding. The
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Figure 3.26: The source image with the optic disc and cup boundaries marked
by blue and green respectively (left). An example of an obscured optic cup after
vessel removal (right image). The suppression method fails to return the right
intensity in the cup region due to vessel density.

first one is blood vessel coverage mentioned above, and the second problem is an
undefined shape of the optic cup selected by a threshold. Whereas the disc tends
to be an apparent ellipse with noise along its border, the best possible threshol-
ded area of the cup can be non-convex. In general, the shape can have large
fissures due to vessel interference. Additionally, the best possible segmentation
by threshold might consist of several smaller objects that surround the obscured
area. Selecting any single one of them will result in a significant error. Apart from
that, these objects tend to be small and, therefore, have a lower ellipse similarity
error, see Section 3.4.

Feature extraction
Segmentation of objects using machine learning models for classification revolves
around the assignment of classes to individual pixels. We could extract features
for each pixel and classify it as an object without considering its surroundings.
However, there is a better alternative. Superpixels are small groups of pixels with
similar properties that can be used to improve performance, and they naturally
introduce pixel neighbourhood to the classification process. A comprehensive
summary of superpixel advantages over simple pixels can be found in [28]. To
divide the optic disc region into superpixels, we use the SLIC algorithm, which
we introduced and described in Section 2.2.

After examining available data, we concluded that green channel from RGB
colour space, saturation from HSV and a* from L*a*b* are the best candidates
for intensity-based optic cup segmentation. The green channel is described as one
with the highest contrast between the optic cup and neuroretinal rim in multiple
proposed approaches [4]. In [55], it was noted that in many cases, the a* channel
shows high contrast between the two retinal features. Further, the saturation
channel was used as one of the features for optic cup segmentation by a classifier
in [25]. During further investigation, we discovered that channels Y from the
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YIQ colour space, L* from L*a*b* and blue from RGB, show high optic cup
contrast as well. Note that we used the blue channel for optic disc segmentation
as well. It can contain information about either the OD or OC. Therefore we
decided to select the channels G, S, a*, Y, L and B as the base intensity feature
channels for our algorithm. We computed the mean value of pixels belonging to
each superpixel. The acquired values represent colour intensity features which we
use in classification. In Figure 3.27, we can observe the intensity distribution in
the respective colour channels together with the optic cup boundary marked by
experts.

Figure 3.27: The main channels for intensity based extraction of the optic cup.
From left ot right, top to bottom, they are G from RGB, S from HSV, a* from
L*a*b*, Y from YIQ, L* from L*a*b* and B from RGB. Green boundary in the
image shows the ground truth optic cup area.

The intensity information obtained in the previous step is less reliable than it
was for the optic disc. Two exemplary problems are significantly different intens-
ities in the blood vessel region obscuring parts of the cup and very low contrast
between disc and cup in some of the examples. In these cases, intensity-based cup
extraction fails and often selects pixels close to the optic disc boundary because
of random intensity fluctuation in the area. To improve the cup segmentation, we
introduce the distance from the approximate optic centre, given by the mean po-
sition of optic disc pixels, as a new feature denoted by di for ith superpixel. The
feature is shown in Figure 3.28. It was used in [25] to stabilise the classification
and reduce the above-mentioned negative effects of intensity-based segmentation.

Additionally, we introduce features that represent relation with respect to the
lowest value in the image. This feature is computed for the three main intensity
channels G, S and a*. The exact formula is defined as fmin = (F −min F )2 where
F denotes a feature vector of superpixel values. Let us write the fmin value for
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Figure 3.28: This figure shows the value of the linear distance from the approx-
imate optic centre computed in each superpixel.

superpixel i and colour channel C as fC
i . This feature enhances the contrast in

the individual colour channels at the level of superpixels. The fmin features for
colour channels green, saturation and a* are shown in Figure 3.29.

Figure 3.29: The fmin features: fG (left), fS (middle) and fa∗ (right).

The remaining set of features that we construct are based on centre surround
statistics (CSS) introduced in [25]. We introduce two types of features. The
first one follows the definition in [25] with slight modifications. We compute a
Gaussian pyramid of the source image at resolutions: 256px, 128px, 96px, 64px,
48px, 32px, 24px, 16px. Each scale is filtered using Gaussian kernel with standard
deviation of 5. We number these image from 0 to 7 and mark them as fi. Then
we compute the differences fi,c = |fi − fi+c| between numbers i = {1, 2, 3, 4} and
those obtained by adding offsets c = {3, 4}. The full set of differences contains
1− 4, 1− 5, 2− 5, 2− 6, 3− 6, 3− 7 and 4− 7. The final CSS features are the
first two moments calculated within the individual superpixels, it is the mean and
variance respectively. Let us denote them µfi,c

and σ2
fi,c

. CSS features computed
for the green channel of the image are shown in the figure 3.30.

The second type of centre surround features is based on the values of su-
perpixels and their neighbours. The idea is derived from the centre surround
statistics introduced in [25]. Let us assume that we have a set of superpixels
with values representing a feature, for example, the green channel of an image.
In addition, we have the centre positions of the superpixels. To compute the new
type of centre surround features, we define the neighbourhood of a superpixel
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Figure 3.30: Centre surround statistics computed for the green channel of the
image. The top row shows the mean features, and the bottom row shows variance.

as the set of its closest neighbours in the image plane. Instead of comparing
values at a different resolution, we compare them at increasing neighbourhood
sizes. The sets of closest neighbours are denoted by p and q. They represent the
percentage of superpixels that are considered to be a part of the neighbourhood.
For each pair of vectors p, q, we calculate their distance normalised versions
p← pN(dp; 0, dmaxδp) q ← qN(dq; 0, dmaxδq). The term N(dv; 0, dmaxδv) is a vec-
tor of values obtained by sampling from Gaussian distribution at points given by
the distances from the currently processed superpixel, denoted by dv. The distri-
bution is centred at 0, and its standard deviation is the percentage determining
the size of the vector v, marked δv, multiplied by the maximum distance of any
superpixel dmax. Then, we compute the matrices Sp,q = |p− qT | and Dp,q = | p

qT |
where |A| denotes the per-element absolute value of matrix A. The final group
centre surround (GCS) features are the first two moments of values present in
the matrices. Let us denote the means: µSp,q , µDp,q and variances: σ2

Sp,q
, σ2

Dp,q
.

