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Abstract

During astronomic observations, images of selected part of the sky are

made by the 70cm telescope specialized on space debris tracking. Every

pixel of this frame can be represented by three data points – position on

the horizontal x axis, position on the vertical y axis and intensity which

value can differ from 0 to 65 536. If the intensity is zero or close to zero,

no object has been detected on the position corresponding to the given x

and y coordinates. Contrary to that, the intensity which value is in order

of thousands or higher indicates presence of an orbital or extraterrestrial

object such as a star, planet, space debris, or even electromagnetic field

interference, celestial plane background and other artefacts. Our task is

to research literature written on the topic of object segmentation, learn

about existing system used to combat the issue, design and test a tracklet

building process using neural networks.

Keywords: segmentation, object tracking, processing of astronomical

images
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Abstrakt

Počas astronomických pozorovaní uskutočnených pomocou 70 cm d’aleko-

hl’adu určeného na pozorovanie vesmírneho odpadu sú získavané snímky

konkrétnej časti nočnej oblohy. Každý pixel takejto snímky je reprezento-

vaný tromi údajmi – pozíciou na horizontálnej osi x, pozíciou na vertikál-

nej osi y a intenzitou, ktorá nadobúda hodnoty od 0 až po 65 536. Nulová,

respektíve vel’mi nízka intenzita znamená, že na danej časti nočnej oblohy,

ktorá korešponduje s x a y súradnicami na snímke, nebol zaznamenaný

žiaden objekt. Naopak, intenzity pohybujúce sa v rádovo tisíckach hodnôt

a vyššie indikujú prítomnost’ nejakého objektu, ako napríklad hviezdy, ob-

jektov slnečnej sústavy, vesmírneho odpadu, alebo aj šumu elektrického

prúdu, pozadia oblohy a iných artefaktov. Našou úlohou bude zoznámit’

sa s už existujúcimi algoritmami používanými na riešenie danej prob-

lematiky, naštudovat’ si poskytnutú odbornú literatúru, a navrhnút’ a

otestovat’ vlastný systém na tvorbu trackletov.

Kl’účové slová: segmentácia, sledovanie objektu, spracovanie astro-

nomických snímok
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Introduction

In recent decades, interest in space flights has increased rapidly. Many

companies and nations send their satellites to Earth’s orbit. The im-

portance of these satellites increased significantly as they serve many

different functions: navigation, data trafficking, weather forecast, space

observation, etc. With this increasing activity in the orbit, the population

of space debris is rising. This phenomenon endangers all satellites orbit-

ing the Earth. In the future, if we do not find a solution to this problem,

the risk of sending a probe might become too high. Regarding this issue,

space agencies around the world are developing systems to monitor and

collect space debris. Our University created system for processing series

of images of objects orbiting Earth - Image Processing Pipeline for Space

Debris. In recent years, machine learning is the best performing method

for various problems. It can be used for correlating objects together into

more complex structures.
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1. Motivation

The rising population of space debris is a threat to satellites. Most orbital

debris come from human products such as pieces of satellites, rockets,

protective gloves, etc. Cataloguing these objects can help us prevent un-

necessary collisions by moving satellites in advance. The existing system,

developed by the Department of Astronomy and Astrophysics [1], is capa-

ble of tracking objects from series of observations. The current analytic

solution might produce false positive tracklets, due to its architecture.

Because of the nature of the system false positives are undesirable. Ma-

chine learning is a rising field with a big potential and using a neural

network to create tracklets can remove the downsides of the current sys-

tem.

1.1 Space debris

Objects orbiting the Earth which are at the end of their missions, are

called space debris. Size of these objects varies from less than millime-

ter up to meters. Smaller objects are almost impossible to track, yet they

make up the majority of space debris. Collisions with these fast moving

objects can cause high damage to satellites and space crafts, as in the

figure 1.1.
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Figure 1.1: A space debris hit to space shuttle Endeavor. The entry hole
is 0.25 inches wide. The exit hole is twice as large. Image downloaded
from (NASA 2020).

Only objects with certain sizes at certain altitudes can be tracked

by optical devices. US Space Surveillance Network (USSSN) maintains

a database of tracked objects. The database consists of more than 42

thousand objects. More than a half of these objects is still orbiting the

Earth. Figure 1.2 show approximate population of space debris around

the Earth at low orbit (LEO) objects.

Without resolving this problem, phenomenon called Kessler syndrome

could occur. It represents a state where rate of collisions and space

debris population in orbit would increase exponentially. To prevent this

scenario, we need to first track space debris and then collect it from the

Earth orbit.

The information used in this section was from the master thesis - De-

velopment of an efficient tracklet building algorithm for space debris ob-

jects [2].
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Figure 1.2: Most concentrated area for orbital debris is low Earth orbit
(LEO). Image downloaded from (NASA 2020).

1.1.1 Types of orbits

Objects move around the Earth in orbits. This movement is caused by

the Earth’s gravity. They are divided into these many types according to

ESA (The Europe space agency) article [3]:

• Geostationary orbit (GEO)

Objects in GEO circle the Earth around equator at altitude around

35786 km and with speed around 3 km per second. One rotation

in GEO takes exactly one Earth day which cause satellites in GEO

to appear stationary over a fixed position. For example television

satellites are in GEO.

• Low Earth orbit (LEO)

Low Earth orbit stays for an orbit with altitude below 1000 km. Low-
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est LEO orbit could be only 160 km above the Earth surface. Ob-

jects travel around 7.8 km per second in this orbit. LEO objects do

not have to orbit along Earth’s equator. Their plane can be tilted.

LEO is the most used orbit around the Earth.

• Medium Earth orbit (MEO)

MEO include wide range of orbits between LEO and GEO. Like in

LEO, objects in GEO do not have to travel on specific path around

the Earth. These orbits are commonly used for navigation satellites

like the European Galileo system.

