
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

ELECTRONIC FLIGHT BAG
ELECTRONIC FLIGHT BAG

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. LUKÁŠ KÚŠIK
AUTOR PRÁCE

SUPERVISOR doc. Ing. PETER CHUDÝ, Ph.D. MBA
VEDOUCÍ PRÁCE

BRNO 2021

Brno University of Technology
Faculty of Information Technology

 Department of Computer Graphics and Multimedia (DCGM) Academic year 2020/2021

 Master's Thesis Specification

Student: Kúšik Lukáš, Bc.
Programme: Information Technology
Field of
study:

Application Development

Title: Electronic Flight Bag
Category: Computer Graphics
Assignment:

1. Perform a study on the state-of-the-art Electronic Flight Bags.
2. Research key features of an Electronic Flight Bag.
3. Design and implement an Electronic Flight Bag for Android OS.
4. Perform testing and evaluation of the developed Electronic Flight Bag.
5. Suggest future research directions.

Recommended literature:
Specified by the supervisor

Requirements for the semestral defence:
Items 1, 2 and partially item 3.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Chudý Peter, doc. Ing., Ph.D. MBA
Head of Department: Černocký Jan, doc. Dr. Ing.
Beginning of work: November 1, 2020
Submission deadline: July 30, 2021
Approval date: October 30, 2020

Powered by TCPDF (www.tcpdf.org)

Master's Thesis Specification/23596/2020/xkusik00 Page 1/1

Abstract
The aim of this thesis is to create an Electronic Flight Bag (EFB) application for An-
droid mobile devices. To accomplish this task, a research is done on the current state of
regulations regarding EFBs and the state-of-the-art EFB applications found in the mobile
marketplace. Based on this information, an EFB application focused on General Aviation
pilots is designed and implemented. The final product contains features for Flight plan-
ning, custom aviation Maps, Logbook, Documents, Airport Catalog with global coverage
and more. The built-in offline support ensures reliability in real-world conditions. Finally,
the product attempts to innovate on existing EFB applications, by including features, such
as Automated checklists and Augment Reality Preview.

Abstrakt
Cieľom tejto diplomovej práce je vytvoriť Electronic Flight Bag (EFB) aplikáciu pre mo-
bilné telefóny s operačným systémom Android. Pre splnenie tejto úlohy bola preskúmaná
aktuálna legislatíva ohľadom EFB aplikácií spolu s najmodernejšími EFB aplikáciami dos-
tupnými na aplikačnom trhu. Na základe týchto informácií je navrhnutá a implementovaná
EFB aplikácia určená pre pilotov všeobecného letectva. Výsledný produkt obsahuje funkcie
pre plánovanie letu, vlastnú leteckú mapu, pilotný denník, katalóg letísk s dátami z celého
sveta a ďalšie. Podpora offline zaručuje funkčnosť v reálnych podmienkach letu. Konečný
produkt sa taktiež snaží inovovať nad existujúcimi EFB aplikáciami zahrnutím funkcionalít,
akými sú napríklad automatické kontrolné zoznamy a náhľad v rozšírenej realite.

Keywords
Electronic Flight Bag, EFB, Android, mobilný vývoj, Jetpack Compose, všeobecné letectvo,
rozšírená realita, keyword spotting, navigácia, kontrolné zoznamy, váha a vyváženie, pilot,
user experience

Kľúčové slová
Electronic Flight Bag, EFB, Android, mobile development, Jetpack Compose, general avi-
ation, augmented reality, keyword spotting, navigation, checklist, weight & balance, pilot

Reference
KÚŠIK, Lukáš. Electronic Flight Bag. Brno, 2021. Master’s thesis. Brno University of
Technology, Faculty of Information Technology. Supervisor doc. Ing. Peter Chudý, Ph.D.
MBA

Rozšírený abstrakt

Počas celej histórie letectva boli súčasťou výbavy každého pilota ťažké tašky s doku-
mentami a náčrtmi dôležitými pre vykonávanie práce pilota. S postupom vývoja technológií
sa stali dostupnými elektronické zariadenia nazývané aj ako Electronic Flight Bag (EFB),
ktoré túto situáciu zmenili.

Už prvé zariadenia EFB dokázali ukladať a zobrazovať dokumenty v digitálnej podobe,
čím sa značne zjednodušila práca pre pilotov s týmito dokumentami, aj vďaka funkciám,
akým je napríklad vyhľadávanie. Dôležitým prínosom z hľadiska aeroliniek je však práve
zníženie celkovej hmotnosti lietadla odstránením klasických pilotných tašiek na palube,
ktoré môžu vážiť až 20 kg. Zníženie hmotnosti sa priamo premieta do zníženej spotreby
paliva, ktorá naprieč celou leteckou flotilou lietadiel môže ušetriť aerolinkám ročne aj
niekoľko miliónov dolárov.

Zariadenia EFB, tak ako aj takmer všetky ostatné aspekty letectva, sú regulované sadou
pravidiel a úprav. Historicky tieto pravidlá publikovali dva hlavné letecké úrady — Fed-
erálny letecký úrad v USA a Agentúra Európskej únie pre bezpečnosť letectva, pre krajiny
Európy. Dnes sú tieto pravidlá celosvetovo zjednotené pod správou Medzinárodnej orga-
nizácie pre civilné letectvo (ICAO).

Tieto pravidlá rozdeľujú zariadenia EFB na rôzne kategórie z hľadiska prenositeľnosti
a kritickosti funkcií ponúkaných týmito zariadeniami pre let. Na základe týchto kategórií
sú následne pravidlami definované na zariadenia rôzne požiadavky, a to najmä z pohľadu
spoľahlivosti daných zariadení.

Dnešné Electronic Flight Bag zariadenia ponúkajú oveľa viac funkcií ako len zobrazo-
vanie elektronických dokumentov. Súčasťou tejto práce je aj prieskum trhu, ktorého účelom
je analyzovať funkcionality, ktoré ponúkajú mobilné aplikácie EFB dostupné dnes na trhoch
pre mobilné telefóny.

Cieľom tejto práce je navrhnúť a implementovať podobnú aplikáciu pre mobilné telefóny
s operačným systémom Android. Na základe poznatkov získaných z prieskumu trhu bol
vytvorený návrh funkcionalít, ktoré by mala výsledná aplikácia obsahovať. Spoločne s ním
bol pre aplikáciu navrhnutý aj vlastný grafický dizajn.

Podľa návrhu bola následne vykonaná implementácia aplikácie. Počas implementácie
boli využité moderné princípy a nástroje súčasného vývoja pre zariadenia Android, akými sú
napríklad nástroj Jetpack Compose alebo nástroj Hilt. Pre projekt bola zvolená modulárna
architektúra, ktorá podporuje prehľadnú prácu s jednotlivými časťami projektu.

Výsledná aplikácia s názvom NaviPilot ponúka množstvo užitočných funkcionalít, ktoré
sú určené najmä pre pilotov všeobecného letectva. Okrem zobrazovania dokumentov sú
medzi nimi funkcie ako plánovač trasy, pilotný denník a sada nástrojov pre uľahčenie výpoč-
tov. Vstavaný plánovač trasy obsahuje aj nástroj pre výpočet vyváženia lietadla pred vzle-
tom, so zabudovanou podporou pre tri populárne typy lietadiel, ktorá sa však dá rozšíriť
o vlastné typy lietadiel s pomocou obsiahnutého editora.

Ďalej majú piloti možnosť zistiť informácie o pristávacích dráhach a rádiových frekven-
ciách letísk z celého sveta, vďaka stiahnuteľným balíčkom určeným pre jednotlivé krajiny.
K letiskám si používatelia majú možnosť zobraziť si aj najnovšie správy NOTAM a zistiť
aktuálny stav poveternostných podmienok cez kódy METAR, spolu s predpoveďou počasia
prostredníctvom radarovej vrstvy. Pre potreby aplikácie bola vytvorená vlastná podkladová
mapa, prispôsobená na využívanie pre letectvo. Vďaka vopred spomínaným stiahnuteľným
balíčkom je aplikácia funkčná aj v podmienkach bez internetového pripojenia, čo zvyšuje
spoľahlivosť aplikácie aj v podmienkach reálneho letu.

Počas letu aplikácia zobrazuje pilotovi polohu lietadla na mapovom podklade, spolu
s aktuálnymi letovými informáciami. Tie aplikácia získava zo vstavaného GNSS prijí-
mača v zariadení, avšak aplikáciu je možné taktiež prepojiť aj so simulátorom. Navigačné
prostredie aplikácie navádza pilota pri lete na nasledujúce body trasy. Pilot je počas letu
podporovaný vytvorenou sadou indikátorov, ktoré predpovedajú dráhu letu lietadla a zo-
brazujú aktuálny stav vetra pri vzlete a pristátí. K dispozícií je taktiež detekcia fázy letu,
ktorá spúšťa vykonávanie vhodného kontrolného zoznamu pre daný typ lietadla, a systém
varovaní, ktoré varujú pilota pri vstupe do vzdušných priestorov.

NaviPilot obsahuje taktiež viaceré experimentálne funkcie, akými sú napríklad auto-
matické kontrolné zoznamy a náhľad v rozšírenej realite. Automatické kontrolné zoznamy
umožňujú pilotovi prejsť vykonaním kontrolného zoznamu v štýle podobnom tomu pri
posádkach kapitána s kopilotom, kedy aplikácia pilotovi jednotlivé položky zoznamu predčí-
tava a pilot ich následne potvrdzuje svojím hlasom. Pre tieto účely bol implementovaný
model strojového učenia, ktorý deteguje kľúčové slová špecifikované v kontrolnom zozname
prostredníctvom mikrofónu.

Náhľad v rozšírenej realite umožňuje pilotovi vizualizovať trasu letu v priestore miest-
nosti, v ktorej sa nachádza, prostredníctvom kamery jeho mobilného zariadenia. Po otvorení
náhľadu v rozšírenej realite sa na obrazovke telefónu trasa premietne nad skutočným relié-
fom krajiny v jej okolí. Táto funkcionalita umožňuje pilotovi naštudovať si terén v okolí
trasy letu a zvyšuje jeho povedomie o okolí.

V užívateľskom testovaní sa výsledná aplikácia stretla s pozitívnou odozvou, kde všetci
opýtaní užívatelia uviedli, že by aplikáciu osobne využívali pri lietaní, či už v realite alebo
na simulátore.

Na záver práce sú prebrané ďalšie možnosti vývoja aplikácie do budúcnosti, v ktorej
by sa aplikácia mohla rozšíriť o podporu externých zariadení určených do kokpitu, ktoré
dodávajú presnejšie dáta o polohe a orientácii lietadla, akými sú tie zo senzorov mobilných
zariadení. Zároveň by sa aplikácia mohla rozšíriť o kvalitnejšie a rozsiahlejšie dáta, ktoré
sú však dostupné iba z platených zdrojov.

Electronic Flight Bag

Declaration
I hereby declare that this Master’s thesis was prepared as an original work by the author
under the supervision of Associate Professor Peter Chudý, Ph.D., MBA. I have listed all the
literary sources, publications and other sources, which were used during the preparation of
this thesis.

. .
Lukáš Kúšik

August 1, 2021

Acknowledgements
Belongs to Associate Professor Peter Chudý, Ph.D., MBA for sharing his experience, de-
voting his time to consultations and giving helpful pieces of advice regarding this thesis.

Contents

1 Introduction 9

2 State-of-the-Art Electronic Flight Bag 10
2.1 Categorization . 11

2.1.1 Portable EFB . 11
2.1.2 Installed EFB . 11

2.2 Applications types . 11
2.2.1 Type A . 12
2.2.2 Type B . 12

3 Market Research 14
3.1 FltPlan Go . 14

3.1.1 Maps . 15
3.1.2 Airport information . 16

3.2 Garmin Pilot . 17
3.2.1 Documents . 17
3.2.2 Checklists . 18
3.2.3 Synthetic Vision . 18

3.3 Foreflight Mobile . 19
3.3.1 Flight planning . 20
3.3.2 3D Preview . 21
3.3.3 Alerts . 22
3.3.4 External devices connectivity . 22

4 Application Design and Specification 25
4.1 Android development . 25
4.2 Application features . 27
4.3 User Interface . 29

5 Application Implementation 32
5.1 Project architecture . 32
5.2 Documents . 36
5.3 Airport catalog . 38
5.4 Aircraft profiles . 40
5.5 Checklists . 42
5.6 Logbook . 44
5.7 Data connectivity . 46
5.8 Maps . 47

1

5.9 Flight planner . 49
5.10 AR Preview . 51
5.11 Flight engine . 53
5.12 Dashboard . 55
5.13 Tools . 58
5.14 Offline support . 59

6 Testing and Evaluation 62
6.1 Unit tests . 62
6.2 Resource usage . 62
6.3 User testing . 63

7 Future Research 68

8 Conclusion 69

Bibliography 70

A Contents of the Included Storage Media 76

2

List of Figures

3.1 FltPlan Go’s split-screen interface on a tablet device [21]. 14
3.2 Garmin Pilot’s User Interface [49]. 17
3.3 Synthetic Vision feature of Garmin Pilot [27]. 19
3.4 Map interface of Foreflight Mobile [51]. 20
3.5 ForeFlight’s 3D Preview mode [24]. 21
3.6 Sentry, a portable ADS-B & GNSS Receiver [71]. 23

4.1 Proposed graphic design of the main application screens. 30

5.1 Diagram of the NaviPilot project modules. 32
5.2 Documents interface. 37
5.3 General information and NOTAMs tabs of the Airport Catalog. 39
5.4 Airport Catalog tabs METAR and Radar. 40
5.5 The Aircraft profile editor screen. 41
5.6 Checklists and the Checklist editor. 42
5.7 Logbook and Flight detail screens. 45
5.8 Class diagram of the LocationEngine interface and its implementations. . . 47
5.9 Custom NaviPilot map style and the Weather radar layer. 48
5.10 Flight planner interface and the waypoint picker. 50
5.11 Weight and Balance screen. 51
5.12 Augmented Reality Preview of a planned flight. 52
5.13 Class diagram of the Flight engine component and its subcomponents. . . . 53
5.14 Dashboard interface. 56
5.15 Tools screen, Unit Converter screen, and Fuel Converter screen. 58
5.16 Offline packages screen. 59
5.17 Setup screen displayed during the first launch. 60

6.1 Chart of times achieved by testing users per task. 65
6.2 Charts representing the feedback given by users. 66

3

List of Tables

6.1 Resource usage by application screen. 62
6.2 Table of user testing task times. 64

4

List of Acronyms

ADS-B Automatic Dependent Surveillance–Broadcast.

AFM Aircraft Flight Manual.

AFMS Airplane Flight Manual Supplement.

AGL Height above Ground Level.

AHRS Attitude and Heading Reference System.

AI Artificial Intelligence.

AIM Aeronautical Information Manual.

AIP Aeronautical Information Publication.

AIRMET Airman’s Meteorological Information.

AMM Aircraft Maintenance Manual.

API Application Programming Interface.

AR Augmented Reality.

ATC Air Traffic Control.

ATIS Automatic Terminal Information Service.

CDI Course Deviation Indicator.

CG Center of Gravity.

CNN Convolutional Neural Network.

CPU Central Processing Unit.

CS Chart Supplement.

DAO Data Access Object.

DP Instrument Departure Procedure.

EASA European Union Aviation Safety Agency.

ECL Electronic Checklist.

5

EFB Electronic Flight Bag.

EGNOS European Geostationary Navigation Overlay Service.

ETA Estimated Time of Arrival.

FAA Federal Aviation Administration.

FBO Fixed-base Operator.

FOM Flight Operations Manual.

GA General Aviation.

GNSS Global Navigation Satellite System.

GPS Global Positioning System.

GPX GPS Exchange Format.

IAP Instrument Approach Procedure.

ICAO International Civil Aviation Organization.

IDE Integrated Development Environment.

IFR Instrument Flight Rules.

JSON JavaScript Object Notation.

JVM Java Virtual Machine.

KML Keyhole Markup Language.

KWS Keyword Spotting.

LFBE Log-mel Filter Bank Energies.

MEL Minimum Equipment List.

METAR Meteorological Aerodrome Report.

MFCC Mel-frequency Cepstral Coefficients.

ML Machine Learning.

MLW Maximum Landing Weight.

MSL Mean sea level.

MTOW Maximum Takeoff Weight.

NLP Natural Language Processing.

NN Neural Network.

6

NOTAM Notice to Airmen.

OCR Optical Character Recognition.

OS Operating System.

OSM OpenStreetMap.

PDF Portable Document Format.

PED Portable Electronic Device.

PFD Primary Flight Display.

PIREP Pilot Report.

POH Pilot’s Operating Handbook.

POI Point of Interest.

PPM Policy and Procedures Manual.

QRH Quick Reference Handbook.

REST Representational State Transfer.

RNN Recurrent Neural Network.

SAF Storage Access Framework.

SDK Software Development Kit.

SID Standard Instrument Departure.

SOP Standard Operating Procedure.

STAR Standard Terminal Arrival Route.

STC Supplemental Type Certificate.

SV Synthetic Vision.

TAC Terminal Area Charts.

TAF Terminal Aerodrome Forecast.

TC Type Certificate.

TCP/IP Internet Protocol Suite.

TDD Test Driven Development.

TFLite TensorFlow Lite.

TFR Temporary Flight Restriction.

7

TTS Text-to-Speech.

UI User Interface.

URL Uniform Resource Locator.

UX User Experience.

VFR Visual Flight Rules.

VR Virtual Reality.

VSI Vertical Speed Indicator.

WAAS Wide Area Augmentation System.

XML Extensible Markup Language.

XSD XML Schema Definition.

8

Chapter 1

Introduction

Throughout the history of aviation, heavy flight bags packed with essential charts and doc-
uments were playing a key role in pilots’ equipment. With the advancement of technology
and the broad availability of portable electronic devices with displays in the last decade, it
only made sense to convert these documents to a digital form. The devices used for reading
these documents became known as Electronic Flight Bags, or EFBs in short.

In the next chapter (Chapter 2), motivation driving the use of EFBs is explained, as
well as the current regulations that apply to the use of EFBs in aviation. As time pro-
gressed, EFBs have evolved beyond just document readers. Today, pilots can view dynamic
maps with real-time weather information, complete interactive checklists, improve their
situational awareness using Synthetic Vision and much more. These features are further
examined in Chapter 3, along with a presentation of three real-world EFB applications
available on the market.