The sizes of groups used for the computation of vectors p and q are 5% − 15%,
5%− 20%, 10%− 20%, 10%− 25% and 15%− 25% of the number of superpixels
in the image. A showcase of this set of features computed for the green colour
channel can be seen in Figure 3.31.

Both types of centre surround features are computed from a single colour
channel. Therefore, we extract them from each of our primary cup segmentation
channels G, S and a*. Three sets of CSS and GCS features give 42 and 60 values
for a single superpixel, respectively. We extend this set by 6 features from the
individual colour channels. Then, we add a relation to the minimum superpixel
value fmin for each of the primary colour channels. Finally, we add the distance
from the approximate optic centre to obtain the final set of features for superpixel
i: {CSSi, GCSi, Gi, Si, a∗

i , Yi, L∗
i , Bi, fG

i , fS
i , fa∗

i di}. In total, there are 112 values
for decision making.

Training
Our gradient boosted tree classifier is trained using per-superpixel data created
from our training dataset. We compute feature data on each image separated
into 256 superpixels. We compute the labels using superpixel intersection with
the ground truth mask. We use a threshold of 0.7 which specifies that superpixels
with at least 70% pixels belonging to the ground truth mask are marked as part
of the optic cup. Our dataset contains optic cup boundaries selected by multiple
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Figure 3.31: Group centre surround features computed for the green channel of
the image. The rows from top to bottom signify the mean of the matrix Sp,q, the
variance of the matrix Sp,q, the mean of the matrix Dp,q and the variance of the
matrix Dp,q.

clinicians. We define the ground truth area of the cup as the area chosen by the
majority.

We can observe large differences between the number of superpixels that be-
long to the optic cup and those that belong to the neuroretinal rim. An example
of two extremes is given in Figure 3.32. To balance the data quantity, we select
an equal number of superpixels for the rim and cup from each image. The selec-
tion is realised by computing the minimum of the two counts and preserving the
complete smaller set, and choosing random superpixels from the larger one. In
general, it might be better to choose an equal number of training examples from
each class at random. However, our training dataset is relatively small, and we
do not want to reduce it further. Thus, we decided to use all superpixels from
the smaller optic nerve head feature.

In addition, we noted a bias towards large optic cups within our dataset. To
improve the performance of the model for smaller cup sizes, we applied selective
data augmentation described in Section 3.6.

To select the parameters for our gradient boosted model, we used 5-fold cross-
validation. The final training parameters of our classifier are 500 trees in the
ensemble, learning rate of 0.005 and maximum depth of a tree set to 11. Let us
discuss the selected parameters in the context of the highest cross-validation score.
The depth of trees is the main parameter describing the ability to fit the training
dataset. Note that our data contains 112 features. Building deeper trees causes
over-fitting, and at a depth of around 21, this classifier becomes able to distinguish
training superpixels perfectly. Over-fitting results in worse generalisation, and
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Figure 3.32: This figure shows two extreme examples of the optic cup size. The
first row shows an image with a large optic cup (left), its decomposition into
superpixels (middle) and a subset of superpixels labelled as a part of the optic
cup (right). The second row shows the same examples for an image with a small
cup. The ground truth optic disc and cup boundaries are marked in the first
column with blue and green colours.

therefore we decided to limit the depth. On the other hand, setting the depth
to lower numbers tends to under-fit on the dataset. Both training and validation
results are worse due to the low capacity of the model. Furthermore, the number
of trees in the ensemble and the learning rate is less important, and we observed
only minor differences between models with tree count in the range from 200 to
2000. We examined the results of setting learning rate to values complementing
the number of trees for every ensemble. It is important to note that the learning
rate for gradient boosted tree classifier is, in fact, the weight of each tree in the
final sum. For more information, see [46]. Therefore, it makes little sense to
select a learning rate such that the sum of weights is less than one. By the sum
of weights, we understand the learning rate multiplied by the number of trees.
Validation results showed that a higher sum of weights performs slightly better,
and the best results were acquired for the sum equal to 2.5. We investigated
the performance of classifiers with the sum of weights ranging from 1 to 10.
Next, opting for less than 200 trees in the ensemble resulted in a more significant
under-fitting. Lastly, we train the gradient boosted decision tree classifier with
subsampling. Only half of the data samples are used to train the individual trees
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to reduce the generalisation error of the model.

Data augmentation

The training dataset which we used to train our classifier is composed of 50
images. It is a very low number for a machine learning task, and we immediately
noticed a bias towards large optic cups. In Table 3.6, we show the distribution of
optic cup sizes in our dataset. A denotes the percentage of optic disc covered by
the optic cup. In [9], the authors mention that the optic cup is usually quite small
compared to the entire optic disc. In any case, smaller cup sizes are undoubtedly
underrepresented in our dataset.

Dataset A > 70% A > 60% A > 50% A > 40% A > 30%
Training 36.00% 62.00% 76.00% 88.00% 94.00%
Testing 37.25% 70.59% 80.39% 84.31% 92.16%

Table 3.1: This table shows the distribution of optic cup sizes with respect to the
optic disc.

We decided to apply selective data augmentation to offset the low amount of
images with a small cup. Generally, data are augmented using the same meth-
ods in the whole dataset and transformation between two images differ only in
the randomly generated parameters. That would not help with the problematic
distribution. Therefore, we evaluated a simple clustering algorithm on our data-
set using features engineered to provide higher contrast between the optic cup
and neuroretinal rim. More information about complex features can be found
in Attachment A.2. The simple clustering algorithm failed to segment smaller
optic cups due to the set of features computed to maximise performance on the
training dataset.

