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Bayesian sequential estimation of unknown states of the state-spacemodels - also known as filtering - is 

generally a well-established discipline. Various types of the Kalman filters are predominantly used if the 

process and measurement noise variables are independent and identically (normally) distributed, and 

their covariance matrices are known. However, this knowledge is not always available. The aim of the 

thesis is focus on this issue and to propose a method that allows simultaneous filtering of the state 

variable and estimation of the observation noise covariance matrix. Inspiration can be found in [1].
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Department of Applied Mathematics
Supervisor: Ing. Kamil Dedecius, Ph.D.

May 5, 2021





Acknowledgements

First and foremost I have to express my gratitude to my supervisor Ing. Kamil
Dedecius Ph.D. for his guidance and invaluable suggestion on the topis, as
well as his willingness and patience and all the valuable time that he spent
answering my relentless questions, which there were many.

Second, I must thank my family, for their support throughout my studies,
without which I could not have made it.





Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on May 5, 2021 . . .. . .. . .. . .. . .. . .. . .



Czech Technical University in Prague
Faculty of Information Technology
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Abstrakt

Tato závěrečná práce se věnuje problému distribuovaného Baysovského sek-
venčńıho odhadu neznámých stav̊u stavových model̊u s neznámými kova-
riačńımi maticemi šumu procesu i měřeńı. Tento problém je velmi častý v
reálných př́ıpadech, kde specifické informace o kovariačńıch matićıch šumu
pro jednotlivé senzory nemuśı být dostupné. Řešeńı navržené v této práci je
postavené na teorii variačńıho Bayese, ta je využitá jak k odhadu stav̊u, tak i k
odhadu kovariačńı matice šumu měřeńı. Z d̊uvodu zlepšeńı sd́ıĺıme jak měřeńı,
tak i posteriorńı odhady mezi sousedńımi uzly v śıti. Práce zároveň ukazuje
zp̊usob optimalizace kovariačńı matice procesńıho šumu.

Kĺıčová slova Difuzńı śıtě, difuzńı strategie, odhad stav̊u, Kalman filtrace,
variačńı Bayesovské metody
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Abstract

This thesis explores the problem of distributed Bayesian sequential estima-
tion of unknown state-spacemodels with unknown processes and measurement
noise covariance matrices. This is a frequent problem in real-world scenarios,
where the information about noise covariance matrices for specific sensors
may not be available. The solution proposed in this thesis is built upon the
variational Bayesian paradigm, which is used for the estimation of the states,
as well as the unknown measurement noise covariance matrix. From perfor-
mance improvements, the measurements and posterior estimates are shared
between the adjacent node in the network. It also shows a way of optimizing
the process noise covariance matrix.

Keywords Diffusion network, diffusion strategy, state estimation, Kalman
filtering, variational Bayesian methods
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Introduction

The Bayesian filtering of state-space models with the unknown process and
measurement noise covariance matrices is a problem where we aim to estimate
a variable in time, whose measurements are affected by noise and are therefore
imprecise. This problem has many real-world use cases, ranging from medicine
all to way to telecommunications. Since the sensors that can provide measure-
ments are getting increasingly cheaper, many devices have more than one way
to measure something. Hence the prospect of filtering in a distributed setting
is more and more appealing.

This thesis is based upon the Article Variational diffusion Kalman filtering
with unknown process and measurement noise covariance matrices by Tomáš
Vlk and Kamil Dedecius, which will be sent to the IEEE Transactions on
Signal Processing.

Goals of the thesis

The primary goals of this thesis could be summarized in the following way:

• Explore the issue of filtering when we do not know the exact process or
measurement noise covariance matrices.

• Propose a method that would allow simultaneous filtering of the state
variable and estimation of the observed noise covariance matrix.

Personal motivation

My first encounter with filtering was when I had the opportunity to work on
tracking surrounding cars using measurements from a car-mounted camera. I
was tasked with implementing the filtering of the signals provided and my col-
leagues at the time introduced me to the Kalman filter. Ever since I have had
a great interest in filtering topics and the Kalman filter in particular. Hence I
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Introduction

wanted to discover more and expand my knowledge to this background. I had
the incredible opportunity to attend astonishing subjects that were focused on
this topic, namely the Bayesian machine learning and the Statistical analysis
of time series, where I could expand my overview of the topic as well as fill in
some gaps in my understanding of the subject. After all of this, I still wanted
to know what is the state-of-the-art in this field and I felt that choosing it for
a topic of my thesis was the ideal choice. Thankfully I must say, that I have
never had any form of regrets about this decision.

Structure of the work

We have chosen to arrange this work into four main chapters. Chapter 1, is
used for the introduction of necessary concepts and ideas, we build upon in
the later parts of the thesis. We then proceed to show some of the current
state-of-the-art methods in this particular field and provide some comparison
with our work in Chapter 2. Our proposed solution to the thesis goal is shown
in Chapter 3, where we first show our approach to non-distributed setting,
and then in a later section of the same chapter, we show how to adapt it for
distributed setting. Finally, in Chapter 4 we show the results of our proposed
method and compare them with other state-of-the-art approaches.

2



Chapter 1
Background

In the following chapter, we provide a short introduction to some basic con-
cepts and prerequisites needed for understanding the later parts of this work.
This will range through various topics, at first focusing on the basics of
Bayesian inference. Later, we will build upon those ideas with the concept of
the Kalman filter and show an example of its usage. Last but not least, we
will show how to solve the issue of intractable posteriors by using variational
Bayesian inference.

1.1 Bayesian inference

In this section, we explain the concept of Bayesian inference that will be needed
for further understanding of this work. Most of this chapter is inspired by [1].

1.1.1 Bayes’ theorem

First the most basic concept, the Bayes’ theorem. This is one of the funda-
mental concepts in statistics, since the late 18 century, when it was discovered
by Thomas Bayes, even though the publication was published posthumously.
The exact formulation of the Bayes’ theorem is the following,

p(A|B) = p(B|A)p(A)
p(B) , (1.1)

where A and B are events, p(B) 6= 0, p(A|B) is a conditional probability of
event A given event B and p(A), p(B) is probability of event A, B respectively.

For our case of the Bayesian interference, we will call the terms of the
Bayes’ theorem in the following way:

• A could be any hypothesis that could be affected by the data B.

• p(A) is the prior probability of the hypothesis A, before the data B, that
is the current evidence of development is observed.

3



1. Background

• p(A|B) is the posterior probability of A given B.

• p(B|A) is a probability of B given A, usually called likelihood.

• p(B) is mostly called marginal probability.

However, for us, the most useful variant of the Bayes’ theorem will be
the following. Assume that y and θ are random variables with the following
probability density functions1 f(y|θ) and f(θ). Then we can express them by
using the Bayes’ theorem,

f(θ|y) = f(y|θ)f(θ)
f(y) , (1.2)

where the f(θ|y) is a posterior density of θ, f(θ) is the prior density of θ, f(y)
is marginal density of observations and finally the f(y|θ) is the likelihood of
observations. Since f(y) purpose is only as a normalizing constant, hence we
can write rewrite the Equation 1.2 in proportional form in the following way,

f(θ|y) ∝ f(y|θ)f(θ). (1.3)

1.1.2 Conjugate priors

Based on the Bayes’ theorem shown in Section 1.1.1, we would like to have
the posterior distribution in the same family of probability distributions as
the prior distribution. Unfortunately, this behavior is not guaranteed nor
common. For this to happen, both posterior and prior distributions must be
what are called conjugate distributions. Then the prior distribution will be
called conjugate prior.

For our case, we will use distributions from the exponential family, as
established in [2], that can be defined in the following way,

Definition 1.1.1 (Exponential family). A family {Fθ} of distributions of a
random variable yt parameterized by a scalar or multivariate parameter θ is
said to form an exponential family if the probability density function can be
written in the form

f(y|θ) = exp{η(θ)TTθ(y)−B(θ)}h(y), (1.4)

where η(θ) is natural parameter, Tθ(y) is the sufficient statistic encompassing
all information necessary for the estimation of θ, B(θ) is the log-normalizing
function, and h(x) is the base measure.

From [3] we know that the conjugate prior distribution of exponential
family distribution is crucial for tractability of the Bayesian update. Hence
we will define the conjugate prior distribution for θ.

1Usually abbreviated as pdf
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1.1. Bayesian inference

Definition 1.1.2 (Conjugate prior distribution for θ). Let us suppose that
we have f(y|θ), that is an exponential family distribution in a way defined by
Definition 1.1.1. Assuming that π(θ) is conjugate to f(y|θ), then probability
density function of f(y|θ) has to have the following form,

π(θ) = exp{η(θ)TΞ−θ − ν
−B(θ)}g(θ), (1.5)

where g(θ) is a known function, B(θ) coincides with the log-normalization
function of f(y|θ), the hyperparameter Ξ−θ has the same dimensions as Tθ(y).
There is a possibility of not needing the hyperparameter ν− > 0, if B(θ) = 1
for every θ. There is also a slight possibility of parameter ν− > 0 being
absorbed by Ξ−θ .

Just for the sake of completeness, we have shown some of the other con-
jugate priors for the most common distributions in Table 1.1.

Posterior Model parameters Conjugate prior
Binomial p probability Beta
Poisson λ (rate) Gamma

Multinomial p (probability vector),
k (number of categories) Dirichlet

Normal with known variance σ2 µ (mean) Normal
Multivariate normal

with known covariance matrix Σ µ (mean vector) Multivariate normal

Multivariate normal
with known mean µ

Σ (covariance matrix) Inverse-Wishart

Multivariate normal µ(mean vector),
Σ (covariance matrix) normal-inverse-Wishart

Table 1.1: Distributions and their conjugate priors

1.1.3 Example

In this example, we will show how to estimate the mean µ of the normal
distribution with a known variance σ2 using the conjugate prior normal dis-
tribution. It aims to show the application of the Bayes’ theorem and the
conjugate priors, as shown in Section 1.1.1 and 1.1.2 respectively.

We will assume that we have a scalar data named Yt that gets an update
in discrete steps t = 1, 2, . . . and is approximately modeled by

Yt ∼ N (µ, σ2), µ ∈ R, σ2 ∈ R+, (1.6)

where µ is the mean, and σ2 is the variance. As stated previously, we will
estimate the unknown µ given that σ2 is known.

5



1. Background

To use the Bayesian update, we have to rewrite the model probability
density function2 as

f(yt|θ) = f(yt|µ) = 1√
2πσ2

exp
{ −1

2σ2 (yt − µ)2
}

= 1√
2πσ2

exp
{ −1

2σ2 (y2
t − 2ytµ+ µ2)

}
.

(1.7)

As established in Section 1.1.2, the conjugate prior for the normal distri-
bution with a known variance σ2 is again the normal distribution. Therefore
we will model µ by the normal distribution with a mean m and a variance s2,

µ ∼ N (mt−1, s
2
t−1), m ∈ R, s2 ∈ R+. (1.8)

The index t − 1 means that in the current step labeled as t, the most up
to date information we have is from step t− 1 therefore those measurements
are from the previous step, and we will assimilate them to the current step t.