There are other types of orbits, yet these are the most important.
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1.2 Image Processing Pipeline for Space De-

bris

The Department of Astronomy and Astrophysics (DAA), Faculty of Math-

ematics, Physics and Informatics of Comenius University in Bratislava,

Slovakia developed system for processing space debris and other objects

from observations made by 70 cm Newtonian telescope (AGO70, figure

1.3).

Series of consecutive observations are processed by the system to

find and catalogue moving objects. The system consists of these steps

[4], image processing elements:

1. Image reduction

Removing additive and multiplicative errors from the image caused

by CCD camera. These errors are removed by subtracting a bias

frame and dividig the frame by flat field (taken with closed shutter).

2. Background estimation and subtraction

Sigma clipping [5] is used to estimate and subtract background

noise from an image.

3. Objects search and centroiding (segmentation)

Objects are detected in an image and their positions with other at-

tributes are saved in text file.

4. Astrometric reduction

A position of an object from previous step is translated into the

equatorial coordinates (section 1.2.1).

5. Masking

6



Masking is used to remove duplicate objects which appear station-

ary throughout series like stars.

6. Tracklet building

Tracklets moving objects are created in this process. This image

processing element is explained in detail in the section 2.1 and it is

the main focus of this thesis.

7. Object identification

Identified objects are catalogue.

System input are series of FITS images - Flexible Image Transport

System.

Figure 1.3: AGO70 Newtonian telescope at Astronomical and Geophysi-
cal Observatory in Modra, Slovakia. Image from [1].

1.2.1 Equatorial coordinate system

Position of an object after Astrometric reduction is given in equatorial co-

ordinates. Equatorial coordinate system represents positions of objects

on celestial sphere [6].
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Figure 1.4: Equatorial coordinates of a star on celestial sphere.

Position of an object consists of two coordinates:

• Declination - measures the angular distance from celestial equa-

tor. Declination has values from −90 up to +90. −90 value repre-

sents the South pole and +90 the North pole.

• Right ascension - measures angular distance from Greenwich merid-

ian along celestial equator. Right ascension is usually measured in

sidereal hours from 0 : 0 : 0 to 24 : 0 : 0. Right ascension can be

transformed to degrees easier manipulation.

Although equatorial coordinates do not represent a position on 2-D

plane, our field of observation is very small, and we can assume that

equatorial coordinates behave as Euclidean coordinates. Figure 1.4 shows

equatorial coordinates on a sphere.
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2. Goal of thesis

The goal of the thesis is to improve the tracklet building process using

neural networks and compare it to the current analytic solution [2]. Ana-

lytic solution uses a linear regression to create tracklets. Neural network

will be used to find positions of a moving object from the input sequence.

This approach should improve system in various ways:

• Without a need to change the design of the algorithm we would

be able to detect different types of object trajectories with use of

variously trained networks.

• The output of the current system does not include any confidence

value. The new algorithm will return confidence value for each

tracklet. This could help us detect false positive examples.

2.1 Tracklet building

A tracklet is a data structure containing consecutive observations of an

object in time. We can refer to tracklet also as trajectory of the object.

Blue points in the figure 2.1 represent tracklet and red points repre-

sent positions which were not assigned to tracklet. We can then approxi-

mate these positions by an imaginary line which represents the trajectory

9



Figure 2.1: A trajectory and tracklet of an object. The object positions
are represented by blue points.

of an object in time.

We can approximate an object’s trajectory by a line as we are observ-

ing only a small part of the sky. Due to a small field of view the object’s

orbit appears as a line. In this system, simple linear regression (SLR) is

used to find a sequence of object positions on a line [4]. Tracklet building

is then realized in following steps:

1. Creating Cartesian product of all the objects positions from first

and second image.

2. Computing angular velocity and position angle every pair.

3. For each k-tuple we check if there exists an object from next frame

which angular velocity and position angle are the closest to the

baseline values of the two original objects. This object is added

to tracklet.

4. Line parameters for k-tuples are updated with SLR.

5. Continue iteratively from step 3.

After processing objects from all frames, computed tracklets are saved

to a text file.

10



2.2 Deep Learning

In this section I am referencing information from the book Deep Learning

[7] chapters 1 and 10.

Computers are good in solving problems which can be described for-

mally by mathematical rules. There are problems easy for humans but

difficult to be formally described. With lots of training data, deep learn-

ing systems can gather knowledge from experience without a need of

any prior description. The system is building a hierarchical graph of con-

cepts which allows it to learn complicated concepts from similar inputs.

Because this graph of concepts is very deep, we call this approach Deep

Learning.

2.2.1 Recurrent neural network

Recurrent neural networks (RRNs) are a family of neural networks spe-

cialized for processing sequential data. RNNs are made to process se-

quences of values x(1), x(2), x(3), ..., x(n). The sequences can have variable

length.

For processing sequences of fixed length we can use simple multi-

layer perceptron model, however this model is not able to efficiently learn

dependencies between parts of input. For example, in language, word

order might not change the meaning of sentence.

In last year, there was Covid pandemic.

There was Covid pandemic last year.

Meaning of sentences/sequences is the same but the target words Covid

pandemic are not in the same place. We want the network to accumulate

knowledge from previous input words in processing of the next word.
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In RNNs, function of previous output and current input is used for each

input. This process stores information from previous time points in a so

called hidden state h(t). We can better imagine this process by unfolding

neural network in time (figure 2.2).

Figure 2.2: Recurrent neural network processing information of length
3.

Each node in the unfolded graph represents network node with input

from sequence in time. We can rewrite one step computation as:

h(t) = f(h(t−1), x(t−1),Θ)

It is proven that any function computable by a Turing machine can be

computed by RNN of a finite size.