Following that, the training dataset was manually split into four groups. The
first group contained well-segmented images with an intersection over union score
greater than 0.8. The second group was composed of images where the segmented
result was good, but its boundary was distant from the ground truth in some
places. These object had an IoU score in the range from 0.7 to 0.8. Images
in the third group were segmented poorly, and either the position of the result
did not match the ground truth, or the size was significantly different. The IoU
score for this group was in the range from 0.6 to 0.7. Finally, the fourth group
contained images with inferior segmentation results with an IoU score of less
than 0.6. Investigation of the poorly segmented images led us to conclude that
the latter groups were composed of images with comparatively smaller optic cups
and those that were positioned notably off-centre. Note that the last two groups
had fewer examples than the first two because we constructed features to improve
the performance of the model on the whole training dataset. This type of feature
engineering resulted in the introduction of dataset bias to the feature set.

To reduce the bias of our training set, we add additional augmentation to im-
ages from the latter groups. In detail, for every image from the training dataset,
we compute its horizontally mirrored image and add it to the final training set.
Further, we also add a vertically mirrored version for images from the second,
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third and fourth group. The last two groups are also augmented by one random
rotation of the original image. Finally, images from the last group are augmented
by adding a second random rotation of the original image as well as one randomly
rotated version for their mirrored counterparts. Each random rotation is taken
uniformly from the range 5 to 85 degrees. The last group is the most represen-
ted one, excluding the well-segmented images from the first one. Therefore, we
decided to add significantly more augmentations for this group compared to the
other ones.

All possible augmentations of an image are shown in Figure 3.33. Note that
we compute the optic disc mask only for the original and flip or rotate it with the
source image. Also, the optic cup processing pipeline works with a small region
around the optic disc so the clipped corners of rotated images cannot interfere
with it.

Figure 3.33: All possible augmentations applied to one of the training images
with its optic disc mask. From left to right, they are the original, horizontal
flip, vertical flip, two rotations of the original, rotation of the horizontally flipped
version, and the last is a rotation of the vertically flipped version.

In summary, we selectively augmented training images based on information
gathered from a simple clustering model. We split the training set into four groups
defined by the performance of the afore-mentioned model. Then, we increased
the number of augmentations for the worse performing ones.

Prediction
Prediction of the optic cup region is realised in several steps. Firstly, we apply
the optic disc region preprocessing. Then we segment the image into superpixels
and compute features on the source image using the same parameters as for
training. Note that no data augmentation is done during prediction. Then, we
classify acquired superpixels using our gradient boosted classifier. We assign
a class to every pixel in the image based on the superpixel which contains it.
This step creates a binary mask which is our initial object prediction. Superpixel
classification results in masks with an uneven boundary. To smooth out the result
obtained from the classifier, we compute its convex hull. Then we interpolate the
CH using B-spline interpolation and, at last, fit an ellipse to the interpolated
result. The smoothing starts with a convex hull due to the possibility that blood
vessels obscure a large part of the optic cup, and the segmented result can be non-
convex with a depression at the vessel root. The resulting polygon can contain
long sides around the non-convex parts of the initial boundary. Thus we apply
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interpolation to extrude the straight lines of the convex hull slightly. Finally, we
fit an ellipse to the interpolated boundary because optic cups have a clear elliptical
shape. We denote all pixels within the ellipse as part of the cup and everything
else as background. The resulting mask is returned as the final prediction of our
model.
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4. Evaluation
All training and evaluation algorithms were executed on Windows 10 system,
Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz, 16 GB RAM. The algorithms
are implemented in Python programming language using image processing and
machine learning libraries including scikit-image [29], scikit-learn [31] and scipy
[38].

In the following text we write the results of our algorithm in the form x̄ ± σ
where x̄ denotes the mean value from the entire dataset and σ marks the standard
deviation. The variance of the results is computed using an empirical biased
estimate given by the formula σ2 = 1

N

∑︁N
i=1(x − x̄)2. The standard deviation is

computed simply as the square root of variance.
In addition to the main algorithm described in Chapter 3, we introduce its

alterations which were considered during our investigation of the segmentation
problem. In each section marking part of the algorithm, we describe the perform-
ance of the proposed approach. We present previous versions of the algorithm
and a comprehensive comparison of the results achieved using the old and new
version. All versions of our algorithm are evaluated primarily on the Drishti data-
set, which has a prior separation into a training and a testing set. Therefore, we
do not add randomness as a factor in data evaluation.

Drishti dataset
Drishti retinal dataset contains 101 retinal fundus images split into training and
testing set with 50 and 51 images, respectively. Each image has a soft map with
a ground truth optic disc and optic cup provided in PNG image format. As
a result, researchers can compare their segmentation techniques with the gold
labels marked by experts. In addition, the dataset contains CDR values for
evaluation of calculated CDR values with the defined ones. The dataset was
created by researchers of the International Institute of Information Technology,
India, together with experts from Aravind eye hospital, Madurai, India. Images
were collected from visitors to the hospital with their consent. Selected patients
were 40-80 years of age with a roughly equal number of males and females. The
dataset contains images of varying brightness and contrast. Bad quality images
in terms of contrast or OD positioning were discarded [8]. The ground truth
retinal features marked by expert clinicians are provided in the form of soft mask
images. Each soft mask contains regions selected by multiple experts, and we
consider the pixels marked by the majority as the ground truth.

Dataset bias
We analysed the distribution of optic cup sizes in Section 3.6. The results show
that our dataset consists of retinal images with large optic cups. In detail, 36%
of optic cups in the training dataset are larger than 70% of the disc area, whereas
only 12% are smaller than 40% of the disc area. More detailed information is
written in Table 3.6. We introduced custom data augmentation to reduce the
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dataset bias. However, it is easily observable that our classifiers still learned
the bias. Note the high recall and relatively low precision of results in Table
4.4. The only true solution to this problem is a larger and more diverse training
dataset. Therefore, it is likely that any approach will be biased towards the optic
cup size distribution of its training dataset. In addition, images from a single
set are usually taken on one or more similar devices. Each device introduces
bias of the imaging technique. An algorithm trained on a particular dataset can
analyse images taken by a specific set of devices. To improve the performance
of our algorithm on unseen type of retinal images, we applied contrast-enhancing
techniques and automatic colour channel selection.

