
MASTER THESIS

Bc. Lucia Tódová

Constrained Spectral Uplifting

Department of Software and Computer Science Education

Supervisor of the master thesis: doc. Alexander Wilkie, Dr.
Study programme: Computer Science

Study branch: Computer Graphics and Game
Development

Prague 2021

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I would like to express my sincere gratitude to my supervisor, doc. Alexander
Wilkie, Dr., for his time, guidance and patience over the last year. I would
also like to thank my boyfriend, my family and my friends for their support and
encouragement.

ii

Title: Constrained Spectral Uplifting

Author: Bc. Lucia Tódová

Department: Department of Software and Computer Science Education

Supervisor: doc. Alexander Wilkie, Dr., Department of Software and Computer
Science Education

Abstract: Physically-based spectral rendering is becoming increasingly popular
in both commercial and academic areas due to its ability to accurately simulate
natural phenomena. However, the production of materials defined by their spec-
tral properties is a tedious and expensive process, which makes the utilization
of RGB-based assets in spectral renderers a desired feature. To convert RGB
values to their spectral representations, a process called spectral uplifting is em-
ployed. As the RGB color space is a finite subset of the visible gamut, there exist
multiple conversion techniques producing distinct results, which may cause color
inconsistencies under various lighting conditions. This thesis proposes a method
for constraining the spectral uplifting process. To be specific, pre-defined map-
pings of RGB values to their spectral representations are preserved and the rest
of the RGB gamut is plausibly uplifted. In order to assess its correctness, this
technique is then implemented and evaluated in a spectral renderer. The ren-
ders uplifted via our method show minimal discrepancies when compared to the
original textures.

Keywords: spectral uplifting spectral rendering

iii

Contents

Introduction 3

1 Color Science 5
1.1 Light and Color . 5
1.2 Color representation . 7

1.2.1 Spectral representation . 7
1.2.2 Tristimulus representation 8
1.2.3 Color representation in rendering 13

2 Spectral Uplifting 17
2.1 Uplifting methods . 18
2.2 Constrained spectral uplifting . 23

2.2.1 Spectral sampling . 23

3 Implementation 28
3.1 Uplifting model . 28

3.1.1 Initialization . 29
3.1.2 Cube seeding . 30
3.1.3 Fitting of starting points 32
3.1.4 Cube fitting . 34
3.1.5 Cube improvement . 37
3.1.6 Cube storage . 38

3.2 Renderer integration . 39

4 Results 41
4.1 Implementation choices . 41

4.1.1 Signal mapping techniques 41
4.1.2 Number of moments . 44
4.1.3 Cost functions . 47

4.2 Colorimetric properties . 50
4.2.1 Constraint uplifting accuracy 50
4.2.2 Uplift consistency across RGB Space 54

4.3 Performance . 55
4.3.1 Memory usage . 55
4.3.2 Execution time . 56

4.4 Future work . 58

Conclusion 60

Bibliography 61

A Software user guide 65
A.1 Borgtool . 65
A.2 ART . 66

A.2.1 Example scenes . 67

1

B Attachments 69
B.1 Delta E error caused by moment sampling 69

2

Introduction
Over the last few years, the demand for physical accuracy of the rendering pro-
cess has grown substantially. By providing the renderer with the capability to
physically simulate light transport, we can recreate natural phenomena such as
metamerism, fluorescence, polarization, etc. . . Such simulations require the in-
ternal color representation to be as close to the visible light’s spectral power
distribution as possible. However, the advantages of these representations are
often not worth implementing due to their complexity.

Therefore, vast majority of the conventional renderers internally represent
color as an RGB tristimulus value, mainly due to the simplicity and the robustness
of such systems. Additionally, almost all of the already existing assets, such as
input textures and materials, are defined in RGB, as their creation and utilization
is fairly simple. Spectral assets require a real-life model whose reflectance must
be measured with a spectrometer, which is both tedious and, in many cases, even
impossible.

To preserve the physical correctness of the spectral rendering process while
utilizing RGB textures as its input, a conversion from the color’s RGB represen-
tation to its spectral variant is needed. Such process is called spectral uplifting,
also known as spectral upsampling.

However, as the RGB color space is intrinsically smaller than the gamut of
visible light, there exist multiple spectral representations of the same RGB color.
Such spectral variations are called metamers, and can cause color discrepancies
under different lighting conditions. Various uplifting techniques might therefore
provide different results, none of which necessarily have to match the real mea-
sured spectra.

The goal of this thesis to create an uplifting model with the capability to
constrain itself with pre-defined mappings from RGB to specific spectral shapes,
which must be preserved during the uplifting process. All the other RGB input
values should return plausible synthetic data which smoothly interpolates the
measured spectra.

Related work
Currently, there exist several approaches to spectral uplifting. They differ in the
type of spectra they are capable of reconstructing, the gamut they can uplift, the
color error caused by round trips, etc. . .

Unfortunately, many of them have issues. The technique by MacAdam [25]
is capable of creating only blocky spectra, which are unsuitable for smooth re-
flectances usually found in nature. The proposal by Smits [41], although more
widely used, is prone to slight round-trip errors, which arise from out-of-range
spectra. One of the first approaches that produced smooth spectra was proposed
by Meng et al. [28]. However, they did not take energy conservation into account,
which resulted in colors with no real physical counterpart, i.e. no real material
could produce such color. Otsu et al. [33] introduced a technique that is capable
of outperforming most of the existing approaches under specific conditions. Its
drawback is its inability to satisfy the spectral range restrictions, which again

3

causes color errors upon round trips.
In this thesis, we focus mainly on the technique proposed by Jakob and Hanika

[19], which employs a pre-built model that is based on spectral representation
using sigmoids. This algorithm produces smooth spectra satisfying spectral range
restrictions with negligible error.

Jung et al. [20] further improve this technique for wide gamut spectral uplifting
by introducing new parameters for fluorescence. Currently, this approach can be
considered as state of the art.

None of the existing techniques propose a way in which to constrain the up-
lifting process.

Layout of this thesis
This thesis is structured as follows:

In Chapter 1, we introduce the reader to light transport and color science.
We explain the basic principles of human color perception, overview the existing
color representations and focus on their importance in rendering.

Chapter 2 summarizes the already existing spectral uplifting algorithms, plac-
ing special emphasis on the technique by Jakob and Hanika [19]. Furthermore,
it discusses the theory behind representation of spectra using moments.

Chapter 3 details the implementation of our constrained spectral uplifting
model and its utilization in a rendering software. It often refers to chapter 4,
where, in addition to discussing our results and comparing them to the non-
constrained spectral uplifting, we overview multiple experiments that assess the
correctness of various possible implementation choices.

4

1. Color Science
Color science, or colorimetry, is a branch of science that concerns itself with
human perception of color. It researches the relations between human vision
and physical properties of color, and analyzes options for both its capturing and
reconstruction.

We begin this chapter by describing the physical properties of light and their
subsequent meaning in terms of color. We then provide multiple options for
quantifying said color for further possible reconstruction in the digital world.
Lastly, we show the importance of color representation in modern-day renderers,
and its effects on reconstruction of physically based phenomena.

1.1 Light and Color
The term human visual perception refers to the ability of the human eye to in-
terpret the surrounding environment. It is based on our capability to detect
electromagnetic radiation, which is a form of energy that consists of waves which
propagate through space and transmit radiant energy.

An electromagnetic wave is characterized by its amplitude and frequency. Am-
plitude is defined as the distance between the central axis and either the crest
(the highest point of the wave) or the trough (the lowest point of the wave),
while frequency specifies how many wave cycles occur in a second. Together,
these properties give rise to the term wavelength, denoted λ, which measures the
length of the wave — the distance between either two subsequent crests, troughs
or any two following spots with the same height.

Every electromagnetic wave can be unambiguously defined by its wavelength.
Arranging them according to this criterion creates a classification known as elec-
tromagnetic spectrum (see fig. 1.1). As the electromagnetic spectrum contains
all existing types of electromagnetic radiation, it covers wavelengths in the range
from fractions of nanometers to thousands of kilometers. This range can be di-
vided into bands to distinguish known types of electromagnetic waves, from low
frequency gamma or X-rays to high frequency radio waves.

In this thesis, we focus on visible light, which covers only a mere fraction of
the electromagnetic spectrum. Its waves are roughly in the 380-780nm range.

To sum up, electromagnetic waves specify the way in which light travels. To,
however, describe the interaction between light and matter, the term photon is
used.

Photons are elementary particles of light moving in a manner specified by
their wavelengths. They make up electromagnetic radiation and can be emitted
or absorbed by atoms and molecules. During this process, they transfer energy
either from the object that emitted them or to the object that absorbed them.
This change in energy (denoted E) is proportional to the wave frequency of the
absorbed/emitted photon and can be computed as follows [12]:

E = hf = hc

λ
, (1.1)

where h is the Planck’s constant, f is the wave frequency and c is the speed of

5

Figure 1.1: An illustration of the electromagnetic spectrum [3]

light. Therefore, generally speaking, the human eye identifies light when atoms
and molecules in the retina absorb photons.

To specify this process, we first describe the retina. The retina consists of
millions of light-sensitive cells, also called photoreceptors, which pass a visual
signal via an optic nerve to the brain, giving the notion of light and color. There
are two types of photoreceptors in the human eye — rods and cones.

Rods make up most of the receptor cells (around 91 million according to Purves
et al. [36], but other sources state that their number could be as high as 125
million [47]). They are usually located around the boundary of the retina, and are
responsible for low light (scotopic) vision. However, they possess very little notion
of color, which is also the reason why the human eye has trouble recognizing colors
during the night.

Cones are located mainly in the center of the retina and their numbers are
a lot lower (from around 4.5 million [36] to 6 million [47]). In contrast to rods,
they are active at daylight levels (responsible for photopic vision) and have the
notion of color. To be specific, different types of cones differ in their sensitivity
to photon energies at concrete wavelengths. The final color is then composed by
the brain from the stimulation signals sent by each cone.

The human eye has three types of cones:

• L-cones, which are the most responsive to longer wavelengths at around
560nm. When stimulated, they correspond to the red color.

• M-cones, which are the most sensitive to medium wavelengths at around
530nm and correspond to green color.

• S-cones, which respond the most to small wavelengths that peak at around
420nm and correspond to blue color.

Their relative response to stimulation can be seen in fig. 1.2.
This type of color perception is called trichromatic, as it uses three types of

receptors to create the whole color space. The attempts to simulate such percep-
tion in the digital world give rise to tristimulus color representations, which have
been widely adapted in color science. We discuss these thoroughly in section 1.2.

Up until now, we have discussed the interaction of light with the human eye.
Photons, however, also interact with objects. As established by the relationship

6

Figure 1.2: Relative sensitivity of S, M and L-cones plotted according to the data
measured by Stockman and Sharpe [42]

defined in eq. (1.1), the energy transferred to an object upon light interaction
is dependent on the photon wavelength. This means that objects might absorb
some wavelengths and reflect others.

Object color is defined by the wavelengths it reflects. For example, if it re-
flects all the wavelengths, the resulting color is white, while absorbing all the
wavelengths would render the object black. Naturally, human perception of ob-
ject color is not only dependent on its reflective properties, but also on the lighting
of the scene. If the only present light is red, wavelengths corresponding to colors
other than red never hit the object. Therefore, the object might reflect only a
subset of wavelengths than it would under white light, which may subsequently
result in a change of the perceived color.

1.2 Color representation
The question of how to discretely represent color has been posed ever since the
introduction of the first graphical user interface. For use in computer science,
representations are required to be compact, precise, and the operations on colors
are required to be simple and easily executed.

In this section, we describe the spectral representation, which is based primar-
ily on the physical properties of color. Then, we overview the basic properties of
the most popular tristimulus systems.

1.2.1 Spectral representation
When defining the color of an object, we must not only specify the wavelengths
it reflects, but also the ratio between the incoming and the outgoing energy at
these wavelengths. The dependency of reflectance on the wavelength is called
a reflectance spectrum, and is usually a smooth, continuous curve (see example
in fig. 1.3a).

Although this definition might be sufficient for reflective surfaces, describing
the color emitted by a light source requires the knowledge of the source’s power
rather than reflectance. For these purposes, spectral power distribution (SPD)

7

(a) Reflectance spectrum (b) Emission spectrum (c) Combination

Figure 1.3: The behavior of a reflectance of a material under an illuminant spec-
ified by an emission spectrum

is used. Generally, SPD is a function describing the relationship between wave-
length and any radiometric or photometric quantity (radiant energy, luminance,
luminous flux, irradiance, etc. . .). In this thesis, however, we use SPD to describe
the emissive properties of light sources, and therefore consider SPD to be a func-
tion of wavelength and power. We provide an example of an emission spectrum
in fig. 1.3b.

As the reflectance spectrum serves as a throughput for the emission spectrum,
the color of an object illuminated by a light source can be determined by multi-
plying the light source’s SPD curve with the reflectance curve of the object, as
shown in an example in fig. 1.3. This way the physical properties of color are
preserved and the results are the same as they would be in nature.

1.2.2 Tristimulus representation
The obvious drawback of the spectral representation is the difficulty of its dis-
cretization, since there is an infinite number of possible spectral curves, but only
a finite number of digital colors that can be displayed by a monitor. For the pur-
poses of color visualization, a distinct, discrete color representation is required.

Tristimulus representation approaches this issue by saving the color as a set
of three values. Although the original idea was to simulate the trichromatic
perception of human eye (i.e. save values that specify how much have the red,
green and blue cones been stimulated), over time, multiple other tristimulus color
spaces have been created. They differ mostly in the range of colors they are
capable of representing and in their practical use. Following, we provide an
overview of some of the most popular ones.

RGB color space

The RGB color space is an additive space employing three primaries — red, green
and blue. In other words, if three lasers with red, green and blue chromacities
are used to illuminate a single point, any color within the RGB color space can
be created solely by changing the lights’ intensities.

An RGB value can therefore be thought of as a point in a 3-dimensional Eu-
clidean space with each of the coordinate axes representing one of the primaries.
As the lights’ intensities must be bounded, this space is narrowed down to a cube

8

(a) r(λ), g(λ) and b(λ) functions plotted
with data by Broadbent [5]

(b) x(λ), y(λ) and z(λ) functions plot-
ted with data by Choudhury [8]

Figure 1.4: Color matching functions

starting at the base of the coordinate system. Usually, the range for each value
is defined within 0 and 255, but a normalized [0, 1] range is also used.

Various implementations of the RGB color space exist. They differ in the
specifications of the RGB primaries, and therefore in their color gamut, which
is the subset of colors they are capable of representing. Some examples (named
in ascending order with respect to the size of their color gamut) include ISO
RGB, sRGB, Adobe RGB, Adobe Wide Gamut RGB and ProPhoto RGB. An
illustrative comparison of the sRGB and Adobe RGB gamut in the chromaticity
diagram (described thoroughly in section 1.2.2) can be seen in fig. 1.5.

RGB color spaces are commonly used in everyday world, e.g. in LED dis-
plays, digital cameras, scanners and even in computer graphics rendering. Their
main downside has, however, been discovered when designing color matching
functions [11].

A color matching function is a function designed to simulate the response of
a certain type of cone in the human eye. In 1931, CIE designed a set of three
color matching functions that could be used for spectral to RGB conversion [11].
Denoted r(λ), g(λ) and b(λ), they approximate the response of the L, M and S
cones respectively. However, as seen in figure fig. 1.4a, the functions may also
acquire negative values. At the time, this posed a problem due to calculation
errors. Therefore, to eliminate these negative portions of functions, CIE designed
a new color space — the XYZ color space.

XYZ color space

The XYZ color space is a reference color space capable of encompassing all colors
perceptible by the human eye. Its color matching functions, x(λ), y(λ) and z(λ),
were specifically designed for the purposes of SPD to tristimulus conversion, which
is computed using the following equations:

X =
∫︂

P (λ)x(λ)dλ,

Y =
∫︂

P (λ)y(λ)dλ,

Z =
∫︂

P (λ)z(λ)dλ,

(1.2)

9

where X, Y and Z are the resulting tristimulus values and P (λ) is the spectral
power distribution.

Although the X, Y and Z primaries were designed so that the Y primary
closely matches luminance and X and Z primaries give color information, they
are only imaginary, i.e. they do not correspond to any spectral distribution of
wavelengths. This property renders the whole XYZ space imaginary, which means
that it cannot be used for visualization purposes. Its main function is to serve as a
“middle step” when performing a conversion from SPD to an arbitrary tristimulus
space, which eliminates the need for creating color matching functions for other
tristimulus spaces. The conversion from XYZ to an arbitrary tristimulus space
can then be performed by a simple space-specific 3x3 matrix transformation.

xyY color space

In addition to the impossible visualization process, another downside of the XYZ
color space is that its values are practically unbounded and do not have any
real meaning (such as the RGB triplets have). Therefore, a more intuitive color
space has been created, which considers the relative proportions of the X, Y and
Z values rather than their unbounded versions — the xyY color space [21]. It
is based on the assumption that color can be regarded as a quantity with two
properties: luminance and chromaticity.