Leaky recurrent neural network

Problem with big RNNs is vanishing or exploding gradient. Unfolded

graph of RNN acts like multi-layer perceptron. If sequences are long, our

imaginary network is very deep. It is likely that the gradient will vanish

in backward pass (algorithm does not learn) , or explode and focus only

on one example. Leaky RNNs have lateral connections in time to avoid

this effect (figure 2.3). They accumulate information over long a time.
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Figure 2.3: Recurrent neural network with lateral connections every sec-
ond node.
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3. Proposed methods

3.1 Data generator

Machine learning models need a fair amount of data examples for train-

ing. In the supervised learning, each training example consists of an

input and a target value. In our case the input data is series of images

captured by the AGO70 telescope and the target value is a tracklet of an

object. For training we need processed image sequences int the form of

tracklets. However, there is not enough processes sequences, if we want

to train a neural network we need to produce artificial training data.

3.1.1 starGen.r

The Department of Astronomy and Astrophysics has provided their own

solution to a problem of artificial images generation. StarGen script is

written in R language and is capable of generating a single FITS image.

It has several adjustable parameters:

• dimX, dimY - representing size of image

• starCount - number of generated stars

• fwhm - full width at half maximum (size of star)

14



• briMin, briMax - brightness parameters

• method - method used for star generation: gauss, cauchy, line

The script is able to generate FITS images with set number of stars.

Stars are represented as a point light source (figure 3.1a) or a streak

light source (figure 3.1b), which simulates rapid telescope movement.

(a) Image with 1000 stars and fwhm 10.(b) Image with lines, 10 fwhm, 50 stars.

Figure 3.1: Images generated by starGen.r script.

3.2 SVM method

Support-vector machine (SVM) model is supervised machine learning

model used for classification. It projects original input data into higher

dimension and performs maximal-margin classification in this higher di-

mension space (40 Algorithms Every Programmer Should Know [8] chap-

ter SVM algorithm).

We can use this property and train SVM to classify input tuples of size

k into two classes:

15



1. On line

This class represents tuples with size k and with their points laying

on a line with same distance between points in the tuple. Each two

adjacent points in a tuple have to be equidistant and lay on the same

straight line as in figure 3.2b.

2. Not on line

This class represents tuples with size k, which are not on line as in

figure 3.2a.

(a) On line class example (b) Not on line class example

Figure 3.2: Example of members of two classes. Blue points represent
tuple in On Line class and red points represents tuple in Not On Line
class.

3.3 RNN method

RNNs are commonly used for time series forecast and in natural lan-

guage processing. Sentence word order has a huge effect on a meaning

of the sentence in many languages. In RNNs, information about previous

inputs is accumulated in the hidden state. This information is used to
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predict next point in time or next word in sentence (Deep Learning, [7]

chapter 10).

We can use LSTM (Long short-term memory) cells to predict current

position of a moving object from previous positions. We use the predicted

positions to build tracklet of a moving object. According to article ,MX-

LSTM: mixing tracklets and vislets to jointly forecast trajectories and

head poses [9], LSTM is good choice for this problem.

3.3.1 Long short-term memory - LSTM

Leaky RNNs accumulate information over long period of time. However,

in some cases we want to forget part of information we learned. For

example, if sequence consists of subsequences. Information from pre-

vious subsequence accumulated in the hidden state can lead to wrong

prediction about next subsequence. This problem was solved by intro-

ducing gated units like LSTM (figure 3.3). A gated unit uses gates which

control amount of information passing through.

Figure 3.3: Illustration of LSTM unit. Arrows represent information flow.
Blue cells represent inputs, green cells represent outputs. Red cells stay
for simple operation on data. Yellow cells represent gates.
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LSTM has two inner states.

• c(t) represents the cell state - the cell state is a path for information

to run down through whole network like lateral connections in leaky

units

• h(t) represents the hidden state - the hidden state is the previous

output of LSTM.

LSTMs also have three gates: input, output and forget gate. Each gate is

a pointwise multiplication of first input and output of nonlinear function

from second input (figure 3.4). A gate has two weight matrices U for

input vector and W for hidden state vector.

Figure 3.4: Gate.

An input x(t) is at first concatenated with hidden state h(t−1) and goes

with c(t−1) through the forget gate. Let f (t) be the output from sigmoid

layer from the gate:

f (t) = σ

(
biasf +

∑
j

U f
i,jx

(t)
j +

∑
j

W f
i,jh

(t−1)
j

)
(3.1)
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The next cell state is then computed:

I(t) = σ

(
biasI +

∑
j

U I
i,jx

(t)
j +

∑
j

W I
i,jh

(t−1)
j

)
(3.2)

l(t) = tanh

(
biasl +

∑
j

U l
i,jx

(t)
j +

∑
j

W l
i,jh

(t−1)
j

)
(3.3)

c(t) = f (t)c(t−1) + I(t)l(t) (3.4)

where I(t)l(t) is the output of the input gate and l(t) is the LSTM internal

unit.

Next hidden state is computed

O(t) = σ

(
biasO +

∑
j

UO
i,jx

(t)
j +

∑
j

WO
i,jh

(t−1)
j

)
(3.5)

h(t) = tanh(c(t))O(t) (3.6)

Let n be the size of the input vector and m size of the hidden state

vector. At the end, the LSTM unit consists of four pairs of matrices - W

with shape m×m and U with shape m× n. The final number of trainable

parameters is then:

N = 4 · (n×m) + 4 ·m2 (3.7)

LSTM networks have been shown to learn long-term dependencies

more easily than the simpler recurrent neural networks. LSTMs are good

for forecasting time series.