As a next step, we have to rewrite the pdf of the prior normal as well as
the normal data model into compatible forms. First, we will rewrite the data
model. It will be characterized by parameter η, the sufficient statistic T (y),
and a normalizing function g(µ). The transformation is following:

f(yt|θ) = f(yt|µ) = 1√
2πσ2

exp
{ −1

2σ2 (yt − µ)2
}

= 1√
2πσ2

exp
{ −1

2σ2 (y2
t − 2ytµ+ µ2)

}

= 1√
2πσ2

· exp
{
− y2

t

2σ2

}
︸ ︷︷ ︸

h(yt)

· 1︸︷︷︸
g(µ)

exp
{[

µ

−µ2

2

]ᵀ [ yt
σ2
1
σ2

]
︸ ︷︷ ︸
η(µ)ᵀT (yt)

}
.

(1.9)

Now we also have to rewrite the prior normal into a compatible form. It

2Usually abbreviated as PDF
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1.1. Bayesian inference

can be done in the following way:

π(µ|ξt−1, νt−1) = π(µ|mt−1, s
2
t−1)

= 1√
2πs2

t−1

exp
{
−1

2s2
t−1

(µ−mt−1)2
}

= 1√
2πs2

t−1

exp
{
−1

2s2
t−1

(µ2 − 2µmt−1 +m2
t−1)

}

= 1√
2πs2

t−1

· exp
{
−
m2
t−1

2s2
t−1

}
︸ ︷︷ ︸

q(ξt−1,νt−1)

· 1︸︷︷︸
g(µ)νt−1

exp
{[

µ

−µ2

2

]ᵀ mt−1
s2
t−1
1

s2
t−1


︸ ︷︷ ︸

η(µ)ᵀξt−1

}
.

(1.10)
Next, we can use the Bayes’ theorem, shown in Section 1.1.1, to update the
hyperparameters of the prior normal (ξ, ν).

ξt = ξt−1 + T (yt),
νt = νt−1 + 1.

(1.11)

Due to g(ν) = 1 in this case, it can be omitted from our calculations. Because
of that, the posterior hyperparameter ξt will be equivalent to:

[mt
s2
t1
s2
t

]
=

mt−1
s2
t−1
1

s2
t−1

+
[
yt
σ2
1
σ2

]
. (1.12)

Now we can relatively simply rewrite it back to the form of a direct update
to the prior normal hyperparameters, mt−1 and s2

t−1. The final result should
look like this:

s2
t =

(
1
s2
t−1

+ 1
σ2

)−1

,

mt =
(
mt−1
s2
t−1

+ yt
σ2

)
· s2
t =

σ2mt−1 + s2
t−1yt

s2
t−1 + σ2 .

(1.13)

For us to demonstrate its functionality, we have estimated a mean uti-
lization of CPU3, both under intense load as well as under a mild load. The
percentual load of CPU was logged every second for the duration of 100 sec-
onds. Representation of those measurements can be seen in Figure 1.1.

We have then estimated the mean of the utilization of CPU in time, using
a normal distribution with known variance. Graphs of this estimation can be
seen in Figure 1.2. It can be easily seen, in Figure 1.2a, that the estimation has

3Central processing unit
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1. Background

troubles with the estimation of highly dynamic measurements, where the mean
estimation does not react fast enough. On the other hand, the mean estimation
for idle CPU is very good, and even the interval around our estimate gets
better with further progress of the estimation.

(a) (b)

Figure 1.1: (a) CPU load under heavy impact application (b) CPU load under
passive conditions

(a) (b)

Figure 1.2: (a) Estimate of mean CPU load under heavy use (b) Estimate of
mean CPU load under mild use

1.2 Kalman filter

For this section, we have used a similar approach and notation as in [4], and
[5].

1.2.1 Introduction

Let us assume that we have a state model that is time-invariant and is com-
prised of the following equations:

8



1.2. Kalman filter

xt = Axt−1 +But + wt, (1.14)
yt = Hxt + εt, (1.15)

where xt and xt−1 are the state vectors, we will attempt to estimate, ut is a
control vector, that is known, both wt and εt are the state noise and mea-
surement noise respectively. Last but not least, A, B and H are matrices of
compatible shape.

Let us also assume that both wt and εt are independent and from Normal
distribution centered at zero, therefore:

wt ∼ N (0, Q),
ε ∼ N (0, R).

(1.16)

The fact that both noise distributions are centered in zero is profoundly
important since if it was not the case, we would end up with a systematic
error in our estimation.

The problem as defined above can be solved using the Kalman filter.
Kalman filter is one of the most well-known sequential estimators, usually
called filters, due to its use in the navigation for the Apollo program. Since
then, it has become one of the most commonly used filters in all possible types
of industry, from telecommunications through medical instruments all the way
to the automotive industry.

The typical usage of the Kalman filter is in improving the sensory mea-
surements. Since the Kalman filter is independent of the way that the specific
sensor operates, it can work the same way regardless of the type of sensor
that supplies the data. However, the Kalman filter in its natural form has one
major limitation, that it is limited to linear systems. There are variants of
the Kalman filter that remove these limitations, but they are out of scope for
this thesis.

1.2.2 Derivation of the Kalman filter

Now we can build upon the state model, defined in Section 1.2.1. From nor-
mality, we can deduce that:

xt ∼ N (Axt +But, Q), with the density equal to p(xt|xt−1, ut) (1.17)
yt ∼ N (Hxt, R), with the density equal to f(yt|xt) (1.18)

The last thing that we will need is a prior distribution for xt. As a con-
sequence of model yt being Normal, we known that correct conjugate prior
will again be the normal distribution, this was shown in Section 1.1.2. Hence

9



1. Background

we will select prior distribution for xt as Normal distribution, with mean x+
t−1

and covariance matrix P+
t−1.

π(xt|y0:t−1, u0:t−1) = N (x+
t−1, P

+
t−1) (1.19)

The Kalman filter, like many other filters, runs in two main steps, usually
called the prediction step and the update step, respectively.The prediction
step, as its name suggests, predicts the next state vector using the filter’s
statistical knowledge. Afterward, the update step takes measurement obtained
from the sensor and corrects the prediction. Two main things are important
to realize. First, that if there is no noise, there is no need for the update
step, since the prediction should be already correct, and there will be no need
to correct it. Second, even though usually every prediction step is followed
by an update step, this does not have to be the case. Prediction can run
multiple times without being followed by any update step, e.g. if there is a
drop-out in measurements. However, the longer we do not have updates, the
more uncertain our prediction becomes.

Now let us derive the prediction step. As stated previously, in the predic-
tion step we want to approximate the time development of xt−1 → xt. We
will combine the prior distribution with the evolution model to obtain the
posterior distribution.

π(xt|y0:t−1, u0:t) =
∫
p(xt|xt−1, ut), π(xt−1|y0:t−1, u0:t−1)dxt−1. (1.20)

Since we are multiplying two Normal distributions, we will again get a Normal
distribution N (x−t , P+

t ), with hyperparameters equal to:

x−t = Ax+
t−1 +But,

P−t = AP+
t−1A

T +Q.
(1.21)

Now that we have successfully predicted the xt, we have to derive the
update step based on measurement yt that we have received. For this, the
Bayes’ theorem will be used,

π(xt|y0:t, u0:t) ∝ f(yt|xt)π(xt|y0:t−1, u0:t). (1.22)

In order to make the derivation easier, we will rewrite both model and
prior distribution into an exponential distribution family. In this form, we
can do the Bayesian update simply by adding up the hyperparameters and

10



1.2. Kalman filter

sufficient statistics. Model and prior will be converted to the following form:

f(yt|xt) ∝ exp
{
−1

2(yt −Hxt)TR−1(yt −Hxt)
}

= exp


Tr

−
1
2

[
−1
xt

] [
−1
xt

]T
︸ ︷︷ ︸

η

[
yTt
HT

]
R−1

[
yTt
HT

]T
︸ ︷︷ ︸

T (yt)




,

π(xt|y0:t−1, u0:t) ∝ exp
{
−1

2(xt − x−t )T (P−t )−1(xt − x−t )
}

= exp

Tr

−1
2

[
−1
xt

] [
−1
xt

]T
︸ ︷︷ ︸

η

[
(x−t )T
I

]
(P−t )−1

[
(x−t )T
I

]T
︸ ︷︷ ︸

ξt


 ,

(1.23)
where I is an identity matrix of matching dimensions. We can now add up
hyperparameters and sufficient statistics as:

ξt = ξt−1 + T (yt)

=
[
(x−t )T (P−t )−1x−t + yTt R

−1yt, (x−t )T (P−t )−1 + yTt R
−1H

(P−t )−1(x−t )T +HTR−1yt (P−t )−1 +HTR−1H

]
.

(1.24)

Now we can easily derive the posterior distribution hyperparameters.

P+
t = (ξt;[2,2])−1

= [(P−t )−1 +HTR−1H]−1

= (I −KtH)P−t ,
x+
t = (ξt;[2,2])−1ξt;[2,1]

= P+
t [(P−t )−1(x−t )T +HTR−1yt]

= x−t + P+
t H

TR−1(yt −Hx−t ),

(1.25)

where

Kt = P−t H
T (R+HP−t H

T ),

is usually called Kalman gain. The Kalman gain describes the relationship
between the measurements and the current state estimate therefore it can be
used to ”tune in” the desired behavior of the filter. The higher the gain is,
the more weight will the recent measurements have, and therefore the filter
will follow them much more closely, and vice versa when we lower the gain.

11



1. Background

1.2.3 Example

In order to show the functionality of the Kalman filter, we have added one
example.

We have simulated a trajectory of a vehicle with variable acceleration. For
the sake of simplicity, is the vehicle moving in a single dimension4 and any
form of friction is not taken into account. We will estimate the position of the
vehicle, hence we have simulated inaccurate measurements of it. Length of
the simulated trajectory is 100 seconds. Both, simulated position and velocity
can be seen in Figure 1.3.

(a) (b)

Figure 1.3: (a) Simulated position (b) Simulated velocity

We have used the Kalman filter as explained in Section 1.2.2. Therefore
we have supplied the filter with corresponding matrices A, B, H, R, and Q.
As explained previously, the prediction step is followed by the update step,
but in this case, we have limited the update step to only be taken between
steps 30 and 100. The results of estimates of trajectory and velocity can be
seen in Figure 1.4.

1.3 Variational Bayesian inference

This section introduces the topic of variational Bayesian inference. It is mostly
inspired by [1] and [6].

1.3.1 Variational inference

As was already apparent from Section 1.1.2, there are cases, where the estimate
will be intractable, due to non-existent conjugate priors. We can solve this
issue utilizing the variational inference.