The conversion from the XYZ to the xyY color space is performed as follows
— first, the X, Y and Z values are converted to their bounded versions (also
called chromaticity coordinates) as defined in eq. (1.3) [13].

x = X

X + Y + Z

y = Y

X + Y + Z

z = Z

X + Y + Z

(1.3)

Since x+y+z = 1, the z term can be expressed as z = 1−x−y. This means that z
does not give us any additional information about the current color and therefore
can be dropped from the representation. It also implies that some information
has been lost during the conversion, i.e. we cannot reconstruct the original XYZ
triplet using only the x and y values and therefore cannot obtain the initial color.
At least one of the original values is needed for this purpose — CIE [9] decided
to use the Y component, as it already specifies luminance.

Plotting the values of the x and y chromaticity coordinates creates a chro-
maticity diagram, shown in fig. 1.5. Each point of the curved boundary line
(also called the spectral locus) corresponds to an XYZ value that is the result of
a monochromatic radiation (i.e. a single-wavelength stimulus). All other chro-
maticities visible to the standard observer lie within a region bounded by the
spectral locus.

L*a*b*

Although some of the color spaces mentioned so far are already quite intuitive
in terms of human color perception (e.g. xyY), neither of them regards for the

10

Figure 1.5: An illustrative comparison of the sRGB and Adobe RGB gamut in
the chromaticity diagram based on images created by Choi et al. [7]

human perception of color differences. The human eye is, for example, more prone
to spotting differences when comparing lighter pastel colors and neglecting them
upon interaction with darker color (e.g. dark blue). If we wish to accurately
describe color differences in a color space, we must regard for this factor and aim
for perceptual uniformity, i.e. for the difference between two colors as perceived
by the human eye to be proportional to their Euclidean distance within the color
space.

The Hunter’s Lab color space [49] addresses this issue and is designed so that
the distance between its two triplets characterizes roughly how different they are
in chromaticity and luminance. It is based on the Opponent color theory [22],
which suggests that the cones in the human eye are linked together in opposing
pairs and that the visual system records the difference between the stimulation
of the pairs rather than the cones’ individual responses.

As the Hunter’s Lab color space does not achieve perfect uniform spacing of
values, CIE L*a*b* color space (CIELAB) [17] has been proposed in an attempt
to improve some of its shortcomings and is now more widely used. However, nei-
ther of the systems are completely accurate in terms of perceptual uniformity [49].

The three opponent channels used to specify color in the CIE L*a*b* color
space are defined as follows [17]:

• L* — indicates lightness, i.e. the difference between light and dark. Its
values range from 0 (yielding black color) to 100 (indicating diffuse white
color).

• a* — defines the difference between green and red. Positives values of
this component indicate the object’s color to be more green, while negative
values signify the domination of red.

• b* — defines the difference between yellow and blue. Positive values indicate
the object to be more yellow, while negative values indicate the domination
of blue.

11

Neither the range of the a* nor the b* component has any specific numerical
limits [17].

The L*a*b* color space is a reference system — an abstract, non-intuitive
space encompassing all human-perceptible colors. Due to its perceptual unifor-
mity, it can be used for color balance corrections by modifying the a* and b* com-
ponents, and for lightness adjustments by modifying the L* component. However,
as mentioned earlier, its main purpose is the determining of color differences.

In 1976, CIE introduced the concept of Delta E, which is the measure of
change in visual perception of two colors [16]. Denoted ∆E∗

ab, it is computed as
an Euclidean distance between two sample points, i.e.:

∆E∗
ab =

√︂
(L∗

2 − L∗
1)2 + (a∗

2 − a∗
1)2 + (b∗

2 − b∗
1)2, (1.4)

where (L∗
1, a∗

1, b∗
1) and (L∗

2, a∗
2, b∗

2) are the L*a*b* coordinates of the sample points.
However, the ∆E∗

ab error is prone to exaggerating the differences occurring
when comparing two highly saturated colors of similar hue. This is due to the
fact that the L*a*b* color space is not perfectly perceptually uniform, which
can be perceived upon observation of these regions. To improve upon these
shortcomings, other measuring techniques for computing Delta E, such as Delta94
and Delta2000, have been proposed over the years.

Delta94 is computed by first modifying the original L*a*b* values of both
colors to compensate for perceptual distortions in the color space and then by
computing the Euclidean distance from the modified values. Although the re-
sults match the human color difference perception more closely, the Delta94 error
metric still lacks some accuracy in the blue-violet region [16].

Delta2000 attempts to remove these inaccuracies. Including the corrections
added to Delta94, Delta2000 overall adds five correctional factors to the original
∆E∗

ab — compensation factors for lightness, hue and chroma, compensation for
neutral colors and, lastly, a hue rotation term for the problematic blue-violet
region.

From the listed Delta E equations, the Delta2000 error measurements are the
most accurate in terms of human color difference perception [16]. However, in
addition to being computationally intensive, the Delta2000 equation is discon-
tinous [40]. Therefore, it is not a preferred measure to use in gradient-based
optimizers, which is an observation we use in the practical part of this thesis.

Other color spaces

In addition to the already mentioned tristimulus color spaces, there exist many
more used for various purposes. Following, we briefly overview some of them:

• L*u*v* — Similarly to the CIELAB system, L*u*v* (or CIELUV) aims
for perceptual uniformity. As a matter of fact, the L∗ value is defined in
the same manner as in the CIELAB system, while u and v values are eval-
uated by certain projections of the x and y coordinates of the chromaticity
diagram. When comparing their Euclidean error measure, the most impor-
tant distinction between the two spaces is that while the CIELAB generally
outperforms CIELUV in terms of perceptual uniformity [27], CIELUV does
not have as many inaccuracies in the dark regions [39]. Therefore, it is often

12

recommended to use the CIELUV color space for characterization of color
displays and the CIELAB color space for the characterization of colored
surfaces and dyes.

• HSL and HSI color spaces define color by its hue, saturation and lightness
(or intensity). They are alternative representations of the RGB color space
and must therefore be defined purely with reference to an RGB space [18].
As their components correlate more intuitively with human perception of
color than those of the RGB system, they are often used in image pro-
cessing applications, e.g. for processes such as feature detection (edge
detection [45], object recognition) or image segmentation (which can be
performed solely by using the hue component) [18].

• CMYK model is a subtractive color model commonly used in color printing.
This means that assigning zero values to all components renders white light,
and increasing the value of a component specifies how much of the respective
color is subtracted from the white light. It is based on RGB’s complementary
colors — cyan, magenta and yellow (respectively). Although the premise
is that maximizing CMY values should render perfect black, in reality, the
printing inks are not 100% pure CMY and their combinations therefore
cannot produce rich black. For this purpose, a fourth component, black
(K), is often added.

Other color spaces include the Munsell color system, RAL, Natural Color
System, Pantone Matching System, CIELCHab, CIELCHuv, etc. . .

1.2.3 Color representation in rendering
Rendering is an image synthesis process which internally utilizes a light transport
simulation in order to mimic natural behavior of light and material colors based
on a given scene description. The output of such process is an image called a
render.

Accurate color representation is the core of rendering softwares. Although
most of today’s renderers support multiple color spaces, we can still divide them
into two main categories according to the space used during evaluation of light
transfer equations — tristimulus and spectral renderers.

Tristimulus renderers are usually based on the RGB color space, although they
often offer conversions to other tristimulus spaces. Due to the ease of use and
simplicity of representation, RGB renderers are more common in commercial ren-
dering software. They provide realistically looking images, often indistinguishable
from a photograph, and are more robust, memory efficient and easy to implement.

However, light in real world does not travel as a tristimulus value, but rather as
a distribution of wavelengths. Therefore, RGB renderers cannot properly simulate
the physical properties of color during reflections or refractions.

Spectral rendering, on the other hand, uses full-spectral information of all
materials and lights in the scene throughout the whole rendering process. Ob-
viously, before visualization occurs, spectral information must be converted into
tristimulus (usually RGB) values, but this does not pose a problem as, at the
moment of conversion, all the physically based simulations have already taken

13

Figure 1.6: Comparison of an RGB-based rendering and spectral-based rendering
as presented in the documentation of Mitsuba2 [46]. Left: Spectral reflectance
data of all materials is first converted to RGB and the scene is then rendered in
the RGB mode. Right: Scene is rendered directly in the spectral mode.

place. Therefore, the rendered scene appears more realistic. We demonstrate this
difference in fig. 1.6, on a scene already rendered by Mitsuba2 [46]. As can be
observed, while the scene rendered in the RGB mode produces an unnaturally
saturated image, the spectrally-based render results in more realistic colors.

In addition to a more convincing rendering of reflections and refractions, an-
other reason for using spectral rendering is its capability to simulate physically
based phenomena that arise due to the interaction of light with specific materials.
Following, we overview some of the most common ones:

• Metamerism
As already mentioned in section 1.2.2, the human tristimulus perception
has a significantly lower domain than the spectral domain. Therefore, two
different spectra can trigger the same cone response in the human eye and
appear to have the same color (and, subsequently, to have the same RGB
values), giving rise to a phenomenon called metamerism. The two spectra
evaluating to the same tristimulus values are called metamers.
In real world, metamerism is often perceived when the lighting conditions
under which we observe metamers change. An example of this can be seen
in fig. 1.7, where the color of the presented spheres is similar under the D65
illuminant, but clearly differs under the fluorescent F11 illuminant.
As an RGB renderer does not possess spectral information, it cannot repli-
cate the behavior of spectral reflectance under an illuminant, and is there-
fore unable to reproduce metamerism.

• Fluorescence
By definition, fluorescence occurs when light from one excitation wavelength
λ0 is absorbed by an object and is almost immediately re-emitted at a dif-
ferent, usually longer, wavelength λ1 [15]. Specifically interesting is the fact
that the absorbed light can come from outside of the visible spectrum and

14

Sphere reflectance curve D65 Illuminant F11 Illuminant

Figure 1.7: The effects of metamerism

be re-emitted inside it, which results in an unrealistically bright appear-
ance of materials. This can be perceived in real world when, for example,
fluorescent fish, corals, jellyfish or even minerals are illuminated by a UV
light.
RGB renderers attempt to fake this behavior through custom shaders [51].
As they often produce satisfactory results and, in comparison to physical
simulation, are immensely easier to implement, physically based fluores-
cence has received small amount of work. Its support can be found in
spectral renderers, added for example to ART by Mojźık [29].

• Iridescence
Iridescence, or goniochromism, is a phenomenon occurring when certain
surfaces change color according to the current viewing angle. It arises when
the object’s physical structure causes interferences between light waves (e.g.
inside extremely thin dielectric layers), yielding rich color variations [4]. It
can be perceived in nature in certain plants, specific minerals, butterfly
wings, peacock’s feathers, snakes, but also in man-made products such as
oil leaks, soap bubbles or car paints.
Similarly to fluorescence, iridescent behavior can be faked in an RGB ren-
derer [43]. However, research based on physical properties of iridescence
has also been conducted. For further information about the current devel-
opment, we refer the interested reader to the articles by Belcour and Barla
[4], Sadeghi and Jensen [38], or Werner et al. [48].

• Dispersion

15

When light travels from one medium to another (e.g. when light coming
from air hits glass or water), its direction of travel changes. This phe-
nomenon is called refraction and is closely described by Snell’s law, which
specifies how the angle of refraction can be computed from the angle of
incidence and the refraction indices of the two media [10]. However, the
refraction index depends not only on the type of media, but also on the cur-
rent wavelength [44] — which implies that the resulting direction of photons
may vary according to their wavelength.
Probably the most known scenario displaying this phenomenon is white
light hitting a dispersive prism. Upon interaction, light is split into spectral
bands, creating a “rainbow” effect.
There have been multiple attempts to simulate physically based dispersion.
We refer the interested reader to articles by Sun et al. [44] or Wilkie et al.
[50].

• Polarization
Electromagnetic waves traveling through space are transverse waves — their
oscillation is perpendicular to their path of propagation. By default, the
directions of oscillations are arbitrary for each photon — this type of light
is called an unpolarized light. Restrictions to the directions of oscillations
(also called polarization) render polarized light. Such phenomenon usually
occurs upon light’s interaction with certain materials, called polarizers.
The polarization process contributes to the overall color only in special
cases (e.g. when using polarization filters) [51]. Therefore, it receives little
attention in implementation of rendering softwares. However, for physical
consistencies (and due to the possibility of unusual scenes) both ART [31]
and Mitsuba [46] follow the direction of oscillation during the rendering
process.

Other researched phenomena (some of it closely linked to the already men-
tioned ones) include phosphorescence, bioluminescence, dichroism, opalescence,
aventurescence and many more.

16

2. Spectral Uplifting
While spectral rendering offers many advantages in terms of physical correctness,
it is often neglected and traded off for the RGB color representation due to its
ease of use and memory efficiency. Even the physically-based phenomena can be
“faked”, and, therefore, many conventional rendering systems are RGB-based.

Another reason for the disinclination towards spectral renderers is the defi-
ciency of spectral textures. The process behind their creation is, in comparison
to RGB-based textures, a lot more complicated. It usually requires a real-life
model whose reflectance spectra must be measured with a spectrometer, which
is, in many cases, virtually impossible.

Spectral renderers are, nonetheless, used both in the research and in the com-
mercial sphere (e.g. ART, Mitsuba, Manuka). To make spectral rendering pos-
sible while utilizing RGB textures as input, a reliable conversion from RGB to
spectral data has been proposed. We refer to this process as spectral uplifting,
however, other sources also use the term spectral upsampling [20].

Converting an RGB value into its respective spectrum poses multiple difficul-
ties. As the relationship between the spectral and the RGB domain is not bijective
(specifically, infinitely many spectral distributions render the same RGB values),
distinctive approaches to the conversion process may render different spectral dis-
tributions. Although all of them might be correct in terms of the resulting RGB
value, it is possible that none of them would be identical to spectral distribution
measured with a spectrometer.

This does not cause a problem under standard illuminant with regard to
which the RGB values were uplifted. However, as already mentioned in sec-
tion 1.2.3, changing the illuminating conditions may result in a rather significant
color change due to metamerism. This may cause issues with spectra created by
an uplifting process, which are, with the current technology, arbitrary metamers.
Therefore, the appearance of assets defined via RGB can be somewhat unpre-
dictable under changing illumination, which is in turn unacceptable for e.g. work-
flows with very high demands on visual consistency between plate footage and
VFX renders.

We demonstrate this problem in fig. 2.1. The Munsell Book of Color, pages
of which are shown in the images, is an old color atlas, which was defined before
fluorescent lights were common. The yellow pages of the atlas are known to
exhibit noticeable distortions in the color gradient of the samples when viewed
under fluorescent or LED light sources. If an RGB texture of an atlas page were
used as input, a naive uplifting technique would have no chance of reproducing
the fact that under one type of light source there is a smooth gradient, while
under others the gradient breaks down.

We begin this chapter by reviewing the already existing approaches to spectral
uplifting. We then talk about a novel technique, constrained spectral uplifting,
which provides means for preserving the original metameric artifacts during up-
lifting and the implementation of which is the goal of this thesis.

17

Figure 2.1: Photos of four Munsell Book of Color pages (050B, 075Y, 100Y and
075R) in an xRite Judge QC viewing booth. Left: daylight; Right: fluorescent
light. The photos are white balanced so that the neutral patches on the color
checker match.

2.1 Uplifting methods
Although there have been multiple attempts at spectral uplifting, not many meet
all the criteria required for a successful and complete conversion. Some of these
methods pose various issues, such as outputting reflectance spectra with values
outside the [0, 1] range, working for saturated colors only, causing noticeable
round-trip errors (i.e. there is a visible difference between the original RGB and
the RGB of the uplifted spectrum), etc. . .

Following, we overview the most popular approaches to spectral uplifting and
call attention to their advantages and disadvantages. We base most of this section
on an article by Jung et al. [20], which, in addition to providing a survey of existing
techniques, proposes a new one that is considered to be the current state of the
art.

MacAdam. One of the first techniques was proposed in an article by MacAdam
[25], which primarily focused on achieving the highest possible brightness for a
given color saturation in printing. The uplifting process was only a byproduct of
a proof of the limits to the colors’ brightness, created especially for representing
the reflectance of the researched colors (i.e colors of maximum brightness for any
given saturation). Although this method is not limited to a specific input, it
produces spectra that are box-shaped and only consist of rising and falling edges.
This type of representation is unsuitable for reflectances usually found in nature,
which tend to have smoother curves.