Optic disc segmentation results
Our optic disc segmentation algorithm performs well in both the training and
testing datasets. There is no image in which it fails to extract the region of
interest, and there are only minor errors in the segmentation of the final optic disc
shape. There is one image in both training and testing dataset which produces
undesirable results due to a noisy region surrounding the optic disc. The results
of our algorithm evaluated using common segmentation metrics introduced in
Section 2.10 are shown in Table 4.1. Both precision and recall values are similar,
and therefore, there is no bias towards segmenting small or large objects. Further,
a low standard deviation means that the results are close to the mean. The
minimum intersection over union values are 0.6943 and 0.6014 for the training
and testing datasets respectively.

Drishti training dataset Drishti testing dataset
IoU 0.9237± 0.0499 0.9198± 0.0560

Dice metric/F1 score 0.9596± 0.0289 0.9572± 0.0344
Recall 0.9762± 0.0266 0.9708± 0.0290

Precision 0.9464± 0.0572 0.9475± 0.0618

Table 4.1: The performance of our proposed optic disc segmentation algorithm
on the Drishti dataset.

These results indicate that our iterative thresholding algorithm can determ-
ine the position and shape of the optic disc reliably. We noted a lower algorithm
performance on images where the processed colour channel contains high values
between the disc and the edge of the region of interest. The iterative algorithm
falsely selects them as part of the optic disc. In some cases, they form an ellipt-
ical shape which results in convergence towards the wrong threshold. The main
reason is that the better alternative in the algorithm contains non-convexities
or deep depressions, and thus, has a higher score. These artefacts show up as
local minima in our empirical function, and an unlucky initial selection of the
examined threshold cannot escape them. An example of an image where the al-
gorithm failed to converge to the correct shape is shown in Figure 4.1. Note that
ellipse fitting partially resolved the error introduced by failed convergence.

Additionally, due to the low variety of our dataset, few images are containing
severe parapapillary atrophy. Consequently, our algorithm does not explicitly
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Figure 4.1: The region of interest together with the final ellipse (left). The
selected object before smoothing together with the final ellipse.

resolve the related problems. A subsequent iteration of an image with elliptical
PPA can converge to the wrong threshold. We are working under the assumption
that the PPA region has a noisy boundary, and it will have a poor value of
our objective function. Despite that, the algorithm can deal even with more
complicated examples. In some cases, it managed to correctly extract the disc
region even though there is a clear circular PPA region surrounding the OD.
An example of such image is in Figure 4.2. The success of segmentation can be
attributed to low noise on the optic disc boundary in this case.

Figure 4.2: This figure shows a correctly extracted optic disc from an image with
a clear circular PPA region. Blue denotes the ground truth and red the segmented
ellipse.

One of the disadvantages of our algorithm is that it is pretty slow. It takes
an average of 18.92 seconds to extract an optic disc. The most time-consuming
parts of the algorithm are the first and second phase with around 5 and 7 seconds
needed for their computation. The remaining time is split between RoI detection,
vessel extraction and image pre-processing.

Our results can be compared with other approaches. An active shape mod-
elling approached evaluated on the Drishti dataset presented in [56] reached F1
score of 0.9077. The thresholding method with PPA elimination introduced in
[11] reports the non-overlap area ratio of 0.1. This metric is computed as the
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complement of the intersection over union metric, which evaluates to 0.0802 on
our testing dataset. Then, a clustering approach based on fuzzy c-means and
morphological operations in [23] achieved an F1 score of 0.927 on a dataset con-
sisting of 27 images. Next, in [14], the authors report F1 score of 0.96 using a
total of 98 images. We achieved the same results up to a rounding error. Finally,
an overlap area ratio of 0.94 is reported on a dataset of 50 images by the authors
of [20]. In conclusion, our algorithm achieves comparable results. Even though
there are algorithms that outperform ours, the iterative thresholding approach
with an objective function we designed shows promising results.

Algorithm modifications
The proposed algorithm consists of multiple steps. Some of these steps are op-
tional, and others have alternatives that we considered during development. In
this section we present results of some modifications and alternatives to the pro-
posed approach.

The first interesting alternative of our algorithm is its single phased version.
In order to extract the best possible optic disc area, we execute our algorithm
in two phases with increasing resolution of processed images. We discussed this
decision in the algorithm definition, see Section 3.4. The core idea is an iterative
improvement of the threshold and consequently the segmented object. Instead
of two phases, we could execute the algorithm only with a single phase at a pre-
determined image resolution. The first phase of our algorithm processes images
at a resolution of 128px, whereas the second phase at 256px. Therefore, we de-
cided to examine a single-phase version of the algorithm in these two resolutions.
We increased the number of iterations for the single-phase version so that the
final threshold search interval is approximately the same as for two phases. We
can see in Table 4.2 that all three algorithms achieve similar results. Based on
the intersection over union metric, the single-phase version running at a resolu-
tion of 128px performs the best. We noted that the higher resolution version of
the algorithm and the two-phase versions perform better on images with uneven
boundary. Nevertheless, the low-resolution result is already an excellent approx-
imation of the true optic disc. Furthermore, the single-phase version processing
256px images takes about three times longer to compute than the proposed two-
phase version. On the other hand, the single-phase algorithm processing 128px
images is about 30% faster than the two-phase version. A higher resolution al-
gorithm improves the results on more complicated examples, but the difference
is marginal. Therefore, without further optimisation, the single phase version
is better because of its segmentation speed. The main algorithm describes th
two-phase version because we decide to present the more accurate version rather
than the fastest.