Originally introduced in the 18th century by Euler, Lagrange, and others
in form of the calculus of variations. In standard calculus, where we can

4Example of such vehicle could be a train.
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1.3. Variational Bayesian inference

(a) (b)

Figure 1.4: (a) Estimate of position (b) Estimate of velocity

look upon a function as a mapping between an input value of a variable and
the corresponding value of the function. On the other hand, the calculus of
variations resembles mapping that takes a function as an input and returns
the value of the functional. Calculus of variations specifically uses variations,
which expresses the difference in the value of functional in response to the
changes of the input function. This behavior is especially useful in the case
of optimization problems, where we can obtain the solution by exploring the
possible input functions and finding one that maximizes or minimizes our
functional.

Now let us take a look at how this will be useful for inference. Imagine
that we have a fully Bayesian model that has all parameters given by prior
distributions. Latent variables and parameters5 will be labeled by Z, and ob-
served variables will be labeled by X. If we have a set of N i.i.d.6 data, where
X = {x1, . . . , xN} and Z = {z1, . . . , zN}. We have the joined distribution
p(X,Z) specified by our model, and we would like to find the approximation
of both the posterior distribution p(Z|X) and model evidence p(X). We can
decompose the log marginal probability7 by

ln p(x) = L(q) +KL(q||p),

L(q) =
∫
q(Z) ln

{
p(X,Z)
q(Z)

}
dZ,

KL(q||p) = −
∫
q(Z) ln

{
p(Z|X)
q(Z)

}
dZ,

(1.26)

where L(q) is a lower bound and KL is Kullback–Leibler divergence8, which
measures the difference between one probability distribution and a reference

5Latent variables are not directly observed, but rather inferred from other observed
variables

6independent, identically distributed
7Similar approach as in case of expectation-maximization algorithm, as shown in [7]
8Sometimes called relative entropy
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1. Background

probability distribution.
Naturally, we want to maximize L(q) with respect to the distribution q(Z)

since it is equivalent to minimization of KL divergence. Obviously, since we
want to do this when our desired posterior is intractable, we have to restrict
q(Z). Otherwise, the ideal q(Z) would be p(Z|X), which we have established
as intractable. Therefore we have to restrict the q(Z) to such a family of
distribution that both minimizes the KL divergence so that we have a ”good
enough” approximation of the real distribution and is also tractable.

The main question now is how to achieve this restriction. For this, we
can divide the elements of Z into M disjoint groups, which will be denoted
as Zi, where i ∈ [1, . . . ,M ]. Then we can suppose that the q distribution is
factorized with respect to those groups as

q(Z) =
N∏
i=1

qi(Zi). (1.27)

Now we have to find the distribution from q(Z), for which the L(q) will
be the largest. We can achieve this by a free form optimization of L(q) with
respect to the distributions qi(Zi). So we will substitute (1.27) into (1.26) and
dissect out the dependence on one factors qj(Zj).

L(q) =
∫ ∏

i

qi(Zi)
{

ln p(X,Z)−
∑
i

ln qi(Zi)
}
dZ

=
∫
qj(Zj)


∫

ln p(X,Z)
∏
i 6=j

qi(Zi)dZi

 dZj −
∫
qi(Zi) ln qj(Zj)dZj + c

=
∫
qj(Zj) ln p̃(X,Zj)dZj −

∫
qj(Zj) ln qjdZj + c,

(1.28)
where c is a constant and we have defined a new distribution p̃(X,Zj) by the
relation

ln p̃(X,Zj) = Ei 6=j [ln p(X,Z)] + c, (1.29)
where c again denotes a constant.

If we take a closer look on an Equation (1.28), we can see it is a nega-
tive KL divergence between qj(Zj) and p̃(X,Zj). So if we its maximization is
equivalent to the minimization of the KL divergence and therefore the min-
imum will be when qj(Zj) = p̃(X,Zj). Using this notion, we can get to the
optimal solution q∗j (Zj) by,

ln q∗j (Zj) = Ei 6=j [ln p(X,Z)] + c, (1.30)
where

Ei 6=j [ln p(X,Z)] =
∫

ln p(X,Z)
∏
i 6=j

qi(Zi)dZi. (1.31)
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1.3. Variational Bayesian inference

Now we finally have all the necessary steps to variational inference, how-
ever, this form is not ideal for us and hence we will explore a different form
in Section 1.3.2.

1.3.2 Message passing

Even though Variational Inference, shown in Section 1.3.1, can approximate
the posterior distribution, the form that it takes is cumbersome and not ideal
for our use case. In the ideal case, we would like to have it similar to the
Kalman filter update in the form of adding hyperparameters and sufficient
statistics, as shown in Section 1.2.2.

However, there exists an algorithm that uses our desired approach and, it
is called Variational message passing and was shown in [6]. Let us now explain
the basics of their approach.

We will again take a factorized distribution in the same form as shown in
Equation (1.27). From Section 1.3.1 we know that the optimal form of the
jth factor is

ln q∗j (Zj) = Ei 6=j [ln p(X,Z)] + c. (1.32)

If we now assume that the model has a form of Bayesian network and we
can express its joined distribution p(X) in terms of individual nodes condi-
tional distributions. If we label nodes by i, it will look like following,

p(X) =
∏
i

p(Xi|pai), (1.33)

where Xi are variables of node i and pai are variables of parent nodes of node
i.

Now we can substitute Equation (1.33) into (1.32) and simplyfy it into the
following form,

ln q∗j (Zj) = Ei 6=j [ln p(Zj , paj)] +
∑
k∈chj

Ei 6=j [ln p(Xk|pak)] + c, (1.34)

where chj denotes all children of node j. Hence, in order to evaluate q∗j , we
only need input from nodes that are in Markov blanket9 of Zj . In this case,
Markov blanket of Zj consists of its parents paj , children chj and last but
not least, its coparents10. Visualization of this Markov blanket can be seen in
Figure 1.5.

9Markov blanket marks a subset of variables that are sufficient to infer the desired
random variable

10Coparents of node Z are nodes that have at least one child, that is also a child of node
Z
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1. Background

Zj

Xk

. . .

paj

. . . . . .

cp
(j)
k

. . .

chj

Figure 1.5: Markov blanket for a node Hj

How specifically will the form of Equation (1.34) look is determined by the
conditional distribution of the model. It is known that for ideal simplification
of variational update equations, the distribution of variables conditioned on
their parents should be from exponential family and also be conjugate with
their parents’ distributions. We have defined the exponential family in Defi-
nition 1.1.1 in Section 1.1.2.

We can equivalently rewrite the definition from Definition 1.1.1 into its, in
this case more useful variation, in the form of

f(y|θ) = exp{η(θ)TTθ(y) +A(θ) +B(y)}, (1.35)

for this particular case, we will substitute y by an X, that we use for labeling
the particular node. Hence the equation will be equal to,

f(X|θ) = exp{η(θ)TTθ(X) +A(θ) +B(X)}, (1.36)

where we will call η(θ) as natural parameter vector and A(θ) is normalization
function.

Since we know η(θ), we can deduce the expectation of the natural statistic
vector with respect to distribution. First, we will rewrite (1.36) in the following
way,

f(X|θ) = exp[ηTTθ(X) + Ã(θ) +B(X)], (1.37)

in which Ã is a reparameterisation of A in terms of ϑ. If we integrate over the
X and then differentiate the result over ϑ, we can see that the expectation of
natural statistics vector Tϑ(X) is,

E[Tθ(X)] = −dÃ(θ)
dθ

. (1.38)
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1.3. Variational Bayesian inference

Now that we know how to compute the expectation of Tθ(X), we need
to figure out how to optimize our variational distribution when the model is
conjugate-exponential. We will show this on a case when we are optimizing a
factor q(Zj) of node Zj , whose children are Xk hence it is equivalent to the
graph shown in Figure 1.5.

We will start by rewriting Equation (1.36), for Zj into

ln f(Zj |paj) = θj(paj)TTθ,j(Zj) +Aj(paj) +Bj(Zj). (1.39)
Next, we can also write a logarithm of the conditional probability of node

Xk given its parents, which are also of distributions from the exponential
family. It will look in the following way,

ln f(Xk|Zj , cpjk) = θj(Zj |cpjk)
TTθ,Xk(Xk) +AXk(Zj , cpjk) +BXk(Xk), (1.40)

where cpjk are coparents of Zj , that are also parents of of node Xk.
In order to use the conjugacy, we have to have both Equations (1.39) and

(1.40) in the same functional form with respect to Zj . Hence we can simplify
it in terms of Tϑ,Zj (Zj) by defining functions ϑXZ and λ in the following way,

ln f(Xk|Zj , cpjk) = θXZ + Tθ,Zj (Zj) + λ(Xk, cp
j
k). (1.41)

If we take Equation (1.34) for a node Zj , we can calculated in terms of
E[Tθ] for each node in Markov blanket of Zj . After substitution we get and
some simplification we can get to

ln q∗Zj (Zj) =

Ei 6=j [θZj (paZj )] +
∑

k∈chZj

Ei 6=j [θXZ(Xk, cpk)]


T

Tθ,Zj (Zj) +BZj (Zj) + c.

(1.42)

Naturally, the q∗Zj is also from the exponential family of distributions and,
its natural parameter vector θ∗Zj will be the following

θ∗Zj = E[θZj (paZj )] +
∑

k∈chZj

E[θXZ(Xk, cpk)], (1.43)

where all expectations are with respect to q.
It is known, that based on Equation (1.40) and (1.41), the ln f(Xk|cpZj ) is

a multi-linear function.Expanding on this, the θZj and the θXZ must also be a
multi-linear functions. Therefore we can reparameterise them in the following
way,

θ̃Zj ({E[Tθ,i]}i∈paZj ) = E[θZj (paZj )],

θ̃XZ(E[Tθ,k], {E[Tθ,j ]}j∈cpk) = E[θXZ(Xk, cpk)].
(1.44)
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1. Background

Lastly, we need to compute the expectation of Tθ,X , however this can
simply be done in the same way as in Equation (1.38).

Now we just have to specify what should message between nodes contain
and between which node should they be passed. First is the message from
a parent node, in our case Zj , to a child node, for us Xk, contains only the
expectation of natural statistic vector of q. Hence it is

mZj→Xk = E[Tθ,Zj ]. (1.45)

Message from child node Xk to parent Zj is slightly more complicated
since it provides aggregated information from all coparents of Zj and logically
node Xk has to await the information from all those nodes. The final message
has the following form

mXk→Zj = θ̃XZ(E[Tθ,Xk ], {mi→Xk}i∈cpj
k
). (1.46)

Once a node Zj obtain all messages, that means both from all its parents,
as well as all its children, it can compute its posterior distribution q∗Zj , by
updating the natural parameter vector θ∗Zj . It is computed in the following
way,

θ∗Zj = θ̃Zj ({mi→Zj}i∈paZj ) +
∑

j∈chZj

mj→Zj . (1.47)

If we sum it all up, we can write the whole message passing algorithm as
shown in Algorithm 1, where G labels all nodes.