Smits. Another technique was proposed by Smits [41]. In this case, the uplifting
is based on a box basis split into 10 discrete bins, which are derived using an
optimization algorithm that accounts for energy conservation and aims for overall
smoothness of the spectra. This approach is practically implemented and widely
used, as it provides satisfactory results in the sRGB gamut [19]. However, in
some cases, the uplifted spectra acquire values above 1, which does not satisfy
the [0, 1] range criterion. Furthermore, round trips consisting of uplifting an
RGB value and converting the resulting spectrum back to RGB produce slight
color differences, which are only amplified in scenes with multiple reflections.

18

Lastly, this approach becomes unstable when used for wider gamuts, as it was
not designed for this purpose.

Meng et al. The goal of the method proposed by Meng et al. [28] is wide-
gamut uplifting. It also concentrates on optimizing the uplifting algorithm for
spectral smoothness. However, it does not take energy conservation into account,
which results in images with colors that have no physical counterpart (i.e. no
real material could produce such colors). Meng et al. [28] try to solve this by
introducing a set of scaling methods for mapping the uplifted spectra to valid
reflectances. These, however, fail upon uplifting bright colors.

Otsu et al. One of the most recent uplifting techniques has been proposed
by Otsu et al. [33]. It is based on the observation that a typical measured re-
flectance spectrum can be represented with only a few principle components. The
method uses clustered principal component analysis (PCA) and, unlike many
other approaches, does not presume that spectra must necessarily be smooth.
Such a simplification both eliminates the requirement of having a smoothness
heuristic and enables the reconstructed spectra to match the actual measured
spectra pretty well. This approach, however, has its downsides. Firstly, the
method does not necessarily satisfy the [0, 1] range criterion. Therefore, the val-
ues must be clamped, which results in color reproduction errors. Moreover, since
there is no interpolation across clusters, similar RGB values may produce very
different spectra, which might lead to discontinuities in rendering. However, in
multiple cases, this method has been shown to outperform all of the already
mentioned ones [19].

Jakob and Hanika. Jakob and Hanika [19] propose another approach, which
discusses a parametric function space for efficient representation of spectral re-
flectance curves and its subsequent utilization in spectral uplifting. Based on their
observation, a research software, Borgtool, has been created. Originally developed
by collaboration of Charles University and Weta Digital, Borgtool possesses the
capability of creating uplifting models in accordance to the work of Jakob and
Hanika [19]. As the goal of this thesis is to extend Borgtool, we describe the
theory behind its uplifting model in more detail.

The motivation was to create a spectral representation that would be both
energy-conserving and would have a successful round-trip, e.g. the Delta E differ-
ence between the original RGB and the RGB obtained by conversion to spectra
and back would be as small as possible. Based on the equation specifying the
Delta E error, a simple analytical model has been created. Spectra in accordance
with this model are represented as follows:

f(λ) = S(c0λ
2 + c1λ + c2), (2.1)

where f(λ) is the resulting spectrum, S is a simple sigmoid function and ci are
coefficients of a second-order polynomial. Therefore, all spectra in this space are
represented by three parameters.

In addition to energy conservation, the resulting spectra do not violate the
[0, 1] range constraint. They are smooth and simple, similarly to reflectance

19

Algorithm 1 Construction of a sigmoid-based uplift cube
1: create RGBCube with empty RGB:spectra mappings
2: unmappedPoints← a list of all lattice points in RGBCube
3: centerPoint← index of the middle of RGBCube

▷ RGBCube[centerPoint].rgb ≃ (0.5, 0.5, 0.5)
4: centerPoint.coefficients← (0, 0, 0)

▷ “guess” the coefficients at centerPoint
5: run the CERES optimizer for RGBCube[centerPoint]
6: remove RGBCube[centerPoint] from unmappedPoints
7: while unmappedPoints is not empty do
8: for all point ∈ unmappedPoints do
9: if point has a neighbor v with defined coefficients then

10: point.coefficients← v.coefficients
11: run the CERES optimizer for point
12: if optimization was successful then
13: remove point from unmappedPoints

spectra of real-life surfaces. Another advantage is memory efficiency, as storing
one spectrum requires only three values.

However, representing spectra as such also has its drawbacks. For example,
there is currently no straightforward, well-defined computation of the RGB →
spectrum conversion in such a domain. Therefore, in order to find a coefficient
triplet that evaluates to the desired RGB, an iterative optimization process is
utilized.

The optimization is performed by the CERES solver [1], which requires only
an initial “guess” of the coefficient triplet and a metric according to which it
improves the guess (i.e. the Delta E error originating from round-trips). As it
requires only a few iterations to converge to 0, the conversion of one RGB triplet
is rather fast.

However, utilizing the CERES Solver during the rendering process would re-
sult in substantial performance overhead. Therefore, RGB:spectra mappings are
pre-computed beforehand, and stored in a texture which then serves as a lookup
structure during rendering.

Obviously, it is impossible to store mappings for every RGB triplet — the
RGB space needs to be discretized as efficiently as possible. Borgtool approaches
this problem by storing the mappings in the vertices of a regular 3D grid inside an
RGB cube. Note that this is a simplification of the original proposition by Jakob
and Hanika [19], which divides the sRGB space into three quadrilateral regions
in which the coefficients are very smooth. For satisfactory results, only three 3D
cubes of size 643 would be required.

We describe the pseudo-algorithm used in Borgtool in order to create a
sigmoid-based uplifting model in algorithm 1.

Discretization of the RGB space does not, however, eliminate the need for
uplifting RGB values that have no mapping in the spectral uplifting model. In
such case, the unknown spectral reflectance values must be computed from the
already existing mappings. As the RGB value we wish to uplift falls into a specific
voxel in the RGB cube, without much elaboration, three straightforward methods

20

Original
Nearest

Neighbor

Interpolation
of

Coefficients

Interpolation
of

Spectra
Up

lif
t

D
iff

er
en

ce

Figure 2.2: Comparison of techniques for obtaining spectra for non-mapped RGB
triplets in the RGB cube as created by Borgtool. The Delta E in the difference
images is relative to ∆E = 1.

of how to uplift it come to mind:

1. trilinear interpolation of spectra in voxel corners

2. trilinear interpolation of coefficients in voxel corners

3. using the coefficients of the nearest voxel corner (nearest neighbor approach)

We present the results of these approaches when used for uplifting an RGB
texture in fig. 2.2. We also compare them to the original texture and provide the
difference images.

Although the original paper suggests that interpolating coefficients should,
within limits, produce reasonable spectra without unexpected artifacts, we ob-
serve that the interpolation of spectra provides higher round trip accuracy. There-
fore, the spectral uplifting tool in ART opts for interpolating spectra even despite
the increased time complexity [32]. However, neither of the two approaches pro-
duce significant inaccuracies.

The nearest neighbor approach, on the other hand, is susceptible to visible
artifacts, especially in the dark blue region. Therefore, it is not widely used.

An obvious case in which it is possible to avoid any kind of interpolation or
optimization is when the RGB values that will be required during the uplift are
known beforehand. They can then be added as lattice points to the RGB cube.
This is especially useful when attempting to uplift specific textures or materials,
which is, in fact, what this method was originally intended for.

This uplifting model is, in many cases, superior to the ones already mentioned
above. First of all, the round trip error yields 0 in the sRGB gamut. In other
gamuts within the spectral locus, it outperforms other models as well. Moreover,
the execution speed is by far the best, even with the uplifting process running
beforehand.

21

Figure 2.3: Comparison of spectral uplifting techniques in terms of reconstructed
spectral shapes as shown by Jakob and Hanika [19]. Note that the “Ours” ap-
proach, in this case, refers to the approach by Jakob and Hanika [19].

The smoothness of the spectra can be considered both an advantage and
a limitation. Although such spectra closely resemble real-life spectra and are
suitable for the interpolation process, they cannot describe extremely bright and
saturated spectra, as these tend to be more blocky.

Jung et al. The approach by Jung et al. [20] tries to solve this issue by ex-
tending the set of three sigmoid coefficients with three additional ones specifically
designed for handling fluorescence. Its goal is to avoid creating blocky spectra
at gamut boundaries and rather to create smooth spectra with added fluores-
cent dyes to compensate for the lack of saturation. The implementation of this
method was added to Borgtool by Karlsruhe Institute of Technology. Similarly
to the previous sigmoid-based technique, the uplifting model is an RGB cube
created prior to the rendering process. In order to obtain the coefficients for the
individual entries, CERES solver is utilized. As expected, the construction of
the cube takes longer, as it has 6 coefficients to consider for each cube entry.
However, the method is the first one capable of simulating fluorescent spectra,
which is especially useful for wide-gamut input textures.

The problem arising with a requirement to uplift RGB values that do not have
a mapping is solved in a different manner than in the previous approach. As both
the nearest neighbor and interpolation of coefficients do not produce satisfactory
results, reradiation matrices of the neighbor lattice points are used. Although
this leads to higher memory requirements, the results are smoother and do not
produce disruptive artifacts.

In this section, we have presented multiple techniques capable of spectral up-
lifting. None of them, however, propose a way in which to constrain the uplifting
process to deliver specific spectral shapes, and they also cannot trivially be ex-
tended in this direction. This is mainly due to their spectral representations,
which are simple and unable to reproduce all possible user-defined spectra. In
order to demonstrate the type of shapes the individual techniques are capable
of reproducing, we provide comparison of their results upon uplifting a specific
RGB value in fig. 2.3.

22

2.2 Constrained spectral uplifting
Achieving identity of uplifted spectra to the real-world spectra is, obviously, im-
possible. However, uplifting many RGB-based assets does not require us to be
able to uplift the whole RGB gamut, but only the spectra used for the creation
of said assets. As it is pretty common for artists in the VFX modeling industry
to use specific color atlases when designing textures and materials, the ability to
constrain the uplifting system with these atlas colors would be extremely useful.

In other words, the user would define specific RGB:spectra mappings which
would later be used in order to uplift certain RGB triplets. RGB values that
would not have a pre-defined mapping would be uplifted by slightly altering the
curves of their already-mapped neighbors, in order to prevent color inconsistencies
under different illuminating conditions.

We call this process constrained spectral uplifting. The fact that it does not
provide as much freedom as other spectral uplifting approaches works for our
benefit, as the results are not a subject to high metamerism, which is, after all,
the goal of this thesis.

In this thesis, we base the algorithm used to implement constrained spectral
uplifting on algorithm 1. We use a similar RGB cube as a structure for saving
the mappings, and we also create an uplifting model prior to rendering. We leave
the specific details of implementation to chapter 3. In this section, we discuss
the theoretical background of the constraining itself. Specifically, we focus on the
means of storing the individual spectra in our structure and the problems that
arise along with it.

2.2.1 Spectral sampling
The constraining process starts when the user inserts a set of spectra. Finding
an RGB match and creating a mapping is a straightforward task — one must
simply convert the spectra to RGB. However, the spectra must then be stored in
the structure, which requires its discretization.

A trivial way to store spectral information is via regular sampling, i.e. to
store every ith value of the spectrum, starting from roughly 380nm and ending
at 780nm (as that is the range for visible light). However, for an acceptable color
reproduction, around 30 samples are needed for each spectrum [35]. Storing so
many values is extremely memory inefficient, especially when taking into account
all the other mappings that must be created later in the system.

Another issue with such storage arises during the optimization stage of the
uplifting process. Trying to modify so many values is infeasible for any optimizer.
We must therefore create a more compact representation, which recreates the
spectra as accurately as possible.

As already mentioned, utilizing the representations of one of the existing ap-
proaches to spectral uplifting (reviewed in section 2.1) is not an option, as all of
them are restricted to a specific spectral space and therefore unable to recreate all
the possible reflectance curves. We provide an example of this in fig. 2.4a, where
the resulting spectra of the uplifting process of multiple methods are compared
to the actual measured spectrum of the real-life material.

Therefore, discretization of spectra must be approached in a different way.

23

(a) Reconstruction with uplifting mod-
els as plotted by Peters et al. [34],
where Ours represents the moment-
based technique

(b) Reconstruction with truncated
Fourier series [35]

Figure 2.4: Comparison of the accuracy of multiple techniques when attempting
to reconstruct a real-life measured spectrum

The simple and smooth shape of the spectra indicate that using a lower-
dimensional linear function space, such as the Fourier series, could be the key
to their storage. Techniques based on this observation have been studied for the
storage of emission spectra [37], and appear promising also for reflectance spectra.
This method is studied in an article and subsequent presentation by Peters et al.
[35]. As the reflectance spectra are aperiodic, it is reasonable for the Fourier basis
to consist of cosine transforms only. Eventually, a truncated Fourier series is used
for the reconstruction, which is computed according to the following equation:

f =
m∑︂

i=0
cjcos(jφ) (2.2)

where cj are the Fourier coefficients eventually stored in the lattice points of the
RGB cube.

We show an example of a result obtained by this method in fig. 2.4b. Although
the reconstruction is not far off, the resulting spectra do not always have a physical
counterpart, as the reconstruction does not obey the [0, 1] range constrain. We
can observe this drawback even in fig. 2.4b.

In contrast to a linear function space, spectra can also be represented non-
linearly. These representations are, however, incompatible with linear prefiltering
of textures [34].

To eliminate the shortcomings but utilize the strengths of both linear and
non-linear methods, Peters et al. [34] propose a novel approach to spectral rep-
resentation. The representation is based on the theory of moments (i.e. it is
non-linear), but consists of Fourier coefficients, which implies compatibility with
linear filtering. Additionally, it aims for the satisfaction of the [0, 1] range con-
straint.

Following, we provide a brief overview of both the algorithm for obtaining co-
efficients and the reconstruction process. For more details, we refer the interested
reader to the original article [34].

Obtaining coefficients The first problem with obtaining the coefficients is
caused by the shape of the spectra. In contrast to the Fourier basis, they are

24

aperiodic. Their storage with Fourier coefficients therefore requires their conver-
sion to a periodic signal.

A simple solution would be to linearly map wavelengths to a 2π-periodic
signal. Although such an approach can be used (we discuss its performance
in section 4.1.1), it causes distortions and strong artifacts at the boundaries.
Moreover, Fourier coefficients computed for such signal are complex instead of
real, which requires almost twice the memory for storage.

Therefore, an improvement to the mapping, called mirroring, is proposed. It
first maps the negative values of the signal as in the following equation:

φ = π
λ− λmin

λmax − λmin

− π ∈ [−π, 0] (2.3)

The mapping for the positive part is then defined as the negative part mirrored,
i.e. g(φ) = g(−φ) for all φ ∈ [0, π], which results in smooth transitions at the
boundaries. The Fourier coefficients are then computed for only this mirrored
signal as follows:

c = 2ℜ
∫︂ 0

−π
g(φ)c(φ)dφ,

where c(φ) is the Fourier basis.
The reconstruction is also obtained only for the mirrored part of the signal.

Although this might seem wasteful, the signal created by this approach is even
and therefore requires only real Fourier coefficients for its representation, which
benefits the storage requirements.

Another proposed improvement to obtaining the coefficients is by focusing
accuracy on important regions of the curve in terms of color reconstruction (i.e.
around 550nm), also called warping. This is achieved by means of a differentiable,
bijective function that maps the wavelength range to the [−π, 0] range and is
used as a weighting function when computing coefficients. Warping of the signal
is useful especially when using only a small number of coefficients, as they are
unable to capture more complex curves, and it is highly recommended to always
warp the signal if using less than 5 moments.

In our implementation of the constrained spectral uplifting, we choose to
mirror, but not warp the signal. We explain this decision in section 4.1.1, where
we also provide results of experiments that justify our choice.

Note that using m complex Fourier coefficients for storing a spectrum im-
plies that m + 1 coefficients are actually saved. The +1 factor stands for the
zeroth moment c0, which is real in both the mirrored and the non-mirrored case.
Therefore, overall, mirroring requires storing m + 1 scalars, while non-mirroring
requires 2m + 1 scalars.

Reconstruction The default Fourier coefficients (without improvements such
as mirroring and warping) are stored for a 2π-periodic signal d(φ), where d(φ) ≥
0 is a density for all phases φ ∈ R. Therefore, they satisfy the definition of
trigonometric coefficients for the trigonometric moment problem [24]. Specifically,
the coefficients γ can be expressed as

γ =
∫︂ π

−π
d(φ)c(φ)dφ ∈ Cm+1, (2.4)

25

(a) Examples of reconstruction of
smooth spectra as provided by Peters
et al. [34]

(b) Reconstruction of spectra of the
Macbeth chart as plotted by us

Figure 2.5: Examples of reconstruction with the trigonometric moment method

where d(φ) is the finite measure that they represent, and c(φ) is the Fourier basis.
By building upon this observation, the reconstruction of spectra is based on

the theory of moments, specifically on Maximum Entropy Spectral Estimate
(MESE) [6]. The MESE is capable of reconstructing both smooth and spiky
spectra, and has been shown to produce impressive results when used for the
reconstruction of emission spectra.