Another interesting modification of the algorithm is at its post-processing
step. The boundary of a ground truth optic disc is very smooth and often forms
a perfect ellipse. Therefore, it is advantageous to apply boundary smoothing
to the object acquired through our thresholding algorithm. In Section 3.4, we
selected ellipse fitting of the raw object based on the performance of this method
on the training dataset. There are three alternatives, taking the convex hull of
the object, interpolating the convex hull and fitting an ellipse to the convex hull
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IoU Drishti training dataset Drishti testing dataset
Two phases (128+256) 0.9237± 0.0499 0.9198± 0.0560

Single phase (128) 0.9235± 0.0564 0.9217± 0.0561
Single phase (256) 0.9275± 0.0492 0.9205± 0.0565

Table 4.2: Comparison of the performance of our optic disc segmentation al-
gorithm with a single phase and the proposed two phases. The numbers in
brackets signify the pixel resolution of processed images.

rather than the object. Due to the natural smoothness of the optic disc, we
exclude basic CH because it is polygonal. We compare the remaining techniques
in Table 4.3. It shows that our chosen method performs best on both training
and testing datasets. The optic disc is usually well separable, and other retinal
features do not obscure it, and therefore, the base algorithm can extract the
approximate shape quite well. Consequently, computing a convex hull of this
shape might result in an object which is too large. Further, fitting an ellipse
to the convex hull reinforces this problem. Conversely, fitting an ellipse to the
boundary of the extracted object assumes that we have the right size and only
smooths the boundary.

IoU Drishti training dataset Drishti testing dataset
Convex hull 0.9178± 0.0553 0.9142± 0.0614

Ellipse fitting 0.9237± 0.0499 0.9198± 0.0560
Ellipse fitting of CH 0.9078± 0.0633 0.9078± 0.0675

Table 4.3: The performance of different object boundary smoothing techniques
for optic disc segmentation.

To summarise the algorithm modifications, it is essential to consider what
kind of objects the base algorithm produces and to apply an appropriate post-
processing techniques. Furthermore, it is important to consider possible altern-
atives and extensions. In our case, introducing additional phases to our base
algorithm resulted in better performance on the worse examples at the cost of a
significant increase in execution time.

Optic cup segmentation results
Our optic cup extraction algorithm performs well on most of the training and
testing datasets. There are examples in both sets where the algorithm fails to
achieve an intersection over union greater than 0.5. The problematic images con-
tain small optic cups, which the model cannot distinguish due to the prevalence
of larger cups in our training dataset, as we noted before. Conversely, the al-
gorithm performs well for mid to large cup sizes. The results of evaluation on the
Drishti dataset using the standard metrics introduced in Section 2.10 are shown
in Table 4.4. The two images, which proved to be very challenging for the optic
disc extraction algorithm, ended up having an intersection over union of less than
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0.2. The selected discs contain a large part of the background, and the ground
truth optic cup is the smallest in the whole dataset.

Drishti training dataset Drishti testing dataset
IoU 0.8654± 0.1357 0.7857± 0.1594

Dice metric/F1 score 0.9203± 0.1050 0.8687± 0.1287
Recall 0.9910± 0.0156 0.9154± 0.0700

Precision 0.8737± 0.1403 0.8651± 0.1935

Table 4.4: The performance of our proposed optic cup segmentation approach
evaluated using the standard criteria.

The time it takes to get a prediction from features is only a moment in every
presented model. However, we apply complex image pre-processing steps and
feature extraction, which significantly increase the execution time. We meas-
ured how long it takes to evaluate the optic cup extraction algorithm, and we
discovered that it takes an average of 13.63 seconds. This value does not take
any optic disc processing into account. The complete algorithm, as shown in
Figure 3.1 takes an average of 32.21 seconds. The algorithm is relatively slow,
but the evaluation shows that gradient boosted decision trees can perform better
than other classification algorithms for the task of superpixel-based optic cup
extraction.

Let us compare our algorithm to other methods proposed in the literature. A
low rank superpixel representation used in [21] reached non-overlap area ratio of
0.244 on the ORIGA dataset consisting of 650 images. However, the optic disc
extraction is not part of the algorithm. An approach based on fuzzy c-means
clustering introduced in [23] achieved F1 score of 0.892 and precision 0.999 on a
dataset consisting of 27 fundus retinal images. Further, an automatic thresholding
algorithm with morphological operations presented in [14] reached F1 score of
0.88 using a total of 98 images. In conclusion, our algorithm achieves comparable
results to other approaches in the literature. Even though some of the algorithms
outperform ours, gradient boosted decision trees show promising results.

Alternative classification models
Gradient boosted decision trees is an algorithm we chose based on the perform-
ance of several supervised algorithms. Our initial approach used support vector
machines which we introduced in Section 2.8. SVM was successfully used in [25]
for high dimensional optic cup and disc classification. The authors propose the
use of linear SVM. We found that for our dataset, SVM with the radial basis
function kernel performs better. However, both versions of the algorithm under-
perform for a high dimensional feature space used for decision tree learning. We
evaluated the supervised algorithms on the Drishti testing dataset. We present
the results in Table 4.5. Their performance is compared using the intersection
over union metric.

Investigating supervised algorithms was our second course of action. Before
that, we examined the performance of unsupervised clustering techniques. Gen-
eral description of these algorithms is available in Section 2.3. Our main discov-
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Test Random forest SVM-Linear SVM-RBF
IoU 0.7758± 0.1608 0.7531± 0.1575 0.7569± 0.1575

Dice score/F1 score 0.8621± 0.1305 0.8475± 0.1315 0.8501± 0.1304
Recall 0.9122± 0.0717 0.8824± 0.0829 0.8887± 0.0806

Precision 0.8588± 0.1995 0.8651± 0.2074 0.8624± 0.2054

Table 4.5: The comparison of supervised machine learning algorithms applied to
superpixel classification for the optic cup segmentation.

ery is that clustering algorithms perform significantly worse on simple features
for supervised learning. Therefore we applied more complex feature engineering
intending to normalise cluster sizes. The optic cup is not well separable by clus-
tering. All pixel and superpixel values span the entire available range, and there
is no separation margin. We show a plot of superpixels with green and a* values
with ground truth separation of superpixels in Figure 4.3. The left image shows
the result of clustering using the fuzzy c-means algorithm. It is easily observable
that the default distribution of values within these colour channels is insufficient
for accurate segmentation. The feature modifications used for the classification
via clustering algorithms are described in Attachment A.2.