Algorithm 1: Variational message passing
1 Initialize each factor distribution qj by initialising the corresponding

moment vector E[Tθ,j(Xj)].
2 foreach Xj ∈ G do
3 Retrieved messages from all parent and children nodes, as shown

in Equations (1.45) and (1.46).
4 Update natural parameter vector θ∗j , as shown in Equation (1.47).
5 Update the moment vector E[Tθ,j(Xj)].
6 end
7 Calculate the new value of lower bound L(q).
8 If the increase of lower bound is small enough or a specific number of

iterations have been reached, stop. Otherwise, return to line 2.
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Chapter 2
Current state-of-the-art

In this chapter, we will show the current state-of-the-art approaches to the
problem that we aim to solve in this thesis. We mainly focus on the following
three articles [8], [9] and [10].

2.1 Recursive Noise Adaptive Kalman Filtering by
Variational Bayesian Approximations

One of the influential papers in Bayesian filtering is work by [8].
This paper expands the idea of Kalman filter, shown in Section 1.2 and

variational Bayesian inference, Section 1.3, with the idea of estimation on an
model with unknown measurement noise covariance matrix Rt. Hence the
state model will be following,

xt = Atxt−1 + qt,

yt = Htxt + rt,

where qt ∼ N (0, Qt) is Gaussian process noise, At and Ht are matrices of
correct dimension and state xt is n-dimensional vector, while measurement yt
is a d-dimensional vector. The key is the fact that rt ∼ N (O,Rt), where Rt
is unknown and is therefore estimated.

In the paper, they derive a way of estimating the unknown Rt by using the
variational inference and by using the correct prior distribution. They demon-
strate the performance of their approach on an illustrative case of stochastic
resonator model, with very promising results.

However, this paper encompasses only a part of the scope of this thesis.
First of all, their approach does not solve the issue when the matrix Qt is
also unknown. On top of that, it does not develop such an approach for a
distributed scenario, but it concentrates on a more traditional approach of
using a single estimator.
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2.2 Collaborative sequential state estimation
under unknown heterogeneous noise
covariance matrices

A paper that expands the ideas from paper [8], is a new publication [9].The
authors of this paper extend the idea of working with a state-space model
that has an unknown measurement noise covariance matrix R(i), to a dis-
tributed scenario, meaning multiple independent models11 are cooperating in
the estimation with one another.

They assume that the nodes observe the following state-space model,

xt = Atxt−1 +Btut + wt,

y
(i)
t = Htxt + v

(i)
t ,

where the state variable xt is p-dimensional vector and p ≥ 1 and is shared
among all nodes, ut is a control variable, that is also known by all nodes, At, Bt
and Ht are matrices of matching dimensions. As expected, wt is an indepen-
dent process noise, wt ∼ N (0, Q), where Q is a known process noise covariance
matrix. Finally, v(i)

t is an i.i.d. zero-centered variable v(i)
t ∼ N (0, R(i)), where

the R(i) is obviously unknown.
Since the whole method is distributed, they have also defined a network of

nodes, as an undirected graph G(I, E), that has a set of nodes I = {1, . . . , |I|}
and set of edges E that creates the network topology. Nodes are limited in
their communication to only their neighborhood I(i), which is comprised of
their adjacent nodes.

Based on those assumptions, they expand the distribution scenario with
the fact that the measurement noise covariance matrix R(i) does not have to
be the same in the whole network G, but there can be multiple different R
matrices, such as R1, . . . , RL, where 1 ≤ L ≤ |L|. Then each node will have
one of those matrices assigned as his R(i) matrix.

Throughout the paper, they develop a solution to this problem and also
show its performance on two different examples of tracking 2-dimensional tra-
jectory. One with the same R(i) for all nodes, and the second assumes two
distinct groups of nodes with different R(i).

This paper shares some similarities with the approach taken in this work,
but there is still some difference in a few of its components. Mainly the need
for known process covariance matrix Q. However, their work is distributed,
just as this work.

11Sometimes called nodes
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2.3. A novel adaptive Kalman filter with inaccurate process and
measurement noise covariance matrices

2.3 A novel adaptive Kalman filter with
inaccurate process and measurement noise
covariance matrices

One of the recent novelties in the field of Bayesian filtering was introduced
in paper [10]. The authors of this paper propose a solution to an issue with
an unknown process noise covariance matrix, as well as a measurement noise
covariance matrix.

They assume the following state-space model,

xt = Ftxt−1 + wt,

zt = Htxt + vt,

where xt is n-dimensional state vector, zt is m-dimensional measurement
vector, Ft and Ht are matrices of compatible dimensions. At last, wt and
vt are respectively Gaussian process and measurement noise vectors, hence
wt ∼ N (0, Qt) and vt ∼ N (0, Rt), where both Qt, as well as Rt are unknown.

It can be easily seen that their paper aims to solve a very similar issue
as this work, but there are still some significant differences. The first one is
that they do not use the message-passing approach, as shown in Section 1.3.2.
The second is that they do not take into account the possibility of having it
in a distributed setting but rather show it only for a case of the single-node
estimator.
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Chapter 3
Analysis and design

In this chapter, we provide a complete formal specification of the problem
that we aim to solve, as well as a description of our approach. In order to
provide better readability, we have split the explanation of our approach into
two main parts, being the explanation on a non-distributed setting and a part
where we expand that by all things necessary for distributed setting.

3.1 Problem statement

We consider a network of I collaborating agents that are connected by edges in
a representation of an undirected graph. Labeling of agents is done according
to their ordinal number i ∈ I = {1, . . . , I} and every agent is allowed to have
bidirectional sharing of information with his adjacent neighbors j ∈ I, within
a maximum distance of one hop. All agents that fulfil those conditions for
agent i will be called neighbourhood I(i).

Each agent independently observes a stochastic process determined by the
following linear state-space model,

xt = Atxt−1 +Btut + ωt, (3.1)
yi,t = Htxt + εi,t, (3.2)

where the Equation (3.1) shows the development of hidden state vector xt ∈
Rn build upon is combination of its previous value with known matrix At ∈
Rn×n, the known input ut, a matrix Bt that have a compatible dimensions,
last but not least the random process noise ωi,t. On the other hand the
Equation (3.2) adapts xt to the local measurement yi,t ∈ Rm via a known
matrix Ht ∈ Rm×n and local random measurement noise variable εi,t ∈ Rm.
We also have the following assumption about ωi,t and εi,t,

ωi,t ∼ N (0, Qt),
εi,t ∼ N (0, Rt).

(3.3)
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Based on this we can rewrite Equations (3.1) and (3.2) into their probabilistic
forms as,

xt ∼ N (Atxt−1 +Btut, Qt), (3.4)
yi,t ∼ N (Htxt, Rt), (3.5)

hence their densities will be equivalent to,

p(xt|xt−1, ut),
f(yi,t|xt).

(3.6)

Then for Bayesian approach to non-collaborative inference, we estimate xt
based on the model specified by Equations (3.4) and (3.5), that has Gaussian
distribution, with mean equal to x̂+

t−1 ∈ Rn and covariance matrix P+
t−1 ∈

Rn×n, as a prior,

xt|y0:t−1, u0:t−1 ∼ N (x̂+
t−1, P

+
t−1), (3.7)

where y0:t−1 and u0:t−1 embraces all information about yτ and uτ up to this
point, hence for τ = 0 up to τ = t− 1.

Now its probability density πi(xt|yi,0:t−1, ui,0:t−1) can be updated in two
Kalman filtering steps, shown in Section 1.2,

1. Prediction
The new value of mean x̂−t is predicted, while the covariance matrix P−t
is scaled,

πi(xt|yi,0:t−1, u0:t) =
∫
πi(xt|yi,0:t−1, u0:t−1)p(xt|xt−1, ut)dxt−1, (3.8)

hence we will end up with the predicted prior Gaussian distribution

Ni(x̂−i,t, P
−
i,t) = N (Atx−i,t, AtP

−
i,tA

T
t +Qt). (3.9)

2. Update
We can combine the new measurement y(i)

t with predicted prior Gaussian
distribution using Bayes’ theorem,

πi(xt|yi,0:t, u0:t) ∝ πi(xt|yi,0:t−1, u0:t−1)f(yi,t|xt). (3.10)

This will lead to a tractable posterior Gaussian distribution N (x̂+
i,t, P

+
i,t),

with

P+
i,t =

[
(P−i,t)

−1 +HT
t R
−1
t Ht

]−1
,

x̂+
i,t = P+

i,t

[
(P−i,t)

−1x̂−i,t +HT
t R
−1
t yi,t

]
.

(3.11)

.
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3.2. Variational Kalman filtering

As explained in Section 1.2, the Kalman filter in this form has certain
limitations, one being the necessity of full knowledge of the state-space model
probability form, as in Equations (3.4) and (3.5). There are quite a few
known solutions for case of missing Rt, such as [8], shown in Section 2.1, or
[11]. However in our case we do not know both Rt, as well as Qt. In that case
the solutions get far more complicated. One solution was shown in [10], we
have provided a short summary in Section 2.3. On top of this we have added
the complication of distributed setting, similar to one shown in [9] and shortly
explained in 2.2.

3.2 Variational Kalman filtering

We use the following section to show how to apply the variational approach
to the problem described in Section 3.1. For the sake of brevity, the whole
section will be from the point of a single agent, hence there will be no need
for node indices.

As established in Section 1.2, generic Kalman filter needs for sequential
estimation of xt the full knowledge of the state model (3.4) and (3.5), with
known matrices Qt and Rt. Since Qt is unknown the prediction of N (x̂−t , P−t )
is not possible. On top of that, the missing Rt prevents the Bayesian update
yielding N (x̂+

t , P
+
t ). We have developed an approach, that aims to solve this

issue by a simultaneous inference of xt and Rt together with optimization of
Pt and selection of best hypothesise value of Qt. Let us now introduce a vector
θt, that contains all the unknown variables in the following way,

θt = [xt, Rt, Pt]. (3.12)

In order to achieve better reading experience, we will not vectorize either
Rt or Pt, Qt is also not included in vector θt since is optimization is based on
hypothesis testing procedure.