However, the problem with this approach is that it is not bounded, i.e. not
suitable for reflectance spectra. Therefore, a novel, bounded MESE, has been
introduced. It is based on the research by Markoff [26] and, subsequently, Krĕı
[23], who developed a duality between bounded and unbounded moment problems
formulated in terms of Herglotz transform. This duality is used for transforming
trigonometric moments to exponential moments so that the bounded problem
represented by the trigonometric moments has a solution if and only if the dual
unbounded problem represented by the exponential moments has a solution.

The summary of the reconstruction process is as follows:

1. compute exponential moments from the trigonometric moments

2. evaluate unbounded MESE for the exponential moments

3. compute bounded MESE by applying duality to the unbounded MESE

We present examples of results obtained by the storage and subsequent recon-
struction of reflectance spectra with the trigonometric moment method in fig. 2.5,
where we also compare the performance of different number of moments and dif-
ferent signal mapping techniques. For smooth spectra, even a small number of
moments (m = 3) provide a quite accurate reconstruction (see fig. 2.5a). How-
ever, more complex spectra with sharper edges and spikes tend to lose detail and
their reconstruction is a lot smoother. As seen in fig. 2.5b, especially for the
“black” and “neutral35” patches, even 7 moments are not capable of describing
the original curve accurately.

26

Emission spectra perform even worse. To give an example, even a mirrored ap-
proach with m = 31 is unable to reconstruct the most spiky details [34]. However,
as the focus of this thesis is purely on reflectance spectra, we do not encounter a
spectrum that would require such high number of moments.

The optimal number of moments for storing a spectral reflectance curve de-
pends on many factors, such as the shape of the curve, memory limitations and
the accuracy for which we aim, either in terms of curve similarity or color er-
ror under various illuminants. We discuss these factors more thoroughly as we
progress with this thesis, and explain our method for determining the sufficient
moment count in section 4.1.2.

Due to memory efficiency, smoother gradients, higher precision and multiple
other reasons, thoroughly explained as we progress with this thesis, we decide
to use variable number of moments per an input reflectance spectrum in our
implementation. Therefore, although Peters et al. [34] state that the interpolation
of coefficients provides satisfactory results, our uplifting process cannot rely on
this method for uplifting non-mapped RGB values.

27

3. Implementation
We approach the problem of spectral uplifting similarly to Jakob and Hanika
[19], where an uplifting model is created prior to rendering. Our implementation
therefore consists of two parts — model creation and its subsequent utilization in
a rendering software.

For the first part, we extend an already existing uplifting tool, Borgtool, which
is currently used for creating sigmoid-based RGB cubes in a way as described
in algorithm 1. We add the possibility for creating trigonometric moment-based
cubes (from now on referred to as trigonometric moment cube), i.e. for the spectra
to be stored with trigonometric moments rather than sigmoid coefficients. We
also add an option for constraining such a cube with a user-specified constraint
set (e.g. a color atlas).

We then describe the theory behind the integration of this model into a ren-
dering software. In practice, we add its support into ART, which, up until now
(version 2.0.3), has used only one built-in sigmoid-based cube for uplifting pur-
poses.

3.1 Uplifting model
As we base most of our implementation on the already existing sigmoid-based
approach, we start this section with the detailed description of its model, i.e. the
sigmoid-based cube. We then describe our trigonometric moment cube, which
can be viewed as its extension.

The sigmoid-based cube structure contains multiple entries in form of evenly
spaced lattice points. Following, we name the main parameters of a single cube
entry:

• target RGB — the coordinates of the point in the RGB cube

• coefficients — 3 sigmoid coefficients used to reconstruct a spectrum so it
matches the target RGB

• lattice RGB — the actual RGB that the reconstructed spectrum evaluates
to. Ideally, this should match the target RGB

Along with its entries, the resulting cube structure also stores a few other prop-
erties, both static, such as the illuminant according to which the RGB cube is
uplifted, and user-adjustable, such as the cube dimension or the fitting threshold
(i.e. the maximum allowed difference between the target and the lattice RGB).

Our trigonometric moment cube includes most of these parameters, and
mainly extends the ones that are not suitable for the moment representation.
The main difference between the two cubes lies in the distinction of the lattice
points — while the sigmoid cube regards all of its points as equal, the trigono-
metric moment cube distinguishes (by means of a seeded boolean parameter per
entry) between seeded points, i.e. the lattice points that store the user-inputted
RGB:spectra mappings; and regular points.

Our requirements for the shape of the spectra at seeded points differ from the
ones at regular points. While we prefer the regular points to have their spectra as

28

smooth as possible in order to avoid unexpected artifacts under other illuminants,
the coefficients of the seeded points must reconstruct spectra almost identical to
the input spectra, which might include sharp edges and spikes.

Therefore, it is sufficient for the regular points to be represented with a smaller
number of coefficients, while seeded points might require a lot more. Although a
smooth spectrum can be represented with a high number of coefficients, such a
representation is memory inefficient, its reconstruction is more time consuming,
and, most importantly, it does not work well with the optimizer. Based on our
experiments in section 4.1.2, we decide to store the spectra of regular points with
3 coefficients and adjust the number of coefficients of the seeded points depending
on the nature of its desired spectral shape.

Besides supporting variable number of coefficients (ranging from 3 to 21),
the trigonometric moment cube also supports the possibility of having multiple
coefficient representations per lattice point. The sole purpose of this extension
is to lower the cube size requirements upon constraining, which we discuss later
in section 3.1.2.

In addition to the cube structure, the construction of the trigonometric mo-
ment cube is also similar to the one of the sigmoid cube, which follows algo-
rithm 1. Its main distinctions are in the constraining process (which the sigmoid
cube lacks) and in the first round of optimizing, or, as we refer to from now on,
fitting.

Following, we name the individual steps of the process, which we then describe
in greater detail.

1. Initialization

2. Cube seeding (optional)

3. Fitting of starting points

4. Cube fitting

5. Cube improvement

6. Cube storage

3.1.1 Initialization
This part of the run is responsible for the following:

• parsing of the parameters

• initialization of the cube and its entries with default values

• loading of the required constraint sets

The initialization of the cube is pretty straightforward, as all of its proper-
ties are either user-defined or set to default (note that the default illuminant is
always D65). The number of cube entries is directly proportional to the cube’s
dimension parameter, which specifies the number of entries per one axis. This

29

Entry ID : orange
−−
D e s c r i p t i o n : ” orange ” patch o f the Macbeth c o l o u r checker
Type : r e f l e c t a n c e spectrum
Fluore scence data : no
Measurement dev i c e :
Measured by :
Measurement date :

Sampling in fo rmat ion
−−−−−−−−−−−−−−−−−−−−
Type : r e g u l a r
Sta r t : 380 .0 nm
Increment : 5 . 0 nm
Maximum sample va lue : 100 .0

ASCII sample data
−−−−−−−−−−−−−−−−−
{6 .143748 , 5 .192119 , 4 .867970 , 5 .092529 , 4 .717562 , 4 .663087 ,
4 .455331 , 4 .562958 , 4 .517197 , 4 .536289 ,
4 .454180 , 4 .543101 , 4 .491708 , . . . }

Figure 3.1: A sample entry from the Macbeth Color Checker atlas

renders the total number of entries to dimension3. As the lattice points are posi-
tioned evenly, their target RGB values are equivalent to their coordinates in the
RGB cube.

The constraint sets are inputted in a form of a simple .txt file, which contains a
list of entries in a textual form as shown in fig. 3.1. In order to avoid high memory
requirements arising with large input datasets, we do not store the spectral data
directly, but take advantage of the trigonometric moments.

We store the spectral curves of the individual constraints with Fourier coeffi-
cients as described in section 2.2.1. We mirror but do not warp the signal prior
to coefficient computation (see section 4.1.1).

The number of coefficients per constraint variable, ranging from 4 to 21. We
explain our method for determining the sufficiency of coefficient representation,
and therefore the coefficient count for each constraint, in section 4.1.2.

Note that we require the constraints to have identical sampling information.
This representation is used internally throughout both the fitting and the uplifting
process for e.g. spectral reconstruction for the purposes of color conversions.

3.1.2 Cube seeding
In order to uplift the whole cube as described in algorithm 1, we must first fit
one or more starting points whose coefficients can then be used as an initial guess
(called prior) for the fitting of other lattice points. For this purpose, we utilize the
user-specified constraint set. The general idea behind this process is to copy the
coefficients of constraints to specific lattice points, and then use these coefficients
as prior for fitting said lattice points. We refer to this process as seeding of the
cube, and term the constraints assigned to these lattice points their seeds.

The ideal scenario would be if the RGB values of the constraints were to
perfectly match the coordinates of the lattice points. However, as the constraints
can evaluate to virtually any triplet within the [0, 1] range, it is most likely that
they would correspond to points inside the cube’s voxels.

An approach that first comes to mind would be to create a complete injective

30

(a) Only 1 voxel corner seeded (b) All 8 voxel corners seeded

Figure 3.2: Uplifting results according to the seeding method

mapping (one constraint seeds only one voxel corner) between the constraints and
their closest lattice points. However, as we employ all 8 voxel corners during the
uplifting of non-mapped RGB values (because we disregard the nearest-neighbor
approach due to its inaccurate results, see fig. 2.2), this method is insufficient —
seeding only one of the 8 points might cause the spectral curves of the other 7 to
be considerable distinct from the original constraint. This is mainly due to our
choice of coefficient count for non-mapped entries, which is a lot lower than for
the seeded entries (see thorough explanation in section 4.1.2), i.e. the curves of
the non-seeded entries cannot be as precise.

We can observe this behavior in fig. 3.2a, where we provide the curves recon-
structed at the 8 corners of a voxel and compare their trilinear interpolation to the
original constraint. The original constraint significantly differs from the uplift,
which may cause color artifacts under different illuminating conditions. However,
as seen in fig. 3.2b, propagating the information about the original reflectance of
the constraint to all voxel corners improves the result remarkably. We therefore
opt for seeding all 8 voxel corners per constraint.

During the seeding process, it may occur that two constraints would fall into
neighboring voxels, i.e. that they would share some of the voxel corners. In
order to utilize both of these constraints as seeds, we support the possibility
of one lattice point having multiple coefficient representations. In addition to
coefficients and their count, we also store an entry ID per each representation,
so as to later distinguish the reconstructed curves during rendering and decide
which to employ (explained in more detail in section 3.2).

If two constraints fall into the same voxel, however, there is no way of deter-
mining the interpolation of which the user desires upon uplifting the RGB values
inside said voxel. We therefore discard one of the constraints and throw an er-
ror informing the user of the collision and suggesting the increase of the cube
dimension parameter.

We show an example of a cube seeded and subsequently fitted with the Munsell
Book of Color used as a constraints set in fig. 3.3. Lattice points marked as
black represent the seeded points. Note that a lot of these points store multiple
coefficient representations.

31

Figure 3.3: A 32-dimensional cube fitted with the Munsell Book of Color. Note
that, due to the low dimension of the cube, multiple collisions occurred, i.e. not
all constraints have been utilized.

Figure 3.4: Comparison of the position of starting points when fitting from the
middle with sigmoids (left) and when seeding with the Munsell Book of Color
(right)

Constraining the uplifting process is optional. If no constraint set is inputted,
all lattice points are regarded as regular points and the cube is fitted from the
middle in the same manner as the sigmoid cube. The resulting uplifting structure
provides no advantages over the sigmoid cube, other than having slightly different
spectral shapes.

Supporting this option requires us to specify 3 prior coefficients for the cen-
ter point (i.e. the point corresponding to an RGB of (0.5, 0.5, 0.5)). By storing
spectral curves that roughly evaluate to such RGB with the trigonometric mo-
ments, we observe that the values of the coefficients are approximately {0.5, 0, 0}.
Therefore, we use them as prior.

We provide a comparison between the starting points’ placement when seeding
from the middle (either with our or the sigmoid method) and when seeding with
a constraint set in form of the Munsell Book of Color in fig. 3.4.

3.1.3 Fitting of starting points
By seeding the cube, we have appointed coefficients to some of the lattice points.
These coefficients reconstruct a spectrum that evaluates to an RGB value which
we denote as the lattice RGB. The difference between the lattice and the target
RGB is therefore equal to the distance between the lattice point and its assigned

32

constraint in the cube. It is apparent that the distance may be higher than the
defined fitting threshold. In such cases, we must “improve” upon the coefficients
so that the resulting color difference is as low as possible.

Our problem of improving the coefficients satisfies the definition of the Non-
linear Least Squares problem [14]. Non-linear Least Squares is an unconstrained
minimization problem in the following form:

minimize
x

f(x) =
∑︂

i

fi(x)2, (3.1)

where x = {x0, x1, x2, ...} is a parameter block that we are trying to improve
(i.e. our coefficients) and fi are so-called cost functions. The definition of cost
functions is dependent solely on the current problem. In our case, we primarily
require to minimize the difference between the lattice and the target RGB. Our
secondary requirement is for the shapes of the curves of the original constraint
and the of the seeded point to be similar. This gives rise to multiple choices
for cost functions, such as using the difference between curves along with the
Delta E error, using one or multiple cost functions for the RGB error etc. . . After
implementing some of them and testing their performance, the results of which
we provide in section 4.1.3, we decided on using four cost functions — three for
specifying the absolute difference in one of the three axes of the cube, and one for
specifying the average distance between curves per wavelength sample. We also
include a heuristic which sets the value of the fourth cost function to 0 if the curve
distance falls below a certain threshold, and iteratively increases the threshold if
the optimizer fails. The reasoning behind this is also explained in section 4.1.3.

To solve an optimization problem defined in the way as described above, we
use, similarly to Jakob and Hanika [19] and Jung et al. [20], CERES solver.

CERES solver

As already mentioned in section 2.1, CERES solver is an open-source library
for solving large optimization problems such as the Non-linear Least Squares
problem. It consists of two parts — a modeling API, which provides tools for
the construction of optimization problems, allowing us to set parameters such
as maximum number of iterations of the optimizer or maximum number of con-
secutive nonmononotic steps; and a solver API that controls the minimization
algorithm.

To solve a Non-linear Least Squares problem, the solver requires us to specify
only a so-called residual block, which is a structure defined by the prior coefficients
and the cost functions. During the execution, the solver attempts to minimize
the values of the cost functions (or residuals) in the residual block. The execu-
tion is aborted and the current best parameter block returned when the solver
achieves either the specified number of iterations or nonmonotonic steps. For
more information on the specifics of CERES solver, we refer the interested reader
to its documentation by Agarwal et al. [2].

There is one main downside to using CERES solver. As it was designed to
handle very large, sparse problems where every residual term depends on only a
few of the input parameters, it is not ideal for solving problems with only one large
parameter block, i.e. it might get stuck in local minima and therefore produce

33

Algorithm 2 Fitting of one coefficient representation of a point from seeded
points

1: threshold← 0.001
2: while threshold < 1 do
3: coefsToF it ← either the first 4 coefficients or all of them depending on

the coefficient count of point
4: i← 0
5: while optimizer is unsuccessful and i < maxIterations do
6: heuristically change the first coefficient of coefsToF it
7: run the optimizer with parameters coefsToF it and threshold set to

threshold
8: i + +
9: if optimizer was successful then

10: point.coefs← coefsToF it
11: break
12: increase threshold

unsatisfactory results. Unfortunately, if a seeded point is represented with a high
number of coefficients, our optimization problem falls into this category.

We solve such problematic cases by applying a simple heuristic, which con-
sists of slightly altering the first coefficient (as it has the highest influence on
the shape of the curve) and running the optimizer again. However, although
such an optimization greatly improves the overall performance of fitting, it re-
mains insufficient for too high a number of coefficients, i.e. the threshold for the
fourth residual must be increased to values extremely high and, by then, it loses
resemblance to the original shape.

Therefore, we implement another heuristic improvement — if the coefficient
count is higher than 14, we let the optimizer optimize only the first 4 coefficients
while leaving the others constant. We use the threshold of c > 14 as that is
roughly the boundary where the fitted curves begin to show undesired artifacts,
and we optimize the first 4 coefficients because their number is both low enough
for the optimizer to handle without errors, and high enough so we give the fitting
process enough degrees of freedom.

We do not provide the results of the experiments that lead to our decision of
the heuristic due to its trivial nature.

We summarize the fitting process of the starting points, including the utiliza-
tion of threshold for our fourth cost function, in algorithm 2. If the optimizer is
unable to fit a seeded point, we throw a warning and convert it into a regular
point.