The goal of this thesis is to design and implement such an application for the Android
Operating System (OS). The solution will focus on features useful for the General Aviation
(GA) pilots, simplifying the whole process of flying from takeoff to landing. In Chapter 4,
the features and the design aspect of the resulting application are proposed, together with
a brief introduction to development for the Android mobile platform.

Chapter 5 explains the process of turning the proposal into a fully functional mobile
application. The first section of this chapter describes the architecture chosen for the project
and the reasoning behind this decision. Later sections provide details on the implementation
of the individual application features, logically organized by the name of the screens, as
they are found in the application itself.

With the EFB application ready to use, Chapter 6 describes the methods used to test
the final product, including the results of user testing conducted with potential users of the
application. With the feedback from users in mind, the penultimate Chapter 7 discusses
future directions of research and development regarding the application. Finally, the last
Chapter 8 concludes this thesis with a short recapitulation of the work that has been done.

9

Chapter 2

State-of-the-Art Electronic Flight
Bag

As its name indicates, Electronic Flight Bag is an evolution of a regular flight bag, which
pilots typically carry with them while flying. Inside, one usually finds navigational charts,
operational manuals for the aircraft, checklists, and other documents relevant to the task
of flying an airplane.

EFBs have been gradually put into use by numerous commercial airlines, in hopes of
increasing profits and improving the safety of people on board. By equipping its 11,000
pilots with EFBs, Delta Air Lines approximated saving $13million per year in fuel and
associated costs [9]. Fuel savings are the direct result of removing traditional flight bags,
which can weigh close to 20 kg.

Even small weight cuts account for considerable fuel consumption reduction, especially
when accumulated over thousands of flights per day throughout the whole fleet. United Air-
lines began using a lighter paper for printing their in-flight magazine, reducing its weight by
28 g per magazine. This seemingly minuscule change, together with paper weight reduction
of their seat-back service guides, caused a total reduction of 5kg per flight. United Airlines
states, that this change led to saving 643 000 l of fuel, or $290 000 of fuel costs per year [47].

Besides reducing carbon emissions, EFBs help the environment by eliminating the need
to use paper. By introducing EFBs to pilots, airBaltic estimated saving 2 million pages
of paper every year by replacing their heavy flight bags, containing paper flight details,
manuals, navigation, and reference material [1].

In the name of safety, aviation regulations govern nearly everything that can be gov-
erned, and EFBs are no exception. In the first half of the decade, two major aviation
agencies each published their own regulations for the use of EFBs, the Federal Aviation
Administration (FAA) in the United States, and European Union Aviation Safety Agency
(EASA) in Europe. Since then, the International Civil Aviation Organization (ICAO) has
published its own document standardizing the use of EFBs, to which the two aforemen-
tioned agencies adjusted their regulations in their newer editions.

The current documents, used as sources for this thesis, are AC120-76D [15] by FAA,
AMC-20 [13] by EASA and Manual of Electronic Flight Bags [48] by ICAO.

10

2.1 Categorization
All three agencies categorize EFBs into a hardware class depending on its mobility. Each
agency specifies an EFB as either Portable or Installed. Their definition and rules describing
their use are similar across all agencies’ documents and the text below uses definitions taken
from all three of the documents.

2.1.1 Portable EFB

According to AMC-20 by EASA, portable devices are defined as ”a portable EFB host
platform, that is used on the flight deck, and that is not part of the certified aircraft
configuration [13].“

As portable EFB devices are not part of the aircraft configuration, they are considered
as Portable Electronic Devices (PEDs) and must adhere to their respective rules. Any
equipment that can consume electrical energy is considered a PED. Typically, they are
consumer devices brought on board by the crew members, passengers, or as part of the
cargo, not included in the configuration of the certified aircraft [13].

For a PED to be considered an EFB, it must actively display Types A and/or B software
application(s), as described in 2.2. Although a PED might contain software other than EFB,
appropriate steps must be taken to prevent interference of non-EFB software to the function
of EFB software [15].

The portable EFB can consume electrical energy either from an internal source such as
a battery, or externally, by connecting to an aircraft power source [13]. A lithium battery-
powered EFB must be properly certified by the manufacturer as to mitigate hazards due to
continuous charging of the device, including battery overheat and the risk of leakage [48].

If the portable EFB draws power from an external power source, the power source
must be rated for use by the EFB and it should be available to the extent required for
its operation. Quick access to turn off the power source by unplugging or a power switch
should be available to the operating pilot from a seated position [48].

2.1.2 Installed EFB

Installed EFB, means an EFB host platform that is installed in the aircraft and is consid-
ered as an aircraft part. Because of that, it requires full airworthiness approval, like all
other aircraft parts [13]. Compared to portable EFBs, installed EFBs are subject to safety
assessment addressing failure conditions of the hardware and design control. The approval
of these EFBs is included in the aircraft’s Type Certificate (TC) or in a Supplemental Type
Certificate (STC) [48].

2.2 Applications types
Depending on the criticality of the features offered by the EFB, the requirement for the
stability and redundancy of the device varies. The FAA discerns two application types
(Type A and Type B). A short description and several examples of applications of each
type can be found below, as listed by the AC 120-76C document [13].

11

2.2.1 Type A

Type A applications have a failure condition classification considered to have no effect on
safety. They do not substitute for or replace any paper, system, or equipment required
by airworthiness or operational regulations and do not require specific authorization for
use [13].

The following applications are examples of Type A applications:

• Aircraft parts manuals.

• Minimum Equipment Lists (MELs).

• Federal, state, and airport-specific rules and regulations.

• Chart Supplements (CSs) data.

• Aeronautical Information Publication (AIP).

• Aeronautical Information Manual (AIM).

• Pilot flight and duty-time logs.

• Captain’s report (i.e., captain’s incident reporting form).

• Aircraft captain’s logs.

• Current fuel prices at various airports.

• Computer-based training modules, check pilot, and flight instructor records.

• Airline Policy and Procedures Manuals (PPMs).

2.2.2 Type B

Applications of this type have a failure condition classification considered to be minor.
These applications require specific authorization for operational authorization for use. They
may substitute paper products of information required for dispatch or to be carried in the
aircraft, but they may not substitute for or replace any installed equipment required by
airworthiness or operating regulations [13].

The following applications are examples of Type B applications:

• Aircraft Flight Manuals (AFMs) and Airplane Flight Manual Supplement (AFMS).

• Flight Operations Manuals (FOMs).

• Maintenance manuals.

• Company Standard Operating Procedures (SOPs).

• Aircraft operating and information manuals.

• Aircraft performance data manuals (fixed non-interactive material).

12

• Airport performance restrictions manual (e.g., a reference for takeoff and landing
performance calculations).

• Weight and balance calculations.

• Takeoff, en route, approach and landing, missed approach, go-around, performance
calculations.

• Cost index modeling/flight optimization planning software.

• Interactive plotting for oceanic and remote navigation.

• Electronic aeronautical charts (e.g., arrival, departure, en route, area, approach, and
airport charts).

• Electronic Checklists (ECLs), including normal, abnormal, and emergency.

• Weather and aeronautical information.

• Aircraft cabin and exterior video surveillance displays.

• Aircraft flight log and servicing records.

• Autopilot approach and autoland records.

• Aircraft Maintenance Manuals (AMMs).

• Notices to Airmen (NOTAMs).

13

Chapter 3

Market Research

3.1 FltPlan Go
Established in 1999, Fltplan has grown into the largest flight planning company in North
America. More than 165,000 active users use their free, web-based flight planning & filing
offering, together with their companion FltPlan Go EFB mobile application. Available for
both iOS and Android mobile devices, FltPlan Go incorporates essential and beneficial
features and tools for in-flight and offline use [20].

Figure 3.1: FltPlan Go’s split-screen interface on a tablet device [21].

14

3.1.1 Maps

Aeronautical charts are maps designed to aid pilots to navigate an airplane. They depict
important information, such as airspace boundaries, waypoints, radio frequencies, safety
hazards, and more. Apart from general charts providing an overview of an area, there
are also specific charts describing procedures during different phases of flight, for instance,
Standard Instrument Departure (SID) and Standard Terminal Arrival Routes (STARs),
described in the next Section 3.1.2.

Before EFBs began being used, pilots used solely paper aeronautical charts for navi-
gation. Naturally, due to the paper’s limited size, the map has to be split into multiple
sectors. Moreover, each situation requires a different level of detail and there are also spe-
cific charts for VFR and IFR types of flight. Aeronautical charts in the U.S. are published
by the FAA. These include, but are not limited to [18]:

• Visual Flight Rules (VFR) Navigation Charts — Include cities and towns, roads,
railroads, and other distinct visual landmarks.

– Sectional Aeronautical Charts — Charts designed for visual navigation of slow
to medium speed aircraft. Scale 1:500,000.

– VFR Terminal Area Charts (TAC) — Depict the airspace designated as Class B
airspace. While similar to sectional charts, TACs have more detail as their scale
is 1:250,000.

– Caribbean VFR Aeronautical Charts — Designed to assist familiarization of
foreign aeronautical and topographic information. Scale 1:1,000,000.

– U.S. Gulf Coast VFR Aeronautical Chart, Grand Canyon VFR Aeronautical
Chart, and Helicopter Route Charts.

• Instrument Flight Rules (IFR) Navigation Charts — Provide aeronautical information
for navigation under IFR conditions.

– IFR En Route Low Altitude Charts — Includes airways; VHF NAVAIDs; limits
of controlled airspace; minimum en route and obstruction clearance altitudes;
airway distances, etc., below 18,000 feet MSL.

– IFR En Route High Altitude Charts — Includes the jet route structure; VHF
NAVAIDs; selected airports; reporting points, etc., above 18,000 feet MSL.

– Instrument Departure Procedure — Designed to expedite clearance delivery and
to facilitate the transition between takeoff and en route operations.

– Instrument Approach Procedure Charts — Portray the aeronautical data that
is required to execute instrument approaches to airports.

– Standard Terminal Arrival Route Charts — Described in section 3.1.2.
– Airport Diagrams — Designed to assist in the movement of ground traffic at

locations with complex runway/taxiway configurations.

• Planning Charts — Designed for preflight and en route flight planning for IFR/VFR
flights.

• Chart Supplements and Publications.

15

Taking into advantage the infinite canvas of a digital screen and the large storage size
of current portable devices, this quantity of different types of charts can be displayed on an
EFB to the pilot in a couple of touches. The pilot does not need to physically list through
papers when finding a specific chart or switching to a different section or detail level.

FltPlan Go features a movable map with sectional, en route, TAC, IFR terminal, and
other charts, organized into togglable layers. In addition to aeronautical charts, there are
layers commonplace in standard map applications, such as street, satellite, and topographic
layers. Also available are informational layers of airports, state outlines, and fuel prices.

As per regulations, EFBs are allowed to overlay own-ship position, if available, in rela-
tion to the displayed charts. This allows the pilot to better retain spatial awareness when
following the flight route or performing maneuvers. As the source of the position, FltPlan
Go is able to use either the built-in GNSS receiver of the device or connect to a compatible
device installed in the cockpit to increase reliability, as discussed in later Subsection 3.3.4.

During the flight, the plane’s position is continuously logged and visualized by a feature
named ”breadcrumbs“. Breadcrumbs track the flight path, so that the pilot can replay and
review it later, at different playback speeds. The path can be exported which allows the
user to examine the path in programs such as Google Earth.

As the pilot nears the approach phase of the route, FltPlan Go provides an ability to
overlay approach charts directly on the map, as can be seen in Figure 3.1. Combined with
the display of the own-ship position, this feature makes it easier for the pilot to see the
relevant charts and stay in context during the approach.

The ability to display dynamic information on the map enables the option to display the
weather conditions, in real-time. FltPlan Go offers the possibility to view weather radar,
winds, and METARs as dynamic layers, through the use of color gradients and wind arrows.
The pilot can further preview the evolution of weather conditions using animation, which
can be helpful in deciding whether to make changes to the flight path because of unpleasant
weather conditions.

Lastly, one of the classic purposes of a map is distance measuring. Obtaining a distance
measurement using a traditional paper map requires ruler measurements and numerical
calculations, which are prone to errors. Using the measurement tool feature of the map
in FltPlan Go ensures accurate and fast distance measurements, so that the pilot can stay
focused on other tasks.

3.1.2 Airport information

The Airport tab compiles useful information about airports saved in FltPlan Go’s database.
The pilot can search for an airport by its name, ID, and city name, or select an airport
directly from the map interface. To make it easier to find airports later, airports can be
marked as favorites, and searches are saved in history, where the user can quickly go back
to their previous queries.

The airport detail screen contains information about the airport’s runway length and the
ground, tower, and Automatic Terminal Information Service (ATIS) frequencies. Through
convenient action buttons, the user can view the airport diagrams described in Section 3.1.1,
with the runway, taxiway, and gate details, useful for the pilot before takeoff or after landing.
For more information, the user can open the relevant pages of the Chart Supplement (CS)
document.

The pilot can examine the current weather situation at the selected airport through
METARs, Terminal Aerodrome Forecasts (TAFs), Notices to Airmen (NOTAMs) and Pilot

16

Reports (PIREPs). They are updated in real-time either through a Wi-Fi connection
or through a compatible Automatic Dependent Surveillance–Broadcast (ADS-B) receiver.
FltPlan Go also includes a convenient feature named ”Runway Wind Calculator“, using
which the pilot can calculate the tailwind and crosswind from the runway they are using [22].

3.2 Garmin Pilot
Garmin is an American company founded in 1989. Today, with more than 15,000 associates
in 80 offices around the world, they bring GPS navigation and wearable technology to the
automotive, aviation, marine, outdoor, and fitness markets [26]. Their aviation products
include flight decks & displays, autopilots, navigation & radios, flight instruments, sensors,
and more. This section will describe some of the features of their EFB application Garmin
Pilot shown in Figure 3.2, available for iOS and Android devices.

Figure 3.2: Garmin Pilot’s User Interface [49].

3.2.1 Documents

Historically, the first EFBs simply provided the ability to store paper documents, such as
manuals or charts, in a digital form. Today, it still stands as one of the most important
features of EFBs, with airlines such as Qatar Airways still innovating the approach with the
use of centralized documentation management. This system provides a single repository
to revise and track all operational and non-operational company manuals, that are then
available live on-board on an EFB [3].

Similarly, Garmin Pilot offers an option to link to third-party cloud storage services like
Dropbox and access any documents stored there. This way, the pilot can upload any set of
documents they might need through their computer in advance, or even share documents
with other pilots.

17

While saving space and weight, digital documents are also much easier to update than
physical documents, as they do not need to be reprinted and brought on board, simplifying
the logistics involved. With the centralized documentation management approach, any
change to the documentation is automatically synchronized, ensuring that every procedure
or chart is kept up to date.

An immense advantage of electronic documents is the ability to quickly search through
them. Especially in situations unfamiliar to the pilot, the possibility to find a key piece
of information by searching by keyword instead of flipping through the pages of a paper
manual allows the pilot to spend more time resolving the problem, rather than finding
a solution to it.

In addition to search, Garmin Pilot has the ability to sort and organize documents by
marking them with colors. The user can add and remove bookmarks or annotate the files
directly by touch or using a stylus. The document can then be shared directly from Garmin
Pilot to other applications installed on the device [28].

3.2.2 Checklists

A checklist refers to a document used by pilots and flight crew as a tool to verify that
all required actions are done in totality and in the correct order. In their paper forms,
checklists are usually available to pilots in a Quick Reference Handbook (QRH). A checklist
is categorized as normal, abnormal, or emergency, determined by the prevalence and severity
of the situation it applies to.

Although a checklist can be stored electronically in the same way as any other document
by the EFB (as described in Section 3.2.1), an EFB application can instead present the
checklist in a more user-friendly manner while also enabling interaction with the pilot or
even with the aircraft.

Garmin Pilot allows the pilot to view checklists arranged by aircraft binders. In each
binder belonging to an aircraft, the checklists are tabbed under normal, abnormal, and
emergency categories. After choosing a category, a list of checklists is shown by their titles,
sorted by the phase of flight they apply to. Finally, tapping on a checklist displays its
content on the screen in the form of a list. Each item can be marked either as complete or
incomplete, as indicated by a checkmark field next to it.

There are checklists for several aircraft models already included in the application, how-
ever, checklists for other aircraft types can be added by entering the information manually.
Each checklist is fully customizable, allowing the user to reorder, edit or add new items.
A checklist item can be set to initiate an action in the Garmin Pilot application, enabling
dynamic checklist content tailored to the current situation. For example, the pilot can
find the actual frequency of the ground control radio in an After Landing checklist, as
determined by the current flight plan.

3.2.3 Synthetic Vision

Synthetic Vision (SV) depicts a forward-looking attitude display of the topography imme-
diately in front of the aircraft. The depicted imagery is derived from the aircraft’s attitude,
position, and databases of terrain, obstacles, and other relevant features. The Synthetic
Vision terrain display shows land contours, large water features, towers, and other obstacles
over 200 feet AGL that are included in the obstacle database [28].

18

Figure 3.3: Synthetic Vision feature of Garmin Pilot [27].

As seen in Figure 3.3, the SV feature contains a two-dimensional overlay with flight in-
struments similar to a Primary Flight Display (PFD), such as an altimeter, airspeed indica-
tor, Vertical Speed Indicator and horizontal situation indicator. When paired with a com-
patible device capable of receiving ADS-B traffic information described in Section 3.3.4,
traffic symbols are displayed at their approximate locations as dots.

The SV is programmed to display visual alerts to indicate the presence of terrain and
obstacle threats relevant to the projected flight path. Terrain alerts are displayed in red
and yellow shading. Traffic close to the position of the aircraft will result in a traffic alert.
As per regulations, Synthetic Vision is intended for situational awareness only and should
not form the basis of maneuver decisions for the pilot.

3.3 Foreflight Mobile
Foreflight is a company formed in the year 2007. Serving personal, business, military, com-
mercial, and education sectors, they have established themselves as a leader in the aviation
industry, with their EFB offering in the form of mobile flight planning applications [23].

Their flagship product is the ForeFlight Mobile application seen in Figure 3.4, aimed
at both individual pilots and professional flight crews. It offers features for flight planning,
charts, weather, airport information, document management, flight logging, Synthetic Vi-
sion, and more. It is available for iPhone and iPad devices running on the iOS platform.

19

Figure 3.4: Map interface of Foreflight Mobile [51].

3.3.1 Flight planning

ForeFlight Mobile offers multiple ways to create a flight route. The user can input the
departure and destination either manually, or use the provided search function. A route
can also be created directly from the map interface. Once the departure and destination
points are chosen, the application will calculate a valid flight route between them, together
with the Estimated Time of Arrival (ETA).