One disadvantage of LSTMs is the training time. Using time folding

with this many parameters causes long training time of LSTMs, even with

relatively small input and small hidden dimensions.
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3.4 Encoder-decoder method

Another possible solution is to use the encoder-decoder architecture

for trajectory prediction according to the article Sequence-to-Sequence

Prediction of Vehicle Trajectory via LSTM Encoder-Decoder Architecture

[10].

Figure 3.5: The encoder-decoder architecture of a neural network.
Graph shows how an output sequence is computed from an input se-
quence.

This neural network consist of two main components:

1. Encoder

The encoder is a recurrent neural network. It encodes an input

sequence into the hidden state. Information about whole sequence

is accumulated in the hidden state. In figure 3.5 LSTM units are

used as recurrent units.
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2. Decoder

The decoder is a recurrent neural network. It is made out of sev-

eral recurrent units and often a linear output layer. The decoder

decodes last output and the hidden state to predict the next output.

In figure 3.5, yi, i = 1..n represent outputs and xi, i = 1..n represent

inputs. LSTM units are used as recurrent units in the figure 3.5.

This architecture allows to model more complex object trajectories.

Simple RNN method is good for linear trajectories. The encoder-decoder

could give us better precision for more complex trajectories.

This method was not implemented due to sufficient performance of

the RNN method.
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4. Software design

The tracklet building system is an algorithm described by activity dia-

gram 4.1. An input sequence contains a list of positions for each corre-

sponding image. Masking processes the sequence to remove stationary

objects like stars from the sequence. From the first two image’s lists we

create tuples. Tracklets are created from these tuples. The model pre-

dicts the next position for each tracklet (position in the next image). The

Matching function finds the closest positions from the next image to

predicted positions. If the function is not able to find any position within

the threshold, the tracklet would have marked this position as missing. If

we have already predicted the last position we return remaining track-

lets. Otherwise, if at least k positions in row are marked as missing

in tracklet we discard that tracklet. Remaining tracklets are updated.

The Tracklet update updates tracklet’s confidence. Then the model will

predict positions for tracklets again.
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Figure 4.1: The activity diagram of the tracklet building system. A sys-
tem input is sequence and tracklet is the output.
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4.1 Input and output data

4.1.1 Input

Input data is a sequence consisting of lists. Each list contains positions

of objects in an image. For each image in a sequence corresponds to one

list of positions. Lists are ordered by the image’s capture time.

Figure 4.2: Output .tsv of astrometric reduction from the current system.

The figure 4.2 is an example of a TSV (tab-separated values) input

file. One TSV file contains frame objects from one observation in time.

Not all fields in the TSV are displayed. Each row represent an object in

the image. We only need information about positions of objects. Lists in

input sequence contain only the last two fields from TSV files: RA (right

ascension), DEC (declination). These fields represent positions of objects

in equatorial coordinate system.

In the figure 4.3, there is an example of an input sequence. Each list

contains only few positions for demonstration purposes.
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Figure 4.3: An example of input sequence. Image i represents list of
positions of objects in time i from one observation.

4.1.2 Output

The output of the system are two TSV files representing one tracklet.

The first file with name "<sequence_name>_TB_number.tsv" contains

information about a found object positions. The second file with name

"<sequence_name>_TB_%2d_confidence.tsv" contains confidence num-

bers for this tracklet, which are described in section 4.6. If multiple

moving objects were found in one sequence the system produce a pair of

files for each one.

Figure 4.4: File 03005A_2_R_TB_00.tsv. It contains information about
positions from tracklet found in 03005A_2_R_27-11-20_10..30..35 series.
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Figure 4.5: File 03005A_2_R_TB_00_confidence.tsv. It contains tracklet’s
confidence numbers.

The figures 4.4 and 4.5 represent output files pair for sequence

03005A_2_R_27-11-20_10..30..35.

4.2 Masking

The current system can produce multiple positions for one object in the

picture during segmentation stage. The images contain stars, which have

approximately at the same positions throughout the whole sequence. We

reduce the number of positions in the sequence by removing stationary

stars positions and multiple object positions. With smaller number of

positions, it is easier and faster to find positions of an moving object in a

sequence.

4.2.1 Algorithm

The Department of Astronomy and Astrophysics has provided algorithm

used in the current system described in article Selected Modules from

the Slovak Image Processing Pipeline for Space Debris and Near Earth

Objects Observations and Research [4]. Masking function is described by

pseudocode 4.1. We create list of positions from whole input sequence.

For each position we remember from which image it comes from and cre-

ate retain flag. The retain flag is initially set to False. If it is set to True,
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positions will be used in output sequence. We set current position to be

the first position from ordered list of positions. We remove all positions

from input sequence which are no farther than threshold from the cur-

rent position. The first position with distance greater than threshold is

the new current position.

Procedure 4.1 Masking function

Input: sequence, threshold
Output: new_sequence
1: positions← positions from whole sequence
2: retain_flag← boolean flag for each position in positions
3: ordered_positions← sorted positions by x and y value
4: current← first position - positions[1]
5: mark current in retain_flag
6: for next in ordered_positions do
7: dist← Euclidean position between current and next
8: if dist > threshold then
9: current← next

10: mark next in retain_flag
11: end if
12: end for
13: new_sequence← retain marked positions from original sequence

This approach will remove stationary stars and multiple position ob-

jects if threshold value is properly set.

4.3 Create tuples

We create tuples with size 2 from positions from first two lists in a se-

quence. These pairs are created as Cartesian product between positions

from the first and the second image. For this purpose, we can use Python

module itertools with function product. As in the figure 4.6, we can cre-

ate Cartesian product of two lists by calling product(list1, list2).
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>>> a = [’a’, ’b’, ’c’]
>>> b = [’d’, ’e’, ’f’]
>>> import itertools
>>> list(itertools.product(a, b))
[(’a’, ’d’), (’a’, ’e’), (’a’, ’f’), (’b’, ’d’), (’b’, ’e’),
(’b’, ’f’), (’c’, ’d’), (’c’, ’e’), (’c’, ’f’)]

Figure 4.6: Use of itertools.product on example.