Figure 4.3: Two clusters classified by the fuzzy c-means algorithm in the dataset
created from the green and a* channels of the source image (left). The ground
truth class assignment of the same dataset (right).

The performance of the different clustering techniques on the Drishti testing
dataset can be seen in Table 4.6. We chose only algorithms which receive a pre-
determined number of clusters. Those that infer everything from the data failed
to perform consistently on the whole training dataset, and therefore, we excluded
them from the evaluation. Their main problem stems from image dependent
parameters of the algorithms. This dependency causes the requirement to search
the parameter space of the algorithm for every image. We could not find any
correlation between global image describing values such as its mean or variance
and the required parameters.

We examined five main algorithms representing the types introduced in Sec-
tion 2.3. We opted for an agglomerative approach for the hierarchical clustering
type with Ward’s method for merging clusters. We define two classes of super-
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pixels: with a low and high probability of belonging to the optic cup. Clustering
produces assignment into these two classes, and we select the closest one to the
approximate optic centre as the optic cup. We introduced distance from the optic
centre and vessel neighbourhood modifier to the clustered features. Descriptions
of these modifications are written in Attachment A.2. The result of our feature
engineering is that the disc area often splits into two parts: the bright part of
the optic cup together with vessels close to the centre and the neuroretinal rim.
The second class often contains superpixels that belong to the cup due to the low
contrast between the rim and these superpixels. Following the extraction of the
base object, we smooth its boundary. The selected cluster might be composed
only of the brightest part of the cup and centremost vessel area. This superpixel
group might represent an object that is too small or composes only a part of the
optic cup. Therefore, similarly to the main algorithm, we fit an ellipse to the
convex hull computed from the boundary of the predicted object.

Test IoU Recall Precision
K-means 0.6693± 0.1698 0.8574± 0.1265 0.7753± 0.2150

Birch 0.6451± 0.1720 0.8436± 0.1250 0.7788± 0.2351
Fuzzy c-means 0.6703± 0.1697 0.8592± 0.1242 0.7736± 0.2131

Hierarchical clustering 0.6432± 0.1729 0.8417± 0.1294 0.7789± 0.2352
Gaussian mixture 0.6215± 0.1695 0.7602± 0.1637 0.8286± 0.2363

Table 4.6: The comparison of unsupervised clustering algorithms applied to su-
perpixel classification for optic cup extraction.

The best performing algorithms are fuzzy c-means and k-means. Hierarchical
clustering and birch algorithm do not perform very well on this task. Finally, it
is surprising that the Gaussian mixture model showed the worst results due to
size differences between clusters belonging to the optic cup and neuroretinal rim.
Feature engineering normalises the cluster sizes to an extent. However, a notable
difference is still present. It seems that the density of points in the feature space
is not a distinguishing factor, and GMM cannot estimate distributions with the
correct standard deviation.

Let us summarise the selection of machine learning algorithms for the prob-
lem of optic cup segmentation. Supervised learning algorithms perform signific-
antly better compared to unsupervised ones. Clustering techniques often produce
substantially smaller or larger area and require a significant amount of feature
engineering. Supervised algorithms can learn more information from basic fea-
tures, and they tend to extract large objects. Maximum margin classifiers, i.e.
SVM with linear and RBF kernel, produce better results on a smaller number
of features. However, for a large feature space, decision tree ensembles perform
better, and we found that gradient boosted tree classifier is the best performing
algorithm on our dataset.

Algorithm modifications
Our optic cup extraction algorithm is composed of several steps which have their
alternatives and modifications. In this section, we present some of the alternative
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techniques we considered throughout development. We compare their results with
the proposed algorithm and discuss the reason for higher or lower performance.

The first modification which we used before the introduction of blood vessel
suppression is a combined classifier. It consists of two gradient boosted decision
trees where one is trained on vessel areas and the other on non-vessel areas.
Without blood vessel suppression, the combined classifier produces better results.
However, the classification of superpixels with removed vessels brings the two
approaches close to each other. We observed that the combined classifier could
fit the training data more accurately, whereas the single classifier was better at
generalisation. Note that evaluation on suppressed vessels does not affect the
performance of the combined classifier as the replaced vessel values signalise the
optic cup region. This property of vessel superpixels makes the segmentation
easier. Nevertheless, the combined algorithm showed very similar results to the
single model approach, and thus, we opted for the simpler alternative.

Another significant modification is the boundary smoothing technique which
we discussed in the optic disc section as well. The result of model prediction
for optic cup segmentation is a group of superpixels. They can compose one
or several connected components. In Section 3.6 we noted that we select the
largest component and apply ellipse fitting to the convex hull of its boundary.
Instead of the selected technique, we can use the convex hull of the object, its
interpolation, or apply ellipse fitting directly to the object’s boundary. It is easy
to see that ground truth optic cups are never polygonal. Therefore, we consider
only the interpolated version of the convex hull. The performance of these three
approaches is shown in Table 4.7. It shows the intersection over union metric
computed on the whole training and testing datasets. Note that the value for our
selected approach on the training dataset is lower than the other ones. It is caused
by the fact that we did not select the smoothing technique based on this metric.
Instead, as noted in Section 3.6, we chose to reduce the error introduced by
blood vessels. The evaluation of both datasets shows that the selected technique
is better at generalising. That is most likely due to the ability of the decision
tree ensemble to fit the training data well, even in vessel areas. That results in
lower performance of the technique, which tries to fix errors in these areas.