3.1.4 Cube fitting
As the seeded points are represented with a higher number of coefficients and
may even contain multiple coefficient representations, they cannot be directly
used as prior guesses for the regular points. First, they must be “converted” into
a lower-dimensional representation.

We refer to the conversion process as coefficient recalculation. It consists of
reconstructing the reflectance spectrum of the seeded point and subsequently

34

Figure 3.5: An illustrative demonstration of a problem posed by the coefficient
recalculation of a seeded point containing multiple metameric spectra (stored in
the form of moment representations)

saving it with 3 coefficients. Although this process causes significant loss of
spectral information, it preserves the rough outline of the curve. This works to
our benefit — it reduces the likelihood of significant color artifacts between the
seeded points and regular points while keeping the spectra smooth.

A problem arises if the seeded point that is being recalculated for the purposes
of fitting a regular point contains multiple moment representations of distinctly
shaped spectral curves (note that, for the purposes of this thesis, we call a set
of similarly shaped spectral curves a metameric family). We illustrate this situa-
tion in fig. 3.5. The recalculated seeded point (denoted x) contains the moment
representation of both the constraint A and B. As these have vastly distinct
shapes, it is natural that they evaluate to completely different colors under error-
prone illuminants (specifically, the colors shown in the image are under FL11).
Choosing to recalculate only the representation of A in order to obtain the prior
coefficients of the regular point (denoted y) would result in color artifacts between
y and the voxel seeded with B. Symmetrically, the same applies to choosing to

35

(a) Recalculation of the
coefficient representation of

A only

(b) Recalculation of the
interpolation between

A and B

(c) Recalculation of the
coefficient representation of

B only

Figure 3.6: Color gradients resulting from our experiment in fig. 3.5. For each
figure, the upper and the lower patch stand for the colors of coefficient repre-
sentations of A and B respectively, while the middle patch stands for the color
achieved from the current recalculation technique.

recalculate only the coefficient representation of B. We can also observe this
in fig. 3.6, where we present the comparison of the color gradients created by
respectively using the individual recalculation techniques. Note that the spectra
(and, subsequently, colors) that the A and B entries evaluate to in both fig. 3.5
and fig. 3.6 are not the original spectra of the constraints, but the spectra that
the coefficient representations saved at the seeded point x evaluate to. Also note
that the spectra and colors corresponding to the point y are the recalculation
results, not the final fitting results.

As it is our intention to keep the color transitions within all voxel pairs smooth,
we propose the interpolation of spectra reconstructed from the moment represen-
tations.

Interpolation of metamers

In the following, we show that the linear combination of two spectra that are
metameric under a given light source results in another metameric spectrum. To
our best knowledge, this insight, while not particularly mathematically complex,
has not been explicitly stated in graphics literature before.

Let us assume the spectral power distributions of two metamers saved at a
lattice point, P1(λ) and P2(λ), that satisfy the conditions∫︂

P1(λ)r(λ)dλ =
∫︂

P2(λ)r(λ)dλ∫︂
P1(λ)g(λ)dλ =

∫︂
P2(λ)g(λ)dλ∫︂

P1(λ)b(λ)dλ =
∫︂

P2(λ)b(λ)dλ

(3.2)

where r(λ), g(λ) and b(λ) are the RGB color matching functions.
Let us express the R component of the RGB value resulting from the linear

36

combination of P1(λ) and P2(λ) as follows:

R =
∫︂

a · P1(λ)r(λ)dλ + b · P2(λ)r(λ)dλ,

where a + b = 1
(3.3)

By rewriting this expression and utilizing the equality from eq. (3.2), we get

R = a ·
∫︂

P1(λ)r(λ)dλ + (1− a) ·
∫︂

P1(λ)r(λ)dλ,

So
R =

∫︂
P1(λ)r(λ)dλ

The same proof can be equivalently applied to the G and B components of the
resulting RGB value. Therefore, we conclude that the resulting spectral distri-
bution is also a metamer.

We use this observation in order to achieve smoother color transitions between
distinct metameric families by interpolating between metameric spectra stored
(in the form of moment representations) at lattice points that contain multiple
coefficient representations.

Additionally, we use it to obtain the lattice RGB of such points — i.e. we store
the RGB of the interpolated spectrum. Although this information is meaningless
for the purposes of further fitting, it gives us an approximation of how well the
individual points are fitted.

Other than the coefficient recalculation, our fitting process is carried out in a
manner similar to that of the sigmoid fitting (see algorithm 1), where the lattice
points are fitted in multiple fitting rounds, each round attempting to fit the neigh-
bors of the already fitted points. We provide a more detailed description of the
principle behind the fitting algorithm used in our implementation in algorithm 3.

3.1.5 Cube improvement
In extreme cases, such as when using a low fitting threshold or a sparsely-sampled
constraint set, the fitting of some points may be unsuccessful. We assign most of
these failures to the shortcomings of the ART color conversion library, since its
functions are employed in the Borgtool.

Specifically, the conversion of an equal energy reflectance spectrum to RGB
under the D65 illuminant does not produce the expected RGB = (255, 255, 255),
but rather an RGB of (254.95, 255.005, 255.0003) for a 1nm sample increment,
and, even worse (254.88, 255.07, 254.93) for a 10nm increment. To force ART to
reproduce an RGB of (255, 255, 255), a spectrum with slightly lower values in the
area around 550nm is required. Therefore, although a coefficient set c = 1, 0, 0
represents an equal energy spectrum, it does not suffice for the optimizer. Addi-
tionally, 3 trigonometric coefficients are not capable of representing the slightly
modified spectrum which ART regards as equal energy spectrum without slight
error. This becomes even more visible if the amount of samples used for the
internal representation of spectra is low, as it gives less freedom to the optimizer.
Furthermore, this problem may also arise for target RGB values extremely close to
(255, 255, 255) (and not only the lattice point with RGB=(255, 255, 255)), which
is mainly the case in higher-resolution cubes.

37

Algorithm 3 Fitting of the cube from starting points
1: fittingRound← 0
2: unfittedPoints← a list of all points in RGBCube \ startingPoints
3: for all point ∈ unfittedPoints do
4: point.fittingDistance = MAX DOUBLE

5: while unfittedPoints is not empty do
6: currRoundPts← points from unfittedPoints that have at least one fitted

neighbor
7: for all point ∈ currRoundPts do
8: for all fittedNeigbor ∈ fitted neighbors of point do
9: if fittedNeighbor ∈ seededPoint then

10: point.coefs← recalculateCoefs(fittedNeighbor.coefs)
11: else
12: point.coefs← fittedNeighbor.coefs

13: [sDist, sCoefs]← CERES.Solve(point.coefs, costFunctions)
14: if sDist ≤ point.fittingDistance then
15: point.fittingDistance← sDist
16: point.coefs← sCoefs

17: if cDist ≤ fittingThreshold then
18: point.treated = true
19: break
20: if point.fittingDistance > fittingThreshold or point has tried the

coefficients of all of its neighbors then
21: remove point from unfittedPoints

22: fittingRound← fittingRound + 1

To minimize the created errors, we add a heuristic-based improvement of the
coefficients, which sets their values to ones we assume are closest to the optimum
and then proceeds similarly to the coefficient improvement of seeded entries. For
a pre-defined amount of times, it slightly changes up the coefficients and runs the
optimizer again, terminating if successful. However, neither this, nor any other
heuristic-based improvement approach we attempted to implement, were capable
of completely eliminating failures. Their only asset was a slightly lowered fitting
threshold in some of the cases.

However, we note that these shortcomings are extremely rare and do not
visibly lower the accuracy of the uplifting model.

3.1.6 Cube storage
Once the cube is fitted, its contents are written to a binary file. As we want the
resulting file to be as small as possible, we save only the information crucial for
the purposes of rendering. Following, we provide a list of contents of a cube file:

• version

• moment flag — a flag signifying that the cube is based on trigonometric
moments. We extend the sigmoid cube structure in a similar manner with
a sigmoid flag for an easier cube recognition in a rendering software.

38

• dimension — the number of lattice points per axis

• illuminant under which the cube was fitted

• fitting threshold

• spectral range — the sampling information for internal representation of
spectra

• for every point, we store:

– coefficient representations, along with their entry IDs and their sizes
– lattice RGB
– fitting distance — the distance between lattice and target RGB

Note that storing the target RGB of lattice points is unnecessary, as it can
computed from the cube’s dimension parameter. Although we could similarly
compute the lattice RGB from the coefficient representations, we store it in or-
der for the moment cube structure to remain compatible with the sigmoid cube
structure.

In addition to storing the cube, we extend Borgtool with the functionality to
load such a cube and utilize it for either the purposes of rainbow texture uplifting
(specifically, uplifting of the texture in fig. 2.2) or for its 3D visualization.

3.2 Renderer integration
In order to demonstrate the proper utilization and, subsequently, the performance
of the trigonometric moment cube, we integrate it into an existing renderer —
specifically, ART. As ART already has the support for uplifting with the sigmoid
cube, we solely extend both its cube structure and uplifting capabilities in a
similar manner as in the Borgtool. For the scene description files, we add an
option for specifying the cube file to be used for uplifting — due to our extension
in terms of the flag parameter, we are capable of recognizing the type of the cube
without it being manually specified by the user.

The uplifting process itself must be, as already concluded in this thesis, based
on the trilinear interpolation of spectra at the corners of the voxel that the desired
RGB falls into. Therefore, we proceed as follows:

Firstly, from the notion of the desired RGB, we obtain the 8 voxel corners
along with their distances to the RGB triplet. These will later be used as weights
for interpolation. We then examine the sets of entry IDs at the voxel corners and
find their intersection S.

If S is not empty, it must contain precisely one ID, and that is the ID of the
constraint with which the voxel was originally seeded. To therefore reconstruct
this constraint, we use only the coefficient representations corresponding to the
common ID for spectral reconstruction of each voxel corner. We then carry out a
weighted trilinear interpolation of the reconstructed curves, which results in the
final, uplifted spectrum.

If, on the other hand, S is empty, we perform the interpolation of the spectra
at each of the 8 voxel corners. The resulting spectra are then passed as an input

39

to the voxel’s trilinear interpolation. The reason behind this is the same as for the
coefficient recalculation (see section 3.1.5), and that is smooth color transitions
between various metameric families under different illuminants.

40

4. Results
In this chapter, we analyze the accuracy of our method for constrained spectral
uplifting. We start by focusing on the effects of various implementation details on
the results and justifying our decisions regarding their selection. Afterward, we
present the actual results achieved in the form of rendered images, and analyze
them in terms of their colorimetric properties.

We conclude this chapter by shortly overviewing the performance of our
method by providing measurements of both memory utilization and execution
time, and proposing improvements for future work.

All assets used in our experiments, such as spectral power distributions of
colors atlases and illuminants, are provided by ART [31].

4.1 Implementation choices
The structure of the trigonometric moment cube resulting from the implemented
Borgtool’s extension greatly depends on the choice of techniques and parameter
values used during the implementation. To be specific, the core elements affecting
the accuracy include:

• the signal mapping technique used for spectral representation with trigono-
metric moments

• the number of trigonometric moments used to store spectra

• the utilization of the optimizer, specifically the definition of its residual
blocks

This sections overviews our decision-making process regarding these issues,
and presents results achieved with other methods to support our claim.

4.1.1 Signal mapping techniques
The first thing we analyze and decide on is the technique used for mapping
wavelengths to a signal for the storage and subsequent reconstruction of moments.
As already mentioned in section 2.2.1, we have the choice of both mirroring and
warping the signal, which overall creates four options — using only mirroring,
using only warping, using both or using neither, i.e. utilizing the original signal.

Note that our requirements for the resulting spectral shapes differ depending
on the type of the lattice point. For the seeded points, we aim for the highest pos-
sible precision in terms of curve reconstruction, so as to lose as little information
about the original constraint as possible. Regular points, however, do not have
a prior constraint that their spectra must approximate. Therefore, in order to
prevent color artifacts upon interpolation and to ensure smooth color transitions
between metameric families, we mainly aim for their smoothness.

In addition to the reconstructed shape, we must also take the behavior of
the optimizer (i.e. how well it improves its prior coefficients) into account when
choosing the signal mapping technique.

41

Coefficients

Methods
M&W M&nW nM&W nM&nW

Avg Max Avg Max Avg Max Avg Max
1 23.88 130.27 23.95 130.62 23.86 130.38 23.95 130.62
2 13.09 97.76 16.92 107.23 — — — —
3 1.39 21.71 10.18 74.62 4.08 51.23 8.48 67.12
4 0.74 7.43 6.3 60.36 — — — —
5 0.49 5.46 2.58 26.36 1.31 20.87 2.56 20.14
6 0.35 3.95 1.1 6.83 — — — —
7 0.31 3.19 0.73 6.12 0.71 8.18 0.89 6.36
8 0.28 2.85 0.71 5.67 — — — —
9 0.27 2.42 0.61 3.94 0.61 5.16 0.46 3.62
10 0.21 2.41 0.43 3.78 — — — —
11 0.21 2.41 0.26 2.62 0.47 4.11 0.37 3.2
12 0.17 2.4 0.2 2.26 — — — —
13 0.17 2.39 0.2 2.32 0.32 3.07 0.27 2.73
14 0.16 2.36 0.2 2.29 — — — —
15 0.16 2.32 0.2 1.93 0.29 2.28 0.24 2.26
16 0.15 2.26 0.18 1.2 — — — —
17 0.15 2.23 0.17 1.17 0.29 1.89 0.23 1.52
18 0.15 2.21 0.15 1.12 — — — —
19 0.15 2.19 0.14 1.12 0.27 1.8 0.19 1.1
20 0.15 2.16 0.14 1.08 — — — —

Table 4.1: The average and maximum Delta E error originating from round-trips
under various illuminants. M represents mirroring, W warping, and the symbol
n stands for their negation.

We start by focusing on the accuracy of the reconstruction of seeded points.
We run an experiment across multiple color atlases (specifically the Pantone Color
System, Munsell Book of Color and the Macbeth Color Checker SG) and multiple
CIE illuminants in which we compare the average and maximum round-trip errors
of spectra under illuminants for all four techniques. Due to its continuous nature,
we use the Delta E as the error measure.

In appendix B.1, we provide all results obtained from these experiments. Note
that using m moments requires storing m + 1 values in case mirroring is used
(i.e. the moments are real) and 2m + 1 values otherwise (i.e. the moments are
complex). As, from the implementation point of view, we are interested in the
number of coefficients needed for storage (i.e. the number of double values
per lattice point) rather than the number of moments, we surmise the contents
of appendix B.1 in table 4.1, where we present the obtained errors according to
the number of coefficients.

By observing table 4.1, we conclude that it is beneficial to mirror the signal.
Although the non-mirroring technique performs slightly better for c ≤ 9, the
input atlases often contain more complex spectra, where c ≤ 9 is insufficient.
Additionally, the optimizer behaves similarly for both techniques, and therefore

42

(a) “orange” patch (b) “red” patch (c) “black” patch

Figure 4.1: Failure of warping when fitting seeded points, shown on patches of
the Macbeth Color Chart

does not need to be accounted for.
Table 4.1 also suggests that warping should provide better results. We put

this theory to practice and test the performance of the optimizer on the chosen
technique. Specifically, our test includes storing atlas entries with a “sufficient”
number of coefficients (sufficiency of a representation is determined by the round-
trip Delta E error under FL11 illuminant as in section 4.1.2) and using these
coefficients as prior for the fitting of closest lattice points. The original and fitted
curves are then compared.

Unfortunately, the results are unsatisfactory. Occasionally, the optimizer fails
to recreate the original curve and rather ends up outputting a spiky spectrum
susceptible to metameric artifacts. We show some of these results in fig. 4.1.

Therefore, we resort to not warping the signal. Although the optimizer must
process more coefficients than if the signal was warped (e.g. if seeding with
the Munsell Book of Color with the sufficiency conditions as in section 4.1.2, 16
coefficients are on average required for storing spectra, as opposed to 12 if the
signal is warped), the artifacts arising when warping the signal are completely
eliminated (see fig. 4.1). Additionally, the average difference between the shape
of the original and fitted spectra is substantially lower.

For the regular points, we present a similar comparison of these two methods
in fig. 4.2, where we seed cubes of different sizes with distinct atlases and analyze
the spectra at specific points. Not warping the signal is superior to warping even
in this case, as it creates smoother spectra with less sharp edges.

As we eventually decide on using only 3 coefficients for regular points (see sec-
tion 4.1.2), and for that purpose, even warping works reasonably well, we do not
necessarily need to account for regular points when choosing whether to warp the
signal. However, regardless, all the presented evidence points to the superiority
of non-warping.