As usual, the estimation of θt proceeds with prior distribution π(θt|y0:t−1, u0:t−1),
but unlike in standard Kalman filter, we do not have any distribution of this
type, that would produce an analytically tractable posterior distribution. One
of the approaches to solving this issue was shown in [10], which in turn ex-
pands on ideas by [11]. We will use a similar approach. First let us start with
replacing the true posterior distribution π(θt|y0:t−1, u0:t−1) by variational fac-
tors,

π(θt|y0:t−1, u0:t−1) ≈ ρ(θt) ≡ ρ(xt)ρ(Rt)ρ(Pt). (3.13)

Next step is to seek hyperparameters of the factors, such that they mini-
mize the mutual Kullbach-Leibler divergence D[ρ(θt)||π(θt|y0:t, u0:t)]. There-
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3. Analysis and design

fore

D[ρ(θt)||π(θt|·)] = Eρ(θt)

[
log ρ(θt

π(θt|·)

]
= Eρ(θt)

[
log ρ(θt)

f(yt|·)π(θt|·)

]
+ E[log f(yt|·)]

= −L[ρ(θt)] + log f(yt|·),

(3.14)

where we have exploited the Bayes’ theorem

πt(θt|·) = f(yt|·)πi(θt|·)∫
f(yt|·)πi(θt|·)dθt

, (3.15)

and the absence of θt in log-evidence

f(yt|·) =
∫
f(yt|·)πi(θt|·)dθt, (3.16)

leaving its logarithm intact under by the expectation operator. The term
L[ρ(θt)] is known as evidence lower bound12. If we take a closer look on the last
line of Equation (3.14), we can see that it bounds the log-evidence log f(yt|·),
hence if the divergence D[ρ(θt)||π(θt|·)] was equal to zero, the ELBO will be
equivalent to log f(yt|·).

As the log-evidence log f(yt|·) is static, the minimization of Kullbach-
Leibler divergence is simplified to maximization of ELBO. This was already
discussed in Section 1.3.1.

3.2.1 Update by measurements

If we once again take a look at Equation (3.14), specifically ELBO, we can
investigate its properties further. First, we can expand it in terms of its
individual variables,

−L(θt) = Eρ(θt)

[
log ρ(θt)

f(yt|·)π(θt|·)

]
= Eρ(xt)

[
log ρ(xt)

exp{Eρ(Rt,Pt)[log f(yt|·)π(θt|·)]}

]
+ cx

= Eρ(Rt)

[
log ρ(Rt)

exp{Eρ(xt,Pt)[log f(yt|·)π(θt|·)]}

]
+ cR

= Eρ(Pt)

[
log ρ(Pt)

exp{Eρ(xt,Rt)[log f(yt|·)π(θt|·)]}

]
+ cP ,

(3.17)

12Usually abbreviated as ELBO
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3.2. Variational Kalman filtering

where cx, cR and cP are terms that are independent of xt, Rt and Pt re-
spectively. It can be clearly seen, that every element of θt, has is own KL
divergence, that will reach its minimum if

ρ(xt) ∝ exp{Eρ(Rt,Pt)[log f(yt|·)π(θt|·)]},
ρ(Rt) ∝ exp{Eρ(xt,Pt)[log f(yt|·)π(θt|·)]},
ρ(Pt) ∝ exp{Eρ(xt,Rt)[log f(yt|·)π(θt|·)]}.

(3.18)

One of the remarkable properties of Equation (3.18) is the fact, that if
f(yt|θt) is a probability density function from an exponential family of distri-
butions and we use convenient conjugate priors for estimation of xt, Rt and
Pt, then the left-hand side factors of Equation (3.18) will be tractable. If these
prerequisites are fulfilled, the ELBO optimization can be achieved by means of
coordinate-ascent variational inference13, shown for example in [1]. It will use
the individual factors from Equation (3.18) to employ point estimates of the
other elements of θt during its update at each iteration. It has been shown, for
example in [12], that ELBO does not have to be a convex objective function,
hence CAVI can only guarantee a local optimum.

We will show that the Gaussian measurement model for yt parameterized
by either xt or Rt is an exponential family distribution, in form already defined
by Definition 1.1.1. It will look the following way.

Definition 3.2.1. If we assume that an m-dimensional random vector yt ∼
N (Htxt, Rt), where xt ∈ Rn, Ht ∈ Rm×n and the positive definite covariance
matrix Rt ∈ Rm×m. Based on this parametrization, the probability density
function will be in the following form,

fi(yt|xt, Rt) = (2π)−
m
2 |Rt|−

1
2 exp

{
−1

2(yt −Htxt)TR−1
t (yt −Htxt)

}

∝ exp


−1

2Tr


[
−1
xt

] [
−1
xt

]T
︸ ︷︷ ︸

ηxt

[
yTt
HT
t

]
Rt

[
yTt
HT
t

]T
︸ ︷︷ ︸

Txt (yt)





∝ exp


−1

2Tr


[
(Rt)−1

ln |Rt|

]
︸ ︷︷ ︸

ηR

[
(yt −Htxt)(yt −Htxt)T

1

]
︸ ︷︷ ︸

TR(yt)




.

(3.19)

In a similar fashion, we can show that the Gaussian model for xt given Pt
is also an exponential family distribution.

13Usually abbreviated as CAVI
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3. Analysis and design

Definition 3.2.2. Let us assume, that we have an n-dimensional variable
xt ∼ N (x̂t, Pt), where x̂t is the mean vector of length n and Pt is a n × n
positive definite covariance matrix. Given that our assumptions are correct,
the probability density function can be written in the following form,

πx(xt|x̂t, Pt) = (2π)−
n
2 |Pt|−

1
2 × exp

{
−1

2(x̂t − xt)T (Pt)−1(x̂t − xt)
}

∝ exp


−1

2Tr


[
−1
xt

] [
−1
xt

]T
︸ ︷︷ ︸

ηxt

[
(x̂t)T
I

]
(Pt)−1

[
(x̂t)T
I

]T
︸ ︷︷ ︸

Ξxt,k





∝ exp


−1

2Tr


[
P−1
t

ln |Pt|

]T
︸ ︷︷ ︸

ηPt

[
(xt − x̂t)(xt − x̂t)T

1

]
︸ ︷︷ ︸

TPt (xt)




.

(3.20)

From the definitions established in Section 1.1.2 is clear, that multiplica-
tion of the exponential family distribution f(y|ϑ) with its conjugate prior π(ϑ)
yields a distribution of the same type as prior. Therefore

π(ϑ|y) ∝ f(y|ϑ)π(ϑ)
∝ exp{η(ϑ)T (Ξ−ϑ + Tϑ(y))− (ν− + 1)B(ϑ)}
∝ exp{η(ϑ)TΞ+

ϑ − ν
+B(ϑ)},

(3.21)

where

Ξ+
ϑ = Ξ−ϑ + Tϑ(y), (3.22)
ν+ = v− + 1, (3.23)

where we use the − and + to denote the prior and posterior hyperparameter,
respectively14. This principle of conjugate priors is the key for an exact se-
quential approximation, shown for example in Section 1.2. However, in our
case of variational inference, it can be also used for achieving an analytically
tractable approximate inference. This can be done in the following way.

First, let us focus on the individual factors in Equation (3.18) and assume
for each factor, that the remaining elements of θt are replaced by their point
estimates. Then if the measurement model f(y|·) is an exponential family
distribution and the prior distribution of the considered element of θt that is

14We will continue to use this notation throughout the thesis
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3.2. Variational Kalman filtering

conjugate to it. Finally, we can update the variational factor by using the
principles of Bayesian updating, as shown in Equation (3.21).

Based on the individual properties of xt, Rt and Pt, we can select matching
distributions as variational factors, in form of the Gaussian and the inverse-
Wishart. In order to avoid confusion, we will denote the posterior estimate
of Pt from the inverse-Wishart factor that enters the prior factor of xt as P̂ ∗t ,
and we will do the same for the related posterior hyperparameters. Both prior
and posterior distributions will be shown in Table 3.1.

Variable Prior distribution Posterior distribution
xt ∼ N (x̂−i,t, P̂ ∗i,t) → N (x̂+

i,t, P̂
+
i,t)

Pt ∼ iW(Ψ−i,t, ψ
−
i,t) → iW(Ψ∗i,t, ψ?i,t)

Rt ∼ iW(Φ−i,t, φ
−
i,t) → iW(Φ+

i,t, φ
+
i,t)

Table 3.1: Priors and posteriors

Ψt Φt

Pt xt yt Rt

ψt φtx̂t

Figure 3.1: Graphical model of message passing algorithm

The graphical representation of this model is shown in Figure 3.1. We
can now define how will the factors ρ(Rt) and ρ(Pt) look. We will start with
ρ(Rt).

Definition 3.2.3. Let us suppose, that we have a positive definite measure-
ment noise covariance matrix Rt ∈ Rm×m. Then a convenient model for
estimation is the inverse-Wishart distribution, Rt ∼ iW(Ψt, ψt) with hyper-
parameters Ψt Rm×m and ψt > 0. Its probability density function can be
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3. Analysis and design

written in the following form,

πR(Rt|ψt,Ψt) = |Ψt|
ψt
2

2
nψt

2 Γn(ψt2 )
× |Rt|−

ψt+n+1
2 exp

{
−1

2Tr(Ψt(R)−1)
}

∝


−1

2Tr


[
R−1
t

ln |Rt|

]T
︸ ︷︷ ︸

ηRt

[
Ψt

ψt +m+ 1

]
︸ ︷︷ ︸

ξRt




,

(3.24)

where Γn(·) is a multivariate gamma function and the expected values of Rt
and R−1

t are the following,

E[Rt] = R̂t = Ψt

ψt −m− 1 , (3.25)

E[R−1
t ] = R̂−1

t = ψtΨ−1
t . (3.26)

Next for the form of ρ(Pt).

Definition 3.2.4. Assume a positive definitive process noise covariance ma-
trix Pt ∈ Rn×n. Then the best model for its estimations is going to be an
inverse-Wishart distribution Pt ∼ iW(Φt, φt) with hyperparameters Φt ∈
Rn×n and φt > 0. Therefore we can write its probability density function
in the following way,

π(Pt|φt,Φt) ∝


−1

2Tr


[
P−1
t

ln |Pt|

]T
︸ ︷︷ ︸

ηPt

[
Φt

φt + n+ 1

]
︸ ︷︷ ︸

ξPt




. (3.27)

Finally, the expected values of Pt and P−1
t will be,

E[Pt] = P̂t = Φt

φt − n− 1 , (3.28)

E[P−1
t ] = P̂−1

t = φtΦ−1
t . (3.29)

We can see that the Gaussian distribution of xt is conjugate to the mea-
surement model f(yt|θt) with fixed Rt. The inverse-Wishart distribution of Pt
is then conjugate to the distribution of xt and the inverse-Wishart distribution
of Rt is conjugate to the measurement model f(yt|θt) with fixed xt.

Using the Definitions 1.1.1 and 1.1.2 we can derive the CAVI updates, as
shown in Equation (3.18). The exact form of the sufficient statistics will be
shown. We will substitute the true parameter values with point estimates.
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3.2. Variational Kalman filtering

The iterations of CAVI algorithm will be denoted by d = 1, . . . , D. In the
first iteration d = 1, we set P̂+,(0)

t = P̂−t and x̂+,(0)
t = x̂−t . Then after the last

iteration D, we use the variational factors ρi(Rt) and ρi(xt) as the posterior
distributions, whose hyperparameters enter the subsequent prediction step at
the next instance t+ 1.

Now we will show how to do the update of ρi(Pt) ≡ iW(Ψ−i,t, ψ
−
i,t).First,

we will show the expectation of the sufficient statistic TPt(xt).