4.4 Model prediction

Model is a trained neural network. For each tuple of positions and track-

let, model outputs predicted position in the next image. An input to model

has to be normalized. Also, the model output is normalized. To get real

positions in an image we need to denormalize this positions. We nor-

malize data by subtracting minimum for each coordinate and dividing

by variance for each coordinate. Variance is computed as difference be-

tween minimum and maximum for each coordinate. Denormalization is

inverse operation.

normalize(x) =
x−MIN(data)

MAX(data)−MIN(data)
(4.1)

denormalize(x) = x · (MAX(data)−MIN(data)) +MIN(data) (4.2)

4.4.1 Network topology

To function properly, neural network has to be designed well. For a tra-

jectory forecast we chose a network with LSTM cells. It accumulates

information about the movement of an object from its previous positions

to predict current position in the image.
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Figure 4.7: Topology of the neural network. Input sequence is processed
by LSTM layers. Output is produced by linear layer to transform LSTM
output to input dimension space.

The neural network topology is illustrated in figure 4.7, its implemen-

tation is in figure 4.8. Positions from an input sequence are fed into

LSTM layers. LSTM projects points from input dimension into hidden

dimension space. Before entering the output linear layer, a nonlinear

activation function is applied (tanh, ReLU). Output layer projects data

from hidden dimension to input dimension space. The result is a vector

of the same dimension as the input.

class AlbertNet(nn.Module):

def __init__(self, hidden_size, input_size=2, num_layers=1):
super(AlbertNet, self).__init__()
self.LSTM = nn.LSTM(input_size,hidden_size, num_layers)
self.final = nn.Linear(hidden_size, 2)

def forward(self, seq):
output, (hidden,_) = self.LSTM(seq)
output = torch.tanh(output[-1,:,:])
pred = self.final(output)
return pred

Figure 4.8: Declaration of AlbertNet neural network in Pytorch.
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4.5 Matching function

Matching function assigns position from the next list to each predicted

position.

4.5.1 Algorithm

As we can see in the pseudocode 4.2, for each predicted position the

algorithm finds position from the next image closest to the predicted

within the threshold.

Procedure 4.2 Matching function

Input: predictions, image_positions, threshold
Output: matched_positions
1: matched_positions← empty list
2: for prediction in predictions do
3: candidates← empty list
4: for candidate in image_positions do
5: dist← Euclidean distance between candidate and prediction
6: if dist < threshold then
7: add (dist,candidate) to candidates
8: end if
9: end for

10: if candidates is empty then
11: position← [−1,−1] invalid position
12: else
13: position← position with minimum distance from candidates
14: end if
15: add position to matched_positions
16: end for

The threshold value determines behaviour of whole the system. Small

values can cause tracklet to not be found. On the other hand, if the value

is too large, system could produce tracklets with small vector confidence

value.
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4.6 Tracklet update

During processing, potential tracklets are held in Tracklet class. Track-

let contains predicted and matched positions in order. It also contains

confidence values for itself. Tracklet update recomputes match confi-

dence number and vector confidence number with new information from

last prediction.

Match confidence number from 4.5 represents proportion of found

positions to total number of positions. Vector confidence number from

4.5 represents average of difference between the norm of true vector
#»
t

and the norm of difference between the true and prediction vector #»p all

divided by norm of true vector.

vector_confidence =
|‖ #»
t ‖ − ‖ #»

t − #»p‖|
‖ #»
t ‖

(4.3)

4.7 Parameters

4.7.1 Masking threshold

If the distance between two points during masking process is equal or

less than the masking threshold, these points are considered to be one

object. Number of thrown away positions during masking depends on the

threshold value. The bigger the value is the more positions are thrown

away during masking.

In our program, the threshold stays for distance in percent of differ-

ence between maximal and minimal position. If threshold = 0.01 and the

difference = (100, 100), then the threshold value is (0.1, 0.1). Value of

parameter does not depend on position units.
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4.7.2 Matching threshold

The matching threshold tells us the maximum distance between pre-

dicted position and position in an image. This value can influence total

amount and accuracy of found tracklets. The bigger the threshold is, the

more tracklets will be found, but many with low confidence.

Like the masking threshold, the matching threshold is in percent of

difference between maximal and minimal position.

4.7.3 Value K

The K value is the maximum number of missed positions in row. Final

tracklet could have missing positions from at mostK consecutive images.

Many times, objects in an image are not recognized by the segmentation

algorithm and their positions are not in the input sequence for our sys-

tem. Therefore, the value of K allow system to find tracklets with miss-

ing positions. If the value is too big, system could find random tracklets

thanks to many missing position.

4.7.4 Overlap

The system can only process sequences with maximum length of 8. Yet,

test data sequences can have varying length depending on observation

strategy. We need to find smaller tracklets in parts of sequence and then

connect them into one. Overlap value tells us overlap between processed

subsequences of input sequence.
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5. Research

5.1 Data generator - StarGen.py

The script starGen.r generates images which cannot be directly used as

training examples for our machine learning models. Therefore, whole

script was re-written in Python and modified. The way how the trajec-

tory of moving objects in training data is calculated is crucial for model

behaviour. A trained model will be able to recognize only objects with

this type of trajectory.

• Series of images

For training data we need series of images. New generator gener-

ates image series with length 8 (figure 5.1).

• Objects

The original script does not simulate a space debris object, or any-

thing else beyond the star field. We have modified the script to pro-

duce variable number of moving objects. Their trajectories consist

of [x, y] positions in each image of the series. We can see movement

of object in figure 5.2.
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• TSV output file

Positions of both stars and objects in each frame are stored into TSV

(figure 5.3) file with same structure as after the Segmentation step

in the existing system (see section 1.2). This ensures that artificial

data hold the same structure as real data. Files contain one extra

boolean field for marking moving object’s positions.