To justify the failures of warping, we analyze its behavior during round-trips
in comparison to that of not warping. In fig. 4.3, we present a few such examples
on different curves with different number of coefficients. We can clearly observe
the behavior for which warping was designated — while the slight waves in the
middle of the curve (at around 550nm) are reconstructed almost perfectly, the
edges of the curve (i.e. the part of the curve up to 450nm and from 650nm) are
flat and attain constant values.

43

(a) c = 3, cd = 64,
RGB = (222.6, 230.7, 230.7),

initial atlas = Macbeth
Color Chart

(b) c = 5, cd = 32,
RGB = (82.26, 172.74, 255),
initial atlas = Page 14 from

Munsell Book of Color

(c) c = 7, cd = 16,
RGB = (102, 17, 153),

fitted from middle

Figure 4.2: Comparison of warping and non-warping when used for fitting regular
points. Note that the figures are illustrative, as they were created with an older
version of the cube and therefore may not exactly correspond to the current
results.

Therefore, if the signal is warped, the optimizer has very little influence on
the edges of the curve. For that reason, it opts for optimizing only its middle,
which might result in amplifying the already created sinusoidal-like shapes.

By not warping the signal, on the other hand, the optimizer focuses on the
spectra as a whole and is therefore less prone to spiky artifacts.

Therefore, we conclude that mirroring, but not warping the signal is the op-
timal approach for our purposes.

4.1.2 Number of moments
Another important parameter to determine is the number of moments (or coeffi-
cients) with which to store spectra at both seeded points and regular points.

We start by analyzing the seeded points. Specifically, we focus on the number
of coefficients with which to store constraints in the second step of our implemen-
tation (see section 3.1.2), as those are the coefficients that are then used as prior
for seeded points. Naturally, we wish for the reconstruction to be as precise as
possible, however, we want to prevent unnecessarily high coefficient counts both
to avoid high memory utilization and to simplify the run of the optimizer.

By observing fig. 4.4, we see that the Delta E error obtained by round-trips
under the CIE illuminants stabilizes at m = 20, i.e. c = 21. As the curve precision
does not worsen by adding more coefficients to the representation, storing all
constraints with 21 coefficients might seem to be the optimal solution. Such
approach is, however, wasteful for smooth, simple spectra.

Therefore, we decide to store each spectrum with only the necessary amount
of coefficients. We obtain this number for each constraint iteratively — starting
from c = 4, we check whether the coefficient count is sufficient, and, if not, we
increase it and move on to the next iteration, repeating this process up to m = 21.

We determine the sufficiency of a coefficient representation by picking one of
the most error-prone illuminants and determining the round-trip error under said
illuminant. If the error falls below a certain, pre-defined threshold, we declare
the representation sufficient.

44

(a) “neutral 5” patch, c = 9 (b) “green” patch, c = 3

(c) “blue flower” patch, c = 16 (d) “foliage” patch, c = 12

Figure 4.3: Comparison between the warped and non-warped reconstructed signal
shown on multiple patches of the Macbeth Color Chart. In all cases, the signal
is mirrored.

Figure 4.4: The average and maximum Delta E error achieved by round-trips,
surmised from table B.1

To determine which illuminant to use, we performed an experiment in which
we computed the average number of coefficients required to achieve a specific

45

Illuminant Average
error Illuminant Average

error Illuminant Average
error

A 14.8 F 12.91 F7 12.55
B 5.19 F2 13.01 F8 12.01
C 16.11 F3 12.93 F9 12.09

D50 15.56 F4 12.98 F10 16.24
D65 15.64 F5 12.95 F11 16.46
D75 15.76 F6 13.08 F12 16.30

Table 4.2: The average number of coefficients needed to achieve a round-trip error
of ∆E∗

ab = 0.1 for different CIE illuminants

error for a set of spectra. We then compared these values for all illuminants from
the list of CIE illuminants (excluding the E and D73 illuminants, as they are not
a part of the ART database). By the assumption that these results give us a
rough approximation of the average error, we concluded that the illuminant with
the highest coefficient count is the most error-prone.

We present the results of our experiment in table 4.2. We use an error of
∆E∗

ab = 0.1 due to the coefficient count variability under it, but any other would
give similar results in terms of the order of the illuminants’ coefficient counts.

Since the FL11 illuminant requires the highest number of coefficients, we use
it for our purposes, and move on to examining the optimal threshold.

Surprisingly, utilizing the Delta E error in our iterative process of acquir-
ing coefficients did not provide as satisfactory results as expected — the entries
represented with high number of coefficients (c ≥ 20) were often unnecessarily
accurate, while the entries represented with low number of coefficients (c ≤ 10)
often lacked precision. Therefore, we decided to compute the error as an absolute
difference over all three RGB components, which outperformed both the Delta E
error and even the Euclidean error in the RGB space (which was prone to similar,
but less noticeable, behavior than the Delta E error). We set the threshold to
0.1 for an RGB range of (0, 255). For most of the constraints, such precision is
hardly necessary, and could be decreased if we were to focus on memory utiliza-
tion. However, as the goal of this thesis is to properly assess the accuracy of the
uplifting process, we do not concern ourselves with the slight memory overhead.

Although we attribute the failure of Delta E to its non-linearity, we have not
yet obtained evidence as to support this claim.

Our approach for determining the sufficiency of coefficients is definitely not
flawless. Firstly, neither the threshold, nor the computation of the error have been
properly examined. Although our choice of the threshold is purposefully low so
as to guarantee proper reconstruction, this might be resulting in an unnecessary
memory overhead. Secondly, since we examine only 18 CIE illuminants, there is
a high chance that other, more error-prone, exist.

Even the assumption that the average coefficient count determines the worst-
performing illuminant falls short. As we have come across multiple atlas entries
that attain the highest color error under an illuminant other than FL11, checking
whether the error satisfies the threshold for all illuminants might be a more
effective approach.

46

(a) RGB = (222.1, 106.9, 164.5),
fitting round = 8/17

(b) RGB = (98.7, 205.6, 41.1),
fitting round = 9/17

Figure 4.5: The effects of multiple choices for the regular points’ coefficient count
on the shape of their spectra

Furthermore, even if we were to perfect our method, there exist a lot more,
vastly different approaches that might be used. However, their exploration and
analysis is not within the scope of this thesis, and, as our method produces
reasonable results, we leave it for future work.

Finding the sufficient coefficient count for regular points is a lot more straight-
forward than for the seeded points. We remind that the only requirement is for
the spectra to be smooth, so as to avoid interpolation-caused artifacts. This
property is especially important if two constraints from different metameric fam-
ilies seed voxels close to each other. Propagating their original shapes during the
cube fitting process would, under a different illuminant, create noticeable color
artifacts, which is undesired.

Figure 4.2 already suggests that using less coefficients might benefit our
smoothness requirement. We put this theory to test by comparing spectra of
regular points fitted with a different number of coefficients in cubes of otherwise
identical parameters. We present some of the results in fig. 4.5.

Our assumptions have proven to be correct. By using less coefficients, we limit
the degrees of freedom of the optimizer, therefore forcing it to create smooth,
simple shapes. Specifically, we decide on using 3 coefficients — using more is
unnecessary, but 2 are unable to recreate some of the shapes and occasionally
end up reconstructing constant, straight lines.

Additional benefit of using only 3 coefficients per regular point (as opposed
to using a higher number) is the lower run-time of cube fitting, as well as less
optimizer failures and therefore no need for invocation of heuristic improvements.

4.1.3 Cost functions
In addition to the moment storage technique, another aspect greatly affecting the
outcome of the fitting are the cost functions of the optimizer.

For the fitting of the sigmoids, Borgtool uses three cost functions, or residuals,
each of them specifying the absolute color difference in one axis of the RGB cube.
Such an approach outperforms both the Euclidean color distance and even the

47

(a) Fitting in the second round, i.e. the
prior coefficients are the result of “re-
calculation” of the fitted coefficients of
a seeded point

(b) Fitting in round 8/20, where the
prior coefficients are that of a regular
point

Figure 4.6: Fitting of regular points with 3 RGB cost functions

Delta E difference — the higher the number of meaningful residuals, the more
information can the optimizer deduce about the coefficients’ behavior, which, in
turn, results in faster and more precise convergence.

As this approach performs rather decently in terms of both time complexity
and the obtained results for the sigmoids, we try it out for the purposes of our
optimization as well.

In case of fitting of the regular points (see section 3.1.4), the obtained results
are satisfactory, both for the fitting in the second round (i.e. after the “coefficient
recalculation”) and in the latter rounds (see fig. 4.6). The resulting curves are
smooth, they evaluate to the desired RGB values, and the execution time is rather
fast. Therefore, we utilize this approach for the regular points.

However, for fitting the seeded points, this method is unsatisfactory. Although
it terminates as successful (as the RGB of the resulting curve is within the fitting
threshold of the target RGB), the reflectance curve takes on a sinusoidal-like
shape with a rather high amplitude, therefore losing resemblance to the original
curve. This is due to definition of coefficients, which are, in their nature, Fourier
coefficients, and are therefore prone to exhibiting this type of behavior. We show
an example of this in fig. 4.7 on the magenta plot.

Note that, in order to keep track of the optimizer’s ability to mimic its input,
we compare the fitted spectra not with the original spectra of the constraints,
but with the spectra that is reconstructed from the original’s coefficients.

We therefore conclude that we must incorporate the requirement of curve
shape similarity into our cost functions. Following, we review the approaches we
attempted along with their outcomes.

The first idea was to implement an approach similar to that for determining
the number of coefficients with which to store constraints (see section 4.1.2), i.e.
to utilize the color error under a fluorescent illuminant (specifically, FL11). We
defined three additional cost functions, each specifying the difference between the
original and the reconstructed curve’s RGB under the FL11 illuminant in one of
the axes. If their values fall below a specific threshold, we terminate the fitting

48

(a) “orange” patch of the MCC
c = 8, d = 11.84

(b) 5YR 7/6 patch of the MBC
c = 14, d = 5.85

(c) N 7.25 patch of the MBC
c = 20, d = 12.67

(d) “dark skin” patch of the MCC
c = 12, d = 11.55

Figure 4.7: Comparison between the RGB cost functions and our cost functions
for fitting seeded points. c represents the coefficient count, while d is the Eu-
clidean distance between the target and the constraint RGB.

process as successful, if not, we increase the threshold and try again.
Although this approach was successful on average (the average threshold was

around t = 0.025), occasionally, the threshold often needed to be increased to
values so high that it became obsolete (i.e. t = 1). Using only one error, either
the Euclidean distance or the Delta E error, caused similar issues.

Therefore, we decided to focus on the actual distance between the two curves.
Our first attempt consisted of defining one residual per wavelength sample, which
specified the absolute distance (as the least square error proved to perform worse)
between the two spectra at said wavelength. We examined the behavior of the
optimizer both for around 360 residuals (i.e. 1nm increment between samples)
and 36 residuals (10nm increment, as defined in most color atlases) when used
alongside the 3 already defined RGB residuals. For c ≤ 9, both of these options
performed reasonably well, and for c > 9 coefficients, the sufficient threshold was,
on average, around t = 0.0096, for which the curves were fitted quite accurately.

However, although this method definitely outperformed the previous one, it
did not completely eliminate the sinusoidal-like artifacts. During our tests, we
came across thresholds as high as t = 0.23, which definitely needed improvement.

49

As we suspected that the failures of the optimizer with lower threshold values
were caused by the abundance of cost functions, we summed up their values and
saved them into a single residual, which, when divided by the number of spectral
samples, represented the average absolute error per sample.

As the importance of curve samples in terms of proper color reconstruction
is mainly placed on their middle (at around 550nm), we attempted to add a
heuristic-based weighting factor in an effort to focus on minimizing the distance
between the two curves in that place. However, we did not succeed in improving
our results, and we therefore dropped the experiment and examined the opti-
mizer’s behavior without weighting the values.

The proposed method substantially outperformed the previous ones. The
threshold error ended up being only about t = 0.0045, and, as of yet, no entry re-
quiring d > 0.03 has been encountered. Therefore, we concluded the experiments
by defining 4 residuals, 3 of them specifying the RGB difference, and 1 specifying
the average distance per sample.

We present some of the results achieved with our cost functions in fig. 4.7,
where we compare them to fitting with RGB cost functions only. In fig. 4.7c
and fig. 4.7d, we specifically focus on the most problematic spectra with the
highest distance d between the seeded point and the constraint.

Although our approach substantially reduces the appearance of sinosidual-
like shapes, it does not diminish it completely. We can observe it especially
in fig. 4.7c. In many cases such as this, however, the deficiency arises mainly due
to the imperfections of the moment-based representation, which is, on its own,
incapable of reconstructing constant lines due to the nature of the coefficients.

Another drawback of our approach is the substantially greater time complex-
ity, especially if improvement heuristics need to be applied. By examining the
scope of the optimizer and utilizing its options further, or maybe even resorting
to a different method of optimization, we might be able to improve upon both
the time complexity and the resulting spectral shape.

However, as the runtime is not the focus of this thesis and as the resulting
shapes are satisfactory for the purposes of accurate uplifting, we leave these
improvements for future work.

4.2 Colorimetric properties
In the following, we evaluate the accuracy of our technique when used for uplifting
constraints and compare its results to the sigmoid-based uplift as defined by Jakob
and Hanika [19]. We then assess its performance when uplifting the RGB gamut
as a whole.

4.2.1 Constraint uplifting accuracy
We tested the accuracy of our proposed constrained uplifting approach on the
Munsell Book of Color (MBOC), which we utilized as a constraint set for a 323-
sized coefficient cube for the sRGB color space. Of the 1598 entries in the MBOC,
1396 are in the sRGB gamut: therefore, our experiments only included those. If
a larger RGB space (such as e.g. Adobe RGB) were used as input space, the
full number of atlas entries could be used: working with sRGB was not due

50

Original Uplifted Difference Original Uplifted Difference

Si
gm

oi
d

O
ur

Page 4; FL 3 Page 18; D65

Si
gm

oi
d

O
ur

Page 29, FL 7 Page 35, D50

Si
gm

oi
d

O
ur

Page 09, FL 11 Page 14, FL 11

Figure 4.8: Comparison of our uplifting model with the sigmoid-based tech-
nique [19] for pages of the Munsell Book of Color under different illuminants.
Maximum Delta E in the difference images is 3. Note that patches that fall out-
side sRGB have been omitted.

to any restrictions in our proposed technique, but only done to stay within the
standard RGB space of graphics. Additionally, note that 82 of the atlas entries
are not utilized as constraints due to collisions occurring inside voxels, which are
unavoidable in a cube with such a low dimension.

We compared the difference between the uplifted spectra to the original ones
under a spiky, error-prone illuminant (specifically, FL11) via the standard CIE
Delta E color difference metric — under D65, the error was negligible throughout.

The average round-trip error was just a Delta E of 0.21. As the maximum

51

Figure 4.9: Problematic cases of constrained uplifting: reflectance spectra of
darker colors. In the areas where the round-trip plot is barely visible, it mimics
the original spectrum. Note that the demonstrated range on the y-axis is not
[0, 1].

error perceivable by a standard observer is ∆E < 1 [30], this value is negligible
and can be regarded as highly satisfactory. Of the 1314 entries, only 22 were found
to return a ∆E > 1: all of these had RGB values extremely close to (0, 0, 0).

An example of this behavior in the dark region of the RGB cube can be ob-
served in fig. 4.8. The reason for it is the inadequate fitting of seeded points by
the optimizer. This behavior was already present in fig. 4.7, where we concluded
that it is due to both the moment representation’s inability to flawlessly recon-
struct constant curves, and the optimizer’s tendency to amplify this deficiency.
As the spectral shapes of the dark colors resemble almost constant lines close to
zero, it makes sense that the optimizer would primarily fail there.

In fig. 4.9 and fig. 4.10, we provide comparisons of curves of the original
spectra, the seeded spectra (labeled round-trip, i.e. it represents the direct recon-
struction from the moments used to store the original spectra) and the uplifted
spectra (i.e. the result of querying the final coefficient cube, including interpo-
lation within the voxel the RGB value lies in). Ideally, all three curves should
be identical: a difference between “original” and “round-trip” points to the de-
ficiency of the moment-based spectral reconstruction, while a difference between
“round-trip” and “uplift” indicates a drawback in the optimizer. We can observe
that, while for darker colors (see fig. 4.9), the errors are mainly due to deficien-
cies of the optimizer, slight curve deviations for brighter colors (see fig. 4.10) are
usually due to imperfections of the moment representation.

However, neither of the mentioned deficiencies severely degrade the accuracy
of the uplifting system. On the contrary — in fig. 4.8, we can clearly observe our
contribution. While the images uplifted with the sigmoid-based cube demonstrate
rather significant color errors, our uplifting system performs modestly and is,
except for slight, barely visible discrepancies, almost identical to the original
spectral render.