IoU Drishti training dataset Drishti testing dataset
Convex hull 0.8921± 0.1269 0.7704± 0.1445

Ellipse fitting 0.8951± 0.1226 0.7690± 0.1390
Ellipse fitting of CH 0.8654± 0.1357 0.7857± 0.1594

Table 4.7: The performance of different object boundary smoothing techniques
for optic cup segmentation.

In conclusion, it is essential to consider combined classifiers and partial prob-
lem solutions since they can improve the result in many cases. We were successful
in applying separate classifiers to the problem of the vessel and non-vessel areas.
The introduction of blood vessel suppression improved the performance of single
classifiers, which in some cases, e.g. gradient boosted decision trees, surpassed
the combination. Further, the post-processing of selected objects is an important
step. It fills in missing information based on empirical observations and improves
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the performance of the model.
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Conclusion
This thesis provides an overview of segmentation challenges and solutions with re-
spect to the task of optic nerve head extraction from fundus retinal images as well
as a new hybrid approach utilising gradient boosted decision trees. Firstly, we
introduced the problem and described the properties of retinal images. Secondly,
we established definitions of various algorithms used in the process of segmenta-
tion and classification. Next, we introduced a comprehensive list of performance
criteria used for object comparison which allow us to compare different algorithms
in a single place. Following that we proposed a hybrid optic nerve head segment-
ation approach. It consists of two separate algorithms. The first one extracts
optic disc using modified binary search of intensity thresholds based on the qual-
ity of the selected object. The second part of the proposed approach uses gradient
boosted learning to extract the optic cup. Both parts collectively create a single
pipeline which has one input, i.e., a retinal fundus image, and returns masks of
the optic disc and cup. The entire combined algorithm is composed of smaller
sections which solve their individual tasks. Finally, we evaluated the perform-
ance of our approach together with its several modifications and wrote down the
exact results using all previously described evaluation criteria. Not only did we
evaluate the proposed algorithm and its versions which include or exclude certain
steps, but also a set of different classification models which can be used to solve
the problem. To complete the overview of these algorithms, we also provide a
summary of their respective challenges and a description of observed behaviour
which results in a better or worse performance. Now, let us discuss the enumer-
ated achievements in more detail.

The first algorithm which we introduced is a intensity based region of interest
search. We examined the challenges of the optic nerve head localisation and
proposed a robust solution. Our region of interest searching routine disregards
artefacts caused by imaging devices as well as bright noisy regions which signalise
defects in the retina. To enhance the initial estimation of the optic disc location,
we added a secondary phase to RoI selection which centres the square region on
the approximate optic centre. Consequently, we introduced a reusable intensity
based region of interest detection algorithm which produces high quality centred
regions.

Additionally, we implemented a simple blood vessel extraction algorithm. Des-
pite its simplicity it fully satisfies our requirements and it is capable of replacing
vessel structures in the selected region of interest. However, it cannot be used for
standalone vessel segmentation as it is prone to extracting falsely positive areas.
Nevertheless, it is suitable for general blood vessel suppression.

Following that, we combined the previous algorithms with a wide binary to
define an iterative thresholding approach for optic disc segmentation. To describe
the disc likeness we introduced a score based on ellipse similarity. The function
is defined for all objects obtainable within a specified region of interest and the
closest approximation to ground truth optic disc lies in a local minimum. It is
an empirical function based on our available dataset. Together with the iterat-
ive search it creates an easily understandable and versatile optic disc extraction
algorithm.
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The second part of the pipeline which we implemented is segmentation of
the optic cup using gradient boosted decision trees. This classifier is capable of
handling small and large feature spaces compared to support vector machines
which often fail for high dimensional problems. In addition, it uses ensemble
techniques innately. These advantages make it a great candidate for the optic
cup classification.

Furthermore, we evaluated our segmentation algorithm on the Drishti test-
ing dataset using all previously defined performance criteria. This ensures that
our algorithm is comparable with other segmentation approaches. It is unlikely
that other algorithms use a metric, which we did not present. Additionally, we
present an overlap area ratio for objects segmented using alternative parts of the
algorithm, which we considered during development. This completes an overview
of different techniques we examined and evaluated.

Finally, to evaluate the performance of gradient boosted tree classifier with
respect to other classification algorithms, we evaluate their performance. The
results and a related discussion give an overview of advantages and disadvantages
of different algorithms for the task of object segmentation.

In conclusion, we fulfilled all of our goals and we explored several additional
techniques and algorithms. The full pipeline of our approach allows us to extract
the optic nerve head and the applied image processing techniques improve the
final result. All of the considered algorithms are evaluated and compared against
each other.
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Future Work
The segmentation approach proposed in this work fulfils the role of an optic
nerve head extraction algorithm. It is fully featured in the sense that it receives
a fundus retinal image as its input, and it can produce masks for both an optic
disc and an optic cup. Despite that, there are several shortcomings and points
that could be improved in the continuation of this work. Let us discuss the main
points worth investigating in extensions of our approach. Firstly, our algorithms
are written in Python, and there are several optimisations that could be done to
improve their performance.

Secondly, our approach was trained and evaluated on a relatively small data-
set with a limited representation of certain optic nerve head features. For in-
stance, the dataset contains only a few retinal fundus images with significant
parapapillary atrophy. Subsequently, the optic disc segmentation algorithm does
not handle this retinal defect explicitly. In cases where the PPA region has an
elliptical shape, the algorithm might converge towards it rather than to the true
shape. It is worth investigating parapapillary atrophy in future work as it is the
main reason for incorrect segmentation of the optic disc shape. The limitations
of our training dataset affect the optic cup segmentation algorithm as well. Small
optic cups are under-represented in the dataset, and large ones make up a signific-
ant portion. Even though we applied a custom data augmentation to reduce the
cup size bias, the algorithm has lower performance on these images. Therefore,
expanding the dataset and training the algorithm to distinguish a larger variety
of optic cups is a great future improvement of this work.

Following the second point, extensions of our approach should be trained
and evaluated on larger datasets. We implemented steps that should improve
performance on images taken with different devices. However, the quality of
these improvements needs to be evaluated. Large scale evaluation is another
continuation point.