The flight time estimate takes into account not only the type of the aircraft, and the
selected performance profile, but also real-time predictions of the weather and wind condi-
tions along the route at the time of flight. If the route is planned more than 6-7 days in the
future, ForeFlight will use historical winds to calculate performance, based on the average
wind speed and direction along the planned route over the past 40 years [25].

To choose a different route, the pilot can take advantage of the route advisor. The
route advisor window displays multiple potential routes between the selected departure
and destination airports, as well as their estimated flight time and fuel consumption. The
pilot can then choose the recommended best route overall offered by the route advisor,
taking into account not only the fuel and time savings, but also previous ATC clearances
in the past.

The altitude advisor feature models winds conditions along the route at various alti-
tudes, showing the net average tailwind, estimated flight duration, and fuel burn per each
altitude level. For altitudes unreachable by the aircraft according to its climb performance,
the data is not displayed. The pilot can decide to pick the best altitude for their flight
based on the recommendation, saving on fuel cost and or time.

20

The procedure advisor allows the pilot to add Standard Terminal Arrival Route (STAR)
procedures, Standard Instrument Departure (SID) procedures, approaches, and VFR traffic
patterns to the flight plan. The procedures are selected based on the airports that are part
of the current flight plan. Both the Departure and the Arrival button display an inset map
of the selected procedures over the main map, helping the pilot quickly review the flight
route in the context of the procedure charts.

At the arrival airport, ForeFlight optionally displays a list of local Fixed-base Operators
(FBOs) and their offerings, for instance, refueling or maintenance services. Next to each
FBO, the user can find important information such as the price of jet fuel, phone number,
and radio frequency.

3.3.2 3D Preview

This feature allows the user to explore their planned route in an accurately portrayed real-
istic 3D environment, with photo-real aerial imagery overlaid over high-resolution terrain
data. Besides the planning phase, this mode can also be used during the flight, as well as
to replay a recorded flight.

Figure 3.5: ForeFlight’s 3D Preview mode [24].

By touching and scrubbing the timeline at the bottom of the screen, the user can
interactively move in time alongside the planned route. The route is displayed as a line
drawn through the 3D space between waypoints as specified by the flight plan. Thanks
to the satellite imagery, the pilot can familiarize themselves with ground features and
landmarks along the route.

ForeFlight has the ability to visualize the weather conditions throughout the flight, in
3D, as shown in Figure 3.5. This feature allows the pilot to see the icing and turbulence

21

forecasts at each point of the route ahead of time, exactly as they will be when the aircraft
flies through. This helps the pilot quickly prepare for the flight conditions beforehand, or
even make changes to the flight plan accordingly to fly around severe weather [25].

3.3.3 Alerts

ForeFlight provides a number of in-app audio and visual alerts that help to keep pilots
aware of potential hazards and improve situational awareness in flight and on the ground.
Alerts are displayed in the upper third of the screen in a red or beige-colored rectangle,
depending on the severity of the alert. An alert persists for several seconds, but it can also
be dismissed manually by the pilot by tapping on it. The following are some examples of
the alert types in ForeFlight, as described in the manual [25]:

Runway Proximity Advisor
Triggers when taxiing near or onto a runway. The system automatically runs in the back-
ground and displays the alert regardless of the currently opened windows in the application.
When approaching a runway, the system provides an alert that includes the name of the
runway. Upon entering the runway, the system also displays the length of the remaining
runway.

Cabin Altitude Advisor
If the device is equipped with a separate barometric pressure sensor or connected to an
external device from Section 3.3.4, the system monitors the cabin pressure and provides
alerts when passing 12 000 ft MSL and 25 000 ft MSL.

Terrain/Obstacle Alerts
Using the current position and terrain data, the system displays an alert dialog when it
detects an obstacle close to the aircraft. The dialog features an overview map with the
plane position and hazard areas highlighted. When nearby airports or approach paths, the
alert sensitivity is reduced in order to reduce nuisance alerts.

Temporary Flight Restriction Alerts
When nearing a known Temporary Flight Restriction (TFR) zone, the system provides an
alert warning the pilot of its position with a warning ”TFR Ahead“, ”TFR Below“, ”TFR
Above“ and ”Inside TFR“. The system also warns of soon-to-be active TFR zones, if they
are set to become active within the next five minutes.

Overheat Alerts
To prevent unwanted shutdowns, ForeFlight monitors the device temperature and displays
an alert when it is overheating. The pilot can then take measures to cool down the device,
such as moving the device out of direct sunlight or lowering the screen brightness.

3.3.4 External devices connectivity

The device running an EFB application usually possesses a limited set of receivers and
sensors useful for building a model of the current flight situation. These generally include
a GNSS receiver for positional information, magnetometer, accelerometer, and sometimes
also a separate barometer. Nevertheless, the device sensors and receivers may not be

22

suitable for use in the conditions inside the aircraft. As an example, the presence of metal
in the cockpit can introduce errors in the compass heading readings. As an additional
example, the cockpit canopy might partially block the GNSS signal from reaching the
device, causing it to lose position fix.

In order to improve and or extend the data provided to the EFB applications, there
are plenty of portable devices on the market that serve this purpose. One of these devices,
supported by ForeFlight, is Sentry, shown in Figure 3.6.

Figure 3.6: Sentry, a portable ADS-B & GNSS Receiver [71].

Sentry includes a highly accurate, reliable GNSS receiver with support for Wide Area
Augmentation System (WAAS), an extremely accurate navigation system developed for
civil aviation. It uses a system of precisely surveyed ground stations to provide corrections
to the GNSS navigation signal, caused by GNSS satellite orbit drift and signal delays caused
by the ionosphere. These correction messages are then broadcast through communication
satellites to receivers onboard aircraft using the same frequency as GNSS [17]. This system
is available in North America, although similar systems are in use in other regions, such as
the European Geostationary Navigation Overlay Service (EGNOS) in Europe.

Next after position, ForeFlight can utilize the built-in Attitude and Heading Reference
System (AHRS) for additional data regarding the aircraft’s attitude. This data can be used
as a source by Synthetic Vision systems described in Subsection 3.2.3. To ensure that the
data is accurate, the pilot needs to first calibrate the device in the application by specifying
the Sentry’s mount location and leaving the device stationary [25].

Moreover, Sentry contains an Automatic Dependent Surveillance–Broadcast (ADS-B)
receiver. Using this technology, aircraft can broadcast their position to other aircraft, which
in turn can be displayed in EFB applications. Apart from traffic information, numerous
weather-related data can be received through the ADS-B receiver, which is convenient
in situations without an internet connection. ForeFlight’s support includes the following
ADS-B weather products: [25]

• Radar, lightning, turbulence, cloud tops.

• Meteorological Aerodrome Reports (METARs).

• Terminal Aerodrome Forecasts (TAFs).

• Temporary Flight Restrictions (TFRs).

• Pilot Reports (PIREPs).

23

• Airman’s Meteorological Information (AIRMET).

Finally, Sentry includes a built-in carbon monoxide sensor. When the CO level reaches
hazardous levels, it raises an audio and in-app alarm. Sentry allows to connect up to five
Wi-Fi devices. Passengers or the co-pilot can connect to the device and receive route,
weather, and traffic information, helping the pilot stay focused on the task at hand by
being on the lookout for any possible hazards during the flight [71].

24

Chapter 4

Application Design and
Specification

This chapter serves as a preparation for the realization of the final application. After an
introduction to Android development and its latest trends, a set of features that should be
implemented in the resulting product are defined. Finally, based on the proposed features,
a graphic design of the User Interface is put forward.

4.1 Android development
Android is an open-source operating system designed for smartphones and tablets. The
first public version was initially released in 2008, together with the first commercially avail-
able Android device HTC Dream. Developed by the Open Handset Alliance led by Google,
Android has since then been updated regularly with new features for both users and de-
velopers. As of today, Android has grown to be the best-selling mobile operating system
globally with over 70% market share [67]. This can be attributed largely to the abundance
of device models that run on Android in all price ranges, making it accessible to the vast
population.

An integral part of the Android operating system is its application ecosystem. Users
can download nearly 3 billion applications from the Google Play store, spanning many
categories, from social networks to niche utility tools [2]. As Android devices come in many
different form factors, display resolution and equipment, development for Android poses
a unique challenge in ensuring that the product is compatible with as many devices as
possible.

Fortunately, developers do not have to acquire various physical devices in order to test
their code on a plethora of devices. Instead, they can use the provided Android Emulator
which emulates a physical mobile device, with configurable parameters such as screen size or
display resolution. Moreover, the developer can control various device sensors and receivers,
such as an GNSS receiver or an accelerometer, in order to test applications that interact
with the real-world environment on their local development machine.

Applications for Android are developed using the Android Software Development Kit
(SDK) in Java, Kotlin and C++ programming languages. The official Integrated Develop-
ment Environment (IDE) for Android is the Android Studio. Built upon JetBrains IntelliJ
IDEA, it has been created specifically for Android development. It includes a layout editor,

25

real-time profilers, built-in code linter, translation editor, and other tools, simplifying the
development experience.

Kotlin is a modern programming language developed by JetBrains and has been the
preferred development language for Android since 2019. Compared to Java, it provides sev-
eral language features which result in shorter and cleaner code. Migrating project codebase
from Java to Kotlin is very straightforward, as Kotlin is fully interoperable with Java and
compiles to JVM bytecode.

One of the many practical features, that Kotlin supports, are coroutines. Coroutines are
essentially lightweight threads with minimal overhead compared to normal threads. Long-
running operations in a coroutine can be suspending instead of blocking, allowing the calling
thread to continue executing code. This non-blocking way of performing asynchronous tasks
is an effective way to solve the common problem of loading data to be displayed in User
Interfaces, without blocking the User Interface thread itself.

Particular problem developers face when developing applications for Android, is the
fragmentation of Android versions on consumer devices. When a new Android version is
released, it takes a while before new devices with the latest version hit the market and get
in hands of the users. Existing devices can take months to receive an update to the new
version, provided that the manufacturer decides it is worth supporting the device in the
first place.

Fragmentation leads to a significant lag in the availability of new features, that become
available in the latest Android versions. Since the actual share of devices running the
latest version is small, developers are discouraged to implement these new features in their
applications, if they can work on features that apply to all of their users, instead of just
a fraction of them. Google is attempting to eliminate the issue of fragmentation by efforts,
such as the Project Treble, where they were able to raise the adoption of the newest Android
version just before the release of the next version from 8.9% to 22.6% [55].

With the aim of bringing new features to older platform versions, Google created the
AndroidX library. This library provides backward compatibility for many new features
introduced to the Android platform, providing a feature parity between old and new versions
of Android. Developers use this library heavily, as it allows them to target a higher number
of users, while also benefiting from the latest features and fixes.

In an effort to improve developer experience, Android provides a suite of libraries under
the name Android Jetpack [31]. This set of libraries helps developers to follow best practices,
reduce boilerplate code and write code that works consistently across Android versions. The
most notable libraries included in Jetpack are:

• Room — Data persistence backed by an SQLite database.

• Work — Background task scheduling and execution.

• Navigation — Improves structuring of UI screens and the navigation between them.

• Databinding — Enables binding UI components to data sources in a declarative for-
mat.

• Camera — Simplifies working with device camera through providing a compatibility
interface.

• Material Design Components — A set of UI components implemented according to
the Material Design [36].

26

4.2 Application features
The resulting application of this project should be built upon the knowledge gathered from
the conducted market research in Chapter 3. The existing applications already approach
the subject in a matter that is familiar to pilots, who are the main target group for this ap-
plication. Because of that, the resulting application should not deviate too much regarding
the core concepts, but instead, should extend their functionality furthermore.

As the EFB application is developed for mobile devices, it is considered to be a Portable
EFB and should adhere to their respective rules, as described in Section 2.1.1. As a guide,
the Manual of Electronic Flight Bags (EFBs) published by ICAO should be used, since
it includes many recommendations with respect to the development of EFB software in
Appendix A [48].

The principal concept of the EFB application should revolve around simplicity in terms
of the workload placed on the pilot when operating the application. This should be achieved
by leaving the user to perform only the actions necessary, and automating the rest as
applicable. The application should try to display useful information and offer appropriate
actions to the pilot based on the current context. Below is a description of features that
should be offered by the application, in a way that fulfills this goal concept.

Documents

Starting from the core EFB features, the Documents feature should allow the pilot to read
digital documents such as Aircraft Flight Manuals (AFMs), Quick Reference Handbooks
(QRHs) or any other documents as needed by the pilot. Similar to other implementations
detailed in Section 3.2.1, the interface should allow the user to organize the documents
into categories and customize their order. The application may already provide several
widely available documents, but the user should be able to upload documents of their own,
or at least connect the application to his cloud storage. Moreover, the documents should
be searchable by the user. If a document does not include a textual representation of its
content, an Optical Character Recognition (OCR) should be performed to enable the search
function.

Checklists

Next, the Checklists feature should allow the user to add and edit checklists, as described in
Section 3.2.2. Users should be able to split checklists into categories and edit their content.
The option to go through a checklist should automatically be offered to the pilot when
applicable. For example, if the system recognizes that the pilot is on a final approach, it
should offer the pilot an option to go through the before-landing checklist.

In-flight crews composed of the captain and a co-pilot, the document 120-71B by the
FAA specifies that flight-related checklists should be accomplished by one crew member
reading the checklist and the second crewmember confirming and responding to each item,
as appropriate [16]. The application should attempt to imitate this practice and include
a Text-to-Speech (TTS) feature that will read the checklist item aloud. Subsequently, it
should listen for the correct response from the pilot, as described by the checklist, using
speech recognition. The pilot should therefore be able to complete a checklist using his
voice only, without being distracted from controlling the aircraft.

27

Airport catalog

As presented in the airport information Section 3.1.2, there are many pieces of information
linked to an airport that are important for the pilot. A user should be able to find all
this information in one place, in a comprehensive screen including the general data about
the airport, runways, and frequencies. In addition, the screen should display the current
weather information and METAR, as well as relevant documents regarding the airport’s
procedures and current NOTAMs. The airport information window should be accessible
either directly from the map, or from a searchable database of airports.

Flight planning

Before a flight, the pilot must be able to enter their destination into the system. The
application may then automatically compute a suitable flight route through waypoints as
defined by Aeronautical Information Publication (AIP), taking into account the aircraft
performance data and load weight, as provided by the pilot. An option to manually input
the route waypoints should also be available. The airport and waypoint input fields should
provide auto-complete functionality to make the selection process easier. All flights should
be automatically saved as drafts, so that the pilot can plan a flight at home and return
to it later before the flight. The complete flight plan is then passed on to the Dashboard
interface described next.

Dashboard / Map

The main feature of the final EFB application will be the Dashboard. During the flight,
this mode should display basic flight information, such as the current position, altitude,
heading and speed. This information should be sourced from the device’s built-in GNSS
receiver and barometer, although support for connecting to an external device discussed in
Section 3.3.4 may also be implemented.

The aircraft’s position should be depicted on a movable map, according to the display of
own-ship regulations in Section 2.2. The map should contain important waypoints, points
of interest, and areas of interest relevant to the pilot. Since the internet connection might
not be available in-flight, the map data should be available offline.

The current route, as defined by the flight plan, should be drawn on the map with
its waypoints highlighted. Information about the next waypoint on the route, such as the
name, distance, and ETA should be visible to the pilot. As the aircraft moves, it should
leave a visual breadcrumb trail behind the aircraft on the map, with distinctive color-coded
segments tracking the altitude. In order to help the pilot approximate the turn radius,
a turning rate indicator should be drawn at the position of the aircraft.

Having access to real-time weather data, visual areas of precipitation and clouds should
be highlighted on the map, to help the pilot navigate around areas with undesirable weather.
Wind direction and speed should be visualized appropriately. The weather layer may be
toggleable by the user. An alert should be raised when nearing an area with harsh weather
conditions.

If available, real-time traffic may be displayed on the map. Other aircraft should be
properly distinguished from own aircraft. Each aircraft should be marked with its call
sign, current altitude, and its flight heading. Traffic information may be sourced from the
internet, or from an ADS-B receiver. If another aircraft comes to close proximity to the
pilot’s own aircraft, a traffic alert should be raised.

28

Various alerts should be displayed and read aloud to the pilot when raised. These
alerts may include the aforementioned weather and traffic alerts, terrain proximity alerts,
airspace border alerts, and others. The alerts should be dismissible when unneeded and
have a certain mute period, in order to prevent the alert from becoming an annoyance.

Calculations

Conversions between various units should be built into the application, in an accessible
manner. Conversions should be available between quantities used commonly by pilots, such
as temperature, velocity, mass, and volume. Other practical tools, for instance, a runway
wind or density altitude calculator, may be available too.

Logbook and replays

Flights marked as finished will be a part of the Logbook. The logbook should provide basic
statistics about the total number and duration of all flights. The user should have the ability
to replay any past flight. Choosing to replay a flight should open the Dashboard view, with
the past flight data used as the source of information. In replay mode, the position of
the aircraft is replayed as recorded. The replay speed should be selectable and the user
should have the ability to manually seek through the timeline. Lastly, the pilot should have
the option to export the flight path to GPS Exchange Format (GPX) or Keyhole Markup
Language (KML) files.

Connection with simulators

Today’s flight simulators often model the real world to great accuracy, including, but not
limited to, airports, terrain, aircraft, and navigational waypoints. Hence, the EFB applica-
tion can also double as a companion for simulator pilots. After connecting the application
to a simulator, the system will receive data about the position of the aircraft in the simu-
lation and display it on the map, as if the position came from the built-in GNSS receiver.
Apart from simulator pilots, this feature will also be essential for testing and debugging
purposes.

Offline support

A working internet connection is not guaranteed in the typical environment where the
application is expected to be used. Because of that, all features that use data downloaded
from the internet have to be carefully considered to support offline conditions gracefully. At
the least, the User Interface should explicitly inform the user that a feature is not available
when offline. However, the best solution would be to make the feature work in full capacity
even without an internet connection, through techniques to the likes of pre-loading and disk
caching.

4.3 User Interface
The design of the User Interface should take into consideration the normal conditions during
the application’s use. The color palette should be chosen appropriately to ensure sufficient
contrast in the brightly lit environment of the plane’s cockpit. Even though an effort is
put into automating common actions through the use of voice interaction, any UI elements

29

still needed should be adequately large for the pilot to interact with, when the device is
mounted in the cockpit.

Upon launching the application, the user is greeted with the Home screen. The first
of the screens in Figure 4.1, the Home screen immediately draws an eye to the button for
creating a new flight, pulling the user deeper into the application through the main flow.
For quick access, the most recent saved and finished flights are displayed, with the option
to jump to a list of all flights (Logbook). Furthermore, navigational buttons for documents,
airport catalog, tools, and settings are placed at the bottom of the screen.