• Point objects

For training purposes and scope of this thesis, script is generating

only point light sources.

Figure 5.1: Series of 8 images created by generator. Series contains one
moving object and random number of stars from the uniform distribution
between 1 and 50.
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Figure 5.2: The first three images from series. Moving object is in the
red circle and it is moving downwards.

Figure 5.3: The final TSV file representing positions of stars and objects
from first image of series in figure 5.1.

Parameters for the script are stored in config.yml file. We can set:

number of series, number of objects and stars in frame, stars and object

paramaters. Script produces configurable number of series consisting of

eight FITS images and eight TSV files.
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5.2 SVM method

5.2.1 Algorithm

Figure 5.4: Activity diagram of algorithm which is using SVM for classi-
fication.

Algorithm is described by the activity diagram (figure 5.4). Input tuple

consist of k positions [x, y]. The first position of an object in the tuple

is position from i-th image’s TSV file, second from (i + 1)-th file and so

on. Last position in the tuple is from (i + k)-th image’s TSV file. Initially,

tuples are created by applying Cartesian product between positions of
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objects from the first k lists. This process will create nk tuples if n is

the number of positions in one list. Tuples are classified with the SVM

classifier into one of two classes: On Line class and Not on Line class.

Not on Line class tuples are discarded and further proceed only On

Line class tuples. If the result of the classifier is On Line, connections

between positions in the tuple are marked in graph. If last element in a

tuple is not a position from the last list, new tuples are created. First

element is removed from the tuple, and at the end a position from the

next list is appended. New tuple will be created for every position from

last list.

After processing all input tuples, we find path from first list positions

to last list positions. If such path exists, we consider it as tracklet. Posi-

tions in the path are positions of moving object.

Figure 5.5: Possible connections in final graph after processing whole
image sequence. Arrows represents path between positions.
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In figure 5.5 there are two possible paths. The green path leads from

first list to last list and can be therefore declared as a tracklet. Nodes in

the graph represent positions of moving object in tracklet. Red path is

an example of an "incomplete" tracklet.

5.2.2 Disadvantages

Finding moving objects using SVM method turns out to be unreliable.

While this method is simple, it comes with a cost.

Parameter m and creation of input tuples

Parameter m represents the size of input tuples to SVM classification.

Smaller value than m = 3 cannot be used, because small values would

cause all tuples to fulfill the condition for On Line class. As value of m

is higher, the classification is more precise. Yet, high value of m leads

to high number of input tuples. Let n be the number of positions in

one image, then nm is the number of input tuples. Value of n can be in

hundreds, and computation becomes very slow for even slightly higher

values of m such as 4 or 5.

Big number of Not On Line class in real data

SVM classifier trained on 50 thousand input tuples with size m = 3 had

above 96% accuracy. Only 3% of validation data were classified as false

negative (figure 5.1). In the real world data, if only one moving object

was in sequence, every input tuple except the one containing positions of

moving the object would belong to Not On Line class. This disproportion

between classes leads to a big number of false negatives. As a result, we
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classify many tuples as On Line class, but only one truly belongs there.

True class

On Line Not On Line

Predicted
class

On Line 4996 4

Not On Line 363 4637

Table 5.1: Confusion Matrix. 10 000 examples with size m=3 were clas-
sified. Only 367 of them were classified incorrectly.

If our algorithm classifies more than one tuple from the last genera-

tion (tuples with last element of the last list) as On Line class, we can

certainly say that in our graph, there exists at least that many paths from

first image to last image. Real number of paths can be much higher.

In testing scenario with m = 3, there were 180 tuples from last gen-

eration classified as On Line class. That means, we have created at least

179 false tracklets. With k = 4 results were similar. Algorithm identified

at least 143 false tracklets, and classification had 98% accuracy (figure

5.2).

True class

On Line Not On Line

Predicted
class

On Line 4997 3

Not On Line 152 4848

Table 5.2: Confusion Matrix. 10 000 examples with size k=4 were clas-
sified. Higher value of k leads to better precision and lower number of
misclassified examples.

With this many false negative examples we are not able to detect a

true, moving object. Due to these problems SVM method has been re-

jected.
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5.3 Model selection

Network with described topology has two adjustable parameters: hid-

den dimension and number of LSTM layers. In order to choose the

best parameters, we trained multiple models for 20 epochs (learning it-

eration) with 500 batches each containing 32 sequences with length 2.

Moreover, the specification of input and output form of the network is

needed.

5.3.1 Hidden dimension

LSTM projects inputs into hidden dimension space. In order to accu-

mulate enough information in the hidden state, it must be in higher di-

mension space than input. Higher values than 50 lead to higher training

error as shown in the table 5.3. For this reason, we choose the highest

value of hidden dimension without significantly increasing the training

error after 20 epochs. We set hidden dimension to hid_dim = 50.

hidden dim training error [px]

2 72

5 20

15 6

50 6

100 9

Table 5.3: The table shows, how training error is affected by size of the
hidden dimension. Training error is Euclidean distance between pre-
dicted and the real position in pixels.
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5.3.2 Number of LSTM layers

This value represents number of LSTM cells in the network. Using mul-

tiple LSTM cells leads to the increase of training time required. The

training error is also converging slower as we can see in the table 5.4.

For these reasons we chose number of layers = 1.

Number of LSTM layers testing

number of layers training error [px] epoch time [s]

1 6 1.9

2 11 2.55

3 13 3.13

5 18 4.5

Table 5.4: Change in training error and epoch time for different numbers
of LSTM layers in network. Training error is Euclidean distance between
predicted and true next position in pixels. Epoch time is average duration
for training one epoch.