E(d)
ρi(xt)[TPt(xt)] =

[
P̂

+,(d−1)
i,t + (x̂+,(d−1)

i,t − x̂−i,t)(x̂
+,(d−1)
i,t − x̂−i,t)T

1

]
. (3.30)

Next, we have to update the hyperparameter Ξ−Pt,i

Ξ∗,(d)
Pt,i

= Ξ−Pt,i + E(d)
ρi(xt)[TPt(xt)]

=
[

Ψ−i,t
ψ−i,t + n+ 1

]
+ E(d)

ρi(xt)[TPt(xt)]

=
[

Ψ∗,(d)
i,t

ψ
∗,(d)
i,t + n+ 1

]
.

(3.31)

Last but not least, we have the point estimate,

P̂
∗,(d)
i,t = E(d)

ρi(Pt)[P
∗
t ] =

Ψ(d)
i,t

ψ
(d)
i,t − n− 1

, (3.32)

(P̂ ∗,(d)
i,t )−1 = E(d)

ρi(Pt)[(P
∗
t )−1] = ψ

∗,(d)
i,t (Ψ∗,(d)

i,t )−1. (3.33)

Where we use the symbol ∗ to label the intermediate value, that will be
used in the measurement update of ρi(xt). In order to proceed, we have to
show how to do the update of ρi(Rt) ≡ iW(Φ−i,t, φ

−
i,t). Lets start by writing

down the expectation of the sufficient statistic TRt,i(yi,t).

E(d)
ρi(xt,Pt)[TRt(yi,t)] =

[
(yi,t −Htx̂

+,(d−1)
i,t )(yi,t −Htx̂

+,(d−1)
i,t )T +HtP̂

+,(d−1)
i,t HT

t

1

]
.

(3.34)
Similarly, we can also write down the update of the hyperparameter Ξ−Rt,i.

Ξ+,(d)
Rt,i

= Ξ−Rt,i + Eρi(xt,Pt)[TRt(yi,t)]

=
[

Φ−i,t
φ−i,t + n+ 1

]
+ Eρi(xt,Pt)[TRt(yi,t)]

=
[

Φ(d)
i,t

φ
(d)
i,t + n+ 1

]
.

(3.35)
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Finally, we can also write down individual point estimates.

R̂
(d)
i,t = E(d)

ρi(Rt)[Rt] =
Φ(d)
i,t

φ
(d)
i,t − n− 1

, (3.36)

(R̂(d)
i,t )−1 = E(d)

ρi(Rt)[R
−1
t ] = φ

(d)
i,t (Φ(d)

i,t )−1. (3.37)

Now we miss a last update, being the update of ρi(xt) ≡ N (x̂−i,t, P̂
∗,(d)
i,t ).

Let us again start with expectation of sufficient statistic Txt(yi,t), that will be
following.

Eρi(Rt,Pt)[Txt(yi,t)] =
[
yTi,t
HT
t

]
(R̂(d)

t )−1
[
yTi,t
HT
t

]T
. (3.38)

We proceed with the update of the hyperparameter Ξ−xt,i.

Ξ+,(d)
xt,i

= Ξ−xt,i + Eρi(Rt,Pt)[Txt(yi,t)]

=
[
(x̂−i,t)T
I

]
(P̂ ∗,(d)

i,t )−1
[
(x̂−i,t)T
I

]
+ Eρi(Rt,Pt)[Txt(yi,t)]

=
[
(x̂+,(d)
i,t )T
I

]
(P+,(d)

i,t )−1
[
(x̂+,(d)
i,t )T
I

]
.

(3.39)

In the end, we reach the point estimates.

P̂
+,(d)
i,t = [(P̂ ∗,(d)

i,t )−1 +HT
t R̂
−1
i,t Ht] (3.40)

x̂
+,(d)
i,t = P̂

+,(d)
i,t [P̂ ∗,(d)

i,t )−1x̂
−,(d)
i,t +HT

t (R̂(d)
i,t )−1yi,t] (3.41)

Finally, we have shown how to update all our factors with the new mea-
surements and how to form their respective point estimates. For better under-
standing, we have provided the visualization of the complete model of message
passing in Figure 3.2.

3.2.2 Prediction

In the following Section we will show how to run the prediction on our proposed
filter. As shown in Section 1.2, in case of standard Kalman filter the prediction
step transforms the posterior estimate x+

i,t−1 and its covariance matrix P+
i,t−1

to their respective prior estimate x−i,t with P−i,t for the time t.
However in our case, we need have the issue of uncertainty about all el-

ements of θt = [xt, Rt, Pt], but the process model, shown in Equation (3.4),
applies only to the estimate of xt and the related estimate of Pt. Even though
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Pt
iW (Ψ−t , ψ−t )

xt
N (x̂−t , P̂ ∗t )

yt
N (Htxt, Rt)

Rt
iW (Φ−t , φ−t )

E(d)
ρ(xt)[TPt(xt)]

x̂+
t , P̂

+
t

E(d)
ρ(xt,Pt)[TRt , (yt)]

R̂
(d)
t , R̂

−1,(d)
t

P̂
(d)
t , P̂

−1,(d)
t

E(d)
ρ(Rt,Pt)[Txt(yt)]

Figure 3.2: Scheme of message passing algorithm

we have issues with the ignorance of Qt, as well as evolution model for Rt, the
prediction step should still prepare the prior distributions for the subsequent
measurement update step, as described in Section 3.2.1.

First, we will focus on the variational factor ρi(xt) ≡ N (x̂+
i,t−1, P̂

+
i,t−1). If

we take a closer look at Equation (3.9), we can see that the only difference
in our case is our lack of true covariance matrix P+

i,t−1, hence we replace
it with our estimate P̂+

i,t−1. Last problem is that we do not know the true
process noise covariance matrix Qt, it is obvious that Qt has an impact on
the uncertainty of estimation of xt, therefore we use a crude estimate Q̂i,t in
order to compensate for this. Using Equation (3.8), we can form the predicted
Gaussian distribution as,

x̂−i,t = Atx̂
+
i,t−1 +Btut,

P̂−i,t = AtP̂
+
i,t−1A

T
t + Q̂i,t.

(3.42)

The question about how to select the optimal Q̂i,t will be discussed in
Section 3.2.3. Following this, we need to predict the Rt. Unfortunately, since
we ignore the evolution model, we have no way to directly predict R̂i,t from
R̂i,t−1. Our solution proposed solution to this issue is, given that the Rt has a
slow variability in time, then it can be solved using an exponential forgetting
with a factor αR ∈ [0, 1], as shown [13].

ρi(Rt) = [ρi(Rt)]αR , (3.43)

In typical scenarios the forgetting factor would not be set lower than 0.95.
If we rewrite the Equation (3.43) in terms of hyperparameter Ξ−Ri,t , we get

Ξ−Ri,t = αRΞ+
Ri,t−1

. (3.44)
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This directly affects the amount of information contained in the distribu-
tion and increases the uncertainty of Rt, but it helps us to get the concentra-
tion of the distribution closer to the true Rt.

Now, all that remains to be shown is the construction of a new factor
ρi(Pt). We know that its expectation should equal the predicted value, shown
in Equation (3.42).

Eρi(Pt)[Pt] =
Ψ−i,t

ψ−i,t − n− 1
= P̂−i,t. (3.45)

Just as in the case of Rt, we have a desire to admin some uncertainty about
its value. We know, that ψ+

i,t−1 can be interpreted as data counter, hence we
set ψ−i,t and Ψ−i,t in the following way,

ψ−i,t = ψ+
i,t−1,

Ψ−i,t = (ψ−i,t − n− 1)P̂−i,t.
(3.46)

With this approach, the uncertainty of about Pt will decrease when more
data are incorporated.

3.2.3 Q̂i,t optimization

As we have stated in Section 3.2.2, in the prediction step Equation (3.42) we
use a crude estimate Q̂i,t of the process noise covariance matrix Qt. Now we
will show our approach to chossing the best estimate.

Of course, the simplest approach is to use a single heuristic value, this
approach is taken in Article [10], but we have instead decided to use a relatively
computationally cheap method of testing a set of C candidates, Q̂(1)

i,t , ,̇Q̂
(C)
i,t and

searching for one that increases the estimation stability the most.
We know that if the space-model, as established in Equations (3.4) and

(3.5), was correct and fully known, then the prior predictive distribution of
form,

f(yi,t|y0:t−1, u0:t) =
∫
f(yi,t|θt)πi(θt|y0:t−1, u0:t)dθt, (3.47)

can nicely explain the measurements yi,t. Using the plug-in principle we can
substitute the trueRt with its point estimate, hence the role of πi(θt|y0:t−1, u0:t)
will be taken over by ρi(xt). Then we can rewrite f(yi,t|y0:t−1, u0:t) into the
following form.

f(yi,t|y0:t−1, u0:t) =
∫
N (Htxt, R̂

−
i,t)×N (x̂−i,t, R̂

−
i,t)dxt

=
∫
N (Htxt, R̂

−
i,t)×N (x̂−i,t, AtP̂

+
i,t−1A

T
t +Qt)dxt

= N (Htx̂
−
i,t, R̂

−
i,t +AtP̂

+
i,t−1A

T
t +Qt).

(3.48)
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3.2. Variational Kalman filtering

It can be seen that the better of an estimate Q̂i,t we use instead of the
true Qt, the higher the value of the predictive probability density function for
a particular measurement yt will be. We can get even more use of this, in the
case of distributed setting, since there are a lot more measurements to take
in. Using this principle, we can tune the Q̂i,t, hence if we have C candidate
matrices

Qi,t = {Q̂(1)
i,t , . . . , Q̂

(C)
i,t }, (3.49)

we can test their impact on the predictive formula, shown in Equation 3.48
by inserting them into the formula. Afterward, we can simply select the one
that maximizes the prior predictive probability density function value, in the
form of

Q̂i,t = argmax
Q̃t∈Qi,t

logN (yi,t|Htx̂
−
i,t, R̂

−
i,t +AtP̂

+
i,t−1A

T
t + Q̃t). (3.50)

As has already been said, this approach is especially useful for the case of
distributed setting, which we will show in Section 3.3. Finally, we can write
the whole algorithm down, in Algorithm 2.
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3. Analysis and design

Algorithm 2: Local variational Kalman filtering under unknown Qt
and Rt

1 Initialization: Set the hyperparameters of the initial prior densities
ρi(xt), ρi(Pt) and ρi(Rt). Set the forgetting factor αR. Prepare a set
Qi,t of candidate process noise covariance matrices and set the
number D of CAVI iterations.

2 foreach t ∈ [1, 2, . . .] and measurements yi,t do
Prediction:

1. Predict ρi(Rt): Evaluate ξ−R,t = αRξR,t−1, Equation (3.44).

2. Select Q̂i,t, Equation (3.50).
3. Predict ρi(xt): Evaluate x̂−i,t and P̂−i,t, Equation (3.42).
4. Predict ρi(Pt), Equation (3.45).