Electronic Flight Bag

Create a new flight

Recent flights

More

DST

82 nm

WPY

7

ETE

45 min

LZIB LZSL
M.R Stefanik Sliac

DRAFT

DST

82 nm

WPY

7

ETE

45 min

LZSL LZIB
M.R Stefanik Sliac

DONE

Show all

Settings

AirportsDocuments Tools

Flight planning

LZIB

LZSL

TURIS

Add waypoint

ALTDST

DST

8271 ft54 nm

30 nm

LZIB

LZSL

TURIS

DST ETE

82 mi 45 min

ASTON

TOVKA

Next up...

TOVKA

DST BRG ETA

1.1 mi 037° 14:58

OMALB

RAIN ahead

in 5 min

TRK

SPD

ALT

337°

120 kn

8791 ft

Figure 4.1: Proposed graphic design of the main application screens.

When creating a flight or editing an existing one, the user encounters a familiar interface
inspired by popular car navigation applications. The flight planning screen in the middle of
Figure 4.1, consists of a movable map with the current flight route highlighted, together with
a waypoint list. The user can set their destination, add new waypoints or reorder/delete
existing ones. The altitude of each waypoint can be configured here as well. At the bottom,
the total flight distance and the estimated time duration of the flight are displayed.

The Dashboard screen, shown on the right in Figure 4.1, is the primary screen used
during a flight. It is, again, inspired by established design principles found in car navi-
gation systems, in order to feel intuitive to the pilot. Its main element is an interactive
map, automatically centered on the plane’s position, rotated in the direction of the plane’s
heading. The current flight route is highlighted by a distinctive line, with flight route way-
points marked by their names. The map is capable of displaying weather elements in the
form of colored areas signifying the presence of rain and clouds. The wind is designed to
be depicted using small flowing particles, from which the wind speed and direction can be
read.

30

At the very top, the next waypoint on the route is displayed, along with information
about the distance, bearing and ETA located next to it. In the lower-left corner, the current
aircraft speed, altitude, and track are displayed. The lower right corner is occupied by an
action button that opens a dialog box containing buttons for easy access to Documents, the
Airport catalog, and Tools screens. When an alert is raised during the flight, a bubble, color-
coded based on the alert’s severity, is shown in the upper part of the screen. When there
are multiple alerts present, they will be automatically reordered based on their priority.

31

Chapter 5

Application Implementation

This chapter introduces the final EFB application, named NaviPilot. The first section
discusses the architectural approach, as well as key paradigms and tools that have been
chosen for the project. The following sections present the individual proposed features as
they are implemented. Also included are the concepts of the Android Operating System
and the libraries, that were used during the development of the application.

5.1 Project architecture
The development project is split into modules constituting a hierarchy of the main appli-
cation module, which depends on several supporting sub-modules. Each sub-module is an
independent entity, which contains classes and resources required for a specific use-case.
Modularization results in a cleaner project structure, encourages code reuse, as well as re-
duces the build times by avoiding recompilation of unchanged modules during development
iterations. Figure 5.1 portrays a diagram of the structure of the project’s modules.

armodule

app aviationweathercenterapi

faanotamapi

jsimconnect

openaipparser rainviewerapi

Figure 5.1: Diagram of the NaviPilot project modules.

Gradle is an open-source build automation tool [44]. It is the default build system for
Android development and it is used as the build system of this project as well. It allows
configuring the project and its dependencies, through domain-specific configuration files
written in Groovy or Kotlin languages. Each module can specify external libraries from
online maven repositories and other project modules as its dependencies. Upon project
compilation, Gradle automatically computes the dependency graph of the modules, handles
transitive dependencies, and downloads missing artifacts as necessary.

32

The main module of the project is the app module. It contains the core application code
for UI, application business logic, and interaction with the database. Individual classes are
packaged logically by the application screen to which they apply. Resources, such as fonts,
graphics, and strings are saved in the default resources folder, as is the standard practice
in Android projects. The Android resource system is flexible in the capability of providing
different resources based on the context of the device size, resolution, language and more.

Navigation

Since Android’s very first release, Android applications had used Activities as the main unit
of the User Interface. The Android documentation describes an Activity as a single, focused
thing that the user can do [30]. Each application screen would typically be represented
by its own Activity class, which would then be created and disposed during runtime as
needed when the user wants to navigate between screens. Activities have a lifecycle that is
ultimately managed by the OS. This means, that an Activity can potentially be disposed
anytime by the system when resources need to be freed.

Developers need to be prepared to handle the occurrence of these lifecycle events. An
activity moves through several states as it is created, moved into the foreground, paused,
stopped, and destroyed. The system provides callbacks for these transitions and it is the
responsibility of the developer to graciously take care of these events, in order to prevent
any crashes or loss of data.

The Honeycomb version of Android introduced Fragments. They are designed to be
smaller and more modular UI elements compared to Activities. An Activity can contain one
or more Fragments, which allows creating composite User Interfaces that are particularly
suitable for the then-upcoming tablet devices with large screens. With Fragments, multiple
variants of a User Interface can be created, showing either a single full-screen view or
a master-detail layout when the screen is sufficiently large.

Nowadays, the current trend in modern Android development takes advantage of the
Navigation library from the Jetpack suit [39]. Using Navigation, developers can create entire
navigation graphs connecting individual content areas, called destinations. Destinations
may be whole screens or individual pages of a tab component. Each destination can define
its arguments, required or optional, which in combination with the SafeArgs plugin enables
writing navigation code in a type-safe manner.

The Navigation library shifts the Android UI paradigm from multiple Activities made
for each screen, to one where the whole application consists of a single Activity, which
contains only a Navigation host container. The container is used to display Fragments, that
are swapped in and out as necessary by a Navigation controller. The Navigation library
provides several advantages compared to traditional approaches, such as automatic handling
of Fragment transactions, support for back navigation, built-in transition animations, and
integrated support for deep links.

NaviPilot uses the Navigation library to conduct navigation between application screens.
The project’s navigation graph is saved in the nav_graph.xml file stored in the resources
folder. Opening the file in the Android Studio IDE displays a window containing a visual
representation of the graph. The visual editor allows the developer to easily create new
destinations, define their arguments, and wire transitions between destinations using the
mouse pointer.

33

Jetpack Compose

Traditionally, Android had used a view system consisting of widgets called Views. These
were the building blocks of any User Interface on Android, providing common UI elements
such as TextView, Button and Checkbox. To arrange these widgets, several types of lay-
outs were available, like the LinearLayout, RelativeLayout and FrameLayout. Although
these layouts were simple on their own, developers could nevertheless serve more complex
use-cases by nesting the layouts into themselves. To provide support for complex layouts
out-of-the-box, the Android team released the ConstraintLayout library in 2017. It fea-
tured a powerful constraint-based system that could create UI layouts that were hard to
implement using the simple layout types.

As the Android ecosystem developed, many design flaws of the view system were pro-
gressively more apparent. Due to the view framework being tightly coupled to the core
Android environment, any drastic reworks of the view system had to be avoided in order to
ensure compatibility with old versions. This meant that the technical debt kept on growing,
while only minor issues could be solved in hopes of keeping the system maintained. In this
situation, it only made sense to develop a new solution for UI development, now called
Jetpack Compose [34].

Part of the AndroidX suite of libraries, Jetpack Compose aims to redefine the way User
Interfaces are created in Android development. Compose introduces a declarative way of
building UIs, where the developer describes how to transform a certain state to pixels on the
screen. Compared to an imperative approach, this results in less code and is more intuitive
to the developer, since any changes to the state are automatically handled by Compose
which results in the UI being updated.

The basic unit of a Compose view is a Composable. A Composable can be any widget
or a layout containing other Composables. The Compose library provides several default
widgets for many daily use-cases, however, the developer can easily create their own. In
contrast to the old view framework which primarily used XML files to define Views, Com-
posables are defined in code by writing a method with the @Composable annotation.

Compose leverages many features of the Kotlin language, namely named arguments and
default parameters. Migrating to Compose is effortless since Compose provides interoper-
ability with the old view system. Classic Views can be used in Compose and vice versa,
enabling an incremental migration of the codebase. During the development of this project,
the Compose library was in the beta stage of development. Nevertheless, NaviPilot uses
Compose for the vast majority of its User Interface.

ViewModel

In Android, UI-based classes, such as Activities and Fragments, are recreated during con-
figuration changes. If the view layer is responsible for loading information from the data
layer, the user could lose any state stored in the screen by changing the phone’s orientation
from portrait to landscape. This would result in a very poor user experience and must
therefore be avoided.

As recommended by the best practices guide for Android development published by
Google, a ViewModel layer is introduced to act as a bridge between the UI and the data
layer [37]. To implement the ViewModel layer, the ViewModel class of the Jetpack View-
Model library is used [43]. The ViewModel class is designed to survive configuration
changes, allowing to hold the information even in the event of screen rotation. The re-

34

sulting separation of concern also aids in testability, as each layer can be mocked as needed,
making it possible to test each component in separation.

Reactive programming

Reactive programming is a paradigm describing the way information is passed between
components. Data often form an asynchronous stream of events, for instance, a stream of
locations originating from a GNSS receiver. If the goal is to display the current location in
the UI, reading the location from the stream only once and displaying it is not sufficient.
Periodically polling for the latest location in a set interval is not perfect either, since the
location data may become available sporadically. A low polling interval could result in some
updates being skipped while setting a polling interval too high would be inefficient.

What is needed is an event-based observer pattern, where the observer sends a message
to its subscribers when new data is available. In Java/Kotlin, this behavior can easily be
achieved by using e.g. callbacks or the Java Observer interface. In Android, however, views
and other components have their own specific lifecycles. In cases when the view is disposed,
any callbacks that were not unregistered may get leaked. This may result in an application
crash when the disposed view would attempt to be updated when new data is received.

Kotlin’s coroutines are lifecycle-aware by default. All coroutines must run in a lifecycle
scope. When the lifecycle scope is disposed, all coroutines and their children are automat-
ically canceled. The AndroidX Lifecycle library [38] provides lifecycle implementations for
Android platform components such as Fragments and Activities. These lifecycle entities
are tied to the component’s own lifecycles, so that when the component is disposed, the
coroutine’s lifecycle scope is disposed as well, allowing the coroutine to clean up graciously.

This behavior is useful not only to automatically cancel lifecycle-sensitive subscriptions,
but also to stop any long-running background operations in general, running in coroutines.
Asynchronous operations, which result in a single deferred value, are constructed with the
async function block. In order to return multiple values in an asynchronous stream, the
Kotlin coroutines library offers an entity called Flow.

A Flow is an observable which carries the benefits of the coroutine system. Subscribers
observing a Flow are automatically canceled when their lifecycle scope is disposed, which
greatly reduces application errors and results in a leaner code. Subscribers and Flows
use the suspend mechanism to synchronize during the event collection, avoiding thread
blocking. Therefore, Flows can be used on the main thread which also renders the UI,
without causing it to freeze or jank.

Data streams represented by Flows can be manipulated by a plethora of built-in opera-
tors. Many of them, such as map, filter and take are similar to the ones used to manipulate
Lists and Sequences. Multiple Flows can be combined using the combine and zip operators.
Using the zip operator on two Flows produces a new Flow of pairs, constructed from the
values of the two Flows in a zip-like fashion.

NaviPilot uses Flows to provide data to UIs and to pass data between components
whenever it is possible. Several libraries used in this project provide out-of-the-box inte-
gration with coroutines and Flows. In many cases where Flows are not available, extension
functions are created that convert the callback-styled code to a Flow, using the callbackFlow
builder.

35

5.2 Documents
One of the main features of the EFB application is the ability to store and read documents.
From the user’s perspective, it is important to be able to bring their own set of documents
to the EFB application, as a generic set of pre-loaded documents would not be sufficient for
all users. It is reasonable to assume, that each user has their own unique set of documents,
organized in a way according to their preferences.

The initial implementation plan devised was to create an internal document index of
files uploaded by the user, which would be stored in a database. The documents could then
be labeled by their categories with tags and organized in a folder structure as required,
while the documents themselves could be saved at their original locations. However, it is
not possible to access files stored anywhere on the device’s file system, due to Android’s
security limitations and the Storage Access Framework (SAF). The documents would have
to be copied to the internal application directory, which would result in unnecessary file
duplication, wasting storage space.

Storage Access Framework

Working with files on the Android platform has traditionally been done using the standard
Java File Application Programming Interface (API). With the Android 4.4 release, the
Storage Access Framework has been introduced, aiming to simplify browsing and opening
documents for users [29]. When an application wants to access a file using the SAF, a system
dialog containing a file picker interface is invoked. The user then has to manually select
the file they want to let the application access. The advantage of SAF is, that it supports
files saved outside of the device filesystem, such as cloud environments.

Applications targeting Android 11, have full access only to its internal application di-
rectories and public media directories. To access other locations, the user must grant access
through the SAF first. This action needs to be repeated for every file, although access to a
directory tree can be requested too. The restriction of file access has naturally caused is-
sues for many applications, namely file managers, that depended on the file access as a core
functionality, although the issue has since then been addressed by Google with possible
exemptions [77].

To ensure compatibility with the newest versions of Android, NaviPilot uses the SAF
to access documents. When opening the Documents screen for the first time, the user
is prompted to choose a root directory containing all of his documents. The premise of
this approach is, that the user already stores their documents somewhere in a familiar
structure of properly named folders. By the virtue of SAF, even cloud storage locations
are supported, their offline support is however limited. After a root document directory is
picked, NaviPilot displays a file browsing experience shown in Figure 5.2, where the user
can navigate between sub-folders and open documents.

36

Figure 5.2: Documents interface.

Rendering thumbnails

NaviPilot uses the Coil library [7] to display file thumbnail images in the Documents User
Interface. Using an image-loading library like Coil provides many advantages over direct
rendering with Compose. The built-in disk cache provides faster loading times and the
support for many image formats provides wider compatibility for media content. However,
the Coil library does not yet support rendering previews of Portable Document Format
(PDF) formatted files. Since PDF files are expected to be the main file format of the user’s
documents, this capability is essential to be added.

The Coil library provides the ability to extend the range of the supported file formats
through custom Decoders. Classes implementing the Decoder interface read a Buffered-
Source as input and return a Drawable object that is trivial to draw on screen. PdfCoilDe-
coder is a Decoder that uses the PdfBox-Android library to render the first page of a PDF
file to a bitmap, which is then converted to a Drawable. Coil provides the requested di-
mensions of the image, which are used to define the size of the resulting bitmap. After
registering the PdfCoilDecoder as a Decoder for PDF files, Coil automatically uses the
PdfCoilDecoder decoder to display thumbnails of PDF files when requested.

37

5.3 Airport catalog
In order to display information about airports, it is first needed to find a reliable source of
information. Ideally, the source would also be provided free of charge. After carrying out
research, the following data sources have been identified as viable:

• EAD Basic — The European AIS Database [12].

• Laminar Data Hub [72].

• OpenAIP — Worldwide aviation database [68].

The first choice, a service provided by Eurocontrol, provides free access to the AIP li-
braries of European countries. The unpaid tier is, however, limited to only human-readable
PDF documents, which would be difficult to process into machine-readable data. The
second option is a cloud platform created by Snowflake company, which provides a Rep-
resentational State Transfer (REST)-based API for worldwide aviation data. This service
would be sufficient, had it not included only a limited free access trial period.

OpenAIP is a web-based crowd-sourced aeronautical information platform that allows
registered users to add, edit and download aeronautical data in many common formats used
in General Aviation. Its goal is to deliver free, current, and precise navigational data to
anyone [68]. It includes information about the world’s airports, airspaces, navigational aids,
and thermal hotspots. The platform’s complete database is available to be downloaded in
machine-readable XML files, making it suitable for further data processing tasks.

The OpenAIP XML files have a fairly complex structure of information, as the included
entities possess various attributes, such as radio frequencies of airports or the geometry of
airspaces. In order to work with the data in Java/Kotlin code, deserialization into model
classes needs to be performed first. Since the model classes for OpenAIP entities are not
readily provided, they need to be created first.

The concrete structure of an XML file can be approximated by observing the data itself.
Fortunately, in this case, it is not necessary to do so, as OpenAIP publishes an XML Schema
Definition (XSD) file containing the description of the exact schema of the OpenAIP XML
files. Using the XSD file, it is possible to write the correct model classes for the OpenAIP
data.

Writing the model classes by hand would be a time-consuming and error-prone task.
Instead, an automated approach has been chosen, making use of the available XSD file.
The model classes are automatically generated from schema before compilation using the
schema-gen plugin for Gradle [11]. The model classes, together with the code responsible
for downloading and parsing the OpenAIP catalog, are packaged into the openaipparser
module, made available to be used by the rest of the project.

General information

Opening the Airport Catalog screen takes the user to an airport picker interface. The user
can search through the airport database by the name or the ICAO code using a search
bar located at the top of the screen. Tapping on a search result takes the user to a screen
composed of several tabs with information related to the airport, as presented in Figure 5.3.

The first tab of the screen contains general information about the airport. The tab
displays a map centered on the airport’s location, showing the immediate vicinity of the

38

airport. Below the map are the airport’s runways, their type, and length. Radio frequencies
belonging to the airport are displayed at the bottom of the screen.

NOTAMs

The user has the ability to browse NOTAMs of the selected airport in the NOTAM tab of
the Airport Catalog. The NOTAMs are displayed in a list of cards, each containing the
NOTAM content and its issue and expiration dates. The NOTAMs are retrieved through
an online API provided by the Federal Aviation Administration [19]. The raw data comes in
the JSON format, which is deserialized afterward using the Kotlin serialization library into
data classes, reverse-engineered from the JSON data. The NOTAM retrieval functionality
is wrapped in the faanotamapi module of the project.

Figure 5.3: General information and NOTAMs tabs of the Airport Catalog.

METAR

In a similar fashion to NOTAMs, the user can also read the latest METAR information
published for an airport. Downloading of METAR information is handled by the avia-
tionweathercenterapi project module. The data is provided by NOAA’s Aviation Weather
Center [64]. METAR information downloaded from their service is parsed into data classes
automatically generated from provided XSD schema files using schema-gen, in a process
similar to the one used with OpenAIP data described earlier.

In order to increase conciseness, raw METAR information is encoded in a highly abbre-
viated string of characters. To make the weather information easier to digest for the pilot,

39

NaviPilot presents the METAR information in a more human-readable format. Pieces of
information, such as the current temperature, wind, and visibility, are extracted from the
METAR text using the open-source MetarParser library [52]. The individual values are
then displayed in the interface below the original METAR code, as seen in Figure 5.4.