5.3.3 Network input

The LSTM network works with time series, therefore inputs, must be

given as a sequences of points. In this case, point represents [x, y] posi-

tion of a moving object in the corresponding image. One series consists

of multiple ordered positions of moving object. An object’s positions can-

not be missing in the series.

Length of sequences can vary. The longer the input sequence, the

more information can the network learn about object’s movement. More-
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over, humans can more easily predict next position if they have seen mul-

tiple previous positions. Training input sequences have been generated

using Data generator, as we do not have enough real data sequences.

Positions of moving objects are only used as the training data. Positions

of stars are not required for training task. In the table 5.5 we can see

an example of three sequences. In supervised learning, target value is

necessary. We use last object’s position in series as the target value. We

predict last position from series of previous positions.

image number

1 2 3 4 5

Series of positions

[210, 34] [246, 33] [282, 32] [318, 31] [351, 30]

[767, 527] [723, 510] [679, 493] [635, 476] [591, 459]

[624, 580] [670, 593] [716, 606] [762, 619] [808, 632]

Table 5.5: Example of three series. Each row consists of 5 moving ob-
ject’s positions [x, y] in first 5 images.

After choosing model’s parameters we need to specify the input length.

To test all possibilities, we trained models with parameters chosen in pre-

vious section.

Sequence with length 2

The input sequence consists of the last two positions of the moving ob-

ject. Two points contain enough information to predict the next position

if the object moves in a straight line.

In the figure 5.6, model is learning quickly. Training loss after 20
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epochs is around 3 pixels. However, using this approach, we use only a

fraction of known information about the object’s movement.

Figure 5.6: Training and Validation loss during training for model using
input sequence of length 2.

We trained model for 500 epochs to get the best performance. The

behaviour of training and validation loss is visible in the figure 5.7. After

500 epochs training loss is below 2 px.
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Figure 5.7: Training error for 500 epochs for model with input sequence
lenght 2.

A model trained this way cannot be used to process longer sequences.

As shown in the table 5.6, testing error is increasing with an input se-

quence length. Testing error behaviour shows interesting results. Even

length values show better results than odd values. This can be caused by

training model with even size sequence.

In the figure 5.8 we can see performance of the model using real data.

Orange points represent real positions, blue points represent positions

predicted by the model. Values represent position number. Real data

often do not include all positions of the object. The third real position of

object is missing. Due to that, predicted position with number 4 an 5 are

distant from real positions. Model performs quite well if no positions are

missing. Yet, because of only two previous object’s positions have been

used, model made relatively big mistake in predicting 9-th position.
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Table 5.6: Testing error for input sequences with different length. Each
length was tested on 100000 examples 5 times to get average error.

Figure 5.8: Positions of the moving object. Object is moving from top
right corner to bottom left. Orange points are positions of moving ob-
ject. Blue point are predicted positions by model. Position prediction
was made by model trained with input sequence length = 2.

Advantages - fast learning, fast prediction

Disadvantages - Uses only partial information about movement of the
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object. Model is not consistent in precision of predictions.

Variable sequence length

The input sequence consists of all known positions of the object. Us-

ing this approach, we use every available information about the object’s

movement. Thanks to that, model is less sensitive to local deviations in

object movement.

Figure 5.9: Training loss (in blue) and validation loss (in orange) dur-
ing training for 100 epochs for model trained with variable length input.
Training loss reached its minimum at approximately 4 pixel loss.

Training process is little slower with variable sequence length as we

can see in figure 5.9.

If we trained a neural network with variable length sequence for 500
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epochs, training loss will drop to around 2.5 px. Behaviour of training

loss and validation loss in time is visualised in the figure 5.10.

Figure 5.10: Training loss (in blue) and validation loss (in orange) during
training for 500 epochs for model trained with variable length input.

This approach can perform quite well on inputs with length from 2 to

7 as in the table 5.7. Model loss increases with sequence length higher

than 7, because model was not trained on sequences that long.
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Table 5.7: Testing error for input sequences with different length. Each
length was tested on 100000 examples 5 times to get average error.

Figure 5.11: Positions of the moving object. Object is moving from top
right corner to bottom left. Blue points are predicted positions by the
model. Position prediction was made by model trained with variable in-
put sequence length.
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The figure 5.11 shows the model’s performance on real data. Target

sequence is the same as in the figure 5.8. From these graphs we can

say that model with variable input sequence length is more consistent

for long sequences. Predicted positions 8, 9, 10, 11 have same direction

as real positions in contrast to the previous model where these positions

did not lay on a straight line.

Advantages - Model is using all available information. Model has more

consistent prediction precision.

Disadvantages - Longer training time.

5.3.4 Network output

The next position is predicted from previous object’s positions using two

possible approaches:

1. Position prediction

Direct prediction of the next object position.

2. Vector prediction

Direction vector prediction - direction from last position. The last

position is shifted by direction vector to get the next position.

Vector vs. position prediction

The output of a model could be a position of an object in the picture or a

vector representing direction from last position to new position. Perfor-

mance of the model, with either of these output forms, is the same. The

output form does not affect amount of information used for prediction.

The vector output form is more practical for further operations.
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5.3.5 Final Model

From these options, variable input sequence length and vector out-

put form was chosen. Knowledge of the direction vector is needed dur-

ing the processing. Thanks to the output form, it does not have to be

computed from its positions.

5.4 Testing data

The Department of Astronomy and Astrophysics has provided 26 pro-

cessed image series from AGO70 telescope. Each series contains posi-

tions of one of the 5 real moving objects. 24 series contain 20 images,

one series of 19 and one series of 21 images. Testing data also contains

verified ground-truth tracklets if not stated otherwise. The information

about objects are from NY2o website [11].