Kalman update:
foreach d ∈ [1, . . . , D] do

1. Update ρi(Pt):

• Calculate E(d)
ρi(xt)[TPt(xt)], Equation (3.30).

• Update Ξ−Pt,i, Equation (3.31).
2. Update ρi(Rt):

• Calculate E(d)
ρi(xt,Pt)[TRt(yt)], Equation (3.34).

• Update Ξ−Ri,i, Equation (3.35).
3. Update ρi(xt):

• Prepare estimates P̂ ∗,(d)
i,t , R̂(d)

i,t and their inverses,
Equations (3.28), (3.25), (3.29) and (3.26).
• Calculate Eρi(Rt,Pt)[Txt(yt)], Equation (3.38).
• Update Ξ−xi,i, Equation (3.39).

end

3 end

36



3.3. Collaborative filtering with information diffusion

3.3 Collaborative filtering with information
diffusion

We will devote this Section to modification of the developed sequential esti-
mation procedure, shown in Section 3.2, to a distributed environment using
information diffusion strategy, as shown in [14].

The diffusion strategy has the following two steps:

1. The adaptation step
Each agent i ∈ I receives the measurements yj,t from all of his neigh-
bours j ∈ Ii. We can then include those measurements into i’s node
statistical knowledge using Bayesian update. Shown in Section 3.3.1.

2. The combination step
Each agent i ∈ I incorporates the posterior estimate of θt = [xt, Rt, Pt]
of all of his neighbours j ∈ Ii into his own statistical knowledge. Shown
in Section 3.3.3.

We also show how the optimization of Q̂i,t for node i can be improved by
using the measurements of yj,t that are available from the neighbours j ∈ Ii.

3.3.1 Adaptation step

As we have already stated, one of the steps that are needed in a distributed
setting is the adaptation step. Where we solve the issues of incorporating the
measurements of yj,t from j node into i-th node statistical knowledge.

The position of the adaptation step is closely intervened with the law of
large numbers behavior of the considered estimator, precisely with the speedup
of its convergence to the true value. Hence we aim to achieve this, by having
each node i ∈ I incorporating his neighbours measurements yj,t, j ∈ Ii into
his own probability distribution, as in Equation (3.10). We can write in the
following form,

πi(θt|y0:t, u0:t) ∝ πi(θt|y0:t−1, u0:t)
∏
j∈Ii

f(yj,t|θt), (3.51)

where yi,0:t contains all information about the measurements, that are known
by the node i. We know that yi,t are i.i.d.,hence the probability density func-
tions f(yj,t|θi) are identically parameterized. From Section 3.2 we know that
the distribution belongs to the exponential family with expected sufficient
statistics Eρi(Rt,Pt)[Txt(yj,t)] or Eρi(xt,Pt)[TRt(yj,t)] respectively.∏

j∈Ii
f(yj,t|θt) ∝

∏
j∈Ii

exp{ηTxtTxt(yj,t)}

∝ exp

ηTxt ∑
j∈Ii

Txt(yj,t)

 ,
(3.52)
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with

Eρi(Rt,Pt)

∑
j∈Ii

Txt(yj,t)

 =
∑
j∈Ii

[
yTj,t
HT
t

]
(R̂(d)

i,t )−1
[
yTj,t
HT
t

]
, (3.53)

for the variational message to ρi(xt). Now we can do the same for the varia-
tional message to ρi(Rt) in the following way,

∏
j∈Ii

fj(yj,t|θj) ∝ exp

ηTRt ∑
j∈Ii

TRt(yj,t)

 , (3.54)

and that will equal to

E(d)
ρi(xt,Pt)

∑
j∈Ii

TRt(yj,t)

 =
∑
j∈Ii

[
(yj,t −Htx̂

+,(d−1)
i,t )(•)T +HtP̂

+,(d−1)
i,t HT

t

1

]
,

(3.55)
where (a−b)(•)T is used to simplify the notation of the outer product. Now we
can use the expected sufficient statistics, shown in Equations (3.53) and (3.55),
instead of their single-measurement counterparts in CAVI, shown in Equations
(3.38) and (3.34). The local estimates of Pt, Rt and xt use same equations
with their respective hyperparameters Ξ∗,(d)

Pt,i
, Ξ+,(d)

Rt,i
and Ξ+,(d)

xt,i
. Finally we

can deduce the following,

P̂
+,(d)
i,t =

[
(P̂ ∗,(d)

i,t )−1 + |Ii|HT
i,t(R̂

(d)
i,t )−1Hi,t

]−1
, (3.56)

x̂
+,(d)
i,t = P̂

+,(d)
i,t

(P̂ ∗,(d)
i,t )−1x̂

−,(d)
i,t +HT

i,t(R̂
(d)
i,t )−1 ∑

i∈Ii
yj,t

 . (3.57)

3.3.2 Optimization of Q̂i,t in distributed setting

Just as we have established in Section 3.2.3, the local optimization of Q̂i,t over
the set Qi,t can benefit from the distributed scenario in form of the additional
observations of yj,t as they are provided from neighbours j ∈ Ii. We know
that the observations are i.i.d. and their joint predictive density is just of the
product of their individual densities, hence we can modify the Equation (3.50)
in the following way,

Q̂i,t = argmax
Q̂t∈Qi,t

log
∏
j∈Ii
N (yj,t|Htx̂

−
i,tR̂

−
i,t +AtP̂

+
i,t−1A

T
t + Q̃t)

= argmax
Q̂t∈Qi,t

∑
j∈Ii

logN (yj,t|Htx̂
−
i,tR̂

−
i,t +AtP̂

+
i,t−1A

T
t + Q̃t).

(3.58)
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3.3. Collaborative filtering with information diffusion

3.3.3 Combination step

The last step that has to be done in order to adapt the method to the dis-
tributed setting is the combination step. In this step we propose the idea of
how to combine the posterior estimate θt = [xt, Rt, Pt] of neighbours of node
i into its statistical knowledge. Hence we will work with the following.

Each agent i ∈ I acquires the posterior estimates from its neighbours
j ∈ Ii. For our approach, the posterior estimates are completely expressed by
the variational factors ρj(xt) and ρj(Rt).

We know that all the information on inferred variables is embraced inside
the hyperparameters Ξ+

xi,j
and Ξ+

Ri,j
, that have accumulated their respective

sufficient statistics, hence merging done in combination step should be based
upon them.

One of the very interesting approaches is an averaging of those hyperpa-
rameters. To be exact, for xt it means,

ρ̃i(xt) ∝ exp
{
ηTxtΞ̃

+
xt,i

}
= exp

ηTxt 1
|Ii|

∑
j∈Ii

Ξ+
xt,j

 , (3.59)

and for Rt it will be,

ρ̃i(Rt) ∝ exp
{
ηTRtΞ̃

+
Rt,i

}
= exp

ηTRt 1
|Ii|

∑
j∈Ii

Ξ+
Rt,j

 . (3.60)

If we analyse the Equations (3.59) and (3.60), we can see that it has a few
very appealing properties. Namely:

• Tractability and numerical stability: One of the major advantages
of this approach compared to other combination rules is that both Equa-
tions (3.59) and (3.60) yield the hyperparameters of the same type.
Thanks to that, we can immediately use them in the subsequent predic-
tion step, on top of that, this approach does not tend to produce any
numerical issues during its computation.

• Complience with the Bayesian information processing: To a
keen eye, it may become obvious, that the convex combination of hy-
perparameters of the conjugate prior distributions is equivalent to the
weighted Bayesian updating. It becomes even more apparent when we
compare the model of multiple measurements, shown in Equation (3.54),
with the combined density, as shown in Equation (3.59).

• Robustness to data incest: One of the most common problems that
can be encountered in a distributed setting is data incest, meaning the
issue of encountering the same information multiple times and therefore
the same information enters the information processing procedure more
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3. Analysis and design

than once. This was explored, for example in Article [15]. Our way to
combat this issue is by introducing the factor 1

|Ii| into the Equations
(3.59) and (3.60).

• Kullback-Leibler optimality: We can show that both fusion rules,
shown in Equations (3.59) and (3.60) are KL optimal in the following
sense

ρ̃i(xt) = argmin
ρ̃i(xt)

1
|Ii|

∑
j∈Ii
D[ρi(xt)||ρi(xt)], (3.61)

for case of ρi(Rt) the approach will be the same. This was explored in
[16].

• Covariance intersection: It can be seen, that the KL optimal fusion,
as shown in Equation (3.61), when applied to the Gaussian probabil-
ity density provides a result known as covariance intersection, this was
shown in [17] and further explored in [16]. From this, we know that the
combined estimates will be

˜̂
P+
i,t =

 1
|Ii|

∑
j∈Ii

(
P̂+
j,t

)−1
−1

,

x̂
+
i,t = ˜̂

P+
i,t

 1
|Ii|

∑
j∈Ii

(P̂+
j,t)
−1x̂+

i,t

 .
(3.62)
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Chapter 4
Results evaluation

We have devoted this chapter to present the results of our approach. It will
be divided into two main parts, one where the true measurement noise covari-
ance matrix R is static in time and the second where the measurement noise
covariance matrix R develops throughout time.

We average all data over 60 independent runs that ran on 60 completely
different simulated data. Most scenarios had a length of 1000 samples, with
one exception having 1500 samples. All our samples represent simulated 2-
dimensional trajectory. The state-space model of this trajectory has the fol-
lowing form,

xk = Axk−1 + wk, (4.1)

y
(i)
k = Hxk + v

(i)
k , (4.2)

where xk ∈ R4 is the unknown state space model and consists of location coor-
dinates x1,k and x2,k for our two dimensional case, as well as, their respective
velocities x3,k and x4,k. Initial value of x0 is [0, 0, 0, 0]T . The measurement
vector yk ∈ R2 contains only coordinates. We also need to specify the neces-
sary matrices, hence

A =


1 0 ∆k 0
0 1 0 ∆k

0 0 1 0
0 0 0 1

 ,
H =

[
1 0 0 0
0 1 0 0

]
,

(4.3)

where ∆k is the time difference, where it applies ∆k = 1. Finally the the i.i.d.
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4. Results evaluation

noise variable wk ∼ N (0, Q), where the true covariance matrix is equal to,

Q = 1
2


∆3
k

3 0∆2
k

2 0
0 ∆3

k
3 0 ∆2

k
2

∆2
k

2 0 ∆k 0
0 ∆2

k
2 0 ∆k

 (4.4)

and measurement noise v(i)
k ∼ N (0, R(i)) is also i.i.d.. Since the covariance

matrix R(i) differs between scenarios, we will specify them individually, when
necessary. The true trajectory is shared amongst all nodes, but each node has
its own noisy measurements, different from all other nodes. An example of
such trajectory with one variant of noisy measurements can be seen in Figure
4.1.