Weather radar

The last tab of the Airport Catalog allows the user to preview the weather conditions of
the selected airport on a map. The tab displays the weather radar layer, described later
in the Maps Section 5.8, overlaid on top of the base map. The layer displays real-time
precipitation in the area around the airport. The intensity of the precipitation is visualized
through a color gradient ranging from green to red. The user can also view a forecast of
the radar by changing the value of the slider at the top of the screen.

Figure 5.4: Airport Catalog tabs METAR and Radar.

5.4 Aircraft profiles
The Aircraft profiles feature allows the pilot to define the properties of multiple aircraft
models frequently flown by the pilot. Before each flight, the pilot can choose which profile to
use during the flight, giving the application the ability to utilize the information about the
aircraft being flown. NaviPilot includes an Aircraft profile editor displayed in Figure 5.5,

40

where the user can specify an aircraft’s Maximum Takeoff Weight (MTOW), Maximum
Landing Weight (MLW), empty weight, and the characteristics of other weight items, such
as fuel tanks or baggage compartments.

In addition, the user has the ability to input the aircraft’s Center of Gravity (CG)
envelope. The envelope is defined as a list of points on weight vs moment chart, that rep-
resent an area wherein the total weight and moment of the aircraft are within the aircraft’s
specifications. The CG envelope of an aircraft is usually defined in the aircraft’s Pilot’s
Operating Handbook (POH) or Aircraft Flight Manual (AFM) [14]. The CG envelope and
other parameters of the Aircraft profile are used during the Weight and Balance calculations
in the flight planning phase described later in Section 5.9.

NaviPilot comes with three pre-installed Aircraft profiles for the popular Cessna 172S,
Cessna 152, and Zlín Z-142 planes. These profiles include accurate information about the
aircraft, sourced from their respective Pilot’s Operating Handbooks. The default profiles
make it easier for users flying these airplanes to get started using the application.

Figure 5.5: The Aircraft profile editor screen.

DataStore

Aircraft profiles and other application settings need to be persisted on the device between
application launches. DataStore is a data storage solution that allows the developer to
store key-value pairs or typed objects with protocol buffers. Jetpack DataStore uses Kotlin
coroutines and Flows to store data asynchronously, consistently, and transactionally [35]. It
has been designed as a successor to the Android’s standard SharedPreferences framework,
which has its limitations in terms of consistency in certain conditions [63]. Due to the

41

library being designed with the intent of storing small amounts of data, it is the perfect
candidate for the use-cases described above.

5.5 Checklists
Each Aircraft profile has the ability to store checklists applicable to the particular aircraft.
The default Aircraft profiles already provide checklists gathered from the aircraft’s POHs.
These checklists provide a great starting point for the user to edit and create additional
checklists, using the built-in Checklist editor shown in Figure 5.6.

A Checklist is made up of several checklist items, where each item consists of a de-
scription and a designated action keyword. The user can choose from a predefined set of
action keywords, which are supported by the Automated checklist feature described in the
section below, or specify a custom keyword instead. Each checklist is given a name and
optionally a category label, such as Pre take-off or Landing, designating the flight phase
to which the respective checklist applies. The category label is then used to automatically
bring up relevant checklists in the Dashboard during the flight, using flight phase-detection
described later in Section 5.11.

Figure 5.6: Checklists and the Checklist editor.

Automated checklists

The Checklists segment of the application features specification in Section 4.2 proposed
a feature that automatically recognizes the pilot’s responses during a checklist procedure
with speech recognition. More formally, this problem can be classified as a Keyword Spot-

42

ting (KWS) task. Historically, KWS problems were solved using various approaches, how-
ever, most of the latest models are based on Machine Learning (ML) and Neural Networks.

Machine Learning techniques, such as convolutional (CNN) and recurrent (RNN) neural
networks, have shown strong performance for various speech processing tasks, including
Keyword Spotting. As is currently the case in other Natural Language Processing (NLP)
problems, some of the latest models utilize the widely popular transformer architecture and
are able to achieve state-of-the-art performance in the Google Speech Commands dataset
benchmark [4].

The raw speech input is a stream of audio data from an audio source, such as a file or
a microphone. A raw audio stream consists of the amplitude values of an underlying analog
signal, sampled at a specified frequency and sample resolution. Audio input may contain
multiple tracks, typically from the left and right audio channels, although, for the purposes
of KWS, a single track is sufficient.

For deep learning based speech-recognition, audio in its raw format is not optimal as
an input feature. Human-engineered speech features from traditional speech processing
techniques, such as Log-mel Filter Bank Energies (LFBE) and Mel-frequency Cepstral
Coefficients (MFCC), translate time-domain speech signal into a set of frequency-domain
spectral coefficients. This step reduces the dimension of the input data while preserving the
defining features of the speech signal, greatly improving the performance of the model [79].

Neural networks usually require an input of a predefined size. To reduce an infinitely-
sized stream to a fixed size, a sliding window of a specified length is applied. Each window
is run through a classifier which assigns a label to the input based on its contents. However,
since it is not known in advance where the keyword starts or ends, it is very likely that
a keyword occurrence would be split into two windows, avoiding detection. One of the
ways to resolve the problem is to shorten the stride of the windows, in order to make them
overlap.

Overlapping windows are inherently inefficient, since data in the overlapping regions
must be processed by the Neural Network more than once. Efficient use of resources is
a key factor when running in the context of a mobile device. A more efficient solution
can be achieved by modifying the model to accept a small input frame, together with an
internal state from the previous prediction. This allows the network to process the audio
input in a true streaming fashion, which drastically reduces the computational cost [8].

In order to implement the Automated checklist feature, a model has been trained us-
ing a library created by Google researchers, which enables automatic conversion of non-
streaming models to streaming ones with minimum effort [69]. The TC-ResNet architecture
is chosen as the base model for this task, due to its high-ranking benchmark results [6].

The training data for the model is composed of voice recording samples collected in the
Google Speech dataset [76], filtered to the following keywords: On, Off, Left, Right, Up,
Down, Forward, Backward, Go, Stop, Zero and One. In addition, the dataset has been
extended by self-recorded samples of the Check keyword.

The model has been trained for 120,000 learning steps, with a gradually decreasing
learning rate. The training process finished with a reported test accuracy set at 96.79%.

The KWS model in question is created using the TensorFlow framework. TensorFlow is
a popular end-to-end open-source platform for Machine Learning [73]. TensorFlow models
can be ported to mobile devices by converting them to the TensorFlow Lite (TFLite) format.
TFLite models can subsequently run inference on Android phones using the ML Kit SDK.
In addition, the Android Studio IDE supports TensorFlow Lite with the ability to generate
model bindings, making it easy to work with TFLite models in code.

43

In the NaviPilot project, access to the final TFLite model is provided by the SpeechRecog-
nitionEngine class. The class slices the live audio stream from the microphone into windows
of a set size. Each window is fed into the model, which in turn provides an estimated score
for each keyword on its output.

The raw output scores of the model are converted to probabilities using the softmax
function. A keyword detection event is raised, when the average value of the last 10 prob-
abilities of a keyword exceeds a threshold of 80%.

In practice, the trained model is able to recognize the keywords from the Google Speech
dataset fairly accurately in perfect conditions. However, noisy environments sometimes
cause false triggering of the keywords, which may be reduced by further raising the activa-
tion threshold.

In contrast, the self-recorded Check keyword shows a poor detection performance. This
may be caused by the small number of samples and their low variance, which could be
improved by gathering more recordings of the keyword from different speakers.

When comparing the streaming version of the model to the non-streaming version, the
latter seems to perform better in terms of accuracy and latency. When uttering a keyword,
the streaming version of the model seems to raise the output score for the keyword only
after a noticeable delay. Moreover, the high score for the keyword is susceptible to linger
in the same value long after the keyword utterance ended.

Due to the reasons stated above, NaviPilot uses the non-streaming version of the model
in the end. The model can be tested in a debug screen located in the Settings. The debug
screen provides real-time output of the keyword scores from the microphone audio stream,
together with a live feed of keyword detection events.

5.6 Logbook
In the Logbook screen, the user can view their flights organized in a list. All flights are
automatically saved in the Logbook, whether they are drafts, flights in progress, or finished
flights. The status of the flight is indicated by a badge, located next to the general flight
information about the flight, such as the origin, destination, length, and the number of
waypoints.

Tapping on a flight takes the user to the Flight planner screen if it is a draft, the
Dashboard if it is a flight in progress, or to the Flight detail screen, if it is a finished flight.
The Flight detail screen contains a map window where the user can review the flight path
of the flight. The flight path segments are colored based on the altitude of the segment.
The flight’s flight plan can be quickly reused as a starting point for a new flight with the
press of a button, located at the top of the screen.

The user has the ability to export the flight path to a KML file using the osmbonuspack
library [62]. Alternatively, export to GPX format is also available, thanks to the JPX Java
library [78]. The Logbook and Flight detail screen can be seen in Figure 5.7.

Room

The flight data is persisted in an SQLite database located on the device. Working with
the SQLite database is carried out using the Jetpack Room library. The Room persistence
library provides an abstraction layer over SQLite to allow fluent database access through
compile-time verification of SQL queries and annotated functions [41]. In Room, objects

44

saved into the database are modeled as entities, that can additionally define relational
dependencies between themselves.

Interacting with the database in Room is achieved by defining Data Access Objects
(DAOs) interfaces. A DAO interface contains methods annotated by directives, such as
@Query, @Insert or @Delete annotations. At compile time, Room automatically generates
implementations of the DAO based on the methods defined. Room fully supports Kotlin
coroutines, enabling asynchronous access to the database. Additionally, by using a com-
patible observable return type in a query method, such as Kotlin’s Flow, the callers can
subscribe and automatically receive changes to the data in real-time.

Figure 5.7: Logbook and Flight detail screens.

Paging

Loading all flights stored in the database in situations when only a few of them are displayed
on the screen at once is not effective. The Paging library from the Jetpack suite helps the
developer load and display small chunks of data at a time [40]. It integrates cleanly with the
Room library, although abstractions over other data sources can be written by the developer
as well. With LazyColumn of Compose and the Paging library, the Logbook screen is able
to show a list of flights using Room efficiently, loading them only when needed as the user
scrolls down.

45

5.7 Data connectivity
Before proceeding to work on the in-flight features of the application, it is first needed to
establish a way of simulating a device in a testing flight environment. The application’s
default source of position during the flight is the GNSS receiver. For location testing
purposes, the Android OS provides a way of mocking the GPS position on real devices
through the built-in developer’s settings.

In addition, the Device Emulator features a special location control panel, where the
developer can set the emulator’s location through a provided map interface. This option,
however, does not allow to control the altitude of the device, although another option allows
the developer to set the device to follow a predefined path imported from a GPX or KML
file.

A more flexible proposition comes from utilizing flight simulators for testing. Many
flight simulators today include means to access the data from the simulation in high detail.
This widespread support is caused mostly by the popularity of after-market modifications
that are highly prevalent amongst this genre. Coupled with the fact, that many flight
simulators model the world in full scale, it is easy to test most use-cases of the application,
simply by launching a custom flight scenario in the simulator.

Microsoft Flight Simulator, released in 2020, is the latest release of the popular Mi-
crosoft Flight Simulator series. Microsoft Flight Simulator allows players to fly planes in
a realistic real-world environment, recreated using a modern game engine. The engine uses
real satellite imagery and photogrammetry data processed by Microsoft Azure’s Artificial
Intelligence (AI) [45]. The virtual world features accurately modeled landmarks and over
37,000 airports.

Developers and mod-creators can interface with the Microsoft Flight Simulator using
the SimConnect SDK add-on. SimConnect allows to record and monitor flight scenarios,
retrieve and subscribe to simulation variables, change the weather conditions, and much
more [54]. After enabling the add-on, SimConnect acts as a server listening on a pre-defined
port, where clients can connect using the SimConnect protocol over TCP/IP.

The connection between NaviPilot and the simulator is managed by the SimConnectSer-
vice object. It leverages the open-source jSimConnect Java library to initiate a connection
and listen to events from the simulator through SimConnect [46]. The SimConnectSer-
vice object periodically attempts to connect to the simulator with the IP address and port
number provided by the user in the Simulator connection setup screen.

When a connection is successfully established, the service subscribes to information
about the plane’s current coordinates and attitude. This information is then available
to other project components through an observable Flow. When an error or a disconnect
occurs, all subscribers are properly canceled using the standard Kotlin coroutine mechanism.

All application components which use location do so through the LocationEngine in-
terface of the Mapbox library described later in Section 5.8. The default LocationEngine
implementations provided by the Mapbox library use the built-in device location sensors.
SimConnectLocationEngine is a custom implementation of the LocationEngine interface,
which uses the SimConnectService to receive data from the simulation. Changing the
source of location in the application between the built-in GNSS receiver and the simulation
is thus made as easy as switching the implementations of the LocationEngine at runtime.
A class diagram depicting the LocationEngine interface can be seen in Figure 5.8.

46

navipilot

SimConnectLocationEngine

-simConnectService

mapbox

MapboxFusedLocationEngine AndroidLocationEngine GoogleLocationEngine

LocationEngine

+getLastLocation(callback)
+requestLocationUpdates(request, callback, looper)
+requestLocationUpdates(request, pendingIntent)
+removeLocationUpdates(callback)
+removeLocationUpdates(pendingIntent)

MapboxExtensions

«suspend»+getLastLocation()
+locationFlow(request)

Figure 5.8: Class diagram of the LocationEngine interface and its implementations.

More data sources could be added in the future by creating other implementations of
the LocationEngine. An external ADS-B & GNSS Receiver like Sentry, illustrated in sub-
section 3.3.4, would make up for a great candidate for a new data source. Integration
with this device would provide a more accurate location and attitude data in a real-world
scenario, compared to the data coming from the built-in sensors of the mobile device.

5.8 Maps
Maps belong to the core elements of the NaviPilot application. They are used to show the
current position of the aircraft in the Dashboard and help visualize the flight path in the
Flight Planner. In order to display maps in the application, the Maps SDK from Mapbox
is used [58]. To use the Maps SDK in this project’s codebase, a custom Map Composable
has been made, as the library itself does not yet support Compose.

The Maps SDK comes with several map styles installed by default, such as Street,
Outdoors and Satellite, each being suitable for a different purpose. These styles contain
data derived from the OpenStreetMap (OSM). OSM is widely considered as one of the
best map sources of the world. It is built by a community of mappers that contribute and
maintain map data, which is then available to the general public under an open license,
free of charge.

Creating a custom map style

Since the default Mapbox map styles are not intended for aviation usage, a custom style is
created. This style includes Points of Interest (POIs) and areas important for the pilot, such
as airports, navigation aids, and airspace bounds. The custom map style also emphasizes
relevant natural features, such as rivers and mountains, that can be helpful for the pilot
when navigating the environment. Simultaneously, map information not related to the
piloting task is suppressed or removed, reducing unnecessary clutter. A showcase of the
custom style from the application can be seen in Figure 5.9.

47

Figure 5.9: Custom NaviPilot map style and the Weather radar layer.

Mapbox Studio is a powerful online tool used for creating custom map styles. Styles
created by this tool are fully compatible with the Maps SDK client library, making it easy
to use the newly created styles in the application. It is important to note, that a style
does not contain any spatial data by itself. A style receives data from one or more tilesets.
A tileset is a collection of raster or vector data broken up into a uniform grid of square tiles
at up to 22 preset zoom levels [60].

Mapbox, again, provides several default tilesets to choose from. These tilesets contain
data from the OSM, raster satellite images, terrain data, and more. None of these default
tilesets contain the aviation data necessary, which is why creating a new tileset is needed.
The OpenAIP dataset described in Section 5.3 is used as the source to create the tileset
since it already contains the necessary airport, navigation aid, and airspace data.

The processing pipeline consists of three steps done in sequence. First, all available
OpenAIP files are downloaded and saved. Since the data format of the OpenAIP files is
not recognized by Mapbox Studio, it is necessary to convert the files to a format that is
supported. GeoJSON is a geospatial data interchange format based on JavaScript Ob-
ject Notation (JSON), that is compatible with Mapbox Studio [5]. The OpenAIP data is
converted to the GeoJSON format in the second step, using the OpenAIP2GeoJSON open-
source library [50] that has been modified with small changes intended for this project.

The last step involves uploading the created GeoJSON file to Mapbox Studio as a tileset.
While Mapbox provides several ways of achieving this goal, in this case, the tilesets [61]

48

command-line utility is used. After the upload is completed and processed, the tileset is
made available in the Mapbox Studio environment, ready to be used in a map style. The
processing pipeline is written in the Python language, in the form of a Jupyter notebook,
located in the openaipmaptiles module.

With the OpenAIP tileset ready, the final map style can be created. As a base layer, the
Mapbox Streets style is used. It is edited according to the design specifications described
above, in order to be more suitable for aviation navigation. Airspaces colored by their
types are drawn as polygons on top of the base layer. Next, the navigational aids, as well
as the airports, are added to the map, in the form of an icon with a name label below. The
airport icon symbolizes a runway, that is rotated to match the orientation of one of the real
runways of the airport.

In order to make the map more readable and performant, several map styling rules are
created. At small zoom levels, the airspace polygons are hidden, and only the international
airports are displayed. As the zoom level increases, the airspace borders become visible, and
the airport labels transition from icon-only, through displaying the ICAO code, to showing
the full name of the airports.

Weather radar layer

As per the design specification of the map feature located in Section 4.2, the map should
provide a visual indication of the weather conditions in the surrounding area. RainViewer is
a weather forecast application for Android [70]. Their public Weather Maps API provides
weather radar data of the past 2 hours and forecasts of up to 30 minutes. The weather data
is available in the form of a map tileset, which can be displayed as a layer on a Mapbox
map.

A wrapper for the Weather Maps API has been created in the rainviewerapi module.
The raw data in JSON format is downloaded from the API periodically every minute. Using
the Kotlin serialization library, the data is deserialized into prepared data classes. The data
contains a list of map tileset URLs together with their timestamps. The latest tileset URL
is parsed and published to other application components through an observable Flow.

Any map component in the application can display the weather radar layer, if enabled.
To ensure that the radar data is always the latest that is available, the map subscribes to
the Flow of the radar URLs of the rainviewerapi module. Whenever a new tileset URL
with the latest data is received, it is automatically loaded in place of the old tileset, and
subsequently refreshed on the display. The weather radar overlay is made transparent in
order to avoid covering the underlying map. A preview of the weather layer displayed on
a map can be seen in Figure 5.9.