1. Navstar 51

- Info: GPS satellites

- Orbit: MEO

- Minimal altitude: 19871.4 km

- Period: 11 hour and 57.6 minute

- Number of Series: 4

2. Navstar 60

- Info: GPS satellite

- Orbit: MEO

- Minimal altitude: 19846.4 km

- Period: 11 hour and 57.9 minute

- Number of Series: 3
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3. Cosmos 2434

- Info: Glonass satellite

- Orbit: MEO

- Minimal altitude: 19126.3 km

- Period: 11 hour and 15.7 minute

- Number of Series: 4

4. Cosmos 2460

- Info: Glonass satellite

- Orbit: MEO

- Minimal altitude: 19129.9 km

- Period: 11 hour and 15.7 minute

- Number of Series: 4

5. AMC-14

- Info: Broadcasting satellite

- Orbit: GEO (central Africa)

- Minimal altitude: 35620.0 km

- Period: 23 hour and 56.1 minute

- Number of Series: 11

5.5 Results

System was used to process sequences from section 5.4.

5.5.1 System behaviour

Sequences from section 5.4 were processed using our system. We tested

behaviour of the system with different parameters. Default parameters
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are:

• masking threshold = 0.002

• matching threshold = 0.003

• K = 2

• overlap = 2

Output values, match confidence and vector confidence (section

4.1.2), show performance of the system. Match confidence shows length

of the found tracklet relative to sequence length. Vector confidence

shows how precise the model prediction was for given tracklet. Com-

bination of these values can suggest if given tracklet represents the real

moving object or random positions.

Masking threshold

Masking threshold is the maximum distance between positions in mask-

ing process (section 4.2).

Table 5.8: Behaviour of the system with different values of masking
threshold.
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Total number of found tracklets and number of sequences with found

tracklet is the same for all values.

The bigger the value is, the less positions are in the input sequence,

so the system can process them faster. Yet, with high value we can lose

some important positions from sequences. In the table 5.8, the minimal

value of match confidence is the lowest for masking threshold 0.01. In

this case, some positions which were in tracklet in previous runs were

removed in masking process.

Matching threshold

Matching threshold is the maximum allowed distance between positions

in matching process (section 4.5).

Table 5.9: Behaviour of the system with different values of matching
threshold.

According to the table 5.9, matching threshold has a huge influence

on system behaviour. As the value rises, so does the total number of

found tracklets.

For value 0.01 the system found 42 tracklets, but many of them with

relatively small confidence values. The minimal vector confidence of 0.58
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tells us about model prediction precision. Decrease in mean vector con-

fidence means many tracklets with low model prediction precision. The

minimal match confidence value is 0.25 (tracklet length is 25% of se-

quence length).

K value

K value is described in the section 4.7.3.

Table 5.10: Behaviour of the system with different values of K.

K value is responsible for the total number of found tracklets, accord-

ing to the table 5.10. K value greater or equal to 3 causes the system

to produce some tracklets with low confidence values, especially match

confidence values. If K value is equal to 1, the system is not able to find

tracklet for one sequence. Two images in this sequence do not contain

moving object’s position. Higher value of K ensures that the system will

find missing tracklet.

Overlap

Overlap value is described in the section 4.7.4.
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Table 5.11: Behaviour of the system with different values of overlap.

Overlap does not have a huge effect on the system behaviour accord-

ing to 5.11. There is one interesting anomaly for value 3. Maximum

vector confidence is above 1. This means that one of found tracklets

was describing stationary object with a small norm of direction vector.

Formula for the vector confidence value is described in the section 4.1.2.

5.5.2 Analytic vs. RNN system

Tracklets, created by the existing analytic system, were compared with

ones created by our new system using RNN with parameters: masking

threshold = 0.002, matching threshold = 0.003, K = 2 and overlap =

2. RNN system was trained on artificial data. For every test sequence,

tracklets found by both systems were the same - tracklets are the same

or one is a part of the other.

In most cases tracklets found by the RNN system are longer, as shown

in the table 5.12. In the figures 5.12, 5.13, 5.14 and 5.15, there are ex-

amples of output tracklets from both systems. Green points are positions
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for given measurement time that are in both tracklets, blue points are

positions only from the RNN system tracklet and red points are positions

only from the analytic system tracklet.

Table 5.12: Difference in number of points in tracklet between tracklets
from the RNN system and the analytic system.

Figure 5.12: Tracklets for Cosmos 2460 satellite. Tracklets from both
systems are the same.
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Figure 5.13: Tracklets for Navstar 51 satellite. Tracklet from the new
system is 4 positions longer than tracklet from the analytic system.

Figure 5.14: Tracklets for AMC-14 satellite. Tracklet from the new sys-
tem is 1 positions longer than tracklet from the analytic system.

57



Figure 5.15: Tracklets for Navstar 60 satellite. Tracklet from the an-
alytic system is 1 position longer than tracklet from the RNN system.
The additional position from tracklet is a mistake made by the analytic
system.
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Figure 5.16: Tracklets for AMC-14 satellite. Tracklet from the new sys-
tem is 10 positions longer than tracklet from the analytic system. Vector
confidence value for this tracklet is 0.90.
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Conclusion

We have shown that the RNN method is capable of finding moving ob-

ject’s positions in the sequence of images. Moreover, this method per-

forms well on testing data from section the 5.4. In comparison to the

existing analytical solution in the section 5.5, RNN method was able to

find longer tracklets, which could lead to more precise identification of

object’s trajectory. Introduction of confidence values in the section 4.1.2

brings additional information about the found tracklet. Such information

is missing in output of the existing analytical system. We have proved

the concept of tracklet building as reliable using the RNN methods. In

the future work, RNN method can be further improved to find moving

objects with more complex trajectories, which will be a part of my PhD

thesis.
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