Unfortunately, we have encountered issues when testing the accuracy of our
system in a conventional spectral renderer (specifically, ART [31]). Due to minor
color deviations that arise during spectral rendering, the RGB values directly

52

Figure 4.10: Accuracy of constrained uplifting demonstrated on examples of input
spectra that correspond to saturated RGB colors. In the areas where the round-
trip plot is barely visible, it mimics the uplifted spectrum.

evaluated from the input spectra are not generally equal to the RGB values
outputted in the rendered texture. Although the differences are negligible in
terms of human color perception, they are high enough to cause the two values to
fall into different cube voxels (specifically, to cause the texture RGB to fall into
a non-seeded voxel), which in turn results in the insufficient uplift of the texture
RGB.

For this reason, in order to demonstrate the correctness of our model on
an example scene in fig. 4.11, we do not use the spectrally rendered textures but
rather our own, manually-created, which perfectly match the desired RGB values.
As the method was not tested in other renderers, we attribute the need for such
a process to the inaccuracy of ART.

Due to the inaccuracies during rendering, we do not provide difference images
in the actual scene in fig. 4.11. However, our contribution is still visible. In the
brighter patches of the middle page (050GY), we can observe how our method
preserves the breaking down of the gradients, which are smooth for the sigmoid
uplift. For the rightmost page (100Y), both our and the original spectral render
display a green tint for their darker patches, which is eliminated in the sigmoid
uplift.

53

Spectral render Sigmoid uplift Our uplift

D
65

FL
12

Figure 4.11: Comparison of the sigmoid-based uplift to the constrained uplift on
a scene rendered in ART [31]. Pages in scene are (from the left): 100Y, 050GY,
050Y.

4.2.2 Uplift consistency across RGB Space
In order to assess how our technique uplifts the entire RGB gamut (and not just
the regions around the seeds), we created multiple coefficient cubes that were
seeded with different color atlases. This included a non-constrained cube, i.e. a
cube fitted from the middle point at RGB(0.5, 0.5, 0.5) in the same manner as
the sigmoid-based approach by Jakob and Hanika [19]).

We first compared their performance in terms of color reconstruction upon
uplifting a gradient texture. We specifically selected a gradient with saturated
colors in the red-yellow-green region, as that is where differences are most perceiv-
able. The results are shown in fig. 4.12, again illuminated by CIE FL11 (under
D65, there are, as per the fitting process, practically zero differences). While the
distinctions between individual uplifts under FL11 are barely perceivable by the
human eye, the difference images demonstrate that there are some variations –
mainly around the locations of seed points, which is precisely what is intended by
constraining the uplift process in these locations. None of the gradient textures
exhibit any visible discontinuities, though, which indicates that our interpola-
tion approach works properly in the presence of multiple metameric families of
reflectance spectra.

In fig. 4.13, we demonstrate that our approach can properly uplift large re-
gions of the RGB gamut simultaneously, without showing artifacts under varying
illuminating conditions. We provide multiple uplifts of a rainbow texture covering
most of the RGB gamut, constrained with different constraint sets under various
illuminants. Although a rather large subset of voxels has been seeded, some of
them with complex spectra (especially for the Pantone color atlas), none of these
renderings exhibit significant artifacts. Note that all uplifts were performed with
323-sized cubes, i.e. some of the constraints may not have been utilized due to
collisions during seeding.

54

Uplifted
with

sigmoids

Munsell Book
of

Colors None

Pantone
Color

System
Up

lif
t

D
iff

er
en

ce

Figure 4.12: A region of the RGB gamut uplifted with different sets of initial
spectra, illuminated by FL11. The difference images are relative to maximum
∆E = 2.

4.3 Performance
In this section, we evaluate the performance of our method in terms of both mem-
ory and execution time, and propose possible future work for their improvement.

4.3.1 Memory usage
The memory necessary for storing our cube depends on its resolution (i.e. the
number of lattice points), which is, in turn, dependent on both the size of our
constraint set and on the position of its spectra in the RGB cube. The Macbeth
Color Checker (MCC), which contains only 24 entries that are spaced quite far
apart from each other in the RGB space (with one of them falling outside of
sRGB), requires as little as a 133-sized cube. Due to the close proximity of some
seeds, the 1396 sRGB entries of the Munsell Book of Color would require as much
as 340 lattice points per axis for all seeds to fall into a unique voxel. Additionally,
due to the rigid nature of an evenly spaced voxel grid, using a higher cube di-
mension does not necessarily imply more points that can be successfully seeded.
Due to voxel edges being in different positions for different cube dimensions, in-
creasing cube size might even have an adverse effect — for example, while a cube
of size 903 is sufficient for the RAL Design atlas, in a 3003-sized cube, 1 point
remains unfitted due to a voxel collision.

To store the coefficients of cube entries, we require 3 floating point values for
all non-seeded points, and, on average, 16 floating point values per constraint.
For the 3403-sized cube required for the proper coverage of the Munsell Book of
Color, this would yield a size of over 450.35MB. Although using less coefficients
for storing constraints is possible, it would not noticeably improve the size of the
cube — even if we were to use 3 coefficients for all coefficient representations
within the cube, the overall size would still be over 449.8MB. That is a negligible

55

Original
D65

MBOC
D50

Pantone
FL5

RAL
FL12

Pantone
D75

None
FL9

RAL
FL7

MCC SG
FL3

Figure 4.13: Constrained spectral uplifting of a colorful texture for various con-
straint sets under different illuminants

improvement, as the overall size remains excessive — after all, a seeding of the
whole Munsell Book of Color requires only 1396 voxels, which sums up to a
maximum of 8 · 1396 lattice points. Additionally, while most of the regions of
the cube are barely utilized, there exist some that have all of their voxels fitted,
which might result in a lack of smooth color transitions within these regions.

We therefore conclude that, for the purposes of constrained spectral uplifting
for large sets of user-supplied target spectra (like e.g. entire color atlases), a
coefficient cube with evenly spaced lattice points is distinctly sub-optimal, in
terms of both the memory requirements and its resulting colorimetric properties.
For future work, we suggest utilizing a dynamic structure capable of splitting
the RGB space into variably-sized voxels according to the number of constraints,
such as a kD-tree or an octree.

4.3.2 Execution time
Since our uplifting model is created prior to the rendering process, we separate the
evaluation of the execution time of the cube fitting process from the evaluation
of the rendering speed when utilizing our cube for uplifting purposes.

We test the execution time of cube fitting on multiple sets of constraints in
forms of color atlases, and present the results in table 4.3, where we distinguish
the seeding time (i.e. the time spent on seeding and fitting of the seeded points)
and the fitting time (i.e. the time spent on fitting the rest of the cube, i.e. the
regular points). All the experiments are performed on an Intel Core i7-8750H
CPU (12 logical cores), and the size of each cube is 323. Note that such cube
resolution may be insufficient for the utilization of all constraints in a given atlas
— we therefore provide the seed count, which represents the overall number of
moment representations stored at seeded points.

56

Color
atlas

Seed
count

Seeding
time

Fitting
time Overall

Munsell Book of Color 10512 7h 32m 18s 6m 59s 7h 39m 17s
RAL Design Atlas 1336 43m 11s 9m 15s 52m 26s
Macbeth Color Chart SG 576 27m 14s 8m 8s 35m 22s
Macbeth Color Chart 184 9m 29s 14m 17s 23m 46s
None 0 0s 45m 6s 45m 6s
Sigmoid-based approach 0 0s 7m 16s 7m 16s

Table 4.3: Fitting time of a 323-sized coefficient cube for multiple color atlases

Due to the higher coefficient count and the strict requirements placed upon
the shapes of the reconstructed spectral curves, the fitting of the seeded points
takes a lot longer than the fitting of the latter (on average, a seeded point point
takes 2.4 seconds to fit, in comparison to the 0.03 for regular points). However, as
the cube fitting process is multi-threaded, it benefits from multiple seeds evenly
positioned across the RGB cube. This is particularly obvious when comparing the
performance of the fitting of the Macbeth Color Charts and the fitting without
constraints.

None of these use-cases outperform the sigmoid-based cube in terms of fitting
time. While our technique needs to use various complex mathematical operations,
such as the application of Levinson’s algorithm, Herglotz transform and multiple
other conversion processes [34], not to mention the interpolation of metamers for
lattice points with multiple representations, the sigmoid-based approach evaluates
the spectral curve with as little as six floating point operations for any given
wavelength [19].

This drawback of our technique also carries over to using our method during
rendering. In order to properly evaluate the execution time, we perform two
tests — firstly, we compare the performance of the sigmoid-based cube with
the performance of our non-constrained cube (in order to avoid the overhead of
spectral reconstruction from higher-dimensional coefficient representations), and
secondly, we provide measures of the execution time for the constrained uplift
for the renders in fig. 4.8. All experiments are performed on an Intel Xeon CPU
E5-2680 v3 (48 logical cores), with 323-sized cubes.

For the latter experiments, the sigmoid-based approach performed, on average,
2.1 times better than our constrained cubes. The performance overhead arising
from constraining the uplifting process was expected. When used in a spectral
renderer – specifically, ART [31] — on a closely viewed texture of one of the
pages of the Munsell Book of Color (that is, when pretty much all the pixels in
the image correspond to the constraints), rendering times slow down by about a
factor of 4 when compared to the sigmoid uplift.

For non-constrained uplifting, our method provides no benefits compared to
the sigmoid-based approach, except perhaps that it creates slightly more varied
spectral shapes than the plain sigmoid technique. Even when not constrained,
uplifting of the colorful textures shown in fig. 4.13 is 2.3 times slower with our
cube than with the sigmoid-based technique.

That having been said, we wish to point out that so far, our focus was placed
on the correctness and accuracy of the constrained uplift, i.e. our implementation

57

of both the model creation and its utilization in a renderer does not include any
real optimizations yet. In the future, these could be applied to the fitting process
(by further exploiting the possibilities of the CERES solver, or, possibly, another
optimization technique) and to the actual uplifting, which currently does not
cache any intermediate values (such as the exponential moments) and therefore
requires them to be unnecessarily re-computed during each uplift. We estimate
that such optimizations could improve the performance up to a factor of two,
both during fitting and during rendering.

4.4 Future work
In this chapter, we have already mentioned multiple deficiencies of our system.
Following, we surmise the most important ones and outline their possible solu-
tions:

• Cube structure
As mentioned in section 4.3.1, evenly spacing lattice points in the RGB cube
is not the optimal approach in terms of memory utilization, especially if the
constraint set has a high number of spectra evaluating to RGB values in
close vicinity. In order to improve both the memory requirements and the
resulting colorimetric properties, we suggest utilizing a dynamic structure
capable of splitting the RGB space into variably-sized voxels according to
the number of constraints, such as a kD-tree or an octree.

• Execution time
In order to improve the execution time of the uplifting process in a renderer,
multiple optimizations could be added, such as storing intermediate values
(e.g. exponential moments during spectral reconstruction), or perfecting the
process of determining whether the voxel has been seeded prior to trilinear
interpolation (see section 3.2). Some of these optimization could also be
included in the cube fitting process.

• Supported color gamuts
Currently, the only supported gamut is the sRGB color gamut. This renders
some of the constraints in the standard color atlases, such as the Munsell
Book of Color or even the Macbeth Color Chart, unusable. In the future,
we propose adding the possibility to choose a color gamut within which we
want to uplift.

• Sufficient moment count
As the conditions for the sufficient moment count have not been properly
examined and, for the purposes of this thesis, most often than not, higher
count than required is used, the memory requirements could be further
improved by selecting more suitable conditions. As a starting point, we
suggest increasing the sufficiency threshold, but utilizing multiple distinct
illuminants.

58

• Fitting of the seeded points
Currently, due to the optimizer’s tendency to get stuck in local minima
when presented with a high number of parameters, the fitting of the seeded
points requires a lot of heuristic-based optimizations (see section 3.1.3).
This, in turn, takes a lot of time and may not always produce the desired
results. This could be solved by either further exploiting the possibilities of
the CERES solver, or, possibly, utilizing another optimization technique.

• Unfitted points around RGB ≈ (255, 255, 255)
As mentioned in section 3.1.5, lattice points evaluating roughly to
RGB ≈ (255, 255, 255) may, under specific conditions, fail the fitting pro-
cess. As this is due to the inaccuracies of ART, we propose utilizing a
different library for color conversion purposes.

• Deficiency in the cube’s dark region
As the color errors occurring in the dark region of the cube are mainly
due to the deficiency of the optimizer (see section 4.2.1), it is likely that
they could be eliminated by either further exploiting the possibilities of the
optimizer or by choosing a different optimization technique. Another option
is to propose a special-case handling for curves evaluating to such low RGB
values. This could be done in a similar manner than for the points with
RGB ≈ (255, 255, 255) (see section 3.1.5).

59

Conclusion
In this thesis, we presented the first method capable of constraining the spectral
uplifting process with an arbitrary set of target spectra. By utilizing a trigono-
metric moment-based approach for spectral representation, the RGB values of the
target spectra are accurately uplifted to their original spectral shapes, while the
rest of the RGB gamut uplifts to smooth spectra. This results in smooth transi-
tions between the various metameric families that originate from the constraining
process.

Our model shows a slight weakness when uplifting very dark colors, which we
attribute both to the inability of the moment-based spectral representations to
represent constant spectra, and to the deficiency of the optimization process used
during the creation of our uplifting model. However, even including these minor
drawbacks, the results in terms of color accuracy are noteworthy, as the uplifted
curves describe the original ones with negligible differences.

Neither the memory, nor the execution time of either the creation or the
utilization of our model are optimal: the new and so far unique capability to
perform targeted uplifts comes at the cost of some overhead that is not present
in e.g. the unconstrained sigmoid uplift technique of Jakob and Hanika [19].

In the future, we will primarily focus on utilizing a more suitable and memory
efficient structure for storing the constraints, such as a kD-tree or an octree.
Secondly, we will improve the execution time by optimizing the moment-based
spectral reconstruction process, and, furthermore, we will focus on improving
other minor deficiencies, reviewed in section 4.4.

60

Bibliography
[1] Sameer Agarwal, Keir Mierle, and Others. Ceres solver. http://

ceres-solver.org.

[2] Sameer Agarwal, Keir Mierle, and Others. Ceres solver. 2012.

[3] Anikethan Bekal, Ajit M Hebbale, and MS Srinath. Review on material
processing through microwave energy. In IOP Conference Series: Materials
Science and Engineering, 2018.

[4] Laurent Belcour and Pascal Barla. A practical extension to microfacet theory
for the modeling of varying iridescence. ACM Transactions on Graphics
(TOG), 36(4):1–14, 2017.

[5] Arthur D Broadbent. A critical review of the development of the cie1931
rgb color-matching functions. Color Research & Application: Endorsed by
Inter-Society Color Council, The Colour Group (Great Britain), Canadian
Society for Color, Color Science Association of Japan, Dutch Society for the
Study of Color, The Swedish Colour Centre Foundation, Colour Society of
Australia, Centre Français de la Couleur, 29(4):267–272, 2004.

[6] John Parker Burg. Maximum entropy spectral analysis. Astronomy and
Astrophysics Supplement, 15:383, 1974.

[7] Kyungah Choi, Jeongmin Lee, and Hyeon-Jeong Suk. Context-based presets
for lighting setup in residential space. Applied Ergonomics, 52:222–231, 01
2016. doi: 10.1016/j.apergo.2015.07.023.

[8] Asim Kumar Roy Choudhury. Principles of colour and appearance measure-
ment: Object appearance, colour perception and instrumental measurement.
Elsevier, 2014.

[9] CIE. Commission internationale de l’éclairage, 1913. URL http://cie.co.
at/.

[10] D Drosdoff and A Widom. Snell’s law from an elementary particle viewpoint.
American journal of physics, 73(10):973–975, 2005.

[11] Hugh S Fairman, Michael H Brill, and Henry Hemmendinger. How the cie
1931 color-matching functions were derived from wright-guild data. Color
Research & Application: Endorsed by Inter-Society Color Council, The
Colour Group (Great Britain), Canadian Society for Color, Color Science
Association of Japan, Dutch Society for the Study of Color, The Swedish
Colour Centre Foundation, Colour Society of Australia, Centre Français de
la Couleur, 22(1):11–23, 1997.

[12] Lori Gardi. Planck’s constant and the nature of light, 05 2018.

[13] TM Goodman. International standards for colour. In Colour Design, pages
177–218. Elsevier, 2012.

61

http://ceres-solver.org
http://ceres-solver.org
http://cie.co.at/
http://cie.co.at/

[14] Igor Griva, S Nash, and A Sofer. Nonlinear least squares data fitting. Linear
and Nonlinear Optimization, pages 743–758, 2009.