5.9 Flight planner
Creating a new flight or editing an existing draft takes the user to the Flight planner screen.
This is the place where the user can choose the origin, the waypoints, and the destination of
their flight. During the editing process, the current flight path is visualized on a map. The
waypoints and the destination airport can be selected either through the map or through
a dialog. A screenshot of the Flight planner interface is shown in Figure 5.10.

A custom place picker dialog has been created, which allows the user to search for POIs
by typing a query into a search bar. The search results are then displayed in a list sorted
by the distance to the user. In addition to POIs, the user can choose a coordinate waypoint

49

through a point picker interface. The interface shows a map where the user can select the
point by tapping on the desired location.

Another way to select a waypoint is by searching for a place, such as a city or a landmark.
The place query is handled by the Mapbox Search SDK [59]. The SDK returns a list of
place results for a given query, which is presented to the user in the picker interface. The
place waypoint is then confirmed by tapping on one of the displayed results.

Figure 5.10: Flight planner interface and the waypoint picker.

Weight and Balance

After creating the flight plan, the user proceeds to the Weight and Balance screen. The
purpose of this screen is to provide an overview of the aircraft’s weight and balance for the
pilot. After selecting the Aircraft profile that matches the aircraft that the user will fly, the
screen presents the maximum take-off and landing weights of the aircraft, together with its
CG envelope. The individual weight items, as specified in the Aircraft profile, are displayed
next to input fields, where the user inputs in the actual weight values of each weight item.

As the user fills out the weights, the total weight value and the current CG point in the
CG envelope automatically update to reflect the actual weight and balance of the aircraft.
This information helps the pilot decide whether the aircraft is suitable for flight with the
selected weight configuration. The Weight and Balance screen can potentially prevent errors

50

and save a considerable amount of the pilot’s time, as the weight and balance calculations
are usually carried out by the pilot manually using pen and paper.

Figure 5.11: Weight and Balance screen.

5.10 AR Preview
Augmented Reality (AR) is a technology that can provide unique experiences to its users.
It works on the principle of combining virtual information with the real-world environment.
With the broad availability of hand-held devices capable of delivering this type of expe-
rience, this technology is now becoming a core part of some of the most popular mobile
applications, such as Pokémon GO or Ingress [66].

The continually increased availability of developer tools also plays a great role in lowering
the entry barriers for AR development. ARCore is Google’s platform for building augmented
reality experiences for Android and iOS devices. It provides various APIs, such as motion
tracking and light estimation, that enable the developer to interact with the real-world
environment [33]. With its constant updates, it is arguably the best option to create AR-
enabled applications on Android.

To test out this technology, NaviPilot incorporates a feature that allows the user to
visualize the planned flight path using Augmented Reality. By pointing the phone’s camera
on an empty surface, the pilot can view a miniature relief of the land around the path, with
the flight path drawn as it would cross through the real world. Sample screenshots of this
feature can be viewed in Figure 5.12. The AR Preview can give the pilot a better spatial

51

awareness of the surrounding terrain later in the flight, especially with regards to the hills
and mountains located in the vicinity of the flight route.

Figure 5.12: Augmented Reality Preview of a planned flight.

To create this AR experience, the free game engine Unity is used. Unity is the leading
platform for creating interactive, real-time content. Unity provides tools that help build
2D, 3D, and Virtual Reality (VR) games and apps for desktop, web, mobile, and console
platforms [75]. It allows the developer to work with several Augmented Reality platforms,
including ARCore, in a multi-platform way, through the AR Foundation package.

Working with maps in Unity is made possible using the Mapbox SDK for Unity package.
The package makes it easy to add drag-and-drop maps with POIs, 3D buildings & terrain,
place-based AR, and more [57]. The SDK provides the AbstractMap object, which can be
used to display a mesh map of an area. The map can be configured to use various map
styles and includes the possibility to automatically apply terrain extrusion based on data
from an elevation tileset.

The Unity project is exported to a Gradle module named armodule, which is finally in-
tegrated as a dependency of the main app module. The export process, usually done within
the Unity editor, has been integrated into the project in the form of a Gradle task, enabling
to run the export as a part of the build process of the project. The main application can
launch the AR experience through the ARFlightVisualizerActivity. This Activity manages

52

the Unity Player running the experience, while also handling the communication that is
required to pass the flight path data from the application to Unity.

5.11 Flight engine
The heart of the NaviPilot in-flight system lies in the Flight engine component. A Flight
engine instance is bound to a specific flight, distinguished by its ID. It handles loading its
data from the database or creating it if it does not already exist. The Flight engine uses an
instance of a Location engine (described in Section 5.7) to receive data about the aircraft.
The data is processed and stored in the Flight engine’s Flight object. Other application
components can subsequently receive the data through subscribing to changes in the Flight
object, via Kotlin’s MutableStateFlow. Functionalities of the Flight engine are decomposed
into multiple sub-component engines, as shown in the diagram in Figure 5.13.

FlightEngine

+flightId: Long
+flightDao: FlightDao
+ttsEngine: TtsEngine
+elevationService
+speechRecognitionEngine
+flight: StateFlow<Flight>
+flightPoints: MutableStateFlow<List<FlightPoint>>
+currentFlightPoint: Flow<FlightPoint?>
+locationEngine: StateFlow<LocationEngine?>
+locationFlow: StateFlow<Location?>

+setLocationEngine(locationEngine: LocationEngine)
«suspend»+saveFlight(flightOverride: Flight?)
+finish()
«suspend»+destroy()

ChecklistEngine

+checklists: MutableStateFlow<Map<String, Checklist>?>
+activeChecklistGuid: String
+activeChecklist: Flow<Checklist?>

+setActiveChecklist(checklistGuid: String)
«suspend»+checkOffItem(checklistGuid: String, itemIndex: Int)

NavigationEngine

-waypointChimePlayer: MediaPlayer
-lastFlightPhase: FlightPhase
+currentFlightPhase: StateFlow<FlightPhase?>
+flightPhaseChangeFlow: SharedFlow<Pair<FlightPhase?, FlightPhase>>

«suspend»-processCurrentWaypoint(location: Location)

AlertEngine

+alerts: SharedFlow<Alert>
-alertCheckers: List<AlertChecker>
-alertPlayer: MediaPlayer

«Service»
FlightService

+onBind(intent: Intent)
+onStartCommand(intent: Intent?, flags: Int, startId: Int)

1

1

Figure 5.13: Class diagram of the Flight engine component and its subcomponents.

The Flight engine lives inside a FlightService. In the context of an Android applica-
tion, a Service is an application component that can perform long-running operations in
the background [42]. The FlightService is started whenever the user starts a flight in the
application. FlightService ensures that NaviPilot keeps tracking the flight even when the
application is closed or moved into the background. A notification created by the Flight-
Service keeps the user informed about the fact that a flight is in progress. When the user
opts to finish a flight, FlightService coordinates with the Flight engine to save the flight
data in the database.

Alert engine

The Alert engine provides a common mechanism for the detection of alerts. Alerts are
meant to notify the pilot of various events they might be interested in. The alert engine
can detect several types of alerts, handled by so-called alert checkers. An alert checker
observes the flight data and potentially other sources of information. Whenever an alert
should be raised, it notifies the Alert engine. An alert checker is created by implementing

53

the AlertChecker interface, which contains a single method returning an observable Flow
of Alert objects.

The airspace alert checker monitors the aircraft’s location and the nearby airspaces. It
keeps track of the airspaces in which the aircraft is located. When the aircraft enters a new
airspace, an alert is raised. The alert includes the name of the airspace, its type, and its
associated frequency, if it has one. The list of the airspaces and their geometry bounds are
sourced from the OpenAIP dataset, as discussed in Section 5.3.

Navigation engine

The Flight object keeps a list of all waypoints and the index of the next waypoint in its
properties. The navigation engine processes incoming locations and checks whether the
aircraft has closed in to the next waypoint beyond a certain threshold. When a waypoint
is passed, the Navigation engine increments the next waypoint index and triggers a sound
chime with a TTS message announcing the heading towards the next waypoint.

Another responsibility of the Navigation engine is the detection of flight phases. This
feature is useful mainly for other application components, such as the Automated checklists
feature. In order to determine whether the plane is landed, flying, or approaching, the
engine uses a rule-based system that uses the current position and elevation of the aircraft.
The current flight phase and flight phase change events are exposed to other components
through Kotlin Flows.

Deciding whether the aircraft is on the ground requires knowing the altitude above
ground, otherwise known as elevation. However, the output from a GNSS receiver returns
altitude values above mean sea level, ignoring the terrain. If the terrain height below
a certain point is known, the elevation of that point can then be calculated by subtracting
the terrain height from the altitude.

There are several publicly available datasets with global terrain elevation data. The
datasets come in various resolutions, usually ranging from 1 km to 30m. However, even the
low-resolution datasets, such as GLOBE [65], have a size of over 300MB when compressed.
The large size makes them unsuitable for use in a mobile application, notwithstanding the
lack of resolution required for accurate elevation calculations.

The Mapbox company provides a pair of map tilesets that contain elevation data com-
piled from a variety of sources [56]. The first tileset is a vector tileset, which contains lines
and polygons describing the terrain’s landcover and contours. Elevation mapped to 10m
height increments can be queried from an attribute of the contour layer.

The second tileset contains global elevation data stored in raster tiles. The height is
encoded in the color values of the raster’s pixels in 0.1m increments. The resolution of the
data is based on the current zoom level, with the data being provided up to zoom level 15.
In order to read the elevation of a certain point, a pixel closest to the point is sampled. The
terrain height at that point in meters is then calculated according to the formula below,
where the R, G, and B values are the red, green, and blue components of the sampled color.

ℎ𝑒𝑖𝑔ℎ𝑡 = −10000 + ((𝑅 * 256 * 256 +𝐺 * 256 +𝐵) * 0.1)

The Mapbox SDK for Android does not provide a direct method to access raster layer
data from a map instance displayed in the UI. The MapSnapshotter object is used for
generating static maps of a bounded region. These maps are as lightweight as images and
are suitable for cases when there is a need to display multiple maps in the UI, for example

54

in lists. Since the output of a MapSnapshotter is a bitmap, it is trivial to extract pixel
values from it.

The ElevationService object handles all elevation queries from other application compo-
nents through an asynchronous queue implemented by a coroutine Actor. The service reuses
a single MapSnapshotter instance to take snapshots of the raster terrain tileset. When tak-
ing a snapshot, the camera of the MapSnapshotter is centered on the queried location and
fully zoomed in. The requested snapshot has dimensions of 1x1 (single pixel), in order to
avoid using unnecessary memory space.

The advantage of the MapSnapshotter approach is, that it integrates nicely with the
offline maps mechanism of the Mapbox library. Since NaviPilot pre-loads low zoom level
terrain tiles of the whole world during the initial setup, the ElevationService can respond
to all queries even when offline. The nature of the map tiling mechanism ensures, that
at low zoom levels, the query returns an averaged height value that is still fairly accurate.
Higher detail terrain tiles are pre-loaded for countries installed in Offline packages, providing
a higher terrain accuracy in regions where the pilot expects to fly. More information about
the offline support and Offline packages can be found in Section 5.14.

Checklist engine

The Checklist engine provides a back end for the In-flight checklists feature described later
in Section 5.12. The engine is responsible for loading the checklists attached to the Aircraft
profile used during the flight and keeping track of their progress. Whilst in flight, the
checklist engine listens to flight phase changes published by the Navigation engine and
selects the proper checklist to be made active based on the checklists’ category labels. Since
the Checklist engine runs inside a service, the TTS and speech recognition capabilities are
available even when the application is running in the background.

5.12 Dashboard
The Dashboard is the main interface presented to the pilot when flying. It is tightly
coupled to the Flight engine and its sub-components, described in the previous section.
According to the design specification proposed in Chapter 4, the Dashboard displays basic
flight information obtained from the Flight engine in an indicator panel in the bottom-left
corner. A map, which takes most of the screen’s real estate, tracks the current position of
the plane. Behind the plane, a breadcrumb line visualizes the aircraft’s flight path. Another
line depicts the planned flight route. The Dashboard interface is presented in Figure 5.14.

Information about the next waypoint obtained from the Navigation Engine is displayed
in a card on the top of the screen. In order to uplift the user experience, all information cards
presented in the Dashboard interface are animated using the built-in animation capabilities
of Jetpack Compose. The action button, located in the bottom right corner, opens a dialog
that allows the pilot to quickly access other application features, such as Documents or
Maps. Upon pressing the back button, the pilot is given the option to either finish the
flight or minimize it, in which case the flight is continued in the background. Afterward,
the Dashboard can be opened again from the Home screen, by clicking on a banner displayed
at the top of the screen, which signifies that a flight is in progress.

55

Figure 5.14: Dashboard interface.

Turning rate indicator

The Dashboard displays a line on the map in front of the aircraft, which approximates
the aircraft’s future flight path. The prediction is calculated by processing the stream of
the aircraft’s positions. The angles and distances between each position are continuously
calculated. The aircraft’s true turn angle and speed are estimated from the angle and
distance deltas using a weighted average of the last 8 values. The number has been chosen
so as to achieve a balance between smooth prediction and high prediction latency. The
weighted average uses linearly decaying weights, in order to increase the accuracy of the
estimation by giving more importance to recent values.

To approximate the next position of the aircraft, the estimated angle and speed are
used to walk in a set distance and direction from the current position. By repeating this
procedure by a certain number of steps, a set of points forming the prediction path can be
obtained. Increasing the number of iterations results in a longer prediction path, at the
cost of lower accuracy.

Course Deviation Indicator

The Course Deviation Indicator (CDI) instrument indicates the aircraft’s position relative
to the flight path. The pilot can use this instrument to determine, whether the aircraft is

56

laterally on the flight path, or whether the aircraft has deviated from the path to either
left or right. In the Dashboard, the CDI is composed of a black-dotted scale and a purple
indicator. When the purple indicator is located in the middle of the scale, it means that the
aircraft is on course. If the purple indicator is off-center, the pilot must steer the aircraft
until the indicator returns to the center, at which point, the pilot has intercepted the flight
path.

The CDI is a custom-made Composable drawn using the graphics capabilities provided
by Compose natively. The data passed to the indicator are computed by the Navigation
engine, described in Section 5.11. To calculate the deviation value, it is first needed to
calculate the distance between the aircraft’s position and the closest point on the flight
path relative to the aircraft. However, the distance on its own is not enough to decide
whether the aircraft is located to the left or to the right of the flight path. In order to
determine at which side the aircraft is located, the two points used in the first step are
converted to two-dimensional vectors using their latitude and longitude. Afterward, the
side is established by the sign of the cross product between these two vectors.

Wind indicator

During take-offs and landings, information about the current wind conditions is essential
to the pilot. Usually, the pilot receives this information from the radio communication,
or from the current METAR published for the airport in question. When the aircraft is
taking off and landing, the Dashboard in NaviPilot automatically displays a wind indicator
at the bottom of the screen. The indicator retrieves the current wind direction and speed
from the airport’s current METAR, if it is available. The indicator itself consists of a wind
speed label and an arrow, which rotates in the direction of the wind relative to the aircraft’s
heading.

Alerts

During the flight, alerts generated from the Alert engine described in Section 5.11 are
displayed in the Dashboard. When an alert arrives, it appears in the top-right corner of
the screen, accompanied by an acoustic chime. The alert itself is displayed in a card, which
contains the alert’s description and an icon, denoting the alert’s priority and its type.

The alert’s content is automatically read aloud using a Text-to-Speech (TTS) engine
provided by the Android system. Multiple alerts can be active, in which case they form
a queue. If there are more than three alerts active, the oldest alert is dismissed, in order to
avoid obscuring the map. Alerts are dismissed automatically by default after a set period
of time, although they can also be dismissed manually with an intuitive swipe gesture.

In-flight checklists

The Dashboard has the ability to present a checklist card containing checklists defined in
the current Aircraft profile. The checklist card is invoked automatically when a flight phase
change is detected, provided that the Aircraft profile contains a checklist that is marked
with the appropriate category label.

The card displays the checklist items one at a time, as they are checked off. The content
of the checklist item is displayed in a textual form in the card, but also read aloud using the
TTS engine. To check off a checklist item, the user can either press a button at the bottom
of the checklist card, or say the keyword using his voice, if the keyword is supported by

57

the Automated checklists model described in Section 3.2.2. In order to make it simple to
determine whether the keyword is supported, the button displays a small microphone icon,
signifying that the keyword is ready to be detected by voice.

5.13 Tools
The tools screen includes a converter between physical units that could be useful to the
pilot during flight preparations. The supported quantities include weight, speed, length,
and more. Choosing a quantity takes the user to a converter screen with a list of units
of that selected quantity, as shown in Figure 5.15. Each unit has a text field next to it,
displaying the current quantity value converted to that specific unit and the symbol of the
unit. All text fields are automatically synchronized, so that when a user inputs a quantity
into a text field of one of the units, all other text fields are recomputed to show the converted
values.

Under the hood, the unit converter screen uses the Unit of Measurement API library to
carry out conversions. The API provides a set of Java language programming interfaces for
handling physical units and quantities [74]. The Compose interface is backed by a single
state variable storing the current quantity value in a unit-less format, using the Quantity
class of the Unit of Measurement API. Since view widgets in Compose do not have internal
states on their own, the text fields can observe and mutate the main state variable directly.
This eliminates the need to synchronize multiple states, potentially avoiding errors that
could arise due to the added complexity.

Figure 5.15: Tools screen, Unit Converter screen, and Fuel Converter screen.

Built similarly to the Unit Converter, the second computation tool found in NaviPilot
is the Fuel Converter. This screen enables the pilot to quickly calculate the weight of the
fuel if the volume is known, and vice versa. Fuel Converter supports multiple popular fuel

58

types, used by General Aviation pilots. This feature is useful during weight and balance
calculations before the flight, as described in the previous Section 5.9.

5.14 Offline support
In NaviPilot, there are two data sources that require an internet connection — Maps and
Aeronautical Information Publication (AIP) data, downloaded from OpenAIP. Both of
these features have been implemented in a way that makes them unaffected by the lack of
internet connectivity, except for the first initialization. Below are more details on how this
has been achieved.

Offline maps

Maps in NaviPilot are implemented using the Mapbox library, as described in Section 5.8.
The Mapbox SDK for Android includes offline support out-of-the-box. Besides automati-
cally caching tiles during normal usage, the developer can create offline regions defined by
coordinate bounds and a zoom level. Once an offline region is defined, it is automatically
pre-cached to disk, ready to be used during offline conditions.