Figure 4.1: Example of true trajectory with noisy measurements

We have chosen a network that consists of |I| = 15 nodes and is the same
for all scenarios. Its topology can be seen in Figure 4.2. Some of the initial
factors for all nodes are shared throughout all scenarios, namely initial R(i) is
for all nodes represented by inverse-Wishard distribution iW(4, 100 ∗ I[2×2]),
initial P is set to iW(10, 100 · I[4×4]) and lastly initial xt is zero centered with
covariance matrix equal to 100·I[4×4], wherein all cases I represents an identity
matrix. Finally the forget factor for R is set to 0.99 and at each time k, we
run V = 5 iterations of variational algorithm.

In all scenarios, we compare with the following algorithms:

• NOCOOP:
There is no cooperation at all between nodes, they work only with their
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Figure 4.2: Topology of the network

own measurements, and therefore, all of their estimates are based solely
on them.

• ATC:
The adapt-then-combine strategy, where measurements and posterior
estimates are shared between compatible nodes. As shown in [9].

• ATCOMP:
The fusion center scenario, where all information is procesed by single
node.

• ATCSBW:
Our proposed method expands the adapt-then-combine strategy by the
optimization of Q̂i,t.

For all scenarios, all nodes share the same amount of Q̂, from which they
can choose during the optimization of Q̂i,t, as shown in Section 3.2.3. They
available matrices are the following i · I[4×4], where i ∈ [0, |I|] and I is an
identity matrix. Each node has its initial Q̂ set to one of those options,
namely to i · I[4×4], where i is equal to the index of the node.

4.1 Static R

First, we will look at cases where we have a static R in time. Here we have
two examples that differ in time at which they can optimize their Q̂i,t. In one
variant, the optimization can begin immediately, while in the other, it has to
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4. Results evaluation

wait for 15 steps. Both scenarios have trajectories of length 1000. The static
true R(i) is in both cases equal to

R(i) =
[
900 0
0 900

]
. (4.5)

4.1.1 Q̂ optimization from beginning
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Figure 4.3: Decimal logarithm of average RMSE of state estimates

Now, we will take a closer look on a case where the optimization of Q̂i,t is
allowed from the start. In Figures 4.3 and 4.4 is root mean square error15 of
the states x1,k and x2,k, as well as of the measurement noise covariance matrix
R. All values are averaged over the network. We can see that our approach
tends to perform, between ATC and ATCCOMP. This behaviour can be
seen in both estimation of states x1,k and x2,k, as seen in Figure 4.3, as well
as for estimation of the measurement noise covariance matrix R, as shown in
Figure 4.4.

15Usually abbreviated as RMSE.
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Figure 4.4: Decimal logarithm of average RMSE of measurements noise co-
variance matrix estimate

We can see that ATCCOMP is still better, which is as expected. This
is especially noticeable in the case of the estimation of the matrix R, where
the ATCCOMP converges much faster than our method, but in the end, our
estimation is very close to it. A quite similar development can be seen also
for the state estimation, Figure 4.3. However due to the higher volatility of
the estimates is the exact difference between our approach, ATC and ATC-
COMP more blurry and harder to pinpoint exactly. But there is still larger
convergence with the ATCCOMP method, which vanishes as the estimates
develop.

Finally, we have also provided a visualization of the differences between
the individual node Q̂ matrices and the true Q matrix. This can be seen in
Figure 4.5. Since the nodes can optimize their Q̂ right from the start, they
tend to vary more, as can be seen at the beginning, where they all converge to
a Q̂, that is quite far from the true Q, but after a few more steps, all converge
to the closest option to the true Q they have available.

4.1.2 Q̂ optimization after first 15 steps

We will now take a look at the other scenario with the fixed matrix R. For
this one, we have limited the nodes in terms of their ability to optimize their
Q̂ matrices, in particular, they cannot optimize their Q̂ in any way until
prediction step 15 is reached.

The estimation of states and of the measurement noise covariance matrix
R can be seen in Figure 4.6 and 4.7 respectively. It can be seen that their
development is very similar to the previous scenario, as shown in Section 4.1.1.
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Figure 4.5: Difference of Q̂i,t and true Q for individual nodes

This fact is not surprising since the only difference between the two scenarios
is in their Q̂ and nodes, in the beginning, tend to optimize their Q̂ matrices
into values further from the true Q matrix, rather than closer. This is very
similar to the behavior that was already seen in previous scenarios. Hence the
difference in state and R estimation is not major.

However, the interesting difference could be in the difference between in-
dividual nodes Q̂ matrices and the true Q matrix. This can be seen in Figure
4.8. Since we have not allowed any optimization of Q̂ until the fifteenth step,
we can see that they still at first converge to the worse option, rather than
the better one. But their option is not as bad as in the previous scenario, and
they similarly converge to the optimal value they have at their disposal.

4.2 Varying R

We have devised the other set of scenarios to test the performance when we
have the true measurement noise covariance matrix R variable in time. We
show two variants of this, one with only increasing R and the other one with
increasing and decreasing R. They are shown in Section 4.2.1 and 4.2.2 respec-
tively. In both scenarios, we have allowed the nodes to run the optimization
of Q̂ right from the start.

4.2.1 Only increasing R

First we will take a look on a scenario, where the true R matrix is only
increasing. The precise development of R[0,0] can be seen in Figure 4.9, but
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Figure 4.6: Decimal logarithm of average RMSE of state estimates

the development for R[1,1] is exactly the same and both R[1,0] and R[0,1] are
always equal to zero.

Now we can take a look at specific of the estimation of both states and R,
as shown in Figure 4.10 and 4.11. The estimation of states is very similar to
the previous scenarios, which is a very good sign since the estimate did not
deteriorate in any severe way, even if the R changes through time.

What is even more interesting is the estimation of R in Figure 4.11. Our
interest lies in this, particularly due to the fact that we have varying R in
time. However, it shows truly promising results, as our estimate of R is very
close, especially in later steps, to the estimate done by ATCCOMP.

Just for the sake of completeness, we show the difference between Q̂ ma-
trices of individual nodes and the true Q in Figure 4.12. It can be easily seen
that the optimization of Q̂ is not heavily affected by the increasing R, and its
performance is almost identical to the one shown in Section 4.1.1.

4.2.2 Increasing and decreasing R

Finally, for the last scenarios we have set R to at first increase and then
decrease to the previous value. In order to accommodate this change in more
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Figure 4.7: Decimal logarithm of average RMSE of measurements noise co-
variance matrix estimate
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Figure 4.8: Difference of Q̂i,t and true Q for individual nodes

procedural matter, we have extended this prediction from 1000 steps to a 1500
steps. As in Section 4.2.2, we show the development of R[0,0] in Figure 4.13
and just as in last time, the R[1,1] follows the same development and R[1,0] and
R[0,1] is always zero.

Now we can take a look at how good our estimation of states and matrix
R. We show them in Figures 4.14 and 4.15 respectively. Remarkably, we can
see that the estimation of states does not suffer any apparent penalty even
though the true R matrix varies severely in time. Our estimation of states is
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Figure 4.9: Development of R

still very similar to the ATCCOMP.
Just as in the previous scenario, we have a profound interest in the esti-

mation of the true R since it is what changes in this particular scenario. This
can be seen Figure 4.15. Astonishingly, the performance is still really good
and comes very close to the performance of ATCCOMP. Just as in all previ-
ous cases, the ATCCOMP converges much faster, but our method converges
quite fast too and, in the end, has basically the same as of ATCCOMP.

Finally, to round everything up and hold the same visualizations for all
scenarios, we again show the difference between the individual nodes Q̂ matri-
ces and the true Q matrix in Figure 4.16. We can see that the development of
Q̂ matrices is again very close to both previous scenarios, as shown in Section
4.1.1 and 4.2.1. Their behavior is so similar that their difference could be
labeled as negligible.
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Figure 4.10: Decimal logarithm of average RMSE of state estimates
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Figure 4.11: Decimal logarithm of average RMSE of measurements noise co-
variance matrix estimate
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4.2. Varying R
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Figure 4.12: Difference of Q̂i,t and true Q for individual nodes
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Figure 4.13: Development of R
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4. Results evaluation
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Figure 4.14: Decimal logarithm of average RMSE of state estimates

0 200 400 600 800 1000 1200 1400

Estimation time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

lo
g
R
M

S
E
(R

(i
) )

NOCOOP

ATC

ATCCOMP

ATCSBW

Figure 4.15: Decimal logarithm of average RMSE of measurements noise co-
variance matrix estimate
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4.2. Varying R
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Figure 4.16: Difference of Q̂i,t and true Q for individual nodes
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Conclusion

We use this final chapter to summarize what has been done and also what
kind of enhancements could be done in the future.

Thesis summary

The goal of this thesis was set to explore the field of Bayesian sequential esti-
mation of unknown states of the state-spacemodels, with unknown covariance
matrices for both process and measurement noise, and propose a method that
could achieve such goals.

The necessary prerequisites are explained in Chapter 1. Following that,
we have used Chapter 2 for a brief exploration of the current state-of-the-
art in this field. We have primarily shown approaches that are similar to
our approach and pointed on some similarities, as well as differences between
theirs and our approach. Then we have devoted the Chapter 3 to elaborate
on our method, which we have proposed to achieve the goal of this thesis. We
first establish the method in a local setting and then expand this definition to
accommodate necessary aspects for the distributed setting. Finally, Chapter
4 is used to discuss the result of our proposed method and comparison with
other state-of-the-art methods.

Future works

As we have already stated, this thesis’s primary topic is in the development
of a filtering method for the case with unknown covariance matrices of both
process and measurement noise and its adaptation for the distributed setting.
But we still believe that there is a potential for the future expansion of this
work, in particular in the following topics.

• Filtering under nonlinear state-space models
One of the intensive research topics is the issue of nonlinear state-space
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models, for example, [11]. We can adapt our approach to accommodate
this approach as well.

• Use of normal inverse-Wishart
Another possible improvement could be the use of compound distribu-
tion. In our case, we can replace the normal distribution that we use to
model x and the inverse-Wishart distribution, that we use for modeling
of matrix P , with one normal inverse-Wishart distribution.

• Tuning of Q̂i,t
The last expansion that we will propose here is the opportunity to im-
prove the optimization of Q̂i,t. One of the possibilities for this improve-
ment would, for example, be sampling from the neighborhood of the
candidate values. Another example would be sharing of Q̂i,t between a
set of neighbor nodes.
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Appendix A
Acronyms

pdf Probability density function

i.i.d. Independent identically distributed

ELBO Evidence lower bound

KL divergence Kullbach-Leibler divergence

CAVI Coordinate-ascent variational inference

RMSE Root mean square error
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Appendix B
Contents of enclosed SD card

readme.txt...................the file with SD card contents description
implementation............ the directory of code of the implementation
text......................................the directory of source codes

thesis..............the directory of LATEX source codes of the thesis
thesis.pdf...........................the thesis text in PDF format
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