[15] George G Guilbault. Practical fluorescence. CRC Press, 2020.

[16] Martin Habekost. Which color differencing equation should be used. Inter-
national Circular of Graphic Education and Research, 6:20–33, 2013.

[17] CIE HunterLab. L* a* b* color scale. Applications note, Virginia, USA,
1996.

[18] Noor A Ibraheem, Mokhtar M Hasan, Rafiqul Z Khan, and Pramod K
Mishra. Understanding color models: a review. ARPN Journal of science
and technology, 2(3):265–275, 2012.

[19] Wenzel Jakob and Johannes Hanika. A low-dimensional function space for
efficient spectral upsampling. In Computer Graphics Forum, volume 38,
pages 147–155. Wiley Online Library, 2019.

[20] Alisa Jung, Alexander Wilkie, Johannes Hanika, Wenzel Jakob, and Carsten
Dachsbacher. Wide gamut spectral upsampling with fluorescence. In Com-
puter Graphics Forum, volume 38, pages 87–96. Wiley Online Library, 2019.

[21] Douglas A Kerr. The cie xyz and xyy color spaces. Colorimetry, 1(1):1–16,
2010.

[22] David H Krantz. Color measurement and color theory: Ii. opponent-colors
theory. Journal of Mathematical Psychology, 12(3):304–327, 1975.

[23] Krĕı. The Markov moment problem and extremal problems.

[24] Henry J Landau. Maximum entropy and the moment problem. Bulletin of
the American Mathematical Society, 16(1):47–77, 1987.

[25] David L MacAdam. The theory of the maximum visual efficiency of colored
materials. JOSA, 25(8):249–252, 1935.

[26] André Markoff. Nouvelles applications des fractions continues. Mathematis-
che Annalen, 47(4):579–597, 1896.

[27] Manuel Melgosa. Testing cielab-based color-difference formulas. Color Re-
search & Application: Endorsed by Inter-Society Color Council, The Colour
Group (Great Britain), Canadian Society for Color, Color Science Associa-
tion of Japan, Dutch Society for the Study of Color, The Swedish Colour Cen-
tre Foundation, Colour Society of Australia, Centre Français de la Couleur,
25(1):49–55, 2000.

[28] Johannes Meng, Florian Simon, Johannes Hanika, and Carsten Dachsbacher.
Physically meaningful rendering using tristimulus colours. In Computer
Graphics Forum, volume 34, pages 31–40. Wiley Online Library, 2015.

[29] Michal Mojźık. Fluorescence computations in a hero wavelength renderer.
2018.

62

[30] WS Mokrzycki and M Tatol. Colour difference delta e-a survey. Mach.
Graph. Vis, 20(4):383–411, 2011.

[31] Computer Graphics Group of Charles University in Prague. Art, . URL
https://cgg.mff.cuni.cz/ART/gallery/.

[32] Computer Graphics Group of Charles University in Prague. Art sigmoids, .
URL https://cgg.mff.cuni.cz/ART/archivers/art_2_0_3.html.

[33] Hisanari Otsu, Masafumi Yamamoto, and Toshiya Hachisuka. Reproducing
spectral reflectances from tristimulus colours. In Computer Graphics Forum,
volume 37, pages 370–381. Wiley Online Library, 2018.

[34] Christoph Peters, Sebastian Merzbach, Johannes Hanika, and Carsten
Dachsbacher. Using moments to represent bounded signals for spectral ren-
dering. ACM Transactions on Graphics (TOG), 38(4):1–14, 2019.

[35] Christoph Peters, Sebastian Merzbach, Johannes Hanika, and Carsten
Dachsbacher. Spectral rendering with the bounded mese and srgb data.
In Workshop on Material Appearance Modeling, volume 2019, pages 07–09,
2019.

[36] Dale Purves, G Augustine, D Fitzpatrick, L Katz, A LaMantia, J McNa-
mara, and S Williams. Neuroscience 2nd edition. sunderland (ma) sinauer
associates, 2001.

[37] Javier Romero, E. Valero, Javier Hernández-Andrés, and Juan Nieves. Color-
signal filtering in the fourier-frequency domain. Journal of the Optical Society
of America. A, Optics, image science, and vision, 20:1714–24, 10 2003. doi:
10.1364/JOSAA.20.001714.

[38] Iman Sadeghi and HW Jensen. A physically based anisotropic iridescence
model for rendering morpho butterflies photo-realistically. Proc. of Irides-
cence: More Than Meets the Eye (Tempe, Arizona, 2008), page 38, 2008.

[39] Gaurav Sharma and Carlos Eduardo Rodŕıguez-Pardo. The dark side of
cielab. In Color Imaging XVII: Displaying, Processing, Hardcopy, and Ap-
plications, volume 8292, page 82920D. International Society for Optics and
Photonics, 2012.

[40] Gaurav Sharma, Wencheng Wu, Edul N Dalal, and Mehmet U Celik. Math-
ematical discontinuities in ciede2000 color difference computations. In Color
and Imaging Conference, volume 2004, pages 334–339. Society for Imaging
Science and Technology, 2004.

[41] Brian Smits. An rgb-to-spectrum conversion for reflectances. Journal of
Graphics Tools, 4(4):11–22, 1999.

[42] Andrew Stockman and Lindsay T Sharpe. Cone spectral sensitivities and
color matching. Color vision: From genes to perception, pages 53–88, 1999.

[43] Yinlong Sun. Rendering biological iridescences with rgb-based renderers.
ACM Transactions on Graphics (TOG), 25(1):100–129, 2006.

63

https://cgg.mff.cuni.cz/ART/gallery/
https://cgg.mff.cuni.cz/ART/archivers/art_2_0_3.html

[44] Yinlong Sun, F David Fracchia, and Mark S Drew. Rendering light dispersion
with a composite spectral model. Diamond, 2(37.17):0–044, 2000.

[45] Arthur Robert Weeks, Carlos E Felix, and Harley R Myler. Edge detection
of color images using the hsl color space. In Nonlinear Image Processing VI,
volume 2424, pages 291–301. International Society for Optics and Photonics,
1995.

[46] Guillaume Loubet Sébastien Speierer Benôıt Ruiz Delio Vicini Wen-
zel Jakob, Merlin Nimier-David and Tizian Zeltner. Mitsuba2. URL
https://mitsuba2.readthedocs.io/en/latest/src/getting_started/
variants.html.

[47] John Werner. Human colour vision: 1. colour mixture and retino-geniculate
processing. 10 2001. doi: 10.1142/9789812811899 0003.

[48] Sebastian Werner, Zdravko Velinov, Wenzel Jakob, and Matthias B Hullin.
Scratch iridescence: Wave-optical rendering of diffractive surface structure.
ACM Transactions on Graphics (TOG), 36(6):1–14, 2017.

[49] N Whetzel. Measuring color using hunter l, a, b versus cie
1976 l* a* b*. Application notes). Retrieved from Hunterlab
website: https://support. hunterlab. com/hc/enus/articles/204137825-
Measuring-Color-using-Hunter-Lab-versus-CIE-1976-Lab-AN-1005b, 2016.

[50] Alexander Wilkie, Robert F Tobler, and Werner Purgathofer. Raytracing of
dispersion effects in transparent materials. 2000.

[51] Alexander Wilkie, Robert F Tobler, and Werner Purgathofer. Combined
rendering of polarization and fluorescence effects. In Rendering Techniques
2001, pages 197–204. Springer, 2001.

64

https://mitsuba2.readthedocs.io/en/latest/src/getting_started/variants.html
https://mitsuba2.readthedocs.io/en/latest/src/getting_started/variants.html

A. Software user guide
In this appendix, we provide a user guide for compiling and running both Borgtool
(for the purposes of creating the cube) and ART (for the purposes of its utiliza-
tion).

Both softwares have been tested on Ubuntu 20.04 with CMake 3.16.3 and
g++ 8.4.0. As we do not provide any binaries, the user must compile the projects
first.

A.1 Borgtool
To build Borgtool, execute the following steps:

1. Unzip the provided attachment and open the Borgtool folder

2. Make sure you have installed ART and Ceres (see CMakeLists.txt for more
details about necessary dependencies)

3. Build the project using CMake

It is possible to run the program with several options. Following, we provide
the list of the ones supported with the trigonometric moment-based method:

Usage: borgtool [-options]
where the options include:

(-cc | --createCube) <filename>
fit new RGB coefficient cube

-mo | --momentOpt
use moments for spectral representation

(-cd | --cubeDimension) <numpoints>
of cube lattice points in one dimension

(-ft | --fittingThreshold) <x>
threshold in fraction 1/x of voxel size

-pi | --progressImages
generate fitting progress images

-ofr | --onlyFirstRound
do not attempt to improve the cube

(-tex | --texture) <filename>
create EXR test texture for cube testing

(-ctx | --cubeTexture) <filename>
create EXR test texture with cube data

(-tv | --textureV) <0..1>
HSV V value for the two preceding textures

(-sfd | --showFittingDelta) <0..1>
show delta between lattice and target RGB

(-uc | --useCorner) <index>
use coefficents from voxel corner #

(-ply | --generatePLY) <filename>
create PLY geometry for UCC file

65

-srgb | --sRGB
use sRGB (default)

(-a | --atlas) <atlasID>
seed the cube with atlas with ID #

Examples of usage:

• borgtool -mo -cc cube mcob -cd 64 -a 0

This command creates a new trigonometric moment-based RGB cube of
size 643 seeded with an atlas with ID = 0, which is the Munsell Book of
Color.

• borgtool -mo -cc cube middle

This command creates a new trigonometric moment-based RGB cube of
size 323. As no atlas is specified, the cube grows from its center.

• borgtool -mo -rc cube mcc -ctx test texture -tv 0.5

This command loads a cube with the name cube mcc and utilizes it for
uplifting a rainbow texture (see fig. 4.13). The brightness of the texture is
set to 0.5, and the resulting uplift is stored in a file named test texture.

A.2 ART
To build ART, execute the following steps:

1. Unzip the provided attachment and open the ART folder

2. Build the project using the instructions from the ART website at
https://cgg.mff.cuni.cz/ART/download/

In order to utilize the cubes created by Borgtool, execute the following steps:

1. Copy the cubes you wish to utilize to ART/ART Resources/SpectralUplift

2. Add the following code snippet:

SET_UPLIFT_CUBE(
"my_cube_name.ucc"

),

to the action sequence of the .arm file whose image map you wish to uplift.
If this option is omitted, the sigmoid cube is utilized.

3. run the artist command with the desired parameters

66

https://cgg.mff.cuni.cz/ART/download/

A.2.1 Example scenes
In the Resources folder found in the attachment of this thesis, we provide mul-
tiple example scenes along with textures and cubes, some of which have been
used to render images in this thesis. Following, we provide instructions on how
to replicate these renders, and overview the contents of the attached folder.

Before running the example scenes, do the following:

1. Copy all the .ucc files from the provided Resources/cubes folder to
ART/ART Resources/SpectralUplift

2. Copy all the .tif and .tiff files from the provided Resources/textures
folder to ART/ART Resources

Contents of the Resources folder include:

• Resources for replicating fig. 4.11:

– scenes/Three Pages Original.arm file for replicating the original
spectral render. Rendering it does not require any additional resources.

– scenes/Three Pages Texture.arm file for replicating the constrained
and the sigmoid-based uplift. Additional resources required are as
follows:

∗ uplift cube: cubes/three pages.ucc
∗ image maps:

cubes/three pages page10.tiff
cubes/three pages page12.tiff
cubes/three pages page14.tiff

• Resources for replicating fig. 4.12:

– scene file: scenes/Gradient Texture.arm

– image map: textures/gradient.tif

– cubes:
cubes/mboc cd32.ucc
cubes/none cd32.ucc
cubes/pantone cd32.ucc

By default, the cube specified for uplifting in the Gradient Texture.arm
scene is pantone cd32. In order to render with a different cube, change the
uplift cube in the scene description.

• Three additional scenes uplifting three pages of the Munsell Book of Color:

– scenes/Page10 Texture.arm

– scenes/Page12 Texture.arm

– scenes/Page14 Texture.arm

For each of the scenes, a corresponding image map and an uplift cube can
be found in Resources/textures and Resources/cubes respectively.

67

Note: It might happen that some of the provided scenes do not render the
desired result. This is due to a known bug in the ART library. In case it occurs,
we recommend building ART in the Debug mode without any optimizations.

68

B. Attachments

B.1 Delta E error caused by moment sampling

Moments

Methods
M&W M&nonW nMW nMnW

Avg Max Avg Max Avg Max Avg Max
0 23.88 130.27 23.95 130.62 23.86 130.38 23.95 130.62
1 13.09 97.76 16.92 107.23 4.08 51.23 8.48 67.12
2 1.39 21.71 10.18 74.62 1.31 20.87 2.56 20.14
3 0.74 7.43 6.3 60.36 0.71 8.18 0.89 6.36
4 0.49 5.46 2.58 26.36 0.61 5.16 0.46 3.62
5 0.35 3.95 1.1 6.83 0.47 4.11 0.37 3.2
6 0.31 3.19 0.73 6.12 0.32 3.07 0.27 2.73
7 0.28 2.85 0.71 5.67 0.29 2.28 0.24 2.26
8 0.27 2.42 0.61 3.94 0.29 1.89 0.23 1.52
9 0.21 2.41 0.43 3.78 0.27 1.8 0.19 1.1
10 0.21 2.41 0.26 2.62 0.28 1.81 0.18 1.28
11 0.17 2.4 0.2 2.26 0.29 1.81 0.16 1.07
12 0.17 2.39 0.2 2.32 0.27 1.64 0.15 1.09
13 0.16 2.36 0.2 2.29 0.25 1.58 0.15 1.09
14 0.16 2.32 0.2 1.93 0.24 1.56 0.16 1.09
15 0.15 2.26 0.18 1.2 0.2 2.66 0.16 1.09
16 0.15 2.23 0.17 1.17 0.21 4.3 0.15 1.08
17 0.15 2.21 0.15 1.12 0.25 4.27 0.14 1.08
18 0.15 2.19 0.14 1.12 0.29 3.3 0.14 1.08
19 0.15 2.16 0.14 1.08 0.44 4.04 0.14 1.08
20 0.15 2.12 0.14 1.07 0.57 4.24 0.15 1.07
21 0.15 2.06 0.14 1.08 0.65 3.42 0.15 1.08
22 0.15 2.01 0.14 1.08 0.37 2.53 0.14 1.09
23 0.15 1.98 0.14 1.09 0.36 2.16 0.14 1.1
24 0.15 1.96 0.14 1.09 0.22 1.44 0.14 1.12
25 0.16 1.95 0.14 1.09 0.22 1.17 0.15 1.14
26 0.16 1.93 0.14 1.09 0.19 1.04 0.16 1.19
27 0.16 1.9 0.14 1.09 0.24 1.11 0.16 1.24
28 0.16 1.87 0.14 1.09 0.19 0.84 0.15 1.29
29 0.17 1.82 0.14 1.09 0.14 0.97 0.13 0.94
30 0.17 1.78 0.13 1.09 0.15 0.99 0.16 1.13
31 0.18 1.94 0.14 1.09 0.16 1.04 0.21 1.59
32 0.19 1.89 0.14 1.09 0.15 0.9 0.29 1.62
33 0.21 1.76 0.14 1.09 0.13 0.95 0.27 1.62
34 0.21 1.86 0.14 1.09 0.13 1.26 0.2 1.46
35 0.19 1.79 0.14 1.09 0.16 1.84 0.23 1.17
36 0.2 1.82 0.14 1.09 0.16 1.71 0.22 1.19
37 0.16 1.79 0.14 1.09 0.19 1.82 0.15 1.08

69

38 0.11 1.77 0.14 1.09 0.23 2.23 0.1 0.72
39 0.12 1.67 0.14 1.09 0.34 2.28 0.07 0.73
40 0.13 1.68 0.14 1.09 0.27 1.54 0.06 0.73

70

	Introduction
	Color Science
	Light and Color
	Color representation
	Spectral representation
	Tristimulus representation
	Color representation in rendering

	Spectral Uplifting
	Uplifting methods
	Constrained spectral uplifting
	Spectral sampling

	Implementation
	Uplifting model
	Initialization
	Cube seeding
	Fitting of starting points
	Cube fitting
	Cube improvement
	Cube storage

	Renderer integration

	Results
	Implementation choices
	Signal mapping techniques
	Number of moments
	Cost functions

	Colorimetric properties
	Constraint uplifting accuracy
	Uplift consistency across RGB Space

	Performance
	Memory usage
	Execution time

	Future work

	Conclusion
	Bibliography
	Software user guide
	Borgtool
	ART
	Example scenes

	Attachments
	Delta E error caused by moment sampling