Figure 5.16: Offline packages screen.

Offline packages

Several features of the application, such as the Airport Catalog and Flight planner, rely on
data retrieved from OpenAIP. In order to speed up the loading process and save bandwidth,

59

the OpenAIP catalog is cached on disk. To facilitate fast search, parsed POIs are in addition
stored in an indexed SQLite database, using the Room library (described in Section 5.6),

However, downloading the entire OpenAIP catalog is often not necessary, since the user
is likely to need data only of a few countries where they plan to fly. The introduction
of Offline packages aims to save bandwidth and declutter the interface by letting users
download data only of the countries, in which they are interested.

The user can download and delete these packages in the Offline packages screen. The
screen displays a list of currently installed packages and the ones available for download,
retrieved from the current OpenAIP catalog. After initiating a download of a package, the
OpenAIP data for the selected country, together with offline maps, are downloaded in the
background. A screenshot of the Offline packages interface can be seen in Figure 5.16.

First run initialization

It would result in a bad user experience if the user opened a map that had some tiles missing
due to the lack of internet connection. That is why, besides downloading offline maps for
countries installed in Offline packages, a low-resolution offline map of the entire world is
pre-loaded as well.

Figure 5.17: Setup screen displayed during the first launch.

60

This process should ideally be carried out in the background, while the user is allowed to
use the application normally. However, possible inconsistencies could arise in cases where
the download process would be interrupted. Due to this, a Setup screen is introduced.
The Setup screen shown in Figure 5.17 serves as a gateway to the application, allowing the
user to use the application only when the required offline maps of the world have finished
downloading.

The Setup screen also takes advantage of the opportunity to request permissions required
by the system to ensure the application can work properly. NaviPilot requires the location
permission and the microphone permission, the latter of which is utilized by the Automated
checklists feature described in Section 3.2.2. The permission request process is simplified
using the open-source library Peko [10].

61

Chapter 6

Testing and Evaluation

This chapter outlines the methods used to test the developed application. These include au-
tomated unit tests, analysis of resource usage, and user testing. Both testing specifications
and the evaluation of their results are described below.

6.1 Unit tests
The project contains a handful of unit tests scattered throughout the modules of the project.
These tests are written for features that are critical, or where it made sense to adopt an ap-
proach based on the principles of Test Driven Development (TDD). This approach involves
writing the unit tests describing the behavior of the code before the actual implementa-
tion. Features in this project where this approach is suitable are mainly various converter
functions and functions transforming collections.

6.2 Resource usage
The Android Studio IDE includes several tools aimed to help the programmer debug and
analyze the behavior of the application in development. One of these tools is the Android
Profiler [32]. The Profiler provides real-time data about the application’s CPU, memory,
network and battery usage. The data is presented through a series of continuously updated
graphs, located in a designated tool window inside the IDE.

To measure the resource usage of the application, several readings of the resource usage
values from the Android Profiler are made in different application scenarios. The measure-
ments are carried out on a Galaxy S9 phone with the Android 10 OS, running the debug
version of the application. The results of the measurements are presented in Table 6.1.

Setup Home (Idle) Flight planning Dashboard
CPU 20%–50% 0% 20% 30%–45%
Memory 250MB–300MB 250MB 500MB 600MB

Network Intensive None Light Light
Energy Light None - Light Light Light

Table 6.1: Resource usage by application screen.

62

It is important to note, that although the table above states, that the network is used
in the Flight planning and Dashboard screens, the application does not require it. As
described in Section 5.14, NaviPilot supports offline conditions without any limitations.
The network usage is caused by the Mapbox library, which uses the connection to refresh
any stale map tiles, and to download tiles that are more detailed than the ones saved in
the offline cache.

6.3 User testing
In order to measure the user experience and usability of the application, several testing
sessions have been conducted with potential users. In total, 10 users have been asked to
perform a set of tasks and answer questions about their experience. The tasks involve
typical use cases of the application, that would be regularly performed by the users during
standard use.

Each user has been first given a quick introduction to the application, in order to famil-
iarise themselves with the goal of the application and the extent of its features. Afterward,
the users performed the tasks given. During this time, the actions and the behavior of the
users have been observed. If a user got stuck during one of the steps, this fact has been
noted and they were given a hint in order to allow them to continue. The time taken to
complete the tasks has been recorded and compared to the time achieved by the author.
The list of tasks given to the users can be found below:

1. Download the Offline package for the country of Slovakia.

2. Find the frequency of the M. R. Stefanik airport in Bratislava.

3. Find the current temperature according to METAR for the Poprad Tatry airport.

4. Create a new Aircraft profile for a test plane model with the following parameters:

• Maximum takeoff weight is 1200 kg.
• Maximum landing weight is also 1200 kg.
• Empty aircraft weight is 800 kg, with 0.1m arm.
• Add two weight items, for baggage and fuel.
• Add two new CG envelope points.

5. Create a new Checklist for the Cessna 172S aircraft with items:

• Seat belts — ON.
• Baro — SET.

6. Plan a new flight with the following waypoints:

• Takeoff from Bratislava airport.
• VOR-DME Jánovce.
• The city of Hlohovec.
• Coordinate point to the south of Piešťany.
• Land at Piešťany airport.

63

7. After confirming the planned flight, determine whether it is feasible to fly with Cessna
172S if:

• The pilot weighs 75 kg.
• The front passenger weighs 65 kg.
• There is 110 kg of fuel in the fuel tank.

8. Convert pressure of 1.5 bar to mHg.

9. Determine the weight of 120 l of the Jet A fuel.

10. Setup a Documents directory and open a document.

Overall, all users were able to complete the tasks without any major issues. They
were able to find the correct screen, where they could complete the task most of the time.
In a small number of cases, when they opened the wrong screen, they quickly realized
that fact and opened the next alternative screen, which was the correct one. The median
recorded times of the author and the users for each task, together with their minimums and
maximums are shown in Table 6.2. A chart showing recording times by each user per task
is shown in Figure 6.1.

Task # Author time Minimum time Median time Maximum time
1 8 s 8 s 14 s 49 s

2 5 s 5 s 8.5 s 24 s

3 8 s 10 s 15.5 s 50 s

4 49 s 56 s 89.5 s 280 s

5 32 s 27 s 54.5 s 81 s

6 28 s 22 s 59 s 120 s

7 12 s 15 s 27.5 s 35 s

8 10 s 9 s 22 s 25 s

9 7 s 6 s 10.5 s 21 s

10 10 s 12 s 27.5 s 47 s

Table 6.2: Table of user testing task times.

Most of the tasks were completed in tens of seconds, while some users were able to
complete some short tasks even below the 10-second mark. The longer tasks, such as the
tasks number 4, 5, and 6, have a noticeably high variation in the recorded times between
the users. These discrepancies have been caused mainly by the input-intensive nature
of the tasks, as some users had trouble typing information into the text fields, since the
testing has been carried out online over a remote desktop connection sharing an Android
Emulator screen, which introduced some latency. Moreover, many users were not familiar
with the Android OS environment at all, which coupled with the fact, that they had to use
a keyboard and mouse peripherals to control the device, resulting in additional time lost.

Compared to the time of the author, the times of the users were higher in general, which
is to be expected from first-time users. Repeated experiments have shown, that once the
user completed a task for the first time, they were able to reduce their time when repeating
the task to up to a third of the original time.

64

The user times recorded for the task number 1, as shown in Figure 6.1, show an in-
teresting pattern, where one group of users were able to complete the task quicker than
the other group. This can be attributed to the way the users chose to complete the task
of downloading the Offline package for the country of Slovakia. Here, the users who chose
to use the included search function were able to complete the task faster than those, who
decided to scroll through the list of packages.

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10

Ta
sk

 t
im

e
 [

s]

Task #

Figure 6.1: Chart of times achieved by testing users per task.

After completing the tasks, the users were given the following five questions related to
their experience with the application:

1. How would you rate (1 to 5) the usability of the application as an EFB?

2. How would you rate (1 to 5) the graphic design of the application?

3. Which functionality of the application did you find the most interesting?

4. Which useful features do you miss in the application?

5. Would you personally use the application when flying on a simulator or in the reality?

As is apparent from the answers to the first two questions, shown in Figure 6.2, the
application has received an overall positive response. The graphic design suited nearly all
of the participants, as they found the color scheme easy on their eyes. From the usability

65

50%

30%

10%

10%

5*

4.5*

4*

3.5*

(a) Usability rating

80%

10%

10%

5*

4*

3*

(b) Graphic design rating

Figure 6.2: Charts representing the feedback given by users.

perspective, the application was found suitable as an EFB device for pilots of General
Aviation, flying according to VFR, by most of the users. When answering the question
number 5, all participants have stated, that they would personally use the application when
flying. Based on these facts, the goal of creating an EFB application can be considered to
be successfully fulfilled.

Some users have decreased the usability rating due to some issues with the User Inter-
face, which hindered the process of inputting text and values or finding the correct button
to press when performing the testing tasks. Based on the feedback, several changes have
been made to the UI, such as better distinction of actionable buttons using a different color,
or the inclusion of an arrow for back navigation in the top bar. Another change that has
been made is, that when inputting values to number fields, the previous value now gets
cleared upon focus.

When the users were asked which feature seems the most interesting to them, their
answers have varied greatly. Features considered as interesting by some were the real-time
calculation of the Center of Gravity in the Weight and Balance screen and the ability to
bring their own checklists and create new Aircraft profiles using the integrated editor. This
option of customizability was highly welcomed, as some pilots expressed that other EFB
applications, that they have used in the past, have been lacking in this department.

Other users chose the Flight planner and the Tools screen as the most interesting to
them, due to the way they were approached from the User Experience (UX) standpoint,
where making any changes would immediately reflect on the information presented on the
screen. At last, the remaining users liked the way the application is able to present the
information in a user-friendly manner, such as in the METAR tab of the Airport detail
described in Section 5.3.

Missing features, according to the users, included support for saving frequently flown
flights, search and filtering capabilities in the Logbook, and the availability of navigation
fixes in the waypoint database. Two users have requested integrated support for charts and
the ability to overlay them over the map, a feature found in many commercially available
Electronic Flight Bags, as seen in Subsection 3.1.1 in the Market Research chapter.

Other suggestions made by the users were the inclusion of a legend to the maps displayed
in the application and the availability of flight statistics, which have been omitted from the

66

design proposed in Section 4.2. Although the map interface already shows the borders of
restricted airspaces, one of the users has suggested that the application provide an explicit
warning when the user plans a flight route that passes through restricted airspace.

Conversations with pilots during user testing revealed, that according to them, the most
important features during flights are those, that help pilots quickly find information, such
as radio frequencies and weather conditions at an airport, and warn them before entering
into airspaces and restricted flight areas. NaviPilot already provides access to airport
information and airspace alerts, as described in Section 5.11. However, there is room for
improvement left in this regard, where these types of information could be displayed to the
user more prominently, by including additional popups and information cards during the
flight.

67

Chapter 7

Future Research

The application provides a solid ground for further development and the inclusion of ad-
ditional features. Many features requested by the users during user testing, such as the
integrated support for charts with arrival/departure procedures and an extended waypoint
database, are directly tied to the source of the data. As described in Section 5.3, NaviPilot
uses the freely available OpenAIP as its data source. Turning the application into a com-
mercial product could provide funds for higher quality paid data sources, which would open
the doors to implementing these types of features.

The upcoming v10 release of the Mapbox Android SDK library, used to display maps
in the application, as explained in Section 5.8, promises to provide increased rendering and
offline performance [53]. Moreover, the newly added support for rendering 3D terrain could
provide a whole new experience in the Dashboard. Displaying the position of the airplane
in a 3D environment could provide better situational awareness to the pilot during flights.

The support for alerts, described in Section 5.11, could be extended by implementing
additional types, apart from the airspace warnings. The extra alert types could include
terrain alerts, weather alerts, traffic alerts, and more. The traffic alert feature would use
data from another potential feature, which would use an internet connection, or an external
ADS-B receiver to display live traffic on the map.

Such a device, similar to the one described in Subsection 3.3.4 in the Market Research
chapter, would potentially also be able to provide accurate positional and attitude data
about the aircraft. Since NaviPilot was designed and architected to include support for
both the embedded GNSS receiver of the mobile device and the data from a simulator, it
is ready to be extended to include support for these external devices in the future.

Finally, the Automated checklists feature, outlined in Section 3.2.2, has a lot of room for
further development. Currently, it is in an experimental state, serving as a proof of concept
with only three supported keywords. This feature could be extended to support additional
keywords, while the accuracy could be improved using newer models and longer training.
However, the Automated checklists feature, and Keyword Spotting tasks in general, are
inherently complicated and could be treated as a full project on their own.

68

Chapter 8

Conclusion

Electronic Flight Bags (EFBs) are helpful pieces of software, as proved by the introduc-
tion part of this thesis, where the motivation behind the use of EFBs is explained. EFB
applications must, however, adhere to certain regulations, summarized in Chapter 2. Af-
terward, a market research has been conducted on existing EFB applications, examining
the common features offered by them.

Based on this newly acquired knowledge, a task has been set to design and implement
such an application. The application’s features have been described, in accordance with
the regulations and user expectations as established by the leading EFB applications on
the market. Following the feature description, a User Interface design has been proposed.

The feature specifications and UI design have been used to implement a full-fledged
application for the Android OS, named NaviPilot. The codebase of the application show-
cases the latest practices and tools of modern Android development, while its modular
architecture offers an easy path forward for further expansion.

The final product offers the basic functions of an EFB application, such as the support
for Documents, Logbook, Flight planning, aviation Maps, Tools, and the Airport Catalog
with information about airports available globally. NaviPilot can be customized by the
users with the built-in Aircraft profile and Checklist editors, in order to tailor to each
user’s individual needs. The integrated offline support ensures, that the application stays
in working order even during conditions without an internet connection.

While these features are vital for an Electronic Flight Bag, they are already commonly
available in commercial EFB applications, as seen in the Market Research Chapter 3. In
an effort to bring innovation to the existing EFB applications, NaviPilot includes two
experimental features, the Automated checklists feature and the AR Preview, described in
sections 3.2.2 and 5.10.

The final product has been tested with potential users in the User testing Section 6.3,
where it has received positive feedback, completing the goal of this thesis to develop an
EFB application. However, as discussed in the Future Research Chapter 7, the application
has a lot of room to grow in the future, with the potential inclusion of promising features
such as 3D Maps and the support for connection to external devices, which would further
improve the usability of the application during real-world flights.

69

Bibliography

[1] airBaltic. United Airlines saves 643,000 litres of fuel by using lighter paper on
inflight magazine. July 2014. [retrieved 2020-11-22]. Available at:
https://www.internationalairportreview.com/news/17234/airbaltic-pilots-go-
green-with-ipads/.

[2] AppBrain. Number of Android apps on Google Play. June 2021. [retrieved
2021-06-17]. Available at: https://www.appbrain.com/stats/number-of-android-apps.

[3] Arconics. Qatar Airways Goes Live with AeroDocs Documentation Management by
Arconics. November 2016. [retrieved 2021-01-09]. Available at:
https://www8.garmin.com/aboutGPS/waas.html.

[4] Berg, A., O’Connor, M. and Cruz, M. T. Keyword Transformer: A Self-Attention
Model for Keyword Spotting. 2021.

[5] Butler, H., Daly, M., Doyle, A., Gillies, S., Schaub, T. et al. The GeoJSON
Format [RFC 7946]. RFC Editor, august 2016. DOI: 10.17487/RFC7946. Available
at: https://rfc-editor.org/rfc/rfc7946.txt.

[6] Choi, S., Seo, S., Shin, B., Byun, H., Kersner, M. et al. Temporal Convolution
for Real-time Keyword Spotting on Mobile Devices. 2019.

[7] Coil Contributors. Coil. July 2021. [retrieved 2021-07-24]. Available at:
https://coil-kt.github.io/coil/.

[8] Coucke, A., Chlieh, M., Gisselbrecht, T., Leroy, D., Poumeyrol, M. et al.
Efficient keyword spotting using dilated convolutions and gating. 2019.

[9] Delta Airlines. Delta to equip 11,000 pilots with Microsoft Surface 2 tablet devices.
2013. [retrieved 2020-11-20]. Available at: https:
//news.delta.com/delta-equip-11000-pilots-microsoft-surface-2-tablet-devices.

[10] Devcic, M. PEKO. June 2021. [retrieved 2021-06-09]. Available at:
https://github.com/deva666/Peko.

[11] Easterling, R. Schema-gen. February 2021. [retrieved 2021-06-05]. Available at:
https://github.com/reaster/schema-gen.

[12] EUROCONTROL. European AIS Database. June 2021. [retrieved 2021-06-17].
Available at: https://www.eurocontrol.int/service/european-ais-database.

70

https://www.internationalairportreview.com/news/17234/airbaltic-pilots-go-green-with-ipads/
https://www.internationalairportreview.com/news/17234/airbaltic-pilots-go-green-with-ipads/
https://www.appbrain.com/stats/number-of-android-apps
https://www8.garmin.com/aboutGPS/waas.html
https://rfc-editor.org/rfc/rfc7946.txt
https://coil-kt.github.io/coil/
https://news.delta.com/delta-equip-11000-pilots-microsoft-surface-2-tablet-devices
https://news.delta.com/delta-equip-11000-pilots-microsoft-surface-2-tablet-devices
https://github.com/deva666/Peko
https://github.com/reaster/schema-gen
https://www.eurocontrol.int/service/european-ais-database

[13] European Union Aviation Safety Agency. Easy Access Rules for Acceptable
Means of Compliance for Airworthiness of Products, Parts and Appliances
(AMC-20). February 2020. Amendment 16. Available at: https:
//www.easa.europa.eu/sites/default/files/dfu/AMC-20%20%28Amendment%2016%29.pdf.

[14] Federal Aviation Administration. Aircraft weight and balance handbook 1999:
Faa-h-8083-1. US Department of Transportation, FAA, 1999. ISBN 1619544814.

[15] Federal Aviation Administration. AC 120-76D - Authorization for Use of
Electronic Flight Bags. October 2017. Available at:
https://www.faa.gov/documentLibrary/media/Advisory_Circular/AC_120-76D.pdf.

[16] Federal Aviation Administration. Standard Operating Procedures and Pilot
Monitoring Duties for Flight Deck Crewmembers. October 2017. Available at:
https://www.faa.gov/documentLibrary/media/Advisory_Circular/AC_120-71B.pdf.