Finally, the vessel extraction algorithm can be improved as the current version
often selects edges of the optic disc as vessels. It is not an essential improvement
because vessel suppression replaces pixels with the values from their neighbour-
hood which does not deform the optic nerve head shape.

In conclusion, we implemented the full optic nerve head segmentation pipeline
with multiple extension features. There are, however, several advanced points
where it can be improved, and lastly, a large scale evaluation can be done in the
future.
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A. Attachments
A.1 Python scripts with the implementation
The algorithms proposed in this work as well as their modifications presented
in the evaluation chapter 4 are submitted together with the text. The imple-
mentation is in the programming language Python and its image processing and
machine learning libraries. In order to allow an easy examination of the source
code and testing of its functionality, we present the code structure and a simple
manual.

A.1.1 Python environment
There are many different versions of Python and its libraries. Unfortunately, not
all of them are compatible. Firstly, let us present the environment in which
we developed the algorithms. We used Python version 3.7.6 64bit with lib-
raries numpy version 1.18.1, scipy version 1.4.1, scikit-image version 0.17.2,
scikit-learn version 0.23.2 and OpenCV for python (cv2) version 4.2.0. Im-
ages were loaded into scripts using the library Pillow version 7.0.0 and all plots,
images and graphs were drawn using the library matplotlib version 3.1.3. Fur-
ther, Fuzzy c-means algorithm used in scripts for clustering algorithms is from
the library scikit-fuzzy version 0.4.2. We recommend using this Python setup
to ensure identical performance.

A.1.2 Code structure
We provide the scripts with the implementation of the algorithm in a simple dir-
ectory hierarchy. The root directory is called onh_main and it contains everything
needed for the execution of our algorithm except for data. Fundus retinal images
from public datasets cannot be freely shared and therefore we cannot provide
example images.

The main directory main contains scripts which handle the execution of differ-
ent parts of the algorithm. Then there is a directory onh_lib which is structured
as a python module and the scripts will only work if executed from a directory
which has access to the library onh_lib. Following that, there is a directory
BACKUP which contains copies of generated data and trained models in case the
files in the root directory are overwritten or removed.

A.1.3 User documentation
The scripts available in the directory onh_main can be executed on their own
without any parameters, provided that the default data files which they refer to
exist. If not, the each of them has a set of parameters which allow us to select
data and to parameters of the algorithm.

This is perfectly fine for using roi.py or vessels.py, but becomes more
difficult with od.py and oc.py. Both segmentation algorithms require labels
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as well as the source image. We can use the scripts situated in the root dir-
ectory onh_main in the following way. We execute them using the command
Python "script.py" where "script.py" can be one of roi.py, vessels.py,
od.py or oc.py. All four scripts have an argument --img which denotes the
source image to be processed. For example,

--img="./data/drishtiGS_002.png".
The scripts for segmentation of optic disc and cup require labels in the form

--disc_label="..." and --cup_label="...". The script od.py requires the
disc label and oc.py requires all three. These arguments accept string in the
form of path from the current working directory, e.g. onh_main, to the respective
files. Labels are needed because the scripts evaluate performance of the model.

Additionally, each of those scripts contains a long list of properties which can
be changed to alter the execution of the algorithm. We recommend looking at
the scripts themselves. It is most likely easier to edit the script itself rather than
write long lines of commands in the console. The last notable property belongs
to oc.py and it is --model_file. It accepts a path to a model file. The default
value is the gradient boosted classifier present in the root directory, but there are
also files with trained SVM, linear-SVM and random forest.

In conclusion, running the algorithms is very easy, but modifying the para-
meters becomes very verbose. Thus the best way of examining the algorithm is
editing the parameters in the main scripts which is faster and more efficient.

A.2 Feature engineering
Optic cup segmentation techniques presented in this thesis work with superpixels
and features describing them. Supervised machine learning techniques are able
to infer information from basic features extracted directly from colour channels.
Now, let us consider unsupervised algorithms, specifically clustering. The basic
features do not form natural clusters and the distribution of values belonging to
the optic cup and neuroretinal rim is not similar. Therefore we have to apply
feature transformation and enhancement to make the classes more distinct.

Figure A.1: Green superpixel features (left), saturation superpixel features
(middle), a* superpixel features (right).

Our complex features are based on the three colour channels which show
the highest contrast for optic cup area. These are the green, saturation and
a* channels from RGB, HSV and L*a*b* colour spaces respectively. They are
displayed in the figure A.1. Let us denote the green channel by G, saturation by
S and a* by A.
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Figure A.2: The top row shows improvement of saturation features S and the
bottom row of a* features A. The first column shows the result of multiplication
of the source channel by 1−G, the second column shows these features multiplied
by our vessel neighbourhood modifier and the third column shows final features
multiplied by distance factor.

We calculate the final features as a combination of saturation and a* with the
green channel, distance from the approximate optic centre and vessel neighbour-
hood modifier. Let us denote the final features CS and CA, the vessel modifier
κ and the distance modifier d. Then, the formulas for CS and CA are given in
A.1. The individual steps of the computation are visualised in the figure A.2.
The first row of images shows S · (1−G), S · (1−G) · κ and S · (1−G) · κ · 2−δ

2 .
The second row is analogical.

CS = S · (1−G) · κ · 2− δ

2 (A.1)

CA = A · (1−G) · κ · 2− δ

2 (A.2)

We define the modifier δ as an exponentiated negative distance from the optic
centre δ = exp(−2 · d

h
) where d is the pixel distance and h is half length of the

region of interest diagonal. Furthermore, we define the vessel neighbourhood
modifier κ as κ = exp(−v · δnormalised) where v denotes the fraction of pixels
surrounding the given superpixel which belong to blood vessels and δnormalised are
δ values normalised across all superpixels in an image.

In conclusion, we defined a set of features which help normalise the sizes of
clusters present in the superpixel data created from retinal images. The features
consider distance from the optic centre as well as the intensity information from
multiple channels.
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