[17] Federal Aviation Administration. GNSS Frequently Asked Questions - WAAS.
April 2019. [retrieved 2021-01-09]. Available at:
https://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/
techops/navservices/gnss/faq/waas/.

[18] Federal Aviation Administration. AIP AERONAUTICAL INFORMATION
PUBLICATION UNITED STATES OF AMERICA. TWENTY-SIXth ed. 2020.
Available at:
https://www.faa.gov/air_traffic/publications/media/aip_basic_7_16_20.pdf.

[19] Federal Aviation Administration. PilotWeb. June 2021. [retrieved 2021-06-14].
Available at: https://pilotweb.nas.faa.gov/PilotWeb/.

[20] Fltplan. Fltplan About. [retrieved 2020-12-01]. Available at:
https://www.fltplan.com/about_fltplan.html.

[21] Fltplan. FltPlan Go. [retrieved 2020-12-01]. Available at:
https://play.google.com/store/apps/details?id=com.fltplan.go.

[22] FltPlan. FltPlan Go User’s Manual. September 2020. Available at:
https://flttrack.fltplan.com/TutorialPDFs/FtPlanGo-iPad-Users-Manual.pdf.

[23] Foreflight. Foreflight About. [retrieved 2020-11-30]. Available at:
https://foreflight.com/about/foreflight/.

[24] Foreflight. ForeFlight Feature Focus: Forecast Weather in 3D Preview. [retrieved
2020-11-30]. Available at: https://www.youtube.com/watch?v=DeTbx17-EYU.

[25] Foreflight. Pilot’s Guide to FOREFLIGHT MOBILE. 84th ed. Available at:
http://cloudfront.foreflight.com/docs/ff/12.9/v12.9%20-%20foreflight%20mobile%
20pilot%20guide%20optimized.pdf?_ga=
2.117387526.143618085.1606758318-1791363413.1603964506.

[26] Garmin. Garmin About. [retrieved 2020-12-02]. Available at:
https://www.garmin.com/en-US/company/about-garmin/.

71

https://www.easa.europa.eu/sites/default/files/dfu/AMC-20%20%28Amendment%2016%29.pdf
https://www.easa.europa.eu/sites/default/files/dfu/AMC-20%20%28Amendment%2016%29.pdf
https://www.faa.gov/documentLibrary/media/Advisory_Circular/AC_120-76D.pdf
https://www.faa.gov/documentLibrary/media/Advisory_Circular/AC_120-71B.pdf
https://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/navservices/gnss/faq/waas/
https://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/navservices/gnss/faq/waas/
https://www.faa.gov/air_traffic/publications/media/aip_basic_7_16_20.pdf
https://pilotweb.nas.faa.gov/PilotWeb/
https://www.fltplan.com/about_fltplan.html
https://play.google.com/store/apps/details?id=com.fltplan.go
https://flttrack.fltplan.com/TutorialPDFs/FtPlanGo-iPad-Users-Manual.pdf
https://foreflight.com/about/foreflight/
https://www.youtube.com/watch?v=DeTbx17-EYU
http://cloudfront.foreflight.com/docs/ff/12.9/v12.9%20-%20foreflight%20mobile%20pilot%20guide%20optimized.pdf?_ga=2.117387526.143618085.1606758318-1791363413.1603964506
http://cloudfront.foreflight.com/docs/ff/12.9/v12.9%20-%20foreflight%20mobile%20pilot%20guide%20optimized.pdf?_ga=2.117387526.143618085.1606758318-1791363413.1603964506
http://cloudfront.foreflight.com/docs/ff/12.9/v12.9%20-%20foreflight%20mobile%20pilot%20guide%20optimized.pdf?_ga=2.117387526.143618085.1606758318-1791363413.1603964506
https://www.garmin.com/en-US/company/about-garmin/

[27] Garmin. Garmin pilot adds synthetic vision capability. [retrieved 2020-12-02].
Available at: https://www.garmin.com/en-US/blog/aviation/garmin-pilot-adds-
synthetic-vision-capability/.

[28] Garmin. Garmin Pilot™ for iOS. November 2020. Available at:
https://static.garmin.com/pumac/190-01501-00_ae.pdf.

[29] Google. Open files using storage access framework. [retrieved 2021-06-04]. Available
at: https://developer.android.com/guide/topics/providers/document-provider.

[30] Google. Activity. June 2021. [retrieved 2021-06-17]. Available at:
https://developer.android.com/reference/android/app/Activity.

[31] Google. Android Jetpack. July 2021. [retrieved 2021-07-20]. Available at:
https://developer.android.com/jetpack.

[32] Google. The Android Profiler. May 2021. [retrieved 2021-07-25]. Available at:
https://developer.android.com/studio/profile/android-profiler.

[33] Google. ARCore overview. June 2021. [retrieved 2021-06-07]. Available at:
https://developers.google.com/ar/discover.

[34] Google. Build better apps faster with Jetpack Compose. June 2021. [retrieved
2021-06-15]. Available at: https://developer.android.com/jetpack/compose.

[35] Google. DataStore. June 2021. [retrieved 2021-06-10]. Available at:
https://developer.android.com/topic/libraries/architecture/datastore.

[36] Google. Design - Material Design. July 2021. [retrieved 2021-07-20]. Available at:
https://material.io/design.

[37] Google. Guide to app architecture. June 2021. [retrieved 2021-06-13]. Available at:
https://developer.android.com/jetpack/guide#best-practices.

[38] Google. Handling Lifecycles with Lifecycle-Aware Components. June 2021.
[retrieved 2021-06-16]. Available at:
https://developer.android.com/topic/libraries/architecture/lifecycle.

[39] Google. Navigation. June 2021. [retrieved 2021-06-17]. Available at:
https://developer.android.com/guide/navigation.

[40] Google. Paging library overview. June 2021. [retrieved 2021-06-08]. Available at:
https://developer.android.com/topic/libraries/architecture/paging/v3-overview.

[41] Google. Save data in a local database using Room. June 2021. [retrieved 2021-06-08].
Available at: https://developer.android.com/training/data-storage/room.

[42] Google. Services overview. January 2021. [retrieved 2021-06-12]. Available at:
https://developer.android.com/guide/components/services.

[43] Google. ViewModel Overview. April 2021. [retrieved 2021-06-17]. Available at:
https://developer.android.com/topic/libraries/architecture/viewmodel.

[44] Gradle. What is Gradle? June 2021. [retrieved 2021-06-13]. Available at:
https://docs.gradle.org/current/userguide/what_is_gradle.html.

72

https://www.garmin.com/en-US/blog/aviation/garmin-pilot-adds-synthetic-vision-capability/
https://www.garmin.com/en-US/blog/aviation/garmin-pilot-adds-synthetic-vision-capability/
https://static.garmin.com/pumac/190-01501-00_ae.pdf
https://developer.android.com/guide/topics/providers/document-provider
https://developer.android.com/reference/android/app/Activity
https://developer.android.com/jetpack
https://developer.android.com/studio/profile/android-profiler
https://developers.google.com/ar/discover
https://developer.android.com/jetpack/compose
https://developer.android.com/topic/libraries/architecture/datastore
https://material.io/design
https://developer.android.com/jetpack/guide#best-practices
https://developer.android.com/topic/libraries/architecture/lifecycle
https://developer.android.com/guide/navigation
https://developer.android.com/topic/libraries/architecture/paging/v3-overview
https://developer.android.com/training/data-storage/room
https://developer.android.com/guide/components/services
https://developer.android.com/topic/libraries/architecture/viewmodel
https://docs.gradle.org/current/userguide/what_is_gradle.html

[45] Hardawar, D. How ’Microsoft Flight Simulator’ became a ’living game’ with Azure
AI. September 2020. [retrieved 2021-07-22]. Available at: https://www.engadget.com/
microsoft-flight-simulator-azure-ai-machine-learning-193545436.html.

[46] Harjula, M. JSimConnect - a simconnect java client library. March 2021. [retrieved
2021-06-05]. Available at: https://github.com/mharj/jsimconnect.

[47] Hugo, M. United Airlines saves 643,000 litres of fuel by using lighter paper on
inflight magazine. January 2018. [retrieved 2020-11-20]. Available at:
https://www.traveller.com.au/united-airlines-saves-643-litres-of-fuel-by-
using-lighter-paper-on-inflight-magazine-h0nfej#ixzz5c6aJITkq.

[48] International Civil Aviation Organization. Manual of Electronic Flight Bags
(EFBs). Secondth ed. 2018. Available at: http://www.icscc.org.cn/upload/file/
20190102/Doc.10020-EN%20Manual%20of%20Electronic%20Flight%20Bags%20(EFBs).pdf.

[49] Jeppesen. Jeppesen charts on Garmin Pilot. [retrieved 2020-12-02]. Available at:
https://ww2.jeppesen.com/jeppesen-charts-on-garmin-pilot/.

[50] Knudian. OpenAIP2GeoJSON. April 2020. [retrieved 2021-06-07]. Available at:
https://github.com/Knudian/OpenAIP2GeoJSON.

[51] Koebbe, B. ForeFlight releases biggest update for 2020 – how to use each new feat...
[retrieved 2020-11-30]. Available at: https://ipadpilotnews.com/2020/05/foreflights-
biggest-update-for-2020-how-to-use-the-new-features/.

[52] Kpadey, J.-K. MetarParser. July 2021. [retrieved 2021-07-24]. Available at:
https://github.com/mivek/MetarParser.

[53] Lee, T. Maps SDK 10 Release Candidate. June 2021. [retrieved 2021-07-28]. Available
at: https://www.mapbox.com/blog/maps-sdk-v10-release-candidate.

[54] Lockheed Martin Corporation. SimConnect. 2016. [retrieved 2021-06-05].
Available at: http:
//www.prepar3d.com/SDKv3/LearningCenter/utilities/simconnect/simconnect.html.

[55] Malchev, I. Number of Android apps on Google Play. October 2019. [retrieved
2021-01-03]. Available at: https:
//android-developers.googleblog.com/2019/10/all-about-updates-more-treble.html.

[56] Mapbox. Access elevation data. June 2021. [retrieved 2021-06-15]. Available at:
https://docs.mapbox.com/help/troubleshooting/access-elevation-data/.

[57] Mapbox. Maps for Unity. June 2021. [retrieved 2021-06-07]. Available at:
https://www.mapbox.com/unity.

[58] Mapbox. Maps SDK for Android. June 2021. [retrieved 2021-06-07]. Available at:
https://docs.mapbox.com/android/maps/guides/.

[59] Mapbox. Search. July 2021. [retrieved 2021-07-22]. Available at:
https://www.mapbox.com/search-service.

[60] Mapbox. Tilesets. June 2021. [retrieved 2021-06-07]. Available at:
https://docs.mapbox.com/studio-manual/reference/tilesets/.

73

https://www.engadget.com/microsoft-flight-simulator-azure-ai-machine-learning-193545436.html
https://www.engadget.com/microsoft-flight-simulator-azure-ai-machine-learning-193545436.html
https://github.com/mharj/jsimconnect
https://www.traveller.com.au/united-airlines-saves-643-litres-of-fuel-by-using-lighter-paper-on-inflight-magazine-h0nfej#ixzz5c6aJITkq
https://www.traveller.com.au/united-airlines-saves-643-litres-of-fuel-by-using-lighter-paper-on-inflight-magazine-h0nfej#ixzz5c6aJITkq
http://www.icscc.org.cn/upload/file/20190102/Doc.10020-EN%20Manual%20of%20Electronic%20Flight%20Bags%20(EFBs).pdf
http://www.icscc.org.cn/upload/file/20190102/Doc.10020-EN%20Manual%20of%20Electronic%20Flight%20Bags%20(EFBs).pdf
https://ww2.jeppesen.com/jeppesen-charts-on-garmin-pilot/
https://github.com/Knudian/OpenAIP2GeoJSON
https://ipadpilotnews.com/2020/05/foreflights-biggest-update-for-2020-how-to-use-the-new-features/
https://ipadpilotnews.com/2020/05/foreflights-biggest-update-for-2020-how-to-use-the-new-features/
https://github.com/mivek/MetarParser
https://www.mapbox.com/blog/maps-sdk-v10-release-candidate
http://www.prepar3d.com/SDKv3/LearningCenter/utilities/simconnect/simconnect.html
http://www.prepar3d.com/SDKv3/LearningCenter/utilities/simconnect/simconnect.html
https://android-developers.googleblog.com/2019/10/all-about-updates-more-treble.html
https://android-developers.googleblog.com/2019/10/all-about-updates-more-treble.html
https://docs.mapbox.com/help/troubleshooting/access-elevation-data/
https://www.mapbox.com/unity
https://docs.mapbox.com/android/maps/guides/
https://www.mapbox.com/search-service
https://docs.mapbox.com/studio-manual/reference/tilesets/

[61] Mapbox. Tilesets-cli. April 2021. [retrieved 2021-06-07]. Available at:
https://github.com/mapbox/tilesets-cli/.

[62] MKergall. OSMBonusPack. May 2021. [retrieved 2021-06-13]. Available at:
https://github.com/MKergall/osmbonuspack.

[63] Muntenescu, F. and Sathyanarayana, R. Prefer Storing Data with Jetpack
DataStore. September 2020. [retrieved 2021-06-10]. Available at: https://android-
developers.googleblog.com/2020/09/prefer-storing-data-with-jetpack.html.

[64] National Oceanic and Atmospheric Administration. AVIATION WEATHER
CENTER - METARs. June 2021. [retrieved 2021-06-14]. Available at:
https://www.aviationweather.gov/metar.

[65] National Oceanic and Atmospheric Administration. GLOBE: Get the Data.
June 2021. [retrieved 2021-06-15]. Available at:
https://www.ngdc.noaa.gov/mgg/topo/globeget.html.

[66] Niantic. The games redefining our reality. June 2021. [retrieved 2021-06-07].
Available at: https://nianticlabs.com/en/products/.

[67] O’Dea, S. Market share of mobile operating systems worldwide 2012-2020. November
2020. [retrieved 2020-12-31]. Available at: https://www.statista.com/statistics/
272698/global-market-share-held-by-mobile-operating-systems-since-2009/.

[68] openAIP team. OpenAIP. February 2020. [retrieved 2021-06-04]. Available at:
http://www.openaip.net/.

[69] Rybakov, O., Kononenko, N., Subrahmanya, N., Visontai, M. and Laurenzo,
S. Streaming Keyword Spotting on Mobile Devices. Interspeech 2020. ISCA. Oct
2020. DOI: 10.21437/interspeech.2020-1003. Available at:
http://dx.doi.org/10.21437/Interspeech.2020-1003.

[70] Schastlyvyi, O. Weather Maps API. June 2021. [retrieved 2021-06-14]. Available at:
https://www.rainviewer.com/api/weather-maps-api.html.

[71] Sentry. Sentry™ - The Most Full-featured Portable ADS-B & GPS Receiver.
[retrieved 2020-12-03]. Available at: https://flywithsentry.com/sentry.

[72] Snowflake Software. Laminar Data Hub Overview. June 2021. [retrieved
2021-06-17]. Available at: https://developer.laminardata.aero/.

[73] Tensorflow. An end-to-end open source machine learning platform. June 2021.
[retrieved 2021-06-11]. Available at: https://www.tensorflow.org/.

[74] Units of Measurement project. Units of Measurement - About. July 2021.
[retrieved 2021-07-23]. Available at:
http://unitsofmeasurement.github.io/pages/about.html.

[75] Unity. Unity Platform. June 2021. [retrieved 2021-06-07]. Available at:
https://unity.com/products/unity-platform.

[76] Warden, P. Speech Commands: A Dataset for Limited-Vocabulary Speech
Recognition. 2018.

74

https://github.com/mapbox/tilesets-cli/
https://github.com/MKergall/osmbonuspack
https://android-developers.googleblog.com/2020/09/prefer-storing-data-with-jetpack.html
https://android-developers.googleblog.com/2020/09/prefer-storing-data-with-jetpack.html
https://www.aviationweather.gov/metar
https://www.ngdc.noaa.gov/mgg/topo/globeget.html
https://nianticlabs.com/en/products/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
http://www.openaip.net/
http://dx.doi.org/10.21437/Interspeech.2020-1003
https://www.rainviewer.com/api/weather-maps-api.html
https://flywithsentry.com/sentry
https://developer.laminardata.aero/
https://www.tensorflow.org/
http://unitsofmeasurement.github.io/pages/about.html
https://unity.com/products/unity-platform

[77] Whitwam, R. Scoped Storage in Android 11 will have exemptions for older APIs
and ’core’ apps like file managers. February 2020. [retrieved 2021-06-04]. Available at:
https://www.androidpolice.com/2020/02/19/scoped-storage-in-android-11-will-
have-exemptions-for-older-apis-and-core-apps-like-file-managers/.

[78] Wilhelmstötter, F. JPX. April 2021. [retrieved 2021-06-13]. Available at:
https://github.com/jenetics/jpx.

[79] Zhang, Y., Suda, N., Lai, L. and Chandra, V. Hello Edge: Keyword Spotting on
Microcontrollers. 2018.

75

https://www.androidpolice.com/2020/02/19/scoped-storage-in-android-11-will-have-exemptions-for-older-apis-and-core-apps-like-file-managers/
https://www.androidpolice.com/2020/02/19/scoped-storage-in-android-11-will-have-exemptions-for-older-apis-and-core-apps-like-file-managers/
https://github.com/jenetics/jpx

Appendix A

Contents of the Included Storage
Media

/
program_source/..project source code
report_source/ ... technical report source
screenshots/...................................screenshots from the application
design_files/..design files
xkusik00_report.pdf..thesis document
xkusik00_report_print.pdf...........................thesis document for print
project_requirements.txt................................project requirements
NaviPilotDemo.mp4................................application usage demo video
NaviPilot.apk..................................application installation package

76

	Introduction
	State-of-the-Art Electronic Flight Bag
	Categorization
	Portable EFB
	Installed EFB

	Applications types
	Type A
	Type B

	Market Research
	FltPlan Go
	Maps
	Airport information

	Garmin Pilot
	Documents
	Checklists
	Synthetic Vision

	Foreflight Mobile
	Flight planning
	3D Preview
	Alerts
	External devices connectivity

	Application Design and Specification
	Android development
	Application features
	User Interface

	Application Implementation
	Project architecture
	Documents
	Airport catalog
	Aircraft profiles
	Checklists
	Logbook
	Data connectivity
	Maps
	Flight planner
	AR Preview
	Flight engine
	Dashboard
	Tools
	Offline support

	Testing and Evaluation
	Unit tests
	Resource usage
	User testing

	Future Research
	Conclusion
	Bibliography
	Contents of the Included Storage Media

